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Abstract Fuzzy time series approaches are used when
observations of time series contain uncertainty. Moreover,
these approaches do not require the assumptions needed
for traditional time series approaches. Generally, fuzzy time
series methods consist of three stages, namely, fuzzification,
determination of fuzzy relations, and defuzzification. Arti-
ficial intelligence algorithms are frequently used in these
stages with genetic algorithms being the most popular of
these algorithms owing to their rich operators and good per-
formance. However, the mutation operator of a GA may
cause some negative results in the solution set. Thus, we
propose a modified genetic algorithm to find optimal inter-
val lengths and control the effects of the mutation operator.
The results of applying our new approach to real datasets
show superior forecasting performance when compared
with those obtained by other techniques.
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1 Introduction

Fuzzy time series procedures do not require the assump-
tions, such as a large sample, linear model, and stationary
and normal distribution, typically needed by classic time
series approaches such as autoregressive moving average
models [1]. Recent studies have mainly focused on fuzzy
time series since they do not require the strict assumptions
and generally provide remarkable forecasting performance.
Besides, artificial intelligence optimization algorithms such
as genetic algorithm (GA) have been used in almost all areas
[2–18].

The fuzzy set was first introduced in [19] and since then
has been used in many application areas. Fuzzy time series
were first introduced by Song and Chissom [20–22]. The
proposed fuzzy time series techniques generally consist of
three stages: fuzzification, determining fuzzy relations, and
defuzzification.

According to the literature, decomposition of the uni-
verse of discourse is mostly used in the fuzzification stage
with intervals thereof determined arbitrarily in the stud-
ies by Song and Chissom [20–22] and Chen [23, 24]. In
addition, Huarng [25] suggested the importance of the inter-
val length on forecasting performance and proposed two
new techniques for finding intervals based on the mean and
distribution.

Egrioglu et al. [26, 27] suggested considering the prob-
lem of finding intervals as an optimization problem. The
authors in [28–30] used different interval lengths, instead
of a fixed interval length, obtained by using a genetic
algorithm, while those in [31–37] used particle swarm opti-
mization. Furthermore, the authors in [38–40] used fuzzy
c-means clustering, while those in [41, 42] used Gustafson-
Kessel fuzzy clustering in this stage.
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With respect to determining fuzzy relations, several stud-
ies have made contributions. Whereas Song and Chissom
[20–22] used matrix operations, Chen [23] and some oth-
ers used a fuzzy logic relations group (FLRG) table, while
yet others [43–47] used artificial neural networks to deter-
mine fuzzy relations. Various other methods focusing on
this stage have also been proposed [44–46, 48–50].

For the defuzzification process, most reported studies
use either the centroid method [23, 25, 51] or the adaptive
expectation method [38, 50].

The proposed method contributes to the fuzzification
stage by using a modified genetic algorithm (MGA). In
particular, we aim to check the negative effects of the muta-
tion operation so as to obtain better forecasts. Moreover, by
using MGA we avoid subjective judgments in determining
the intervals, and to obtain more realistic results, we find
dynamic instead of fixed length intervals.

An outline of the rest of the paper is given below. The
fundamental definitions of fuzzy time series are given in
Section 2. The third section of the article reviews GAs,
while a concise explanation of the differential evaluation
algorithm (DEA) is given in Section 4. In Section 5, the pro-
posed method is introduced. Section 6 presents the results
of applying the proposed method to three real life datasets
and finally, Section 7 presents our conclusions.

2 Fuzzy time series

A definition of fuzzy time series was first introduced in [20,
21]. A number of studies in the literature have used fuzzy
time series together with GAs. These include a method to
optimize fuzzy time series using GAs [52], an efficient non-
linear time series prediction system using a GA and fuzzy
time series [53], a forecasting model using a GA with fuzzy
time series [54], and a time invariant fuzzy time series fore-
casting method based on a GA [55]. The authors in [30, 54]
also used a GA in the fuzzification stage, which is the first
stage of fuzzy time series.

In contrast to conventional time series methods, various
theoretical assumptions do not need to be checked in fuzzy
time series approaches. The most important advantage of the
fuzzy time series approaches is their ability to work with a
very small set of data.

Let U be the universe of discourse, where U =
{u1, u2, · · · , un}. A fuzzy set Ai of U can be defined as

Ai = µAi (u1)

u1
+ µAi (u2)

u2
+ · · · + µAi (un)

un
, (1)

where µAi is the membership function of fuzzy set Ai and
µAi ;U → [0, 1]. In addition, µAi (uj ), j = 1, 2, · · · , n
denotes a generic element of fuzzy set Ai, andµAi (uj ) is the
degree of belongingness of uj to Ai,withµAi (uj ) ∈ [0, 1].

Definition 1 Fuzzy time series
Let Y(t)(t = · · · , 0, 1, 2, · · ·), a subset of real numbers,

be the universe of discourse by which fuzzy sets fi(t) are
defined. If F(t) is a collection of f1(t), f2(t), · · · , then F(t)

is called a fuzzy time series defined on Y(t).

Definition 2 Fuzzy time series relationships
Assume that F(t) is caused only by F(t − 1); then

the relationship can be expressed as F(t) = F(t − 1) ∗
R(t, t − 1), which is the fuzzy relationship between F(t)

andF(t − 1), where * denotes an operator. To summarize,
let F(t − 1) = Ai and F(t) = Aj . The fuzzy logical
relationship between F(t) andF(t − 1) can be denoted as
Ai → Aj , where Ai (current state) refers to the left-hand
side and Aj (next state) refers to the right-hand side of the
fuzzy logical relationship. Furthermore, these fuzzy logi-
cal relationships can be grouped to establish different fuzzy
relationships.

3 Genetic algorithms

GAs were proposed by Holland [56] and developed by
Goldberg [57]. A GA is a stochastic global search technique
that solves problems by imitating processes observed dur-
ing natural evolution. The GA procedure is a simulation that
depends on biological evolution behavior. The first deci-
sion to make when solving a problem using a GA is the
encoding. There are many types of encoding in GAs includ-
ing binary, value, and permutation encoding. First, based
on the population size an initial population is randomly
generated after determining the encoding and GA opera-
tors, namely, crossover, mutation and natural selection, to
be applied to the population. For the crossover operation,
the researcher determines the crossover rate (cor). Then,
a random number is generated with the help of uniform
distribution U (0, 1). If cor is greater than or equal to
the random number, the crossover operation is performed
by randomly choosing both a pair of chromosomes and a
crossover point and then swapping the genes of the selected
chromosomes.

After the crossover operation, the mutation operator is
applied if needed. First, a chromosome is randomly selected
and then a mutation point is determined. A gene of the
selected chromosome is changed by considering the encod-
ing. Thereafter, the researcher determines the mutation rate
(mr) and a random number is generated with the help of
uniform distribution U (0,1). If this number is smaller than
or equal to mr, the mutation operation is performed. In
the natural selection operation, each chromosome of the
population is evaluated using an evaluation function. All
chromosomes are ordered according to their corresponding
evaluation function values and the best chromosomes are
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Fig. 1 The structure of a chromosome in MGA

transferred to the next generation. Some of the worst chro-
mosomes are discarded from the population. The natural
selection operation may be used at either the beginning or
the end of the algorithm.

4 Differential evaluation algorithm

The DEA, proposed by Storn and Price [58], is a heuris-
tic algorithm based on the population like the GA. It has
some operators including mutation and crossover, which are
used to create new generations. At the end of the process,
candidate solutions are found by using some mathematical
operations and these solutions are compared with the cur-
rent solutions in the population. The best solution based on
the evaluation function is transferred to the new generation,
while the best chromosome is taken as the optimal solution.
For more details of this algorithm, consult the study in [58].

5 Proposed method

As is well known, all the stages of fuzzy time series
approaches have a marked influence on the forecasting per-
formance of the applied model. Recently, artificial intelli-
gence algorithms have frequently been used in these stages.
GAs are the most popular of these algorithms because of
their operators and rapid evaluation process. The crossover
and mutation operators prevent achieving sub-optimal solu-
tions. The most important GA operator is mutation, which
ensures that solutions are found in as yet unsearched areas.

In classic GAs, the only approach to counteract the loss
of relevant alleles, thereby avoiding premature convergence,
is mutation. However, as mutation is used as an undi-
rected operator, the probability to recover relevant alleles
by lucky mutations decreases rapidly when trying to solve
larger problems. In addition to mutation, various other ideas
to reduce the negative effects of premature convergence
have also been discussed in the literature. Among these,

the most common are preselection [59], crowding [60], and
fitness-sharing [57]. The main idea of these approaches is to
maintain genetic diversity by replacing solutions occupying
similar regions of the search space more frequently (prese-
lection, crowding) or to reduce the fitness value of solutions
that are located in densely populated regions of the search
space (fitness-sharing). All three approaches require the def-
inition of a distance measure to calculate the similarity of
solutions in the search space, while fitness-sharing is addi-
tionally quite restricted to fitness proportional selection. As
such, these approaches are not applicable in all cases. Fur-
thermore, they do not really address the problem of losing
relevant alleles, but instead try to reduce the loss of genetic
diversity in general [61].

Chromosomes represent the solution sets in GAs. When
applying the mutation operator in a GA, a chromosome
is first randomly selected and then a random gene of this
selected chromosome is changed. However, the changed
gene may be a gene that provides a positive contribution to
the solution set. In other words, this gene may be a use-
ful gene for the chromosome. Therefore, changing this gene
may have a negative contribution. To avoid changing use-
ful genes of the chromosomes, and thus eliminating a good
solution, we propose a new mutation algorithm for fuzzy
time series.

As explained above, applying the mutation operator can
be both beneficial and harmful in the GA process. It may
alter a harmful gene of a chromosome, but it could also
alter a reliable gene thereby moving further from the optimal
solution. Thus, to control the effect of the mutation opera-
tor we propose a new GA called MGA. In this method, the
mutation operator of the GA is inspired by the DEA.

In this study, by combining two population-based artifi-
cial intelligence techniques in the fuzzification stage in the
form of MGA, we aim to improve the forecasting perfor-
mance of the model and to determine the interval lengths
without resorting to subjective decisions. From this perspec-
tive we feel that a more flexible solution process is provided
by obtaining dynamic instead of fixed length intervals.

The advantages of our proposed method are as follows:

� Negative consequences caused by the mutation opera-
tor are prevented.

� More realistic results are obtained by finding dynamic
length intervals instead of fixed length ones.

Fig. 2 The crossover operation
between two chromosomes
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Crossover point

Fig. 3 Example of the crossover operation

� The interval lengths are determined by avoiding sub-
jective decisions through the use of the MGA.

The modified genetic algorithm

Step 1. Define the universe of discourse and number of
intervals.

The margins of the universe of discourse and
the actual universe are first defined as (Dmin) and
(Dmax) and

U = [Dmin, Dmax]. (2)

After the number of intervals (m) has been deter-
mined, the number of genes in a chromosome in
MGA is defined as (m − 1). These are repre-
sented by xi(i = 1, 2, · · ·m− 1); the structure of
a chromosome in MGA is illustrated in Fig. 1.

Then the margins of all intervals are given by

u1 = [Dmin, x1], um = [xm−1, Dmax]. (3)

Step 2. Determine the parameters of MGA and generate
the initial population.

This step determines the values of the parame-
ters such as the number of chromosomes (cn), cor
(0 < cor ≤ 1), the number of chromosomes to be
eliminated in the natural selection stage (dcn), and
the number of iterations (itr).

Then, the initial population with (m − 1)
genes and cn chromosomes is randomly gener-
ated from the uniform distribution with parameters
(Dmin, Dmax). The generated data for each chro-
mosome is ordered from smallest to largest.

Step 3. For each chromosome in the population, the root
of the mean squared error (RMSE) selected as the
evaluation function is calculated by applying steps
3.1 to 3.5.

Chromosome 1 13700 14200 14500 16800

Chromosome 2 13250 14000 17100 18000

Fig. 4 The chromosomes after applying the repair operator

Fig. 5 Example of the mutation operation

Step 3.1. Form fuzzy sets using m intervals based on
the values of the genes in the chromosomes as
follows:

Ai = ai1

u1
+ ai2

u2
+ · · · + aim

um
i = 1, 2, · · ·m, (4)

where aik is the membership degree as defined

in Eq. (5).

aik =
⎧
⎨

⎩

1 k = i

0.5 , k = i − 1, i + 1, i = 1, 2, · · ·m
0 , d.d

(5)

The observations of a crisp time series are con-
verted to fuzzy sets where the interval in which
the corresponding observation is included, has
the highest membership values.

Step 3.2. Obtain the FLRs and FLRG tables.
When we observe a relation such as

F(t − 1) = Ai and F(t) = Aj for any time t,
this fuzzy logic relation (FLR) is represented by
Ai → Aj . For the whole series, if we obtain the
relation F(t − 1) = Ai and F(t) = Ak for any
time t, we express the FLR as Ai → Aj ,Ak. We
can also save the number of times an FLR such
as Ai → Aj occurs, as the weight wj .

Table 1 Example of a random population

Chr1 13400 14600 15800 17100 17800 18500

Chr2 14600 15000 15200 15600 16000 17100

Chr3 13500 14000 14300 14700 15000 16800

Chr4 14100 15200 16300 17800 18000 18900

Chr5 13800 15100 16300 1720 18300 19100

Chr6 14000 14700 15400 16100 17500 18700

Chr7 14200 15000 15900 17000 17700 19500
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Table 2 Comparative presentation of enrollment forecasts for training
set

Year Enrollment Proposed Year Enrollment Proposed
data method data method

1971 13055 1982 15433 15453,75

1972 13563 13697,93 1983 15497 15467,77

1973 13867 13697,93 1984 15145 15467,77

1974 14696 14621,26 1985 15163 15199,03

1975 15460 15453,75 1986 15984 15960,07

1976 15311 15467,77 1987 16859 16765,38

1977 15603 15467,77 1988 18150 17910,88

1978 15861 15467,77 1989 18970 19028,93

1979 16807 16765,38 1990 19328 19260,91

1980 16919 16935,45 1991 19337 19076,86

1981 16388 16367,5 1992 18876 19076,86

Step 3.3. Obtain fuzzy forecasts.
Fuzzy forecasts are obtained with respect to

the FLR table formed in Step 3.2. For example;
if F(t − 1) = Ai and there is a relation such as
Ai → Aj in the FLR table, the fuzzy forecast
will be Aj . If F(t − 1) = Ai and there is a rela-
tion such as Ai → Aj ,Ak in the FLR table, the
fuzzy forecast will be Aj ,Ak. If F(t − 1) = Ai

and Ai → Empty in the FLR table, the fuzzy
forecast will be Ai .

Step 3.4. Defuzzify the fuzzy forecasts.
The weights wj obtained from the FLR table

are used in the defuzzification stage.
For example, if F(t − 1) = Ai and there

exists relation Ai → Aj in the table, the defuzzi-
fied forecast will be mj , which is the midpoint
of uj , which is the subinterval of fuzzy set Aj

with the largest membership degree. That is, we

Training Data Forecasts

Fig. 6 The forecasts and actual values of enrollment data for training
set

Table 3 Comparison of enrollment forecasts for training set in terms
of RMSE and MAPE

Methods RMSE MAPE

[62] 366 1.72 %

[63] 295 1.56 %

[64] 668 2.75 %

[64] 511 2.66 %

[65] 367 1.87 %

[66] 501 2.67 %

[25] 476 2.45 %

[23] 638 3.11 %

[21] 650 3.22 %

[30] 178 0.90 %

Proposed method 160 0.73 %

do not consider how many times the relation is
repeated in the table.

If F(t − 1) = Ai and there exists relation
Ai → Aj ,Ak and wj denotes the number of
times relation Ai → Aj is repeated in the whole
time series and wk denotes the number of times
relation Ai → Ak is repeated, the defuzzified
forecast is calculated as

x̂t = wjmj + wkmk

wj + wk

. (6)

If F(t − 1) = Ai and there exists relation Ai →
Empty in the FLR table, the defuzzified forecast
will be mi , which is the midpoint of subinter-
val ui , which is the fuzzy set Ai with the largest
membership degree.

Step 3.5. Let xt be the original time series and x̂t be
its defuzzyfied forecasts with n observations.
RMSE is calculated as

RMSE =
√

∑n
t=1

(
xt − x̂t

)2

n
. (7)

Step 4. Save the chromosome with the minimum RMSE
value in the population.

Step 5. Apply the MGA parameters.

Natural selection, crossover, and mutation operations are
applied.

Table 4 Comparison of enrollment forecasts for training set in terms
of RMSE

[48] [38] [44] [27] [26] [41] [67] Proposed method

621 478 279 258 246 245 215 160
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Step 5.1. Initially, the first dcn chromosomes in the pop-
ulation are removed from the list of the ordered
RMSE values from largest to smallest. Then,
dcn new chromosomes, generated randomly as
in Step 2, are added to the population.

Step 5.2. To determine whether the crossover operation
should be applied, a number is randomly gener-
ated from the uniform distribution with param-
eters (0,1). If the number is smaller than cor,
the crossover operation is applied. When apply-
ing the crossover operation two chromosomes
are randomly chosen from the population. The
crossover point at which the genes are swapped
is also randomly determined. The crossover
operation is illustrated in Fig. 2.

To better understand the crossover operation,
consider the example in Fig. 3 with the universe
of discourse U = 13000, 20000 and assuming
that two random chromosomes in the population
have been chosen.

If there is a problem after crossover, such
as the first chromosome in Fig. 4 not being
sorted, a repair operator must be used to sort the
chromosomes in ascending order

Step 5.3. After applying the crossover operator, muta-
tion is performed. First, the chromosome to be
mutated is selected randomly. Then three chro-
mosomes, differing from the chromosome to be
mutated, are selected randomly. The first two
chromosomes are subtracted from each other to
form the difference vector. Then the difference
vector is multiplied by parameter F (this parame-
ter takes values between 0 and 2, but is generally
set to 0.8). This new chromosome, called the
weighted difference vector is summed with the
third chromosome to obtain the total vector.
Next, the mutation rate (mr) is determined and

Table 5 Comparison of the results for test set

Methods RMSE

[20] 642.2609

[22] 880.7309

[48] 621.3332

[23] 638.3627

[25] 280.6991

[68] 353.1388

[27] 258.1879

[69] 267.847

[41] 245.2346

Proposed method 215.4553

a random number is generated between 0 and 1
with the help of the uniform distribution.

If this random number is smaller than mr, the gene is
taken from the total vector. If not, the gene is taken from
the interested chromosome and a candidate chromosome is
generated and its fitness value calculated.

The candidate chromosome and interested chromosome
are compared in terms of fitness values. The chromosome
with the smaller RMSE value, used to evaluate the function,
is transferred to the population. The mutation operation is
illustrated in Fig. 5.

Assume a population with seven chromosomes and uni-
verse of discourse U = [13000, 2000] as given in Table 1.

To better understand the mutation operation, consider the
example given in Fig. 5 assuming that Chromosome 2 is
the chromosome to be mutated and Chromosomes 6, 7, and
1 are the chromosomes randomly selected in addition to
Chromosome 2.
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Table 6 Results obtained from conventional time series forecasting
methods

Methods RMSE

Brown exponential smoothing 2469.727

Logarithmic regression 2332.806

Inverse regression 3001.306

Quadratic regression 2865.191

Cubic regression 2412.646

Compound regression 1605.017

Power regression 3009.670

S-curve regression 1605.010

Growth regression 1605.017

Exponential regression 1605.017

ARIMA(0,1,0) method 477.468

Let the mutation ratio be 0.10, and then we generate ran-
dom numbers for each gene, (0.01, 0.08, 0.15, 0.20, 0.16),
respectively, to obtain the candidate chromosome.

Finally, we calculate the RMSE value of the candi-
date chromosome. If its RMSE value is smaller than that
of Chromosome 2, the new chromosome is taken as the
candidate chromosome and the mutation operation is com-
pleted. If not, there is no need to apply the mutation
operation to the population, because this mutated chro-
mosome may be the optimal solution at the end of the
process.

Then we can obtain the intervals given below:

u1 = [13000, 13560] , u2 = [13560, 14840] ,
u3 = [14840, 15200] , u4 = [15200, 15600] ,
u5 = [15600, 16000] , u6 = [16000, 17100] ,
u7 = [17100, 20000]

Step 6. Steps 3 to 5 are repeated as many times as defined
by the iteration number, which was previously
determined by the researcher.

6 Application

To verify the performance of the proposed method, we
applied it to three different time series datasets. The results
are compared with those from other fuzzy time series meth-
ods in terms of RMSE and mean absolute percent error
(MAPE).

MAPE = 1

n

∑n

t=1

∣
∣
∣Xt − X̂t

∣
∣
∣

Xt

∗ 100. (8)

For each of the time series datasets, MGA parameters
were set as follows:

• cn was varied between 20 and 100 in increments of 10.
• cor was varied between 0.1 and 1 in increments of 0.1.
• For each chromosome, dcn was set to 7, 10, 13, 17, 20,

23, 26, 30, and 33.

Table 7 Comparison of the results for test set

TAIFEX Test data [54] [29] [44] [37] [70] Proposed method

6709.75 6621.43 6917.4 6850 6745.45 6750 6760.529

6726.5 6677.48 6852.2 6850 6757.89 6750 6739.995

6774.55 6709.63 6805.7 6850 6731.76 6850 6739.995

6762 6732.02 6762.4 6850 6722.54 6850 6760.529

6952.75 6753.38 6793.1 6850 6753.72 6850 6760.529

6906 6756.02 6784.4 6850 6761.54 6850 6869.525

6842 6804.26 6970.7 6850 6857.27 6850 6869.525

7039 6842.04 6977.2 6850 6898.97 6850 6869.525

6861 6839.01 6874.5 6850 6853.07 6950 6869.525

6926 6897.33 7126.1 6850 6951.95 6850 6869.525

6852 6896.83 6862.5 6850 6896.84 6850 6869.525

6890 6919.27 6944.4 6850 6919.94 6850 6869.525

6871 6903.36 6831.9 6850 6884.99 6850 6869.525

6840 6895.95 6843.2 6850 6894.10 6850 6869.525

6806 6879.31 6858.5 6850 6866.17 6850 6760.529

6787 6878.34 6825.6 6850 6865.06 6750 6760.529

RMSE 93.49 102.96 83.58 80.02 72.55 70.42

MAPE 1.09 % 1.14 % 0.96 % 0.87 % 0.82 % 0.66
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Table 8 Comparison of “killed” forecasts by various methods and the actual observations

Year Actual killed [29] [71] [30] [72] Proposed method

1974 1574 1497

1975 1460 1497 1506 1458

1976 1536 1497 1453 1467

1977 1597 1500 1497 1598 1497 1606

1978 1644 1500 1497 1584 1497 1592

1979 1572 1500 1497 1584 1497 1592

1980 1616 1500 1497 1506 1598 1637

1981 1564 1500 1497 1584 1598 1592

1982 1464 1500 1497 1506 1498 1472

1983 1479 1500 1497 1453 1498 1409

1984 1369 1500 1497 1375 1398 1409

1985 1308 1400 1396 1383 1298 1366

1986 1456 1300 1296 1454 1498 1428

1987 1390 1500 1497 1453 1398 1467

1988 1432 1400 1396 1383 1398 1366

1989 1488 1400 1396 1509 1498 1467

1990 1574 1500 1497 1598 1598 1606

1991 1471 1500 1497 1506 1498 1458

1992 1380 1500 1497 1375 1398 1409

1993 1346 1400 1396 1383 1298 1366

1994 1415 1300 1296 1383 1398 1428

1995 1228 1400 1396 1231 1198 1223

1996 1122 1100 1095 1135 1098 1144

1997 1150 1200 1196 1180 1198 1097

1998 1224 1200 1196 1245 1198 1238

1999 1173 1200 1196 1135 1198 1144

2000 1253 1300 1296 1245 1298 1238

2001 1288 1300 1296 1284 1298 1278

2002 1145 1100 1095 1143 1098 1114

2003 1035 1000 995 970 997 1097

2004 953 1000 995 970 997 929

RMSE 85.35 83.12 41.61 46.78 37.66

MAPE 5.25 % 5.06 % 2.29 % 2.70 % 2.33 %

• For all possible cases derived from the above, MGA was
executed 100 times in MATLAB.

• m was varied from 5 to 20.

At the end of the process, 1440 different solutions were
obtained. The parameters (m, cn, cor, dcn) with the smallest
RMSE value were taken as the optimal solution of all these
solutions.

6.1 Enrollment data

The performance of the proposed method was evaluated
separately for test and training datasets of enrollment data.
First all data were used as the training set like almost all

studies in the literature and then the last three observations
of the enrollment data were used for the test set. Results
obtained by the proposed method were compared with those
of other studies, clearly showing that our proposed method
has superior forecasting performance.

As the first experiment, the proposed method was applied
to the training dataset. The best result was obtained with
m = 17, cn = 50, cor = 0.01, and dcn = 17.
Table 2 presents a comparison of the forecasts together
with RMSE and MAPE values obtained from the proposed
method and various other methods from the literature. The
results from both belong to the best case. The graph of
the forecasts of proposed method and real data is given in
Fig. 6.



A modified genetic algorithm for forecasting fuzzy time series 461

Next, a comparison of enrollment forecasts in terms of
RMSE and MAPE values for various methods is given in
Table 3.

Finally, a comparison of enrollment forecasts in terms of
RMSE values for various methods is given in Table 4.

As the second experiment, the proposed method was
applied to the test dataset. The best result was obtained with
m = 12, cor = 60, mr = 0.05, and dcn = 20. Table 5
presents a comparison of all the RMSE values obtained from
the proposed method and various other methods.

In addition, the results obtained from conventional time
series forecasting methods are given in Table 6.

6.2 Taifex data

In the second case, the proposed method was applied to
TAIFEX data, with observations between 03.08.1998 and
30.09.1998. The last 16 observations were used as the test
dataset. The best result was obtained with m = 11, cn = 60,
cor = 0.05, and dcn = 20. Table 7 gives a comparison of
the forecasts as well as RMSE and MAPE values obtained
from the proposed method and various other methods from
the literature. The results from both belong to the best case.

6.3 Data from vehicle road accidents in Belgium

In the third case, the proposed method was applied to time
series data for ‘killed in car road accidents in Belgium’. The
best result was obtained with m = 18, cn = 70, cor = 0.05,
and dcn = 23. Table 8 shows a comparison of all the results,
including forecasts and RMSE and MAPE values, obtained
from the proposed method and various other methods. The
results from both belong to the best case.

7 Conclusion

Researchers have recently found that there are many fac-
tors affecting forecasting performance of various fuzzy time
series approaches. Although the GA is a popular optimiza-
tion algorithm owing to its process, the mutation operator
can cause unexpected solutions in the population. Thus,
we proposed a modified genetic algorithm to avoid any
unexpected solutions.

In this study, we used the MGA in the fuzzification stage,
combining two-population based algorithms, DEA and GA,
to control the harmful effects of the mutation operator.
By avoiding the harmful effects of the mutation opera-
tion, superior forecasting performance is obtained with the
proposed method.

We expect that in future studies researchers will concen-
trate on different optimization techniques in the defuzzifi-
cation stage.

Acknowledgments The authors would like to thank the anonymous
reviewers and editors of journal for their valuable comments and
suggestions to improve the quality of the paper.

References

1. Box GEP, Jenkins GM (1976) Time series analysis: forecasting
and control. Holdan-Day, San Francisco

2. Khan SA, Engelbrecht AP (2012) A fuzzy particle swarm opti-
mization algorithm for computer communication network topol-
ogy design. Appl Intell 36(1):161–177

3. Kang JG, Kim S, An SY, Oh SY (2012) A new approach to simul-
taneous localization and map building with implicit model learn-
ing using neuro evolutionary optimization. Appl Intell 36(1):242–
269

4. Pan WT (2012) The use of genetic programming for the construc-
tion of a financial management model in an enterprise. Appl Intell
36(2):271–279

5. Kang MH, Choi HR, Kim HS, Park BJ (2012) Development of a
maritime transportation planning support system for car carriers
based on genetic algorithm. Appl Intell 36(3):585–604

6. Ali YMB (2012) Psychological model of particle swarm optimiza-
tion based multiple emotions. Appl Intell 36(3):649–663

7. Shin KS, Jeong YS, Jeoung MK (2012) A two-leveled symbi-
otic evolutionary algorithm for clustering problems. Appl Intell
36(4):788–799

8. Qu R, Xing HA (2012) A compact genetic algorithm for the net-
work coding based resource minimization problem. Appl Intell
36(4):809–823

9. Szlapczynski R, Szlapczynska R (2012) On evolutionary com-
puting in multi-ship trajectory planning. Appl Intell 37(2):155–
174

10. Malek H, Ebadzadeh M, Rahmati M (2012) Three new fuzzy
neural networks learning algorithms based on clustering, training
error and genetic algorithm. Appl Intell 37(2):280–289

11. Norouzzadeh MS, Ahmadzadeh MR, Palhang M (2012)
LADPSO: using fuzzy logic to conduct PSO algorithm. Appl
Intell 37(2):290–304

12. Cuevas E, Sención F, Zaldivar D, Cisneros MP, Sossa H (2012)
A multi-threshold segmentation approach based on Artificial Bee
Colony optimization. Appl Intell 37(3):321–336

13. Zheng YJ, Wang K (2012) A new particle swarm optimiza-
tion algorithm for fuzzy optimization of armored vehicle scheme
design. Appl Intell 37(4):520–526

14. Karaboga N, Kockanat S, Dogan H (2013) The parameter extrac-
tion of the thermally annealed Schottky barrier diode using the
modified artificial bee colony. Appl Intell 38(3):279–288

15. Masoud H, Jalili S, Hasheminejad SMH (2013) Dynamic cluster-
ing using combinatorial particle swarm optimization. Appl Intell
38(3):289–314

16. Vera CM, Cano A, Romero C, Ventura S (2013) Predicting student
failure at school using genetic programming and different data
mining approaches with high dimensional and imbalanced data.
Appl Intell 38(3):315–330

17. Han MF, Liao SH, Chang JY, Lin CT (2013) Dynamic group-
based differential evolution using a self-adaptive strategy for
global optimization problems. Appl Intell 39(1):41–56

18. Abbasian R, Mouhoub M (2013) A hierarchical parallel genetic
approach for the graph coloring problem. Appl Intell 39(3):510–
528

19. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353
20. Song Q, Chissom BS (1993a) Fuzzy time series and its models.

Fuzzy Sets Syst 54:269–277



462 E. Bas et al.

21. Song Q, Chissom BS (1993b) Forecasting enrollments with fuzzy
time series- Part I. Fuzzy Sets Syst 54:1–10

22. Song Q, Chissom BS (1994) Forecasting enrollments with fuzzy
time series- Part II. Fuzzy Sets Syst 62:1–8

23. Chen SM (1996) Forecasting enrollments based on fuzzy time-
series. Fuzzy Sets Syst 81:311–319

24. Chen SM (2002) Forecasting enrollments based on high order
fuzzy time series. Cybern Syst 33:1–16

25. Huarng K (2001a) Effective length of intervals to improve fore-
casting in fuzzy time-series. Fuzzy Sets Syst 123:387–394

26. Egrioglu E, Aladag CH, Yolcu U, Uslu VR, Basaran MA (2010)
Finding an optimal interval length in high order fuzzy time series.
Expert Syst Appl 37:5052–5055

27. Egrioglu E, Aladag CH, Basaran MA, Uslu VR, Yolcu U (2011a)
A new approach based on the optimization of the length of
intervals in fuzzy time series. J Intell Fuzzy Syst 22:15–19

28. Chen SM, Chung NY (2006) Forecasting enrolments using high
order fuzzy time series and genetic algorithms. Int J Intell Syst
21:485–501

29. Lee LW, Wang LH, Chen SM, Leu YH (2006) Handling forecast-
ing problems based on two factor high-order fuzzy time series.
IEEE Trans Fuzzy Syst 14(3):468–477

30. Uslu VR, Bas E, Yolcu U, Egrioglu E (2013), A fuzzy time
series approach based on weights determined by the num-
ber of recurrences of fuzzy relations. Swarm Evol Comput.
doi:10.1016/j.swevo.2013.10.004

31. Fu FP, Chi K, Che WG, Zhao QJ (2010) High-order difference
heuristic model of fuzzy time series based on particle swarm
optimization and information entropy for stock markets. In: Inter-
national conference on computer design and applications

32. Huang YL, Horng SJ, Kao TW, Run RS, Lai JL, Chen RJ, Kuo
IH, Khan MK (2011) An improved forecasting model based on
the weighted fuzzy relationship matrix combined with a PSO
adaptation for enrollments. Int J Innov Comput Inform Control
7(7):4027–4046

33. Kuo I-H, Horng S-J, Kao T-W, Lin T-L, Lee C-L, Pan Y (2009)
An improved method for forecasting enrollments based on fuzzy
time series and particle swarm optimization. Expert Syst Appl
36:6108–6117

34. Kuo I-H, Horng S-J, Chen Y-H, Run R-S, Kao T-W, Chen R-
J, Lai J-L, Lin T-L (2010) Forecasting TAIFEX based on fuzzy
time series and particle swarm optimization. Expert Syst Appl
37:1494–1502

35. Davari S, Zarandi MHF, Turksen IB (2009) An improved fuzzy
time series forecasting model based on particle swarm intervaliza-
tion. In: The 28th North American fuzzy information processing
society annual conferences (NAFIPS 2009). Cincinnati, Ohio,
USA, June 14–17

36. Park J-I, Lee D-J, Song C-K, Chun M-G (2010) TAIFEX and
KOSPI 200 forecasting based on two factors high order fuzzy time
series and particle swarm optimization. Expert Syst Appl 37:959–
967

37. Hsu L-Y, Horng S-J, Kao T-W, Chen Y-H, Run R-S, Chen R-
J, Lai J-L, Kuo I-H (2010) Temperature prediction and TAIFEX
forecasting based on fuzzy relationships and MTPSO techniques.
Expert Syst Appl 37:2756–2770

38. Cheng CH, Chen TL, Teoh HJ, Chiang CH (2008) Fuzzy time
series based on adaptive expectation model for TAIEX forecasting.
Expert Syst Appl 34:1126–1132

39. Li ST, Cheng YC, Lin SY (2008) FCM-based deterministic fore-
casting model for fuzzy time series. Comput Math Appl 56:3052–
3063

40. Alpaslan F, Cagcag O, Aladag CH, Yolcu U, Egrioglu E (2012)
A novel seasonal fuzzy time series method. Hacettepe J Math Stat
4(3):375–385

41. Egrioglu E, Aladag CH, Yolcu U, Uslu VR, Erilli NA (2011b)
Fuzzy time series forecasting method based on Gustafson–Kessel
fuzzy clustering. Expert Syst Appl 38:10355–10357

42. Alpaslan F, Cagcag O (2012) A seasonal fuzzy time series fore-
casting method based on Gustafson-Kessel fuzzy clustering. J Soc
Econ Stat 1:1–13

43. Huarng K, Yu HK (2006) The application of neural networks to
forecast fuzzy time series. Phys A 363:481–491

44. Aladag CH, Basaran MA, Egrioglu E, Yolcu U, Uslu VR (2009)
Forecasting in high order fuzzy time series by using neural
networks to define fuzzy relations. Expert Syst Appl 36:4228–
4231

45. Egrioglu E, Aladag CH, Yolcu U, Uslu VR, Basaran MA (2009a)
A new approach based on artificial neural networks for high order
multivariate fuzzy time series. Expert Syst Appl 36:10589–10594

46. Egrioglu E, Aladag CH, Yolcu U, Basaran MA, Uslu VR (2009b)
A new hybrid approach based on Sarima and partial high order
bivariate fuzzy time series forecasting model. Expert Syst Appl
36:7424–7434

47. Egrioglu E, Uslu VR, Yolcu U, Basaran MA, Aladag CH (2009c)
A new approach based on artificial neural networks for high order
bivariate fuzzy time series. In: Mehnen J, et al. (eds) Applications
of soft computing AISC 58. Springer-Verlag, Berlin Heidelberg,
pp 265–273

48. Sullivan J, Woodall WH (1994) A comparison of fuzzy forecasting
and Markov modeling. Fuzzy Sets Syst 64(3):279–293

49. Yolcu U, Aladag CH, Egrioglu E, Uslu VR (2013) Time series
forecasting with a novel fuzzy time series approach: an example
for stanbul stock market. J Comput Stat Simul 83:597–610

50. Aladag CH, Yolcu U, Egrioglu E (2010) A high order fuzzy
time series forecasting model based on adaptive expectation and
artificial neural networks. Math Comput Simul 81:875–882

51. Huarng K, Yu THK (2006) Ratio-based lengths of intervals to
improve fuzzy time series forecasting. IEEE Trans Syst Man
Cybern-Part B: Cybern 36:328–340

52. Ringwood JV (1997) Optimization of fuzzy electricity forecasting
models using genetic algorithms. Proceedings of the 5th European
congress on intelligent techniques and soft computing Aachen
Germany, vol. 3, pp 2457–2464

53. Kang HII (2005) A fuzzy time series prediction method using the
evolutionary algorithm. Adv Intell Comput Lect Notes Comput
Sci 3654:530–537

54. Lee LW, Wang LH, Chen SM (2007) Temperature prediction
and TAIFEX forecasting based on fuzzy logical relationships and
genetic algorithms. Expert Syst Appl 33:539–550

55. Egrioglu E (2012) A new time invariant fuzzy time series fore-
casting method based on genetic algorithm. Advances in Fuzzy
Systems, Article ID 785709, p 6

56. Holland JH (1975) Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor

57. Goldberg DE (1985) Optimal initial population size for binary-
coded genetic algorithms. Department of Engineering Mechanics,
University of Alabama, Alabama

58. Storn R, Price K (1995) Differential evolution: a simple and
efficient adaptive scheme for global optimization over continu-
ous spaces. Technical Report TR-95-012, International Computer
Science Institute, Berkeley

59. Cavicchio DJ (1970) Adaptive search using simulated evolution.
Thesis (PhD). University of Michigan

60. De Jong K (1975) An analysis of the behavior of a class of genetic
adaptive systems. Thesis (PhD). University of Michigan

http://dx.doi.org/10.1016/j.swevo.2013.10.004


A modified genetic algorithm for forecasting fuzzy time series 463

61. Wagner S, Affenzeller M, Beham A, Kronberger GK, Winkler
SM (2010) Mutation effects in genetic algorithms with offspring
selection applied to combinatorial optimization problems. In:
Proceeding of 22nd European modeling and simulation sympo-
sium EMSS

62. Singh SR (2007a) A simple method of forecasting based on fuzzy
time series. Appl Math Comput 186:330–339

63. Singh SR (2007b) A robust method of forecasting based on fuzzy
time series. Appl Math Comput 188:472–484

64. Cheng CH, Chang RJ, Yeh CA (2006) Entropy-based and trape-
zoid fuzzification-based fuzzy time series approach for forecasting
IT project cost. Technol Forecast Soc Chang 73:524–542

65. Tsaur RC, Yang JCO, Wang HF (2005) Fuzzy relation analysis in
fuzzy time series model. Comput Math Appl 49:539–548

66. Lee HS, Chou MT (2004) Fuzzy forecasting based on fuzzy time
series. Int J Comput Math 817:781–789

67. Aladag CH, Yolcu U, Egrioglu E, Dalar AZ (2012) A new time
invariant fuzzy time series forecasting method based on particle
swarm optimization. Appl Soft Comput 12:3291–3299

68. Huarng K (2001b) Heuristic models of fuzzy time series for
forecasting. Fuzzy Sets Syst 123:369–386

69. Cheng C-H, Cheng G-W, Wang J-W (2008) Multi-attribute fuzzy
time series method based on fuzzy clustering. Expert Syst Appl
34:1235–1242

70. Aladag CH (2013) Using multiplicative neuron model to establish
fuzzy logic relationships. Expert Syst Appl 40:850–853

71. Jilani TA, Burney SMA, Ardil C (2007) Multivariate high order
fuzzy time series forecasting for car road accident. World Acad
Sci Eng Technol 25:288–293

72. Jilani TA, Burney SMA (2008) Multivariate stochastic fuzzy
forecasting models. Expert Syst Appl 353:691–700


	A modified genetic algorithm for forecasting fuzzy time series
	Abstract
	Introduction
	Fuzzy time series
	Genetic algorithms
	Differential evaluation algorithm
	Proposed method
	Application
	Enrollment data
	Taifex data
	Data from vehicle road accidents in Belgium

	Conclusion
	Acknowledgments
	References


