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Abstract Fuzzy Grey Cognitive Maps (FGCM) is an in-
novative Grey System theory-based FCM extension. Grey
systems have become a very effective theory for solving
problems within environments with high uncertainty, under
discrete small and incomplete data sets. In this study, the
method of FGCMs and a proposed Hebbian-based learning
algorithm for FGCMs were applied to a known reference
chemical process problem, concerning a control process in
chemical industry with two tanks, three valves, one heating
element and two thermometers for each tank. The proposed
mathematical formulation of FGCMs and the implementa-
tion of the NHL algorithm were analyzed and then success-
fully applied keeping the main constraints of the problem.
A number of numerical experiments were conducted to vali-
date the approach and verify the effectiveness. Also, the pro-
duced results were analyzed and compared with the results
previously reported in the literature from the implementa-
tion of the FCMs and Nonlinear Hebbian learning algo-
rithm. The advantages of FGCMs over conventional FCMs
are their capabilities (i) to produce a length and greyness
estimation at the outputs; the output greyness can be con-
sidered as an additional indicator of the quality of a deci-
sion, and (ii) to succeed desired behavior for the process sys-
tem for every set of initial states, with and without Hebbian
learning.
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1 Introduction

Fuzzy Cognitive Maps (FCMs) constitute neuro-fuzzy sys-
tems, which are able to model complex systems [7, 8, 19].
Recently, Fuzzy Grey Cognitive Maps (FGCM) have been
proposed as a FCM extension [26]. FGCM is based on
Grey Systems Theory (GST), that has become a very wor-
thy theory for solving problems within domains with high
uncertainty, under discrete small and incomplete data sets
[27, 29–31]. FGCMs model approximate knowledge on
concepts grey state and the causal grey relationships among
them being thus the generalization of FCMs.

FGCMs provide several improvements regarding to oth-
ers similar techniques. First, FGCM models are designed
specifically for multiple meanings (grey) problems. Second,
the FGCM technique allows the defining of grey relation-
ships between concepts. According to this, more reliable
decisional models for interrelated environments are defined.
Third, FGCM is able to quantify the grey influence of the re-
lationships between concepts. Through this attribute, a bet-
ter support in grey environments can be reached. Finally,
with this FGCM model it is possible to develop a what-if
analysis with the purpose of describing possible grey sce-
narios.

Recently, interest in control of nonlinear systems was
ever increasing due to demands from practical applications,
and many significant developments were achieved [1, 16–
18, 40]. The main goal of control engineering is to apply
knowledge about how to control a process so that the re-
sulting control system will reliably and safely achieve high-
performance operation.
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In this sense, fuzzy logic is a well-known universal ap-
proximator [39]. That is, a fuzzy logic system can be used
to approximate any nonlinear system with a required accu-
racy. Fuzzy control is a practical alternative for a variety of
challenging control applications since it provides a conve-
nient method for constructing nonlinear controllers using the
heuristic information.

In the fuzzy control design methodology, we use to ask
operators to write down a set of (fuzzy) rules on how to
control the processes. Those rules are embedded into fuzzy
controllers emulating the operator decision-making process.
According to this, Fukami [6] proposed the first stable
fuzzy adaptive controller, and many fuzzy adaptive control
schemes have been reported with adaptive fuzzy logic sys-
tems [11–13, 35–39].

In this work, FGCMs and an unsupervised Hebbian-
based learning algorithm for FGCMs were applied to an-
alyze a well-known process control problem, where the
FCMs and Hebbian-based learning approaches have been
previously applied for [32, 34] and [24]. Many experiments,
reproducible examples, were conducted to validate the pro-
posed methods and the results were compared with those
previously reported in the literature. The effectiveness of the
proposed methodology is analyzed in the discussion of re-
sults.

The outline of this paper is as follows. Section 2 presents
briefly the Grey System Theory. Section 3 describes the
Fuzzy Grey Cognitive Maps technique with its learning ca-
pabilities. Section 4 introduces the experiments. In Sect. 5,
the discussion of the results is presented and Sect. 6 con-
cludes the paper.

2 Grey systems theory

Grey Systems Theory has become a worthy set of techniques
within environments with high uncertainty, under discrete
small and incomplete data sets [4]. GST requires only small
data samples with poor information to be effective. It has
been successfully applied in medicine, engineering, energy,
computer science, agriculture, geology, meteorology, mili-
tary science, transportation, business and so on [4, 9, 10, 23,
26, 28, 30, 43].

GST considers the data fuzziness, because it can flexibly
deal with it [9, 10, 43]. Moreover, fuzzy mathematics holds
some previous information (usually based on experience);
while grey systems deal with objective data, they do not re-
quire any more information other than the data sets that need
to be disposed [41]. Moreover, GST fits better with multiple
meanings environments than fuzzy logic.

GST includes five major parts: grey prediction, grey rela-
tional analysis, grey decision, grey programming, and grey
control [9]. In GST, according to the degree of known infor-
mation, if the system information is fully known (a complete

understanding), the system is called a white one, while the
system information is completely unknown is called a black
one. In addition, a system with partial information known
and partial information unknown is grey system.

Let U be the universal set. Then a grey set G ∈ U is
defined by both its mappings. Note that {μG(·) | μ

G
(·)} ∈

[0,1], where μ
G
(·) is the lower membership function, μG(·)

is the upper one and μ
G
(·) ≤ μG(·). Also, GST extends

fuzzy logic, since the grey set G becomes a fuzzy set when
μ

G
(·) = μG(·). The crisp value of a grey number is un-

known, but the range within the value is known.
An interval grey number is a grey number with both a

lower limit (x) and an upper limit (x) [10], and it is denoted
as ⊗x ∈ [x, x]|x ≤ x. If a grey number ⊗x has just lower
limit is denoted as ⊗x ∈ [x,+∞), and if it has only up-
per limit is ⊗x ∈ (−∞, x]. A black number is denoted as
⊗x ∈ (−∞,+∞), and a white number is ⊗x ∈ [x, x], x =
x. There is not any information known about black numbers
and the whole information is available about white ones.

The transformation of grey numbers in crisp ones is
called whitenization [10], and the whitenization value is
computed as follows

ĝ = α · x + (1 − α) · x | α ∈ [0,1] (1)

when α = 0.5 is called equal mean whitenization.
The length of a grey number is computed as �(⊗x) =

|x − x|. In that sense, if the length of the grey number is
zero (�(⊗x) = 0), then it is a white number. Otherwise,
if �(⊗x) = ∞, the grey number is not necessarily a black
number, because the length of a grey number with only one
limit (lower or upper), ⊗g ∈ [x,+∞) or ⊗x ∈ (−∞, x], is
infinite but it is not a black number because we have infor-
mation about one limit.

A deeper explanation of grey numbers, grey matrices and
FGCMs can be found at [26].

3 Theoretical background

3.1 Fuzzy grey cognitive maps

Fuzzy Grey Cognitive Map is an emerging soft computing
technique mixing FCMs and GST [26]. A FGCM models
unstructured knowledge through causalities through vague
concepts and grey relationships between them based on
FCM [7, 8]. Furthermore, FGCMs provide an intuitive, yet
detailed way of modeling concepts and analyzing them at
their natural level of abstraction [29, 31].

By converting decision modeling into causal graphs, de-
cision makers with no technical background can understand
all of the components in a given situation. In addition, with
a FGCM, it is possible to identify and consider the most rel-
evant factor that seems to affect the expected target variable.
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FGCMs are dynamical systems involving feedback,
where the effect of change in a node may affect other nodes,
which in turn can affect the node initiating the change [26].

The FGCM nodes are variables, representing concepts.
The relationships between nodes are represented by directed
edges. An edge linking two nodes models the grey causal
influence of the causal variable on the effect variable.

Each relationship between FGCM nodes is measured by
its grey intensity as

⊗wij ∈ [wij ,wij ] | wij ≤ wij , {wij ,wij } ∈ [−1,+1] (2)

where i is the pre-synaptic (cause) node and j the post-
synaptic (effect) one.

FGCM dynamics begins with the design of the initial
grey vector state ⊗ �C(0), which represents a proposed ini-
tial grey stimuli. We denote the initial grey vector state with
n nodes as

⊗ �C(0)

=
(
⊗c1(0),⊗c2(0), . . . ,⊗cn(0)

)

= ([
c1(0), c1(0)

]
,
[
c2(0), c2(0)

]
, . . . ,

[
cn(0), cn(0)

])
(3)

The updated nodes’ states [26] are computed in an itera-
tive inference way with an activation function, which map-
ping monotonically the grey node state value into its normal-
ized range {[0,+1]|[−1,+1]}. The unipolar sigmoid func-
tion is the most used one [3] in FCM and FGCM when the
concept value maps in the range [0,1]. If f (·) is a sigmoid,
then the i component of the grey vector state ⊗ �C(t +1) after
the inference would be update with Eq. (4).

⊗cj (t + 1) = f

(
⊗ci(t) +

n∑
i=1

⊗wij · ⊗ci(t)

)

= f
(
⊗cj

(
t+

))

= f
([

cj

(
t+

)
, cj

(
t+

)])

= [
f

(
cj

(
t+

))
, f

(
cj

(
t+

))]

=
[

1

1 + e
−λ·cj (t+)

,
1

1 + e−λ·cj (t+)

]

= [
cj (t + 1), cj (t + 1)

]
(4)

On the other hand, when the concepts’ states map in the
range [−1,+1] the function used would be the hyperbolic
tangent.

⊗cj (t + 1) =
[
eλ·c(t+) − e−λ·c(t+)

eλ·c(t+) + e−λ·c(t+)
,
eλ·c(t+) − e−λ·c(t+)

eλ·c(t+) + e−λ·c(t+)

]

(5)

The nodes’ states evolve along the FGCM dynamics.
The FGCM inference process finish when the stability is
reached. The steady grey vector state represents the effect
of the initial grey vector state on the state of each FGCM
node.

After its inference process, the FGCM reaches a steady
state following a number of iterations in the same way of
FCMs [2]. It settles down to a fixed pattern of node states,
the so-called grey hidden pattern or grey fixed-point attrac-
tor. Furthermore, the state could to keep cycling between
several fixed states, known as a limit grey cycle. Using a
continuous activation function, a third state would be a grey
chaotic attractor. It happens when, instead of stabilizing, the
FGCM continues to produce different grey vector states for
each iteration [26].

3.2 Building FGCMs

FGCMs, as FCMs [5, 14, 20, 22], can be built by experts or
from raw data. We focus on a deductive approach based on
experts’ knowledge about the system’s domain.

The experts’ team establish the number and categories
of nodes (or concepts) relevant for the FGCM model. Fur-
thermore, experts know which nodes influence others; for
the corresponding nodes they determine the intensity of the
influence and its sign (negative or positive). Each expert, in-
deed, determines the influence of a node to another one as
negative or positive and then evaluates the degree of influ-
ence using a linguistic variable (such as strong influence,
medium influence, weak influence, and so on). This is a pro-
cedure commonly used for FCM [25].

A grey causal weight should be determined for FGCMs.
It is a little bit complex because it is not a fuzzy number,
but a grey one. In this sense, we will use a class of grey
numbers that vibrate around a base value, denoted as ⊗ŵij ∈
[a − θ, a + θ ], where a is the base value.

Moreover, the vibration value θ would be determined ac-
cording with the uncertainty about the base value. If the base
value has not uncertainty associated, then θ = 0. This is the
case for a white number. If the base value is completely un-
known, then θ = ∞ for the general case and θ ≤ {1|2} in
FGCM models. The base value a is calculated as weights in
FCM [25].

Equation (6) shows the computation of the ⊗ŵij upper
and lower limits.

⊗ŵij ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[a − θ,+1]
if (−1 ≤ a − θ ≤ +1) ∧ (a + θ > +1)

[−1, a + θ ]
if (−1 ≤ a + θ ≤ +1) ∧ (a − θ < −1)

[a − θ, a + θ ]
if (−1 ≤ a − θ ≤ +1) ∧ (−1 ≤ a + θ ≤ +1)

[−1,+1]
if (a + θ > +1) ∧ (a − θ < −1)

(6)

3.3 FGCM’s advantages over FCM

FGCMs have several advantages over conventional FCM
[23]. A FGCM compute the desired steady states of the mod-
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els by handling uncertainty and hesitancy present in the ex-
perts’ judgments for causal relations among concepts as well
as within the initial vector states.

FCM would need measures of the associated uncertainty
in weights and concepts. The FGCM concepts have a grey-
ness value to represent the degree of uncertainty associated
to each node and each edge. Note that, even if the FCM dy-
namics would get the same steady state than FGCM after
the whitenization process, the FGCM proposal handles the
inner fuzziness and grey uncertainty.

Furthermore, it is possible to compute different whit-
enization state values. This paper uses the equal mean whit-
enization with α = 0.5, but it would be possible to calculate
an optimistic or pessimistic whitenization. The whiteniza-
tion value vibrates between the grey number limits. The fi-
nal whitenization value depends of the parameter α. Lower
α values generate higher whitenization values closer to the
upper limit.

Moreover, FGCM includes greyness as an uncertainty
measurement. Higher values of greyness mean that the re-
sults have a higher uncertainty degree. It is computed as fol-
lows

φ
(
⊗ci

)
= |�(⊗ci)|

�(⊗ψ)
(7)

where |�(⊗ci)| is the absolute value of the length of grey
node ⊗ci state value, and �(⊗ψ) is the absolute value of
the range in the information space, denoted by ⊗ψ . FGCM
maps the nodes’ states within an interval [0,1] or [−1,+1]
if negative values are allowed. In this sense,

�
(
⊗ψ

)
=

{
1 if {⊗ci,⊗wi} ⊆ [0,1]
2 if {⊗ci,⊗wi} ⊆ [−1,+1] (8)

As an overview, FGCM proposal shows several advan-
tages over the FCM [28], as the following:

– It is a generalization and can be applied to closer approx-
imate decision making in humans.

– It allows modeling of the uncertainty and experts’ hesi-
tancy associated to the description of the causal relations
between the concepts and to the concept states.

– FGCMs are able to model more kinds of relationships be-
tween nodes than FCM do. For instance, it is possible
to run models with relations where the intensity is not
known at all or just partially known.

– The reasoning process’ output would incorporate the un-
certainty degree (greyness) of the nodes expressed in grey
values.

3.4 Nonlinear Hebbian learning in FGCMs

Recently, Nonlinear Hebbian (NHL) based algorithm has
been applied to FGCM Learning [23]. The learning algo-
rithm extracts hidden and worthy knowledge from experts.

It can increase the FGCMs effectiveness and their imple-
mentation in real-world problems.

The unsupervised Hebbian learning rule improves the
FGCM structure, eliminates the deficiencies in the usage of
FGCM and enhances the flexibility and dynamical behav-
ior of the FGCM model. The FGCM model and its updated
FGCM structure after learning, guarantee the successful im-
plementation of the proposed modeling procedure for real
case problems.

The NHL algorithm is based on that all FGCM nodes
are triggering at each iteration and updating their states grey
values. During the FGCM dynamics the edges’ grey weights
are updated and the new weight ⊗wji(t) is derived for iter-
ation step t .

The NHL rule for updating FGCM grey weights is com-
puted as follows

� ⊗ wji(t) = ηk · ⊗cj (t − 1) ·
(
⊗ci(t − 1)

− ⊗cj (t − 1) · ⊗wji(t − 1)
)

(9)

Also, this proposal introduces three criteria for the NHL-
FGCM algorithm. The first criterion is the maximization of
the objective function J , which has been defined by Hebb’s
rule

maximize J = E{z2}
subject to: ‖w‖ = 1

(10)

where J = ∑m
k=1(Ok)

2, O are the output values, m the
number of output nodes, z = f (·) where f (·) is the acti-
vation function.

The second one is the minimization of the difference be-
tween two subsequent value of the outputs values.
∣∣Ok(t + 1) − Ok(t)

∣∣ < ε (11)

where ε is the tolerance value (usually 0.001). Finally, the
third criterion is the stability of the grey vector state.

4 Experiments

In order to investigate and demonstrate the performance of
the proposed FGCM model, in comparison with conven-
tional FCM, an industrial application, concerning a chem-
ical process control problem has been considered.

FCMs were successfully applied to model control pro-
cess [34] and in this study, our purpose is to show the
functionality of FGCMs to effectively model and analyze
a known chemical process control problems in industry.

4.1 Problem description

We consider the reference chemical process control system
described in [32]. It consists of two tanks, three valves, one
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Fig. 1 An illustration of the chemical process example [21, 32, 33]

heating element and two thermometers for each tank, as de-
picted in Fig. 1.

Each tank has an inlet valve and an outlet valve. The out-
let valve of the first tank is the inlet valve of the second
tank. The objective of the control system is firstly to keep
the height of liquid, in both tanks, between some limits, an
upper limit Hmax and a low limit Hmin, and secondly the
temperature of the liquid in both tanks must be kept between
a maximum value Tmax and a minimum value Tmin.

The temperature of the liquid in tank 1 is regulated
through a heating element. The temperature of the liquid in
tank 2 is measured through a sensor thermometer; when the
temperature of the liquid two decreases, valve 2 needs open-
ing, so hot liquid comes into tank 2 from tank 1. The control
objective is to keep values of these variables in the following
range of values:

H1min ≤ H1 ≤ H1max

H2min ≤ H2 ≤ H2max

T 1min ≤ T 1 ≤ T 1max

T 2min ≤ T 2 ≤ T 2max

(12)

where, according to the experts, H1min = 0.55, H1max =
0.75, H2min = 0.75, H2max = 0.80, T 1min = 0.75,
T 1max = 0.82, T 2min = 0.65, and T 2max = 0.75.

Three experts constructed the FCM and jointly deter-
mined the concepts of the FCM [25, 32]. Variables and states
of the system such as the height of the liquid in each tank or
the temperature, are the concepts of the FCM model, which
describes the system. The values of the concepts correspond
to the real measurements of the physical magnitude. Each
concept of the FCM takes a value, which ranges in the in-
terval [0,1] and it is obtained after threshold the real mea-
surement of the variable or state, which each concept repre-
sent.

4.2 FGCM model

Based on the conventional FCM proposed in [20] for the
considered problem we constructed a FGCM model sharing
a similar structure. It consists of eight concepts, as illustrated
in Fig. 2.

For the purposes of our paper, the three experts that par-
ticipated in [32, 34] assigned new IF-THEN rules that de-
scribe the influences from concepts ci to concepts cj , where
i = 1, . . . ,5 and j = 1, . . . ,5. The rules’ inference are lin-
guistic weights described by grey weights as Eq. (2).

For the construction process of FGCMs, the experts were
also assigned the vibration values of each one fuzzy re-
lationship. Thus, grey weights with their vibration values
as obtained from the experts for the construction of the
FGCM model are apposed in Table 1. The greyness of
each one weight is calculated following the mathematical
formulation suggested by Salmeron [26] and described in
Sect. 2.

The grey weights with their greyness, apposed in Fig. 2,
are used for the simulation analysis of FGCM dynamics.

Fig. 2 FGCM control model
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Table 1 FGCM nodes and their
descriptions Concept Description

c1 Represents the amount of liquid as measured by its height H within the tank 1; it depends on the
operational state of valves 1 and 2

c2 Represents the amount of liquid as measured by its height H within the tank 2; it depends on the
operational state of valves 2 and 3

c3 Represents the state of valve 1; it may be closed, open or partially open

c4 Represents the state of valve 2; it may be closed, open or partially open

c5 Represents the state of valve 3; it may be closed, open or partially open

c6 Represents the temperature of the liquid in tank 1

c7 Represents the temperature of the liquid in tank 2

c8 Represents the operation of the heating element, which has different levels of operation and
which increases the temperature of the liquid in tank 1

Table 2 First case study
Node
i

No learning NHL learning

Grey steady
state
⊗ci(t)1

Greyness
φ(⊗ci (t)1)

White
value
ĉi (t)1

Grey steady
state
⊗ci(t)1

Greyness
φ(⊗ci (t)1)

White
value
ĉi (t)1

⊗c1(t)1 [.5500, .7115] .2115 .6057 [.7500, .7500] .0000 .7500

⊗c2(t)1 [.7500, .7961] .0461 .7731 [.8000, .8000] .0000 .8000

⊗c3(t)1 [.7215, .7696] .0481 .7456 [.9967, .9994] .0027 .9981

⊗c4(t)1 [.8264, .8977] .0713 .8621 [.9962, .9995] .0033 .9978

⊗c5(t)1 [.7560, .7944] .0384 .7752 [.9973, .9994] .0021 .9983

⊗c6(t)1 [.7500, .8150] .0650 .7825 [.8200, .8200] .0000 .8200

⊗c7(t)1 [.6500, .7398] .0898 .6949 [.7500, .7500] .0000 .7500

⊗c8(t)1 [.7439, .7857] .0418 .7648 [.9972, .9994] .0022 .9983

4.3 FGCM dynamics

A set of real measurements were provided as input to
FGCM as in the case of conventional FCM model proposed
in [34], where the initial vector state is

�C(0) = (.48, .57, .58, .68, .59, .58, .59, .52) (13)

The steady vector state for FCM is as follows

�C(t) = (.6256, .7334, .7675, .8600, .7700, .7390,

.6810, .7548) (14)

and the steady vector state of FCM with NHL learning is

�C(t) = (.6197, .7632,7857, .8717, .7620, .7510,

.7094, .7441) (15)

In order to investigate and demonstrate the performance
of the proposed FGCM model, in comparison with conven-
tional FCM and the Hebbian learning of FCM, five different
experimental setups have been considered.

The main aim of these experiments is not only the per-
formance of FGCMs, but also their comparison with previ-
ous studies concerning the implementation of conventional
FCMs and Hebbian-based learning algorithms for FCMs.

4.3.1 First case study

The first one aims to demonstrate the performance of
FGCMs and its learning approach, on a real case scenario,
whereas the other four are more general (using initial states
with vibrations and more greyness) and aim to demonstrate
their performance on a large randomized set of cases.

Thus, for the first case study, the initial white vector (ex-
pressed as a grey vector) is formed as follows

⊗ �C(0)1 = ([.48, .48], [.57, .57], [.58, .58], [.68, .68],
[.58, .58], [.59, .59], [.52, .52], [.58, .58])

(16)

The results of the reasoning process obtained with FGCM
without learning (Eq. (4)) and FGCM with NHL learning
(Eq. (9)), at each iteration, till convergence at a steady state
are apposed without NHL learning in Table 2. The results
with NHL learning are shown in Table 3.

The results in both cases (no learning and NHL learning)
show that the four decision output nodes take values within
the decision ranges. Especially in the case of FGCMs with
NHL learning the values of concepts converge at a steady
state which is the upper limit of the decision range with zero
greyness.
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Table 3 Second case study
Node
i

No learning NHL learning

Grey steady
state
⊗ci(t)2

Greyness
φ(⊗ci (t)2)

White
value
ĉi (t)2

Grey steady
state
⊗ci(t)2

Greyness
φ(⊗ci (t)2)

White
value
ĉi (t)2

⊗c1(t)2 [.5500, .7115] .1615 .6307 [.7500, .7500] .0000 .7500

⊗c2(t)2 [.7500, .7961] .0461 .7730 [.8000, .8000] .0000 .8000

⊗c3(t)2 [.7215, .7697] .0481 .7456 [.9933, .9980] .0047 .9956

⊗c4(t)2 [.8264, .8977] .0713 .8621 [.9917, .9986] .0068 .9952

⊗c5(t)2 [.7560, .7944] .0384 .7752 [.9952, .9965] .0013 .9959

⊗c6(t)2 [.7500, .8150] .0650 .7825 [.8200, .8200] .0000 .8200

⊗c7(t)2 [.6500, .7398] .0898 .6949 [.7500, .7500] .0000 .7500

⊗c8(t)2 [.7439, .7857] .0418 .7648 [.9922, .9981] .0059 .9951

Table 4 Third case study
Node
i

No learning NHL learning

Grey steady
state
⊗ci(t)3

Greyness
φ(⊗ci (t)3)

White
value
ĉi (t)3

Grey steady
state
⊗ci(t)3

Greyness
φ(⊗ci (t)3)

White
value
ĉi (t)3

⊗c1(t)3 [.5500, .7115] .2115 .6057 [.7500, .7500] .0000 .7500

⊗c2(t)3 [.7500, .7961] .0461 .7731 [.8000, .8000] .0000 .8000

⊗c3(t)3 [.7215, .7695] .0481 .7456 [.9965, .9994] .0029 .9979

⊗c4(t)3 [.8264, .8977] .0713 .8621 [.9959, .9995] .0036 .9977

⊗c5(t)3 [.7560, .7944] .0384 .7752 [.9971, .9994] .0023 .9982

⊗c6(t)3 [.7500, .8150] .0650 .7825 [.8200, .8200] .0000 .8200

⊗c7(t)3 [.6500, .7398] .0898 .6949 [.7500, .7500] .0000 .7500

⊗c8(t)3 [.7439, .7857] .0418 .7648 [.9970, .9994] .0024 .9982

The zero greyness in decision concepts shows that the
system performs with an efficient way to the acceptable
steady state.

4.3.2 Second case study

The second case study is a slightly more general scenario
considering grey values with higher vibration of concepts
as initial ones, in a measurement range that was considered.
The initial grey vector state, formed with a vibration ±0.1,
is the following

⊗ �C(0)2 = ([.38, .58], [.47, .67], [.48, .68], [.58, .78],
[.48, .68], [.49, .69], [.42, .62], [.48, .68])

(17)

The results of the reasoning process obtained with FGCM
without learning (Eq. (4)) and FGCM with NHL learning
(Eq. (9)), at each iteration, till convergence at a steady state
are apposed without NHL learning in Table 2. The results
with NHL learning are shown in Table 3.

The results in both cases show that the four decision out-
put nodes take values within the decision ranges. Especially
in the case of FGCMs with NHL learning the values of con-

cepts converge at a steady state which is the upper limit of
the decision range with zero greyness.

The zero greyness in decision concepts shows that the
system performs with an efficient way to the acceptable
steady state.

4.3.3 Third case study

In this case, a more general scenario considering grey values
with higher vibration of concepts as initial ones, in a mea-
surement range was considered.

For the second case study, the initial grey vector is
formed by the initial white vector, but with a vibration ±0.2,
and it is presented as follows

⊗ �C(0)3 = ([.28, .68], [.37, .77], [.38, .78], [.48, .88],
[.38, .78], [.39, .79], [.32, .72], [.38, .78])

(18)

The results of the reasoning process obtained with FGCM
without learning (Eq. (4)) and FGCM with NHL learning
(Eq. (9)), at each iteration, till convergence at a steady state
are apposed in Table 4.

The results show that the four decision output nodes take
values within the decision ranges. Especially in the case of
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Table 5 Fourth case study
Node
i

No learning NHL learning

Grey steady
state
⊗ci(t)4

Greyness
φ(⊗ci (t)4)

White
value
ĉi (t)4

Grey steady
state
⊗ci(t)4

Greyness
φ(⊗ci (t)4)

White
value
ĉi (t)4

⊗c1(t)4 [.5500, .7115] .1615 .6308 [.7500, .7500] .0000 .7500

⊗c2(t)4 [.7500, .7961] .0461 .7730 [.8000, .8000] .0000 .8000

⊗c3(t)4 [.7215, .7696] .0481 .7456 [.9962, .9946] .0032 .9978

⊗c4(t)4 [.8264, .8977] .0713 .8621 [.9957, .9995] .0038 .9976

⊗c5(t)4 [.7560, .7944] .0384 .0000 [.9969, .9994] .0026 .9981

⊗c6(t)4 [.7500, .8150] .0650 .7825 [.8200, .8200] .0000 .8200

⊗c7(t)4 [.6500, .7398] .0898 .6949 [.7500, .7500] .0000 .7500

⊗c8(t)4 [.7439, .7857] .0418 .7648 [.9967, .9994] .0027 .9981

NHL algorithm, the results show that the output values of
four decision concepts reach the upper limit of the Eq. (12)
with a zero greyness value.

The zero greyness means that there is no uncertainty in
the decision concepts at the steady state. This is a mean-
ingful result which shows that the decision concepts can be
calculated with a zero uncertainty degree.

4.3.4 Fourth case study

In this scenario, we also considered the same initial set of
measurements (white vector), but with a ±0.3 variation of
the initial white values. Following the reasoning process of
FGCM without learning (Eq. (4)) and FGCM with NHL
learning (Eq. (9)), the results apposed in Table 5 were pro-
duced. For the fourth case study, the initial grey vector is
formed as follows

⊗ �C(0)4 = ([.18, .78], [.27, .87], [.28, .88], [.38, .98],
[.28, .88], [.29, .89], [.22, .82], [.28, .88])

(19)

The results also show that the four decision output nodes
take values within the decision ranges.

4.3.5 Fifth case study

In this case, a more generic scenario with large random-
ized cases is considered. Following the reasoning process
of FGCM without learning (Eq. (4)) and FGCM with NHL
learning (Eq. (9)), the results apposed in Tables 6 and 7 were
produced.

For the fifth case study, a hundred random initial grey
vectors (⊗ �C(t)(R)) was computed using the Mersenne-
Twister algorithm [15] with a period of 219937 − 1.

We compute the grey mean of 100 random vectors as fol-
lows

μg

(
⊗ci(t)

(R)
)

= [
μ

(
ci(t)

(R)
)
,μ

(
ci(t)

(R)
)]

=
[

1

n
·

n∑
j=1

ci(t)
(R)
j ,

1

n
·

n∑
j=1

ci(t)
(R)
j

]
(20)

where n = 100, and ci(t)
(R)
j is the i element of the random

vector state j . The grey standard deviation is calculated as
follows

σg

(
⊗ci(t)

(R)
)

= σg

(
ci(t)

(R)
) + σg

(
ci(t)

(R)
)

= 1

n
·
√√√√

n∑
j=1

(
ci(t)

(R)
j − μ

(
ci(t)

(R)
))2

+ 1

n
·
√√√√

n∑
j=1

(
ci(t)

(R)
j − μ

(
ci(t)(R)

))2

(21)

Clearly, in all the examined cases, the output concepts
take values with the accepted limits and with very small or
zero greyness.

5 Discussion

The new FGCM model that copes with the inability of the
current models to co-evaluate the greyness introduced into
a complex system due to uncertainty and imperfect facts is
explored in this work. The mathematical formalization of
the grey systems theory has been considered instead of the
conventional fuzzy sets theory. The applicability of the pro-
posed FGCM model extends to a variety of domains. In this
paper, we demonstrated its effectiveness with numeric, re-
producible examples, on chemical process control for deci-
sion making.
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Table 6 Fifth case study (No
learning) Node

i

Grey mean
μ(⊗ci(t)

(R))

Standard deviation
σg(⊗ci(t)

(R))

Greyness
φ(⊗ci (t)

(R))

White value
ĉi (t)

(R)

⊗c1(t)
(R) [.5500, .7115] .0000 .1615 .6308

⊗c2(t)
(R) [.7500, .7961] .0000 .0461 .7730

⊗c3(t)
(R) [.7215, .7696] .0000 .0481 .7456

⊗c4(t)
(R) [.8264, .8977] .0000 .0713 .8621

⊗c5(t)
(R) [.7560, .7944] .0000 .0384 .0000

⊗c6(t)
(R) [.7500, .8150] .0000 .0650 .7825

⊗c7(t)
(R) [.6500, .7398] .0000 .0898 .6949

⊗c8(t)
(R) [.7439, .7857] .0000 .0418 .7648

Table 7 Fifth case study (NHL)
Node
i

Grey mean
μ(⊗ci(t)

(R))

Standard deviation
σg(⊗ci(t)

(R))

Greyness
φ(⊗ci (t)

(R))

White value
ĉi (t)

(R)

⊗c1(t)
(R) [.7500, .7500] .0000 .0000 .7500

⊗c2(t)
(R) [.8000, .8000] .0000 .0000 .8000

⊗c3(t)
(R) [.9966, .9994] 1.75 × 10−4 .0002 .9980

⊗c4(t)
(R) [.9960, .9995] 1.50 × 10−4 .0713 .8621

⊗c5(t)
(R) [.9972, .9994] 1.40 × 10−4 .0022 .9983

⊗c6(t)
(R) [.8200, .8200] .0000 .0000 .8200

⊗c7(t)
(R) [.7500, .7500] .0000 .0000 .7500

⊗c8(t)
(R) [.9971, .9994] 1.44 × 10−4 .0028 .9985

In order to show the effectiveness of the proposed ap-
proach in the reference process control problem, the au-
thors compare their results with those previously produced
by conventional FCMs and their Hebbian-based approaches
reported in the literature [21]. The previous results of con-
ventional FCMs are gathered to be clearly compared with
the new ones of FGCMs with and without NHL learning
(Tables 8 and 9).

It is obvious, that in the initial set of measurements de-
rived from a real case of the process control, the white values
of the output concepts in the case of FGCMs without learn-
ing, are within the desired limits for the process behavior,
indicating the acceptable operation of this new methodolog-
ical proposal over the conventional FCMs.

In the case of conventional FCMs without learning, the
model is not able to succeed desired behavior for the four
decision concepts. Also, the white values of the output con-
cepts in the case of FGCMs with NHL learning are in the
upper level of the desired limits with very small or zero grey-
ness indicating one more issue of handling uncertainty. It is
one of the main advantages of the FGCMs with learning over
the NHL FCM learning.

Thus, unlike conventional FCM, the proposed FGCM
naturally expresses this inherent greyness at its outputs.
FGCMs produce a length and greyness estimation of the out-
puts, exploring further the inherent uncertainty, which is not
able to be assessed with the conventional FCMs.

It is important to highlight that in the case of using NHL
learning in FGCMs, the outputs of the four decision con-
cepts reach the upper limit for every input set of concept
states with almost zero greyness. This is a significant result,
as the proposed approach is able to succeed the desired be-
havior of the process control problems.

On the other hand, the most significant weaknesses of
the FCMs, namely their dependence on the experts’ beliefs,
and the potential convergence to undesired steady states,
have been overcome by Hebbian-based learning procedures.
However, in this work, we succeeded to produce desired
equilibrium regions for the four decision-outputs of the pro-
cess control problem even without learning algorithms in
FGCMs. The results produced by the FGCM model with-
out learning are acceptable and control the system without
any learning process. Moreover, 100 runs were performed
with random initial values with greyness and without grey-
ness, and the results were the same with the ones presented
in fifth case study. These facts proof the fitness of this pro-
posal.

Also, in order to further advance the proposed approach,
we implemented a Hebbian-based learning for FGCMs. We
pinpoint that if the NHL learning process is used in the case
of FGCMs, then the outputs continue to be within the de-
sired limits having the advantage of zero greyness. The whit-
enization values reach the upper limit of the desired ranges
(Eqs. (2), (3), and (4)).
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Table 8 FCM and FGCM (no
learning) results comparison i FCM FGCM

ci(0) ci (t) ⊗ci(t)1 ⊗ci(t)2 ⊗ci(t)3 ⊗ci(t)4 μ(⊗ci(t)
(R))

1 .48 .6256 [.5500, .7115] [.5500, .7115] [.5500, .7115] [.5500, .7115] [.5500, .7115]
2 .57 .7334 [.7500, .7961] [.7500, .7961] [.7500, .7961] [.7500, .7961] [.7500, .7961]
3 .58 .7675 [.7215, .7697] [.7215, .7697] [.7215, .7695] [.7215, .7696] [.7215, .7696]
4 .68 .8600 [.8264, .8977] [.8264, .8977] [.8264, .8977] [.8264, .8977] [.8264, .8977]
5 .59 .7700 [.7560, .7944] [.7560, .7944] [.7560, .7944] [.7560, .7944] [.7560, .7944]
6 .58 .7390 [.7500, .8150] [.7500, .8150] [.7500, .8150] [.7500, .8150] [.7500, .8150]
7 .59 .6810 [.6500, .7398] [.6500, .7398] [.6500, .7398] [.6500, .7398] [.6500, .7398]
8 .52 .7548 [.7439, .7857] [.7439, .7857] [.7439, .7857] [.7439, .7857] [.7439, .7857]

Table 9 FCM and FGCM
(NHL learning) results
comparison

i NHL-FCM NHL-FGCM

ci(0) ci(t) ⊗ci(t)1 ⊗ci(t)2 ⊗ci(t)3 ⊗ci(t)4 μ(⊗ci(t)
(R))

1 .48 .6197 [.7500, .7500] [.7500, .7500] [.7500, .7500] [.7500, .7500] [.7500, .7500]
2 .57 .7632 [.8000, .8000] [.8000, .8000] [.8000, .8000] [.8000, .8000] [.8000, .8000]
3 .58 .7857 [.9967, .9994] [.9933, .9980] [.9965, .9994] [.9962, .9946] [.9966, .9994]
4 .68 .8717 [.9962, .9995] [.9917, .9986] [.9959, .9995] [.9957, .9995] [.9960, .9995]
5 .59 .7620 [.9973, .9994] [.9952, .9965] [.9971, .9994] [.9969, .9994] [.9972, .9994]
6 .58 .7510 [.8200, .8200] [.8200, .8200] [.8200, .8200] [.8200, .8200] [.8200, .8200]
7 .59 .7094 [.7500, .7500] [.7500, .7500] [.7500, .7500] [.7500, .7500] [.7500, .7500]
8 .52 .7441 [.9972, .9994] [.9922, .9981] [.9970, .9994] [.9967, .9994] [.9971, .9994]

It is proven that using the NHL algorithm in FGCMs we
improve the conventional FCM model trained with NHL al-
gorithm [21], which exhibit equilibrium behavior within the
desired regions. With the proposed procedure the experts
suggest the initial grey weights of the FGCM, and then us-
ing the NHL algorithm a new weight matrix is derived that
can be used for any set of initial values of concepts.

The NHL algorithm is problem-dependent, starts using
the initial weight matrix but all the process is independent
from the initial values for grey concepts and the system suc-
ceeded to converge in desired equilibrium regions for appro-
priate learning parameters.

As a result, it is concluded that the FGCM and the FGCM
with NHL learning affects the dynamical behavior of the
system and the equilibrium values for decision concepts are
within desired regions defined at Eq. (12).

The results of the FGCM dynamics show that the capa-
bility of FGCM to produce a length and greyness estima-
tion at the outputs offers an advantage over FCM; the out-
put greyness can be considered as an additional indicator
of the decision’s quality, with respect to the information in-
completeness at the input and model itself. This is an im-
portant cue regarding the quality of the decisions obtained
from FGCM in the presence of uncertainty. One more ad-
vantage of FGCMs over conventional FCMs is their capa-
bility to succeed desired steady states for every set of initial
concept states.

6 Conclusions

In this research, the FGCM model and the proposed NHL
learning algorithm were applied for processing an industrial
process control problem. The proposed mathematical for-
mulation of FGCMs and the implementation of the NHL al-
gorithm have been effectively applied. Experimental results
based on simulations of a process control system, verify the
effectiveness, validity and especially the advantageous be-
havior of the proposed grey-based approach of building and
learning FCMs.

The benefits of FGCMs over conventional FCMs make
evident the significance of developing a greyness-based cog-
nitive model such as FGCM. The case studies presented in
this paper are representative and facilitate both demonstra-
tion and benchmarking purposes.

The proposed NHL algorithm sustains a formal method-
ology for FGCMs training, improving the functional FCM
reliability and providing the FCM practitioners with learn-
ing parameters to adjust the influence of concepts. This type
of learning rule accompanied with the good knowledge of
the given system, guarantee the successful implementation
of the proposed process in industrial process control prob-
lems and in adaptive non-linear systems in general.

As a summary, FGCM model shows several advantages
over the FCM one, as the following:
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– The model dynamics’ output includes a degree of uncer-
tainty (greyness) expressed in grey numbers.

– FGCMs model the uncertainty and experts hesitancy as-
sociated to the description of the causal relations between
the concepts and within the description of the concept
states.

– FGCMs are able to model additional kinds of relation-
ships than FCM. For instance, FGCMs usually run mod-
els with relations where the influence between nodes are
unknown at all or just partially known.

– FGCMs can be applied to closer approximate human de-
cision making rather than FCM. It handles the uncertainty
inherent in the complex systems by assessing greyness in
nodes and edges.

Future research objectives include the exploration of even
more challenging applications and improvements of the pre-
sented model towards further approximation of human cog-
nition and intuition.
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