
Appl Intell (2014) 41:299–309
DOI 10.1007/s10489-014-0518-0

K-nearest neighbor-based weighted twin support vector regression

Yitian Xu · Laisheng Wang

Published online: 28 February 2014
© Springer Science+Business Media New York 2014

Abstract Twin support vector regression (TSVR) finds
ε-insensitive up- and down-bound functions by resolving
a pair of smaller-sized quadratic programming problems
(QPPs) rather than a single large one as in a classical
SVR, which makes its computational speed greatly im-
proved. However the local information among samples are
not exploited in TSVR. To make full use of the knowl-
edge of samples and improve the prediction accuracy, a
K-nearest neighbor-based weighted TSVR (KNNWTSVR)
is proposed in this paper, where the local information among
samples are utilized. Specifically, a major weight is given to
the training sample if it has more K-nearest neighbors. Oth-
erwise a minor weight is given to it. Moreover, to further
enhance the computational speed, successive overrelaxation
approach is employed to resolve the QPPs. Experimental re-
sults on eight benchmark datasets and a real dataset demon-
strate our weighted TSVR not only yields lower prediction
error but also costs lower running time in comparison with
other algorithms.
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1 Introduction

The support vector machine (SVM) approach, motivated
by VC dimensional theory and statistical learning theory
[20], is a promising machine learning technique. Compared
with other machine learning approaches like artificial neu-
ral networks [18], SVM gains many advantages. First, SVM
solves a QPP, assuring that once an optimal solution is ob-
tained, it is the unique (global) solution. Second, SVM de-
rives a sparse and robust solution by maximizing the mar-
gin between the two classes. Third, SVM implements the
structural risk minimization principle rather than the empir-
ical risk minimization principle, which minimizes the upper
bound of the generalization error [22]. At present, SVM has
been successfully applied into various aspects ranging from
machine learning, data mining to knowledge discovery [24].

However, one of the main challenges for the standard
SVM is the high computational complexity. The training
cost of O(l3), where l is the total size of training data, is
expensive. To further improve the computational speed of
SVM, Jayadeva et al. [8] proposed a twin support vector ma-
chine (TSVM) for the binary classification data in the spirit
of the proximal SVM [5–7]. TSVM generates two nonpar-
allel hyper-planes by solving two smaller-sized QPPs such
that each hyper-plane is closer to one class and as far as pos-
sible from the other. The strategy of solving two smaller-
sized QPPs rather than a single large one makes the learning
speed of TSVM approximately four times faster than that of
the standard SVM. At present, TSVM has become one of the
popular methods because of its low computational complex-
ity. Many variants of TSVM have been proposed in [9, 11,
17, 19, 23, 26]. Certainly, algorithms mentioned above are
suitable for the classification problems. For the regression
problem, Peng proposed an efficient TSVR [16].

It is well known that the same effects on the bound
functions are considered to the training samples in TSVR.
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However the local information among samples is ignored in
TSVR. To enhance the prediction accuracy, Xu et al. pro-
posed a weighted TSVR [25], where different penalty co-
efficients are given to the samples dissatisfying constraint
depending on their different positions. In addition, Cheng et
al. proposed a localized support vector machine (LSVM),
where different penalty coefficients are given to the train-
ing samples dissatisfying the constraint depending on the
similarities to the testing samples. Certainly the similar-
ity is measured by K-nearest neighbor method. A point x

is important if it has a larger number of K-nearest neigh-
bors [3, 12, 28], whereas it is not important if it is an out-
lier. Motivated by the above studies, a K-nearest neighbor-
based weighted TSVR (KNNWTSVR) is proposed in this
paper [14], where different weights are proposed to give
each training sample depending on their local information.
Specifically, major weights are proposed to give the sam-
ples if they have more K-nearest neighbors. Whereas minor
weights are given to the samples with a smaller number of
K-nearest neighbors. Certainly our proposed algorithm only
explored the relation among the training samples, and dif-
ferent weights are proposed to give each training sample,
which is significantly different from LSVM. In addition, to
further increase the computational speed of KNNWTSVR, a
successive over relaxation method is employed to solve the
QPPs, therefore we named it as SOR KNNWTSVR.

The effectiveness of the proposed algorithm is demon-
strated by the experiments on eight benchmark datasets. The
numerical results show that our proposed algorithms KN-
NWTSVR and SOR KNNWTSVR achieve nearly the same
testing errors in all datasets. Moreover, they produce lower
testing errors than SVR and TSVR for most cases. We can
also find that SOR KNNWTSVR costs the least running
time for almost all datasets. Finally we apply the new meth-
ods to predicting the content of protein by the spectral fea-
tures of wheat. Compared with other algorithms, our pro-
posed algorithms also yield lower prediction errors.

The paper is organized as follows. Section 2 outlines
SVR and TSVR. A K-nearest neighbor-based weighted
TSVR is proposed in Sect. 3, which includes the linear and
nonlinear cases. A successive overrelaxation method for the
KNNWTSVR is given in Sect. 4. Section 5 performs exper-
iments on eight benchmark datasets and a real data experi-
ment to investigate the effectiveness of the proposed algo-
rithm. The last section contains the conclusions.

2 Related works

In this section, we give a brief description of the SVR
and TSVR. Given a training set T = {(x1, y1), (x2, y2), . . . ,

(xn, yn)}, where xi ∈ Rd and yi ∈ R. For the sake of con-
ciseness, let matrix A = (x1;x2; · · · ;xn) and matrix Y =
(y1;y2; · · · ;yn).

2.1 Support vector regression

The nonlinear SVR seeks to find a regression function
f (x) = wT φ(x) + b in a high dimensional feature space
tolerating the small error in fitting the given data points.
This can be achieved by utilizing the ε-insensitive loss func-
tion that sets an ε-insensitive “tube” around the data, within
which errors are discarded. The nonlinear SVR can be ob-
tained by resolving the following QPP,

min
w,b,ξ,ξ∗

1

2
‖w‖2 + c · (eT ξ + eT ξ∗) (1)

s.t.
(
φT (A)w + eb

) − Y ≤ eε + ξ,

Y − (
φT (A)w + eb

) ≤ eε + ξ∗,

ξ ≥ 0e, ξ∗ ≥ 0e,

where c is a parameter chosen a priori, which weights the
tradeoff between the fitting error and flatness of the re-
gression function, ξ and ξ∗ are the slack vectors reflecting
whether the samples locate into the ε-tube or not, e is the
vector of ones of appropriate dimensions [25].

By introducing the Lagrangian multiplies α and α∗, we
can derive the dual problem of the QPP (1) as follows,

max
α,α∗ −1

2

(
α∗ − α

)T
K

(
A,AT

)(
α∗ − α

)

+ YT
(
α∗ − α

) + εeT
(
α∗ + α

)
(2)

s.t. eT
(
α∗ − α

) = 0,

0e ≤ α, α∗ ≤ ce.

Once the QPP (2) is resolved, we can achieve its solu-
tion α(∗) = (α1, α

∗
1 , α2, α

∗
2 , . . . , αn,α

∗
n) and threshold b, and

then obtain the regression function,

f (x) =
n∑

i=1

(
α∗

i − αi

)
K(xi, x) + b. (3)

Here K(xi, x) = (φ(xi) · φ(x)) represents a kernel function
which gives the dot product in the high dimensional feature
space.

2.2 Twin support vector regression

To further improve the computational speed, an efficient
TSVM for the regression problem, termed as TSVR, was
proposed in [16, 25]. TSVR generates an ε-insensitive
down-bound function f1(x) = wT

1 x+b1 and an ε-insensitive
up-bound function f2(x) = wT

2 x + b2. TSVR is illustrated
in Fig. 1.
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Fig. 1 Illustration of the TSVR

The final regressor f (x) is decided by the mean of these
two bound functions, i.e.,

f (x) = 1

2

(
f1(x) + f2(x)

)

= 1

2
(w1 + w2)

T x + 1

2
(b1 + b2). (4)

TSVR is obtained by solving the following pair of QPPs,

min
w1,b1,ξ

1

2

∥∥Y − eε1 − (Aw1 + eb1)
∥∥2 + c1e

T ξ (5)

s.t. Y − (Aw1 + eb1) ≥ eε1 − ξ,

ξ ≥ 0e,

and

min
w2,b2,η

1

2

∥∥Y + eε2 − (Aw2 + eb2)
∥∥2 + c2e

T η (6)

s.t. (Aw2 + eb2) − Y ≥ eε2 − η,

η ≥ 0e,

where c1, c2, ε1 and ε2 are parameters chosen a priori, ξ and
η are slack vectors. By introducing the Lagrangian multipli-
ers α and β , we derive their dual problems as follows,

max
α

−1

2
αT G

(
GT G

)−1
GT α

+ gT G
(
GT G

)−1
GT α − gT α (7)

s.t. 0e ≤ α ≤ c1e,

and

max
β

−1

2
βT G

(
GT G

)−1
GT β

− hT G
(
GT G

)−1
GT β + hT β (8)

s.t. 0e ≤ β ≤ c2e,

where G = [A e], g = Y − eε1, and h = Y + eε2.

Once the dual problems (7) and (8) are solved, we can get
vectors w1, b1 and w2, b2 as follows,
[
w1

b1

]
= (

GT G
)−1

GT (g − α), (9)

and
[
w2

b2

]
= (

GT G
)−1

GT (h + β). (10)

For the nonlinear case, TSVR resolves the following pair of
QPPs,

min
w1,b1,ξ

1

2

∥∥Y − eε1 − (
K

(
A,AT

)
w1 + eb1

)∥∥2 + c1e
T ξ

(11)

s.t. Y − (
K

(
A,AT

)
w1 + eb1

) ≥ eε1 − ξ,

ξ ≥ 0e,

and

min
w2,b2,η

1

2

∥∥Y + eε2 − (
K

(
A,AT

)
w2 + eb2

)∥∥2 + c2e
T η

(12)

s.t. K
(
A,AT

)
w2 + eb2 − Y ≥ eε2 − η,

η ≥ 0e.

Similarly, we can derive the dual formulations of QPPs (11)
and (12) as follows,

max
α

−1

2
αT H

(
HT H

)−1
HT α

+ gT H
(
HT H

)−1
HT α − gT α (13)

s.t. 0e ≤ α ≤ c1e,

and

max
β

−1

2
βT H

(
HT H

)−1
HT β

− hT H
(
HT H

)−1
HT β + hT β (14)

s.t. 0e ≤ β ≤ c2e,

where H = [K(A,AT ) e], g = Y − eε1, and h = Y + eε2.
Once the dual QPPs (13) and (14) are resolved, we can

get vectors w1, b1 and w2, b2 as follows,

[
w1

b1

]
= (

HT H
)−1

HT (g − α), (15)

and
[
w2

b2

]
= (

HT H
)−1

HT (h + β). (16)
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Note that TSVR is comprised of a pair of QPPs such that
each QPP determines one of up- or down-bound functions
by using only one group of constraints compared with the
standard SVR. Hence, TSVR resolves two smaller-sized
QPPs rather than a single large one, which implies that
TSVR works approximately four times faster than the stan-
dard SVR in theory. However, the information among sam-
ples are not exploited in TSVR, and some priori knowledge
are ignored, which reduces the generalization performance
of TSVR to a certain degree.

3 K-nearest neighbor-based weighted twin support
vector regression

In this section, we first present the concept of K-nearest
neighbor [12], and then propose a K-nearest neighbor-based
weighted TSVR. The weight of each training sample varies
according to its local information.

3.1 K-nearest neighbor method

Given l data points x1, x2, . . . , xl , where xi ∈ Rn from the
underlying submanifold M , one can build a nearest neigh-
bor graph G to model the local geometrical structure of
M . For each data point xi , we find its k nearest neigh-
bors and put an edge between xi and its neighbors. Let
N(xi) = {x1

i , x2
i , . . . , xk

i } be the set of its K-nearest neigh-
bors. Thus, the weight matrix of G can be defined as fol-
lows:

Wi,j =
⎧
⎨

⎩

1, if xi is k-nearest neighbors of xj

or xj is k-nearest neighbors of xi,

0, otherwise.
(17)

The nearest neighbor graph G with weight matrix W char-
acterizes the local geometry of the data manifold. It has been
frequently used in manifold based learning techniques.

To embody the importance of a point, we introduce a
new variable di = ∑l

j=1 Wij (i = 1,2, . . . , l) for each sam-
ple. A larger value di denotes the i-th sample possesses
more neighbors, which implies that the i-th sample is im-
portant. According to this principle, we present the follow-
ing weighted algorithm.

3.2 Linear case

In TSVR, all samples are equally weighted. This implies that
samples will play the same roles on the bound functions no
matter whether they are important or not. Before presenting
the new algorithm, we first modify the original TSVR, and it
is illustrated in Fig. 2. As we can learn that it degrades into
the original SVR when f1(x) = f2(x). It is well known that

Fig. 2 Illustration of the modified TSVR

different samples have different effects on the bound func-
tions. A point x is more important if it owns a great num-
ber of K-nearest neighbors. Motivated by the above studies,
a K-nearest neighbor-based weighted TSVR is proposed in
this section, where different weights are proposed to give
each sample depending on their local information.

min
w1,b1,ξ

1

2

(
Y − (Aw1 + eb1)

)T
D

(
Y − (Aw1 + eb1)

)

+ c1e
T ξ (18)

s.t. Y − (Aw1 + eb1) ≥ −ε1e − ξ,

ξ ≥ 0,

and

min
w2,b2,η

1

2

(
Y − (Aw2 + eb2)

)T
D

(
Y − (Aw2 + eb2)

)

+ c2e
T η (19)

s.t. (Aw2 + eb2) − Y ≥ −ε2e − η,

η ≥ 0,

where c1, c2 > 0, ε1, ε2 ≥ 0 are parameters chosen a priori.
D = diag(d1, d2, . . . , dl) is a weighted diagonal matrix, and
di = ∑l

j=1 Wij . The larger value di is, the more important
the i-th sample is. Then it is more reasonable to give it a
major weight.

Note that there are two terms in the objective function
of (18). The first term is the sum of squared distances from
the shifted function f1(x) to the training points. Moreover
different weights are given to each training sample depend-
ing on their local information. This is significantly different
from the LSVM. In the second term, slack vector ξi is in-
troduced to measure the error whether the distance from the
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down bound function to the sample is smaller than ε1. How-
ever, the second term in the objective function of the LSVM
[2] means that different penalties are given to the training
samples depending on the similarity to the test examples.
The similarity is captured by a weighted function σ . Cer-
tainly the weighted penalties are only given to the training
samples dissatisfying the constraint.

To resolve (18), we first introduce the following La-
grangian function,

L = 1

2

(
Y − (Aw1 + eb1)

)T
D

(
Y − (Aw1 + eb1)

) + c1e
T ξ

− αT
(
Y − (Aw1 + eb1) + ε1e + ξ

) − βT ξ, (20)

where α,β ≥ 0 are Lagrangian multipliers. Differentiating
the Lagrangian function with respect to w1, b1 and ξ yields
the following Karush-Kuhn-Tucker (KKT) conditions:

∂L

∂w1
= −AT D(Y − Aw1 − eb1) + AT α = 0, (21)

∂L

∂b1
= −eT D(Y − Aw1 − eb1) + eT α = 0, (22)

∂L

∂ξ
= c1e − α − β = 0, (23)

αT
(
Y − (Aw1 + eb1) + ε1e + ξ

) = 0, (24)

βT ξ = 0. (25)

Combining (21) and (22), we can achieve

−
[
AT

eT

]
D(Y − Aw1 − eb1) +

[
AT

eT

]
α = 0. (26)

Define

G = [A e], u1 = [
wT

1 b1
]T

, (27)

then we have

−GT D(Y − Gu1) + GT α = 0, (28)

i.e.

u1 = (
GT DG

)−1
GT (DY − α). (29)

Finally, the dual formulation of (18) can be derived as

max
α

−1

2
αT G

(
GT DG

)−1
GT α − YT α − ε1e

T α

+ YT DG
(
GT DG

)−1
GT α + 1

2
YT DY

− 1

2
YT DG

(
GT DG

)−1
GT DY (30)

s.t. 0 ≤ α ≤ c1e,

where 1
2YT DY − 1

2YT DG(GT DG)−1GT DY is a constant
for the variable α, we may discard it and resolve the follow-
ing simplified QPP,

min
α

1

2
αT G

(
GT DG

)−1
GT α + YT α + ε1e

T α

− YT DG
(
GT DG

)−1
GT α (31)

s.t. 0 ≤ α ≤ c1e.

Similarly, the dual formulation of (19) can be derived as fol-
lows,

min
γ

1

2
γ T G

(
GT DG

)−1
GT γ + ε2e

T γ

+ YT DG
(
GT DG

)−1
GT γ − YT γ (32)

s.t. 0 ≤ γ ≤ c2e.

Notice that GT DG is always positive semidefinite, it is pos-
sible that it may not be well conditioned in some situations.
To overcome this ill-conditioning case, we introduce a regu-
larization term δI , where δ is a very small positive number,
such as δ = 1e − 7. Then (29) is modified to

μ1 = (
GT DG + σI

)−1
GT (DY − α). (33)

Similarly, μ2 is modified to

μ2 = [
wT

2 b2
]T = (

GT DG + σI
)−1

GT (DY + γ ). (34)

Once the vectors μ1 and μ2 are known from (33) and (34),
the up- and down-bound functions can be obtained. The end
regressor is decided by the mean of these two functions,

f (x) = 1

2

(
f1(x) + f2(x)

)

= 1

2
(w1 + w2)

T x + 1

2
(b1 + b2). (35)

3.3 Nonlinear case

In this subsection, we extend the linear KNNWTSVR to
the nonlinear case using the kernel trick. The input data are
mapped into a high dimensional feature space by some non-
linear kernel functions. In the feature space, a linear regres-
sion function is implemented which corresponds to a non-
linear regression function in the input space [10],

min
w1,b1,ξ

1

2

(
Y − (

K
(
A,AT

)
w1 + eb1

))T

× D
(
Y − (

K
(
A,AT

)
w1 + eb1

)) + c1e
T ξ (36)

s.t. Y − (
K

(
A,AT

)
w1 + eb1

) ≥ −ε1e − ξ,

ξ ≥ 0,
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and

min
w2,b2,η

1

2

(
Y − (

K
(
A,AT

)
w2 + eb2

))T

× D
(
Y − (

K
(
A,AT

)
w2 + eb2

)) + c2e
T η (37)

s.t.
(
K

(
A,AT

)
w2 + eb2

) − Y ≥ −ε2e − η,

η ≥ 0,

where c1, c2 > 0 and ε1, ε2 ≥ 0 are parameters chosen a pri-
ori. D = diag(d1, d2, . . . , dl) is a weighted diagonal matrix,
and di = ∑l

j=1 Wij . To resolve the QPP (36), we first intro-
duce the following Lagrangian function,

L = 1

2

(
Y − (

K
(
A,AT

)
w1 + eb1

))T

× D
(
Y − (

K
(
A,AT

)
w1 + eb1

)) + c1e
T ξ

− αT
(
Y − (

K
(
A,AT

)
w1 + eb1

) + ε1e + ξ
) − βT ξ,

(38)

where α,β ≥ 0 are Lagrangian multipliers. Differentiating
the Lagrangian function with respect to w1, b1 and ξ yields
the following KKT conditions,

∂L

∂w1
= −K

(
A,AT

)T
D

(
Y − K

(
A,AT

)
w1 − eb1

)

+ K
(
A,AT

)T
α = 0, (39)

∂L

∂b1
= −eT D

(
Y − K

(
A,AT

)
w1 − eb1

) + eT α = 0, (40)

∂L

∂ξ
= c1e − α − β = 0, (41)

αT
(
Y − (

K
(
A,AT

)
w1 + eb1

) + ε1e + ξ
) = 0, (42)

βT ξ = 0. (43)

Combining Eqs. (39) and (40), we get

−
[
K(A,AT )T

eT

]
D

(
Y − K

(
A,AT

)
w1 − eb1

)

+
[
K(A,AT )T

eT

]
α = 0. (44)

Define

H = [
K

(
A,AT

)
e
]

and u1 = [
wT

1 b1
]T

, (45)

we can then get

−HT D(Y − Hu1) + HT α = 0. (46)

We further get

u1 = (
HT DH

)−1
HT (DY − α). (47)

Finally, the dual formulation of (36) can be derived as fol-
lows,

max
α

−1

2
αT H

(
HT DG

)−1
HT α − YT α − ε1e

T α

+ YT DH
(
HT DH

)−1
HT α + 1

2
YT DY

− 1

2
YT DH

(
HT DH

)−1
HT DY (48)

s.t. 0 ≤ α ≤ c1e.

Since 1
2YT DY − 1

2YT DH(HT DH)−1HT DY is a con-
stant for the variable α, we can discard it and resolve the
following dual formulation,

min
α

1

2
αT H

(
HT DH

)−1
HT α + YT α + ε1e

T α

− YT DH
(
HT DH

)−1
HT α (49)

s.t. 0 ≤ α ≤ c1e.

Similarly, we can derive the following dual formulation of
(37) as follows,

min
γ

1

2
γ T H

(
HT DH

)−1
HT γ + ε2e

T γ

+ YT DH
(
HT DH

)−1
HT γ − YT γ (50)

s.t. 0 ≤ γ ≤ c2e.

Once the dual QPPs (49) and (50) are solved, we can get
vectors μ1 and μ2 for the ill-condition case,

μ1 = (
HT DH + σI

)−1
HT (DY − α), (51)

and

μ2 = [
wT

2 b2
]T = (

HT DH + σI
)−1

HT (DY + γ ). (52)

Finally, we can achieve the end regressor for the nonlinear
case as follows,

f (x) = 1

2

(
f1(x) + f2(x)

)

= 1

2
(w1 + w2)

T K(A,x) + 1

2
(b1 + b2). (53)

3.4 Computational complexity analysis

The computational complexity is discussed in this subsec-
tion. Suppose there are l training samples. From the QPP (2)
we can know that SVR resolves a larger-sized QPP with two
inequality constraints and an equality constraint. However
TSVR resolves a pair of smaller-sized QPPs, each of which
has only one inequality constraint. So TSVR works approx-
imately 4 times faster than SVR in theory. In the following
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we discuss the computational complexity of our proposed
KNNWTSVR. The main computational process in our algo-
rithm involves two steps:

(1) K-nearest neighbors graph. Using O(l2 log(l)) for all
the l training points to compute the weight matrix W [1].

(2) Optimization of our KNNWTSVR. KNNWTSVR
has the similar dual formulation to the TSVR, then KN-
NWTSVR spends nearly the same running time as TSVR
does. It means that the KNNWTSVR does not improve the
computational complexity.

4 Successive overrelaxation approach

In this subsection, we discuss the implementation of KN-
NWTSVR. Successive overrelaxation is an iterative proce-
dure that employs the Gauss-Seidel iterations with the ex-
trapolation factor t ∈ (0,2) to accelerate the solving of the
QPPs with linear convergence [13].

We can easily rewrite QPPs (31), (32), (49) and (50) into
the following unified form,

min
α

1

2
αT Qα + dα (54)

s.t. α ∈ S = {0 ≤ α ≤ ce}.
We take the dual formulation (31) for example, it can be
rewritten in the above unified form, where Q = G(GT DG+
σI)−1GT and d = YT + ε1e

T − YT DQ.
A necessary and sufficient optimality condition for (31)

is the following gradient projection optimality condition,

α = (
α − t1D

−1
1 (Qα + Y + ε1e − QDY)

)
∗, (55)

where (·)∗ denotes the 2-norm projection on the feasible re-
gion S, that is

(
(α)∗

)
i
=

⎧
⎪⎨

⎪⎩

0, αi ≤ 0,

αi, 0 ≤ αi ≤ c1,

c1, αi ≥ c1.

(56)

Define Q = L + D1 + LT , where L ∈ Rl×l constitutes the
strictly lower triangular part of the symmetric matrix of Q,
and the nonzero elements of D1 constitute the diagonal of
Q. We can split the matrix Q into the sum of two matrices
B and C as follows:

Q = t−1
1 D1(B + C), (57)

where

B = I + t1D
−1
1 L, (58)

C = (t1 − 1)I + t1D
−1
1 LT , (59)

where 0 < t1 < 2, I is an identity matrix of appreciate di-
mensions. The matrix B + C is positive semidefinite, and
matrix B − C is positive definite. Finally we can derive the
following iterative formula,

αr+1 = (
αr+1 − Bαr+1 − Cαr + t1D

−1
1 (Y + ε1e

− QDY)
)
∗. (60)

Similarly, we can obtain the other iterative formula,

γr+1 = (
γr+1 − Bγr+1 − Cγr

+ t2D
−1
1 (ε2e + QDY − Y)

)
∗. (61)

The flowchart of SOR KNNWTSVR is described as follows:

SOR KNNWTSVR algorithm
Input: The matrix Q and vector d .
1. Select parameters t1, t2 ∈ (0,2), and initialize α0,

γ0 ∈ Rl ;
2. Compute α and γ as following formulation αr+1 =

(αr − t1D
−1
1 (Qα +Y + ε1e −QDY +L(αr+1 −αr)))∗ and

γr+1 = (γr − t2D
−1
1 (Qγ − Y + ε2e + QDY + L(γr+1 −

γr)))∗. Where Q = G(GT DG + σI)−1GT . Define Q =
L + D1 + LT , where L ∈ Rl×l is a strictly lower triangu-
lar matrix, and D1 ∈ Rl×l is a diagonal matrix.

3. Compute ‖αr+1 − αr‖ and ‖γr+1 − γr‖ until they are
less than some prescribed tolerance.

Output: the optimal values of α and γ .

It is well known that the successive overrelaxation
method is linear convergence, but other iterative methods,
e.g., Newton iteration, and so on, are quadratic convergence.
So the successive overrelaxation method is employed to ac-
celerate the speed of KNNWTSVR.

5 Numerical experiments

We conduct two kinds of experiments including eight bench-
mark datasets from the UCI machine learning repository1

and a real dataset to investigate the effectiveness of our KN-
NWTSVR. All experiments are carried out in Matlab 7.9
(R2009b) on Windows XP running on a PC with system con-
figuration Intel(R) Core(TM) 2 Duo CPU E7500 (2.93 GHz)
with 3.00 GB of RAM.

5.1 Evaluation criteria

To evaluate the performance of our proposed algorithm, the
evaluation criteria are specified before presenting the exper-
imental results. The total number of testing samples is de-
noted by m, while yi denotes the real-value of a sample point

1http://archive.ics.uci.edu/ml/datasets.html.

http://archive.ics.uci.edu/ml/datasets.html
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xi , ŷi denotes the predicted value of xi , and ȳ = ∑m
i=1 yi is

the mean of y1, y2, . . . , ym. We use the following criteria for
algorithm evaluation [16, 22].

MAE: Mean absolute error, defined as

MAE = 1

m

m∑

i=1

|yi − ŷi |. (62)

MAE is also a popular deviation measurement between the
real and predicted values.

RMSE: Root mean squared error, defined as

RMSE =
√√√√ 1

m

m∑

i=1

(yi − ŷi )2. (63)

SSE/SST: Ratio between sum of squared error and sum of
squared deviation of testing samples, defined as

SSE/SST =
m∑

i=1

(yi − ŷi )
2
/ m∑

i=1

(yi − ȳi )
2. (64)

SSR/SSE: Ratio between interpretable sum of squared devi-
ation and real sum of squared deviation of testing samples,
defined as

SSR/SSE =
m∑

i=1

(ŷi − ȳi )
2
/ m∑

i=1

(yi − ŷi )
2. (65)

In most cases, small SSE/SST means there is good agree-
ment between the estimates and the real values, and de-
creasing SSE/SST is usually accompanied by an increase in
SSR/SST. However, an extremely small value for SSE/SST
is in fact not good, for it probably means that the regressor
is over-fitting the data.

5.2 Parameters selection

We know that the kernel function and its parameters in SVM
have great effects on the experimental results [4]. In our
experiments, we only consider the Gaussian kernel func-
tion k(xi, xj ) = exp(−‖xi − xj‖2/γ 2) for these datasets as
it is often employed and yields great generalization perfor-
mance. We choose optimal values for the parameters by the
grid search method. The optimal Gaussian kernel parame-
ter γ was selected over the range {2i | i = −3,−2, . . . ,9}.
The optimal values of parameter c in all algorithms were
searched from set {2i | i = −3,−2, . . . ,8}. The parame-
ter ε in all algorithms was searched from the set { i

10 |
i = 1,2, . . . ,9}. The parameter t in our proposed algorithm
ranged from the set {0.25,0.5,0.75,1,1.25,1.5,1.75}.

5.3 Experiments on benchmark datasets

In this section, we performed experiments on eight bench-
mark datasets, they are Diabetes, Pyrim, Con.s, Machine
cpu, Triazines, Auto-mpg, Auto-price, and Chwirut. For
each experiment, we use 5-fold cross-validation to evalu-
ate the performance of four algorithms, i.e., KNNWTSVR,
SOR KNNWTSVR, TSVR and SVR. That is to say, the
dataset is split randomly into five subsets, and one of those
sets is reserved as a test set. This process is repeated five
times, and the average value of five testing results is used
as the performance measure. We test the validity of the pro-
posed algorithm from both testing errors and computational
time aspects.

The performance comparisons of four algorithms are
summed in Table 1. In error items, the first item denotes the
mean value of five times testing results, and the second item
stands for plus or minus the standard deviation. Time de-
notes the mean value of time taken by five experiments, and
each experimental time consists of training time and testing
time.

From the perspective of prediction error, we can find that
KNNWTSVR and SOR KNNWTSVR yield nearly the same
testing errors on eight benchmark datasets. Moreover they
are lower than that produced by SVR and TSVR for most
cases.

In terms of computational time, our SOR KNNWTSVR
costs the least running time among four algorithms for most
cases. The next is our KNNWTSVR. However SVR costs
the most computational time. The main reason lies in that
SVR resolves a larger-sized QPP, but three other algorithms
resolves a pair of smaller-sized QPP. Although the TSVR
works four times faster than SVR in theory, sometimes more
than four times, as we can learn from the datasets Machine
cpu, Triazines, Auto-mpg, Auto-pric, and Chwirut. The pos-
sible reason is that there is an equality constraint in the dual
formulation (2) of SVR, but only an inequality constraint in
the dual formulation of TSVR, our KNNWTSVR, and SOR
KNNWTSVR.

Generally speaking, as the size of the training dataset in-
creases, our SOR KNNWTSVR has more obvious advan-
tages in computational time.

5.4 Experiment on a real dataset

In this real data experiment, there are 210 wheat samples
from all over China. The protein content of wheat ranges
from 9.83 % to 20.26 %. They are provided by Heilongjiang
research institute of agricultural science. Each sample has
1193 spectral features. They were scanned in transmission
mode using a commercial spectrometer MATRIX-I. Sam-
ples were acquired in a rectangular quartz cuvette of 1-mm
path length with air as reference at room temperature (20–
24 °C). The reference spectrum was subtracted from the
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Table 1 Performance comparisons of four algorithms with Gaussian kernel function on eight benchmark datasets

Datasets Algorithm MAE RMSE SSE/SST SSR/SST Time

Diabetes
(43 × 3)

SVR 0.458 ± 0.108 0.560 ± 0.081 0.800 ± 0.215 0.515 ± 0.241 0.142

TSVR 0.466 ± 0.093 0.553 ± 0.072 0.792 ± 0.277 0.650 ± 0.215 0.061

KNNWTSVR 0.460 ± 0.072 0.552 ± 0.044 0.793 ± 0.272 0.322 ± 0.318 0.039

SOR KNNWTSVR 0.427 ± 0.064 0.518 ± 0.069 0.706 ± 0.266 0.288 ± 0.189 0.025

Pyrim
(74 × 28)

SVR 0.050 ± 0.020 0.072 ± 0.041 0.999 ± 0.538 1.157 ± 0.708 1.175

TSVR 0.049 ± 0.012 0.066 ± 0.025 0.527 ± 0.321 0.984 ± 0.549 0.102

KNNWTSVR 0.049 ± 0.014 0.069 ± 0.032 0.707 ± 0.629 0.639 ± 0.554 0.097

SOR KNNWTSVR 0.049 ± 0.014 0.069 ± 0.030 0.667 ± 0.402 0.637 ± 0.555 0.067

Con.s
(103 × 7)

SVR 0.216 ± 0.032 0.253 ± 0.031 0.781 ± 0.232 0.257 ± 0.100 1.218

TSVR 0.182 ± 0.027 0.221 ± 0.022 0.620 ± 0.210 0.500 ± 0.258 0.153

KNNWTSVR 0.177 ± 0.023 0.216 ± 0.019 0.592 ± 0.210 0.060 ± 0.064 0.143

SOR KNNWTSVR 0.177 ± 0.020 0.219 ± 0.020 0.611 ± 0.202 0.060 ± 0.064 0.130

Machine cpu
(209 × 6)

SVR 89.262 ± 22.047 159.82 ± 68.629 1.542 ± 0.791 0.542 ± 0.791 18.850

TSVR 91.248 ± 20.379 144.844 ± 60.122 1.381 ± 0.938 0.509 ± 0.864 1.006

KNNWTSVR 93.852 ± 17.467 146.766 ± 59.093 1.412 ± 0.923 0.453 ± 0.816 0.549

SOR KNNWTSVR 93.436 ± 17.502 146.766 ± 59.097 1.409 ± 0.915 0.449 ± 0.808 0.537

Triazines
(186 × 60)

SVR 0.112 ± 0.015 0.153 ± 0.013 0.998 ± 0.087 0.171 ± 0.126 8.345

TSVR 0.131 ± 0.008 0.144 ± 0.011 0.885 ± 0.064 0.193 ± 0.076 0.469

KNNWTSVR 0.104 ± 0.008 0.143 ± 0.006 0.880 ± 0.125 0.135 ± 0.126 0.462

SOR KNNWTSVR 0.104 ± 0.007 0.144 ± 0.008 0.884 ± 0.112 0.132 ± 0.120 0.446

Auto-mpg
(392 × 7)

SVR 6.879 ± 0.704 8.801 ± 0.714 1.483 ± 0.531 0.483 ± 0.531 396.6

TSVR 5.004 ± 1.270 8.887 ± 2.898 0.619 ± 0.347 1.298 ± 0.538 1.928

KNNWTSVR 3.995 ± 1.450 7.977 ± 1.237 1.381 ± 0.340 0.430 ± 0.330 2.170

SOR KNNWTSVR 3.997 ± 1.445 7.977 ± 1.237 1.381 ± 0.340 0.430 ± 0.330 2.018

Auto-price
(159 × 15)

SVR 5103.0 ± 2147.9 6713.3 ± 2534.7 1.6788 ± 0.894 0.678 ± 0.894 5.175

TSVR 4433.0 ± 2098.0 6444.4 ± 2892.1 2.281 ± 2.537 2.214 ± 2.237 0.341

KNNWTSVR 4644.5 ± 1178.5 5622.1 ± 1687.6 1.594 ± 0.947 0.595 ± 0.947 0.329

SOR KNNWTSVR 4644.5 ± 1178.5 5622.1 ± 1687.7 1.594 ± 0.947 0.595 ± 0.947 0.303

Chwirut
(214 × 1)

SVR 0.208 ± 0.033 0.283 ± 0.041 1.170 ± 0.150 0.170 ± 0.150 22.056

TSVR 0.029 ± 0.010 0.040 ± 0.014 1.147 ± 0.651 1.033 ± 0.137 1.859

KNNWTSVR 0.028 ± 0.008 0.038 ± 0.015 0.024 ± 0.013 0.901 ± 0.148 0.777

SOR KNNWTSVR 0.023 ± 0.010 0.034 ± 0.012 0.020 ± 0.015 0.840 ± 0.300 0.755

Table 2 Performance comparisons of four algorithms with Gaussian kernel function on wheat dataset

Algorithms MAE RMSE SSE/SST SSR/SST Time (s) Optimal parameters

SVR 1.171 ± 0.327 1.492 ± 0.414 1.071 ± 0.063 0.071 ± 0.063 21.885 (C = 16, ε = 0.9, γ = 0.25)

TSVR 0.955 ± 0.187 1.199 ± 0.251 0.794 ± 0.442 0.498 ± 0.172 1.428 (C = 8, ε = 0.9, γ = 8)

KNNWTSVR 0.866 ± 0.250 1.080 ± 0.315 0.732 ± 0.614 0.611 ± 0.169 1.451 (C = 1, ε = 0.3, γ = 32)

SOR KNNWTSVR 0.799 ± 0.230 1.014 ± 0.293 0.665 ± 0.571 0.665 ± 0.163 1.353 (C = 32, ε = 0.9, γ = 32, t = 1)

sample spectra to remove background noise. The rectangular

quartz cuvette was cleaned after each sample was scanned to

minimize cross-contamination [27].

In this high dimensional data experiment, we predict the

content of protein using 1193 spectral features of wheat.

The prediction errors of four algorithms are summed in Ta-

ble 2.

From Table 2, we can learn that SOR KNNWTSVR

yields lowest prediction error (0.799 %) among four algo-

rithms. The prediction error (0.866 %) of KNNWTSVR fol-
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lows. The errors produced by them are lower than that pro-
duced by SVR (1.171 %) and TSVR (0.955 %). The main
reason is that SOR KNNWTSVR and KNNWTSVR con-
sider the local information among samples, and different
weights are proposed to give the samples depending on their
local information. But in SVR and TSVR, all samples are
equally weighted. In addition, to further improve the pre-
diction accuracy, we can incorporate feature selection into
our proposed algorithms. The first step is to reduce the di-
mensions of training samples [15, 21], and then predict the
content of protein by the reduced spectral features of wheat.

In terms of computational time, SVR costs the most run-
ning time (21.885 s) among four algorithms. TSVR and KN-
NWTSVR cost nearly the same computational time, and
they are slightly higher than that of SOR KNNWTSVR.
Moreover, we can further find that TSVR, KNNWTSVR
and SOR KNNWTSVR work more than four times faster
than SVR. The possible reason is that only one inequality
constraint is included in the dual formulations of them, but
two constraints including an equality and an inequality con-
straints in SVR.

6 Conclusion

A K-nearest neighbor-based weighted TSVR is proposed
in this paper, and the local information among samples is
exploited in the model. The KNN method is employed to
count the number di of neighbors for each sample. The
larger value di denotes the i-th sample has a great num-
ber of K-nearest neighbors, and more important for the i-
th sample. So a major weight is proposed to give the i-th
sample. In contrast, a minor weight is given to the samples
with a smaller number of k-nearest neighbors. Moreover
successive overrelaxation method is used to further improve
the speed of KNNWTSVR. Experimental results on eight
benchmark datasets and a real dataset demonstrate the va-
lidity of our proposed algorithms. Our SOR KNNWTSVR
not only yields lower testing error but also costs the least
running time. How to incorporate the feature selection into
our proposed algorithms when addressing the high dimen-
sional data is our future research.
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