
Appl Intell (2014) 41:439–452
DOI 10.1007/s10489-014-0530-4

An efficient approach for finding weighted sequential
patterns from sequence databases

Guo-Cheng Lan · Tzung-Pei Hong · Hong-Yu Lee

Published online: 6 April 2014
© Springer Science+Business Media New York 2014

Abstract Weighted sequential pattern mining has recently
been discussed in the field of data mining. Different from
traditional sequential pattern mining, this kind of mining
considers different significances of items in real applica-
tions, such as cost or profit. Most of the related studies
adopt the maximum weighted upper-bound model to find
weighted sequential patterns, but they generate a large num-
ber of unpromising candidate subsequences. In this study,
we thus propose an efficient approach for finding weighted
sequential patterns from sequence databases. In particular,
a tightening strategy in the proposed approach is proposed
to obtain more accurate weighted upper-bounds for subse-
quences in mining. Through the experimental evaluation,
the results also show the proposed approach has good per-
formance in terms of pruning effectiveness and execution
efficiency.
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1 Introduction

The main purpose of data mining on knowledge discovery
is to extract useful rules or patterns from a set of data. In
the field of data mining, sequential pattern mining [2] has
been widely applied to trend analysis from a set of long-
term event sequence data. The traditional sequential pattern
mining, however, only considers the occurrence of items,
and then it does not reflect any other factors, such as price
or profit. Besides, the same significance is assumed for all
items in a set of sequences. Thus, the actual significance of a
pattern cannot be easily recognized. Some events with low-
frequency are quite important, for example products with
high-profit in a transaction database or attacked events in
a long-term network. Such events may not be easily found
by using traditional sequential pattern mining techniques.
To handle this, Yun et al. proposed a new research issue,
namely weighted sequential pattern mining [21], in which
different weights were assigned to items by the importance
of each item. In addition, Yun et al. designed an average-
weight function to evaluate the weight value of a pattern in
a sequence. Based on the average-weight function, Yun et
al. [21] also developed an upper-bound model, in which the
maximum weight among items in a sequence database was
used as the upper-bound of weight value of each sequence,
to construct a downward-closure property in the problem of
weighted sequential pattern mining. However, although Yun
et al.’s WSpan algorithm [21] can avoid information losing
in mining, a large number of candidate subsequences were
still generated due to the upper-bounds of overestimated
weighted values for the candidates. It is thus a critical issue
to develop a suitable model for weighted sequential pattern
mining.

To address the above reasons, the work presents an effec-
tive model to reduce a large number of candidates for
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finding weighted sequential patterns in sequence databases.
The major contributions of this work are summarized as
follows.

1. This work proposes an effective sequence maximum
weight (abbreviated as SMW) model to tighten upper-
bounds of weighted supports for subsequences in min-
ing. In addition, an efficient projection-based mining
approach with the model, namely IUA (an improved
upper-bound approach), is presented to speed up the
execution efficiency in finding weighted sequential pat-
terns.

2. Based on the SMW model, an effective pruning strategy
in the proposed IUA approach is designed to reduce the
number of unpromising subsequences in the recursive
mining process, thus avoiding unnecessary evaluation.
The efficiency in finding weighted sequential patterns
can thus be raised.

3. Through a series of experimental evaluation, the results
show that the number of weighted frequent upper-
bound patterns is less than that needed by the traditional
WSpan algorithm [21], when working on the synthetic
datasets generated by the IBM data generator [12] and
the real Kosarak dataset [11]. The experimental results
also show the proposed algorithm executes faster than
the WSpan algorithm.

The remaining parts of this paper are organized as fol-
lows. Some related works are briefly reviewed in Section 2.
The problem to be solved and the definitions are described
in Section 3. The proposed IUA algorithm with a pruning
strategy for finding weighted sequential patterns from a set
of sequence data is stated in Section 4. An example is given
to illustrate the execution procedures of the proposed algo-
rithm in Section 5. The experimental evaluation is showed
in Section 6. Conclusions and future works are finally given
in Section 7.

2 Review of related works

In this section, some related studies on weighted itemset
mining and weighted sequential pattern mining are briefly
reviewed.

2.1 Weighted frequent itemset mining

The main purpose of data mining in knowledge discov-
ery is to extract desired rules or patterns in a set of data.
One common type of data mining is to derive association
rules from a transaction dataset, such that the presence of
certain items in a transaction will imply the presence of
some other items. To address this, Agrawal et al. proposed
several mining algorithms based on the concept of large

itemsets to find association rules from transaction data [1,
3–5]. The a priori algorithm on association-rule mining was
the most well-known of existing algorithms. The process
of association-rule mining could be divided into two main
phases. In the first phase, candidate itemsets were gener-
ated and counted by scanning transaction data. If the count
of an itemset in the transactions was larger than or equal to
the pre-defined threshold value (called the minimum sup-
port threshold), the itemset was identified as a frequent
one. Itemsets containing only one item were processed first.
Frequent itemsets containing only single items were then
combined to form candidate itemsets with two items. The
above process was then repeated until no candidate item-
sets were generated. In the second phase, association rules
were derived from the set of frequent itemsets found in
the first phase. All possible association combinations for
each frequent itemset were formed, and those with calcu-
lated confidence values larger than or equal to a predefined
threshold (called the minimum confidence threshold) were
output as association rules.

An itemset in association-rule mining only considers the
frequency of the itemset in databases, and the same signif-
icant are assumed for all items in the itemset. In reality,
however, the importance of items in a database may be
different according to different factors, such as profit and
cost of items [17]. For example, LCD TVs may not have
high frequency but is a high-profit product when com-
pared to food or drink in a database. Thus, some useful
item products may not be discovered by using traditional
frequent itemset mining techniques. To handle the prob-
lem, Yun et al. then proposed a new research issue, called
weighted itemset mining [19] to find weighted frequent
itemsets in transaction databases. The weights of items in
a database for weighted itemset mining could be flexibly
given by users, and the average-weight function in Yu et
al.’s study [20] was designed to evaluate the weight of an
itemset in a transaction. Different from frequent itemsets
with only consideration of frequency, the found itemsets
with high-weight values might be used as managers’ aux-
iliary information in terms of making decisions. However,
the downward-closure property in association-rule mining
cannot be kept in the problem of weighted frequent item-
set mining with the average-weight function. To address
this, Yun et al. proposed an upper-bound model to con-
struct a new downward-closure property [19] which adopted
the maximum weight of a database as the weight upper-
bound of each transaction, the FP-growth-based was also
developed to find weighted frequent itemsets in transac-
tion databases, and the algorithm in their study had a good
performance in terms of handling the problem of weighted
frequent itemset mining. Afterward, several studies [7–10,
13, 22, 23] related to weighted itemset mining are based on
or extended from Yun et al.’s proposed weighted function
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to deal with various data applications, such as improve-
ment efficiency applications [13], data stream applications
[7], incremental data applications [9], weighted sequential
pattern mining [10, 22, 23], etc.

2.2 Weighted sequential pattern mining

In general, the transaction time (or time stamp) of each
transaction for real-world applications is usually recorded
in databases. The transactions can then be listed as a time-
series data (called a sequence data) in the occurring time
order of the transactions. To handle such data with time,
a new issue, namely sequential pattern mining, was first
developed to achieve the goal [2], and the three algo-
rithms, AprioriAll, AprioriSome, and DynamicSome, were
also proposed to find sequential patterns in a sequence data.
However, the three algorithms, which were the level-wise
techniques, had to execute multiple data scans to com-
plete sequential pattern mining tasks. Afterward, several
algorithms for sequential pattern mining were published to
improve efficiency, such as GSP [18] and PrefixSpan [15].
Besides, the principle of sequential pattern mining [2] was
applied to different domain applications, such as time-gap
sequential pattern mining [19].

As mentioned in weighted itemset mining, the similar
problem for the same significance of items also existed
in sequential pattern mining. Afterward, some studies con-
sidered different significance of items in various applica-
tions, such as high utility sequential pattern mining [6],
weighted sequential pattern mining, and so on. Since high
utility sequential pattern mining [6] considered not only
the transaction time order of items in sequences but also
the quantities and profits of items, it is useful in supermar-
ket promotion applications. Different from utility sequential
pattern mining [6, 16], however, in some applications (e.g.
stock trend analysis applications), the weighted sequential
pattern mining is more suitable than high utility sequential
pattern mining due to different activity significance, such as
purchasing activity or at-home activity. Through the weight
concept, some importance sequential patterns may be found
when compared with the traditional sequential pattern min-
ing and high utility sequential pattern mining. To deal with
this, Yun et al. thus proposed a new research issue, named
weighted sequential pattern mining [21] to find weighted
sequential patterns from the a sequence database. Similarly,
different weights were given items by referring to factors,
such as their profits, their costs, or users’ preferences, and
then the actual importance of a pattern could be easily
recognized when compared with the traditional sequential
pattern mining. Different from the function in weighted
itemset mining, the time factor was considered to develop
a new average-weight function [21], and the new function
could be applied to identify the weight value of a pattern in

a sequence. Based on the function, however, the downward-
closure property in traditional sequential pattern mining
could not be kept on weighted sequential pattern mining.
To address the problem, an upper-bound model [21], which
the maximum weight in a sequence database was regarded
as the upper-bound of each sequence, was directly derived
from Yun et al.’s proposed model in weighted itemset min-
ing [21]. However, it was observed that a huge amount of
unpromising subsequences still had to be generated by using
the traditional upper-bound model [21] for mining, and its
performance was thus not good.

Based on the above reasons, this motivates our explo-
ration of the issue of effectively and efficiently mining
weighted sequential patterns from a set of sequences.

3 Problem statement and definitions

To describe the problem of weighted sequential pattern
mining clearly, assume a sequence database is given in
Table 1, in which each sequence consists of two fea-
tures, sequence identification (SID) and items purchased (or
events appeared). There are eight items in the sequences,
respectively denoted as A to H. Also, assume the predefined
weight value of each item is shown in Table 2.

For the formal definitions of weighted sequential pattern
mining, a set of terms related to the problem of weighted
sequential pattern mining is then defined as follows.

Definition 1 An itemset X is a subset of items, X ⊆I. If
|X| = r , the itemset X is called an r-itemset. Here I =
{i1, i2, ..., im} is a set of items, which may appear in
sequences. Note that the items in an itemset are sorted in
alphabetical order of the items.

Definition 2 A sequence Seq is composed of a set of item-
sets by time order of the itemsets, and the size of the
sequence Seq, |Seq|, is the number of itemsets in Seq. In
addition, if the number of items in a sequence, lSeq , is l, the
sequence Seq with the length l is called an l-sequence. For
simplicity, here we assume that bracket of an itemset can be
removed as there is only one item in the itemset.

Table 1 The set of five sequences in this example

SID Sequences

Seq1 <BCB>

Seq2 <DECHF>

Seq3 <ACF(DE)F>

Seq4 <(FG)H>

Seq5 <(CD)ACEF>
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Table 2 The weight table in this example

Item Weight

A 0.1

B 0.15

C 0.2

D 0.3

E 0.45

F 0.55

G 0.65

H 0.95

Definition 3 Let α and β be two sequences, <X1, X2,
. . ., Xn> and <Y1, Y2, . . ., Ym>. If there exist an integer
1≤i1 < . . . < in < m such that X1 ⊆ Yi1, ..., Xn ⊆ Yin , the
sequence α is called the sub-sequence of another sequence
β, and the sequence β is called the super-sequence of the
sequence α.

For example, the sequence <ABC> is the sub-sequence
of <(A)(AB)(CD)>, and the sequence <(A)(AB)(CD)>

is the super-sequence of <ABC>.

Definition 4 A sequence database SDB is com-
posed of a set of sequences. That is, SDB =
{Seq1, Seq2, . . . , Seqy, . . . , Seqz}, where Seqy is the y-th
sequence in SDB.

Definition 5 The weight value of an item i, wi , ranges from
0 to 1.

Definition 6 The weight value of an itemset X, wX, is
the summation of weight values of all items in X over the
number of all items in X. That is,

wX =

|X|∑

i∈X∧X⊆I

wi

lX
,

where lX is the number of items in the itemset X.

For example, in Table 2, since the weight values of the
two items in the itemset {AB} are 0.05 and 0.15, respectively,
and the number of items in {AB} is 2, w{AB} = (0.05 +
0.15)/2 = 0.1.

Definition 7 The weight value of a subsequence S, wS , is
the summation of weight values of all itemsets in S over the
number of all itemsets in S. That is,

wS =

|Seq|∑

X∈Seq
wX

|S| ,

where |S| and wX are the number of itemsets in the sub-
sequence S and the weight value of the itemset X in S,
respectively.

For example, in Tables 1 and 2, since the fourth sequence
<(FG)H> includes two itemsets, (FG) and (H), and the
weights of the two itemsets are 0.6 and 0.95, respectively.
Then, w<(FG)H> = (0.6 + 0.95)/2 = 0.775.

Definition 8 The sequence maximum weight value of a
sequence S, smwS , is the maximal weight among all items
in the sequence S.

Definition 9 The total sequence maximum weight of a
sequence database SDB, tsmw, is the summation of the
sequence maximum weight values of all sequences in SDB.
That is,

tsmw =
∑

Seqy⊆SDB

smwy.

For example, in Table 1, the sequence maximum weights
of the five sequences are 0.20, 0.95, 0.55, 0.95, and 0.55,
respectively. Then, tsmw = 0.20 + 0.95 + 0.55 + 0.95 +
0.55 = 3.20.

Definition 10 The weighted support value of a subsequence
S, wsupS , is the summation of the weight values of the sub-
sequence S in the sequences including S in SDB over the
total sequence maximum weight tsmw of SDB. That is,

wsupS =

∑

S⊆Seqy
∧Seqy⊆SDB

wS

tsmw
.

For example, in Table 1, the weight of the subsequence
<DF> is 0.425 (= (0.3 + 0.55)/2) in accordance with the
seventh definition, and it appears in the three sequences,
Seq2, Seq3, and Seq5. Besides, the total sequence maximum
weight is 3.20. The weighted support of <DF> is then
calculated as (0.425+0.425+0.425)/3.2, which is 39.84 %.

Definition 11 Let λ be a pre-defined minimum weighted
support threshold. A subsequence S is called a weighted
sequential pattern (abbreviated as WS) if wsupS≥λ.

Here it is observed that the downward-closure property
in traditional pattern mining is not kept in the problem of
weighted sequential pattern mining. Take item D in Table 1
as an example. There are three sequences including the item
D in Table 1, and the weight of the item D in Table 2 is 0.3.
Then, the weighted support value of the sequence <D> can
be calculated as (0.3 + 0.3 + 0.3)/3.2, which is 28.13 %.
If λ = 30 %, then the sequence <D> is not a weighted
sequential pattern, but its super-sequence <DF>4 is weigh-
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ted sequential pattern. As this example describes, the prob-
lem of weighted sequential pattern mining is more difficult
than the traditional sequential pattern mining. To efficiently
handle this, in this study, we proposed an effective sequence
maximum weight (abbreviated as SMW) model to reduce
the number of unpromising subsequences and then speed up
the execution efficiency in finding weighted sequential pat-
terns. The relevant terms used in our proposed SMW model
are defined as follows.

Definition 12 The sequence-weighted upper-bound of a
subsequence S, swubS , is the sum of sequence maximum
weights of the sequences including S in a sequence database
over the total sequence maximum weight tsmw of the
sequence database SDB. That is,

swubS =

∑

S⊆Seqy
∧Seqy⊆SDB

smwy

tsmw
.

For example, in Table 1, the item D appears in the
three sequences, Seq2, Seq3, and Seq5, and the sequence
maximum weights of the three sequences are 0.95, 0.55,
and 0.55, respectively. Then, swub<D> = 2.05/3.20 =
64.06 %.

Definition 13 Let λ be a pre-defined minimum weighted
support threshold. A subsequence S is called a weighted
frequent upper-bound pattern (abbreviated as WFUB) if
swubS≥λ.

Based on the definitions above, a weighted sequen-
tial pattern considers the individual weights of items in
sequence data. The problem to be solved in the paper is to
efficiently find all the frequent weighted sequential patterns,
which their actual weight values are larger than or equal to
a predefined minimum weighted support threshold λ, in a
given sequence database. The details of the proposed IUA
algorithm are described in the next section.

4 The proposed algorithm

In this paper, a new projection-based mining algorithm
is proposed to effectively handle the problem of finding
weighted sequential patterns in a sequence database. The
improved model and the pruning strategy used in the pro-
posed algorithm are developed to help its execution. The
improved upper-bound model is first described below.

4.1 The improved upper-bound model

A new weight upper-bound model is proposed here to
enhance the traditional weight upper-bound model [21],

thus tightening upper-bounds of weight values for patterns
in the mining process. In the traditional upper-bound model
[21], the maximum weight in a sequence dataset is used as
the upper-bound of weight value for each sequence, and then
the downward-closure property can be held on weighted
sequential pattern mining. However, it is observed that the
maximal weight in a sequence is also used to achieve
the same goal. That is, the value can be regarded as the
upper-bound of weight value for any subsequence in that
sequence. To illustrate the completeness of the sequence
maximum weight (abbreviated as SMW) model adopted,
two lemmas are given below to prove that no weighted
sequential patterns are skipped in any weighted sequential
pattern mining case. First, Lemma 1 is stated to prove the
downward-closure property of the proposed SMW model.

Lemma 1 The sequence-weighted upper-bound of a pat-
tern x keeps the downward-closure property.

Proof Let x be a weighted frequent upper-bound pattern
and dx be the set of sequences containing x in a sequence
database SDB. If y is a super-sequence of x, then y can-
not exist in any sequence where x is absent. Therefore, the
sequence-weighted upper-bound swubx of x is the maxi-
mum upper-bound of weight value of y. Accordingly, if
swubx is less than a predefined minimum weighted support
threshold, then y cannot be a weighted frequent upper-bound
pattern.

Next, Lemma 2 proves that all weighted sequential pat-
terns in a database are included in the set of weighted
frequent upper-bound patterns.

Lemma 2 For a sequence database SDB and a predefined
minimum weighted support threshold, the set of weighted
sequential patterns WS is a subset of weighted frequent
upper-bound patterns WFUB.

Proof Let x be a weighted sequential pattern. According
to Definitions 12 and 13, the actual weighted support awsx
of x must be less than or equal to its sequence-weighted
upper-bound swubx . Accordingly, if x is a weighted sequen-
tial pattern, then it must be a weighted frequent upper-bound
pattern. As a result, x is a member of the set WFUB.

Based on Lemmas 1 and 2, it can be known that all
weighted sequential patterns in a sequence database can
be discovered, and the proposed model can be used to
effectively tighten upper-bounds of weight values for sub-
sequences when compared with the traditional upper-bound
model [21]. Below, an example is given to illustrate how to
improve upper bounds of weight values for subsequences by
using the model.
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For example, according to the traditional upper-bound
model [21], the maximum weight value in Table 1 is 0.95,
and the value of 0.95 is regarded as upper-bound of any
subsequence in each sequence in the dataset. Take item
C as an example, the item appears in the four sequences,
S1, S2, S3and S5, and the weight upper-bounds of the four
sequences are all 0.95. Then, the upper-bound of weight
value for C can be calculated as (0.95+0.95+0.95+0.95),
which is 3.8.

Based on the proposed upper-bound model, however, the
upper-bound of weight value for item C can thus be further
tightened. First, the maximal weight in a sequence has to be
found. Take the first sequence Seq1:<BCB> in Table 1 as an
example. The sequence includes two distinct items, B and C,
and their weights are 0.15 and 0.20, respectively. The max-
imal weight value between the weights of B and C is 0.20,
and then the value of 0.20 is regarded as the upper-bound
of weight value for the sequence, Seq1. All the other four
sequences in Table 1 can be similarly processed, and the
results for maximum weight values of the five sequences are
found as 0.20, 0.95, 0.55, 0.95, and 0.55, respectively. The
sequence-weighted upper-bound of C can be then calculated
as 0.20 + 0.95 + 0.55 + 0.55, which is 2.25.

As this example illustrates, the value (= 2.25) obtained
by the proposed model is obviously less than that (= 3.8)
obtained by the traditional model. Hence, the sequence-
weighted upper-bounds of subsequences in the mining can
be effectively tightened by using the proposed model when
compared with the traditional upper-bound model [21].

4.2 The pruning strategy for unpromising items

In this section, a simple pruning strategy based on both of
the proposed model and the projection-based technique is
designed to effectively reduce the number of unpromising
subsequences for mining. According to Lemmas 1 and 2,
the downward-closure property for the problem of weighted
sequential pattern mining can then be held by the pro-
posed model. Based on the model, any sub-pattern of a
weighted frequent upper-bound pattern must be a weighted
frequent upper-bound pattern. On the contrary, if there exists
a weighted infrequent upper-bound sub-pattern for a pat-
tern, then the pattern must not be a weighted frequent
upper-bound pattern; indeed, the pattern also must not be
a weighted sequential pattern. In this case, the pattern can
be skipped early since it is impossible to be a weighted fre-
quent upper-bound pattern. In the study, the above concept
is applied in the pruning strategy to reduce unpromising
subsequences in the recursive process.

The procedure of the strategy in the proposed projection-
based algorithm is described as follows. First, when all the
weighted frequent upper-bound r-patterns with r items are
found, all items in the set of weighted frequent upper-bound

r-patterns are gathered as the pruning information for each a
prefix r-pattern to be processed. Next, the additional (r+1)-
th item of each generated (r+1)-pattern in the next recursive
process will be checked for whether it appears in the set of
gathered items. If it is, the generated (r + 1)-subsequence
will be put in the set of (r + 1)-sequences; otherwise, it is
pruned. An example is given below to illustrate the pruning
of unpromising subsequences in the recursive process.

For example, an assumed sequence is <(AB)DEF>,
where symbols represent items, and assume the two pat-
terns <(AB)> and <AC> are included in the current set
of weighted frequent upper-bound 2-patterns WFUB2,<A>

with <A> as their prefixes. In this case, only the three
distinct items, A, B, and C, are gathered from the set
WFUB2,<A> as the pruning information, and the next pre-
fix subsequence to be processed is the pattern <(AB)>. For
the sequence <(AB)DEF>, the sequence is the projected
sequences of <(AB)>, but the three items in the sequence,
D, E, and F, are not shown in the set of gathered items.
Thus, the three items can be removed from the sequence,
and the modified sequence is then <(AB)>. The reason is
that the super-patterns consisting of the three items and the
prefix <A> must not be weighted frequent upper-bound
patterns. Moreover, since the number of items kept in the
modified sequence is less than the value of 3, which is the
number of items in the 3-patterns to be generated, the mod-
ified sequence can be removed directly from the projected
sequences of <(AB)>. As the example describes, the strat-
egy can be applied to effectively speed up the efficiency of
the proposed algorithm in terms of handling the problem of
weighted sequential pattern mining.

As mentioned previously, the superiority of our pro-
posed approach can be explained as follows. Yun et al.’s
approach developed an upper-bound model [21], in which
the maximum weight in a sequence database was regarded
as the upper-bound of each sequence to keep the downward-
closure property in the problem of weighted sequential pat-
tern mining. Afterward, most of the studies [7–10] related
to weighted sequential pattern mining adopted the upper-
bound model [21] to handle various kinds of weighted data
mining issues, such as the problems of weighted sequen-
tial pattern mining in stream environments [7], of weighted
sequential pattern mining with the consideration of dynamic
item weights in different time periods [8], of the incremen-
tal weighted sequential pattern mining [9], and of sequential
pattern mining with the consideration of different time-
interval weights [10].

However, the item with the maximum weight value in a
sequence database does not always appear in each sequence.
Due to this reason, the proposed SMW model uses the max-
imum weight in a sequence as the upper-bound of any
subsequences in that sequence to avoid information lost,
thus tightening the upper-bounds of weighted supports for
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subsequences in mining. Based on the proposed SMW
model, this work also presents a projection-based IUA
approach to deal with this problem, and an effective pruning
strategy is also embedded to further obtain lower upper-
bounds of weighted supports of subsequences in the recur-
sive mining process. Hence, the proposed IUA approach
based on the improved model could speed up the execu-
tion efficiency in mining when compared with Yun et al.’s
approach [21].

4.3 The proposed projection-based mining algorithm
with the improved model

The proposed IUA algorithm based on the improved upper-
bound model is stated below.

Input: A set of items, each with a weight value; a
sequence database SDB, in which each sequence
includes a subset of items; a minimum weighted
support threshold λ.

Output: A final set of weighted sequential patterns, WS.

Step 1: For each sequence Seqy in SDB, find the
sequence maximum weight smwy of the sequence
Seqy as:

smwy = max
{
wy1, wy2, . . . , wyj

}
,

where wyj is the weight value w(iyj ) of the j-th
item iyj in Seqy .

Step 2: Find the total sequence maximum weight tsmw
of the sequence database SDB as:

tsmw =
∑

Seqy⊆SDB

smwy.

Step 3: For each item I in SDB, do the following sub-
steps.

(a) Calculate the sequence-weighted upper-
bound swubI of the item I as:

swubI =

∑

S⊆Seqy
∧Seqy⊆SDB

smwy

tsmw
.

where smwy is the sequence maximum
weight of each Seqy in SDB. Note that an
item in a sequence may appear multiple
times, but the frequency of the item in the
sequence Seqy has to be seen as 1.

(b) Calculate the actual weighted support count
wsupI of the item I as:

w sup
I

=

∑

I⊆Seqy
∧Seqy⊆SDB

w(I )

tsmw
.

where w(I) is the weight value of the item I
in SDB.

Step 4: For each candidate 1-subsequence I in SDB, do
the following substeps.

(a) If the sequence-weighted upper-bound value
swubI of the 1-subsequence I is larger than
or equal to the minimum weighted support
threshold λ, put it in the set of weighted
frequent upper-bound 1-patterns, WFUB1.

(b) If the actual weighted support count value
wsupI of the 1-subsequence I is larger than
or equal to the minimum weighted support
threshold λ, put it in the set of weighted
sequential 1-patterns, WS1.

Step 5: Set r = 1, where r represents the number of items
in the processed subsequences.

Step 6: Gather the items appearing in the set of WFUB1,
and put them in the set of possible items, PIr .

Step 7: For each y-th sequence Seqy in SDB, do the
following substeps.

(a) Get each item I located after x in Seqy .
(b) Check whether I appears in PIr or not. If it

does, then keep the item I in the sequence
Seqy ; otherwise, remove the item I from
Seqy .

(c) If the number of items kept in the modified
sequence Seqy is less than the value (= r +
1), then remove the modified sequence Seqy
from SDB; otherwise, kept it in SDB.

Step 8: Process each item I in the set of WFUB1 in the
alphabetical order by the following substeps.

(a) Find the relevant sequences including I in
SDB, and put the sequences in the set of
projected sequences sdbI of the item I.

(b) Find all the weighted sequential patterns
with I as their prefix item by the Finding-
WS(I, sdbI , r) procedure. Let the set of
returned weighted sequential patterns be
WSI .

Step 9: Output the set of weighted sequential patterns in
all the WSI .

After STEP 9, all the weighted sequential patterns are
found. The Finding-WS(x, sdbx , r) procedure finds all the
weighted sequential patterns with the r-pattern x as their
prefix patterns and is stated as follows.

The Finding-WS(x, sdbx , r) procedure:

Input: A prefix r-pattern x and its corresponding pro-
jected sequences sdbx .

Output: The weighted sequential patterns with x as its
prefix pattern.
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Pstep 1: Initialize the temporary sequence TSx table as
an empty table, in which each tuple consists
of three fields: sequence, sequence-weighted
upper-bound (swub) of the sequence, and the
actual weighted support (wsup) of the sequence.

Pstep 2: For each y-th sequence Seqy in sdbx , do the
following substeps.

(a) Get each item I located after x in Seqy,
and then generate the (r + 1)-subsequence
S composed of the prefix r-pattern x and
I; put the new (r + 1)-subsequences in the
temporary subsequence table. Here if the
subsequence S has not appeared in the tem-
porary subsequence table, then put it in the
table; otherwise, omit the subsequence S.

(b) For each unique (r + 1)-subsequence in
the temporary set of subsequences, add the
sequence maximum weight smwy of the
sequence Seqy and the weight w(S) of the
subsequence S in the corresponding fields
in the TSx table.

Pstep 3: For each (r + 1)-subsequence in the TSx table, do
the following substeps.

(a) If the sequence-weighted upper-bound
swubS of the (r + 1)-subsequence S is larger
than or equal to the minimum weighted
support threshold λ, put it in the set of
weighted frequent upper-bound (r + 1)-
patterns with the x as their prefix sub-
patterns, WFUB(r+1),x .

(b) If the actual weighted support wsupS of the
(r + 1)-pattern S is larger than or equal to
the minimum weighted support threshold λ,
put it in the set of weighted sequential (r +
1)-patterns, WS(r+1),x .

Pstep 4: Acquire the items appearing in the set of
WFUB(r+1),x of x, and put them in the set of
possible items, PI(r+1),x .

Pstep 5: Set r = r + 1, where r represents the number of
items in the processed subsequences.

Pstep 6: For each y-th sequence Seqy in sdbx , do the
following substeps.

(a) Check whether each item I in Seqy appears
in PIr,x or not. If it does, then keep the
item I in Seqy ; otherwise, remove the item
I from in Seqy .

(b) If the number of items kept in the mod-
ified sequence Seqy is less than r + 1,
remove the modified sequence Seqy from
sdbx ; otherwise, keep it in sdbx .

Pstep 7: Process each pattern S in the set of WFUBr in the
alphabetical order by the following substeps.

(a) Find the relevant sequences including S
from sdbx , and then put the sequences
including S in the set of projected
sequences sdbS of S.

(b) Find all weighted sequential patterns with
S as their prefix pattern by the Finding-
WS(S, sdbS , r + 1) procedure. Let the set
of returned frequent weighted sequential
patterns be WSS .

Pstep 8: Return the set of weighted sequential patterns in
all the WSx .

5 An example of IUA

In the section, a simple example is given to illustrate how to
find weighted sequential patterns from a sequence database
by the proposed IUA algorithm. Assume there are five
sequences in a sequence database, as shown in Table 1, and
eight items in the sequences, respectively denoted as A to H.
In addition, assume the individual weights of the eight items
are given in Table 2. In this example, the minimum weighted
support thresholdλis set as 30 %. The detailed process of the
proposed algorithm is then stated below.

Step 1: The sequence maximum weight for each sequence
in SDB can be found. Take the first sequence Seq1

in Table 1 as an example. The sequence Seq1

includes three items, B, C, and B, and their weight
values are 0.15, 0.20, and 0.15, respectively. The
maximum value for the weight values is 0.20,
and the value is regarded as the sequence maxi-
mum sequence weight of the sequence Seq1. The
same process can be done for all the other four
sequences in Table 1. The results for the sequence
maximum weights of all sequences are showed in
Table 3.

Step 2: According to sequence maximum weight (smw)
of each sequence in Table 3, the total sequence
maximum weight (tsmw) can be calculated as

Table 3 The sequence maximum weights of the five sequences in this
example

SID Sequences smwy

1 <BCB> 0.20

2 <DECHF> 0.95

3 <ACF(DE)F> 0.55

4 <(FG)H> 0.95

5 <CDACEF> 0.55
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Table 4 The sequence-weighted upper-bounds and the weighted sup-
ports of all 1-subsequences in this example

Subsequence swub wsup

<A> 34.37 % 6.25 %

<B> 6.25 % 4.68 %

<C> 70.31 % 25 %

<D> 64.06 % 28.12 %

<E> 64.06 % 42.18 %

<F> 93.75 % 62.5 %

<G> 29.68 % 20.31 %

<H> 59.37 % 59.37 %

0.20 + 0.95 + 0.55 + 0.95 + 0.55, which is
3.20.

Step 3: The sequence-weighted upper-bound (swub) and
weighted support (wsup) of each possible item in
SDB are found simultaneously. Take item A in
Table 3 as an example. Item A appears in the two
sequences, Seq3 and Seq5, and both the sequence
maximum weights of the two sequences are 0.55.
In addition, the weight of item A in Table 2 is
0.10, and the total sequence maximum weight
tsmw is 3.20. The sequence-weighted upper-bound
swub<A> of the item A can be then calculated
as (0.55 + 0.55) / 3.2, which is 34.37 %, and
its weighted support wsup<A> can be calculated
as (0.10 + 0.10) / 3.2, which is 6.25 %. All the
other possible items in SDB can be processed in
the same fashion. The results for the sequence-
weighted upper-bounds and the weighed supports
of all possible 1-subsequences in SDB are showed
in Table 4.

Step 4: The weighted frequent upper-bound 1-patterns
(WFUB1) and the weighted sequential 1-patterns
(WS1) in Table 4 can be found simultaneously.
Take the 1-subsequence <D> in Table 4 as
an example. The sequence-weighted upper-bound
and the weighted support values of <D> in
Table 4 are found as 64.06 % and 28.12 %,
respectively. Since the sequence-weighted upper-

Table 5 The set of the weighted frequent upper-bound 1-patterns in
the example

Subsequence swub

<A> 34.37 %

<C> 70.31 %

<D> 64.06 %

<E> 64.06 %

<F> 93.75 %

<H> 59.37 %

Table 6 The set of the weighted sequential 1-patterns in the example

Subsequence wsup

<E> 42.18 %

<F> 62.5 %

<H> 59.37 %

bound of <D> is larger than or equal to the
minimum weighted support thresholdλ(= 30 %),
<D> is a weighted frequent upper-bound 1-
pattern. But, <D> is not a weighted sequential
pattern due to its weighted support (= 28.12 %).
The other seven 1-subsequences in Table 4 can
be processed in the same way. After the step,
the set of the weighted frequent upper-bound 1-
patterns (WFUB1) includes <A>, <C>, <D>,
<E>, <F>, and <H>, and only the three 1-
subsequences, <E>, <F>, and <H> are put
in the set of the weighted sequential 1-patterns
(WS1), as shown in Tables 5 and 6.

Step 5: The variable r is initially set to 1, where r repre-
sents the number of items in the subsequences to
be processed.

Step 6: In this example, the six items, A, C, D, E, F, and
H, are collected from the six 1-patterns in Table 5,
and the possible items are then denoted as PI1.

Step 7: For each sequence in Table 3, the items not
appearing in the set of PI1 are removed from the
sequence. Take the first sequence Seq1 in Table 3
as an example. The first sequence includes the
three items, B, C, and B, and the sequence max-
imum weight of Seq1 is 0.2. In this example,
since the first and the third items in Seq1 are not
shown in the set of PI1, only the item C in Seq1

can be kept, and then the sequence is modified
as <C>. The sequence maximum weight of the
modified sequence is still 0.20. However, the mod-
ified sequence <C> can be removed from Table 3
because no 2-subsequences can be generated from
the sequence. All the other four sequences in
Table 3 can similarly be processed. The results
for all the modified sequences and their sequence
maximum weight values are showed in Table 7.

Table 7 All the modified sequences with the sequence maximum
weights in this example

Sequences smwy

<DECHF> 0.95

<ACF(DE)F> 0.55

<FH> 0.95

<CDACEF> 0.55
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Table 8 The sequence-weighted upper-bound and the actual weighted
support values of all 2-subsequences with prefix <A> in this example

Subsequence swub wsup

<AC> 34.37 % 9.37 %

<AD> 17.18 % 6.25 %

<AE> 34.37 % 17.18 %

<AF> 34.37 % 20.31 %

Step 8: Each 1-pattern in the set of WFUB1 is sequentially
processed in alphabetical order of the patterns.
The variable r is initially set to 1, where r repre-
sents the number of items in the r-subsequences
to be processed. The 1-pattern <A> in the set of
WFUB 1 is first processed for the example. Since
the two sequences, Seq2 and Seq4, contain <A>
in Table 7, the three sequences, <ACF(DE)F>
and <CDACEF>, are projected and put in the
projected sequences sdb<A> of <A>. Note that
only the items located after the item A for each
sequence in sdb<A> are kept. Take the second
sequence <CDACEF> in sdb<A> as an exam-
ple. Since only the three items, C, E and F, are
located after item A in the sequence, the projected
sequence is then <ACEF>. After this, sdb<A>

includes the following two projected sequences,
<ACF(DE)F> and <ACEF>, and their sequence
maximum weights are 0.55 and 0.55, respectively.

Next, all the weighted sequential patterns with the prefix
<A> are found by using the Finding-WS(x, sdbx , r) proce-
dure with the parameters x = <A> and r = 1. The details of
the Finding-WS(x, sdbx , r) procedure are described below.

Pstep 1: The temporary sequence table, TS<A>, is ini-
tialized as an empty table, in which each tuple
consists of three fields: subsequence, sequence-
weighted upper-bound (swub) of the subse-
quence, and actual weighted support (wsup) of
the subsequence.

Pstep 2: For each projected sequence in sdb<A>, all
possible 2-subsequences with the prefix <A>
in it are produced. Take the second projected
sequence <ACEF> as an example. Three unique
2-subsequences, <AC>, <AE> and <AF>, can
be generated from the sequence <ACEF>, and

Table 9 All the modified sequences in sdb<A> in this example

Sequences smwy

<ACFEF>4 0.55

<ACEF>4 0.55

Table 10 The final set of all the weighted sequential patterns (WS) in
this example

Pattern wsup

<E> 42 %

<F> 63 %

<H> 59 %

<CF> 33 %

<DF> 35 %

the three subsequences are put in the TS<A>

table. In addition, the weight values of the three
subsequences are 0.15, 0.275 and 0.325, and
the sequence maximum weight (= 0.55) of the
sequence are put in the suitable field values of
the 2-subsequences in the TS<A> table. The other
two sequences in sdb<A> can be similarly pro-
cessed. The results for all 2-subsequences with
the prefix <A> in sdb<A> are shown in Table 8.

Pstep 3: As mentioned in STEP 4, the weighted frequent
upper-bound 2-patterns (WFUB2,<A>) and the
weighted sequential 2-patterns (WS2,<A>) with
the prefix <A> in Table 8 can be found simulta-
neously. After the step, the three 2-subsequences,
<AC>, <AE> and <AF> are put in the set of
WFUB2,<A>, and none of the subsequences in
Table 8 is put in the set of WS2,<A>.

Pstep 4: In this example, only the four items, A, C, E, and
F, are collected from the set of WFUB2,<A> with
the prefix <A>, and they are then denoted as
PI2,<A>.

Pstep 5: The value of the variable r is updated as 2.
Pstep 6: The items not appearing in each sequence in

sdb<A> are removed from the sequence, as men-
tioned in STEP 7. After that, the results for
the modified sequences in sdb<A>are shown in
Table 9.
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Table 11 Data characteristics

Dataset S N D

S8T6I2N2KD200K 8 2,000 200 K

SXT6I2N2KD200K 4∼12 2,000 200K

S8T6I2N2KDXK 8 2,000 100K∼500K

Kosarak 4.23 41,270 990,002

Pstep 7: Each 2-pattern in the set of WFUB2,<A> is pro-
cessed in alphabetical order of the patterns. The
2-pattern <AC> in the set of WFUB2,<A> is thus
processed first. The first and second projected
sequences in sdb<A>, <ACFEF> and <ACEF>,
are put in sdb<AC>, and their sequence maxi-
mum weights are all 0.55. Next, the weighted
sequential patterns with the prefix <AC> are
then found by recursively invoking the Finding-
WS(x, sdbx , r) procedure with the parameters
x =<AC>, sdbx = sdb<AC> and r = 2.
The above process is recursively executed until
all the 1-patterns in WFUB1 have been pro-
cessed. All the weighted sequential patterns

in this example are then found, as shown in
Table 10.

Pstep 8: In this example, the five weighted sequential pat-
terns in Table 10 are output to users as auxiliary
information in terms of making decisions.

As shown in this example, based on the proposed
sequence maximum weight (SMW) model, the pruning
strategy can be effectively used to tighten the upper-bounds
of weighted supports of subsequences and then reduce a lot
of unpromising subsequences in the recursive process when
compared with traditional upper-bound model. The execu-
tion efficiency can thus be improved in finding weighted
sequential patterns.

6 Experimental evaluation

A series of experiments were conducted to compare the per-
formance of the proposed improved upper-bound approach
(abbreviated as IUA) and the traditional weighted sequential
pattern mining approach (named WSpan) [21] with differ-
ent parameter values. They were implemented in J2SDK
1.6.0 and executed on a PC with 3.30 GHz CPU and 4 GB
memory.
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Fig. 2 Numbers of WFUBs generated by the two algorithms on the datasets



450 G.-C. Lan et al.

0

500

1,000

1,500

2,000

2,500

3,000

0.20% 0.40% 0.60% 0.80% 1.00%

E
xe

cu
ti

on
 T

im
e 

(S
ec

.)

Min_WSup: Minimum Weighted Support Threshold

(a) Execution Time on S8T6I2N2KD200K

IUA Wspan

0

4000

8000

12000

16000

20000

100K 200K 300K 400K 500K

E
xe

cu
ti

on
 T

im
e 

(S
ec

.)

D: Number of Sequences

(b) Execution Time on S8T6I2N2KDXK

IUA Wspan

0

3,000

6,000

9,000

12,000

15,000

4 6 8 10 12 

E
xe

cu
ti

on
 T

im
e 

(S
ec

.)

S: The Average Length of Sequences

(c) Execution Time on SXT6I2N2KD200K

IUA Wspan

Fig. 3 Efficiency comparison of the three algorithms on the datasets

6.1 Experimental datasets

In the experiments, several synthetic and real datasets are
used to evaluate the performance of the algorithms. First, a
publicly available IBM data generator [11] was adopted to
generate the required datasets. To find weighted sequential
patterns [21], we thus developed a simulation model, which

was derived from the model used in the issue of util-
ity mining [14] to generate the profits of the items. The
parameters used in the IBM data generator [11] were S,
T, I, N and D, which represented the average length of
transactions per sequence, the average length of items
per transaction, the average length of maximal poten-
tially frequent itemsets, the total number of distinct items,
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and the total number of sequences, respectively. More-
over, for each sequence dataset generated, a corresponding
weight table was also produced in which a weight value
in the range from 0.0 to 1.0 was randomly assigned to
an item. Note that the way described in [14] was con-
sidered to simulate the profits of items in a store envi-
ronment, and then the profits of items were further nor-
malized the weight values of the items in weight table.
Figure 1 showed the weight-value distribution of all the
items generated by the simulation model in the weight
table.

In addition, a real dataset Kosarak could be obtained
from the FIMI Repository [11]. The dataset Kosarak [11]
was the click-stream data of a Hungarian on-line news por-
tal. The synthetic and real datasets were used to evaluate
the performance of the algorithms under various parameter
settings. Table 11 showed the characteristics of the datasets
used in the experiments.

6.2 Evaluation on the improved upper-bound strategy

Experiments were first made on the synthetic datasets to
evaluate the difference in the number of weighted fre-
quent upper-bound patterns generated by the two algo-
rithms, IUA and WSpan. Figure 2 showed the comparisons
of the numbers between weighted frequent upper-bound
patterns (WFUBs) required by the two algorithms for the
datasets with various minimum weighted support thresh-
olds (Min WSup), data sizes (D), and average length of
sequences (S).

As seen in the figures, the number of weighted frequent
upper-bound patterns required by the proposed IUA algo-
rithm was obviously less than that of the existing WSpan
algorithm, especially when the minimum weighted support
threshold (Min WSup) decreased, data sizes increased, and
the sequence average length increased. The main reason for
this is that the maximal weight in a sequence was more suit-
able as upper-bound of any subsequence in a sequence when
compared with the traditional upper-bound model used in
the WSpan algorithm [21]. Note that when the number of
sequences increased, the minimum weighted support thresh-
old value also increased, but kept the same ratio. Thus, the
numbers of weighted frequent upper-bounds subsequences
are nearly stable in Fig. 2 (b) when the data size increased
and the other parameters settings were fixed. Due to the
above results, using the proposed model could be effectively
used to reduce more unpromising subsequences in mining
under different parameter settings.

6.3 Efficiency evaluation

Next, the experiments were made to evaluate the execu-
tion efficiency of the algorithms. Figure 3 showed the

efficiency comparisons of the two algorithms for the syn-
thetic datasets with various minimum weighted support
thresholds (Min WSup), data sizes (D), and average length
of sequences (S).

As shown in the figures, it could be observed that
the efficiency of the proposed IUA algorithm was better
than that of the WSpan algorithm under the lower mini-
mum weighted support threshold (Min WSup), the larger
data size D, and the larger sequence average length S. In
addition, the proposed IUA approach could still keep the
flexible performance in terms of scalability under larger
data sizes. The main reason was the same as that mentioned
in Section 6.2. Thus, the proposed upper-bound model
and pruning strategy could be effectively used to speed
up the execution efficiency in mining weighted sequential
patterns.

6.4 Evaluation on real dataset

In the experiment, the real dataset, Kosarak [11], was
also used to evaluate the performance of the two algo-
rithms. Figure 4 showed the performance comparisons of
the two algorithms for the real Kosarak dataset with various
Min WSup, D, and S.

It could be observed from the figures that the perfor-
mance of the proposed IUA approach for the real Kosarak
dataset under different parameter settings still exceeded
the existing WSpan approach in terms of the number of
weighted frequent upper-bound subsequences, scalability
and execution efficiency.

7 Conclusions

This work presents an efficient projection-based algo-
rithm with an improved strategy (named IUA) for weighted
sequential pattern mining. In particular, an effective upper-
bound model in the proposed algorithm is developed to
tighten the upper-bounds of weighted supports for subse-
quences in mining, and also the pruning strategy is designed
to reduce more unpromising subsequences for mining. In
addition, the experimental results on the synthetic and real
datasets show the number of weighted frequent upper-
bound patterns is obviously less than that required by
the WSpan algorithm, and the proposed IUA algorithm
outperforms the WSpan algorithm in terms of execution
efficiency.

In the future, we will apply the proposed approach to
some practical applications, such as data streams and super-
market promotion applications. Moreover, we will attempt
to handle the maintenance problem of weighted sequential
pattern mining when the sequences are inserted, deleted or
modified.
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