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Abstract The problem of multi-cell tracking plays an im-
portant role in studying dynamic cell cycle behaviors. In
this paper, a novel ant system with multiple tasks is mod-
eled for jointly estimating the number of cells and individ-
ual states in cell image sequences. In our ant system, in ad-
dition to pure cooperative mechanism used in traditional ant
colony optimization algorithm, we model and investigate an-
other two types of ant working modes, namely, dual com-
petitive mode and interactive mode with cooperation and
competition to evaluate the tracking performance on spa-
tially adjacent cells. For adjacent ant colonies, dual com-
petitive mode encourages ant colonies with different tasks
to work independently, whereas the interactive mode intro-
duces a trade-off between cooperation and competition. In
simulations of real cell image sequences, the multi-tasking
ant system integrated with interactive mode yielded better
tracking results than systems adopting pure cooperation or
dual competition alone, both of which cause tracking fail-
ures by under-estimating and over-estimating the number of
cells, respectively. Furthermore, the results suggest that our
algorithm can automatically and accurately track numerous
cells in various scenarios, and is competitive with state-of-
the-art multi-cell tracking methods.
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1 Introduction

Cell behavior is an important facet of biomedical research,
from basic biological research to advanced industrial appli-
cations such as drug discovery, genomics, proteomics and
tissue engineering. Analysis of cellular behavior faces many
challenges. Some of the image acquisition techniques re-
quire that images are captured in a controlled environment
to deal with biological phenomena. A frequent outcome is
poor image quality. Cells leaving or entering the field-of-
view will vary the local cell population density. Complex
cellular topologies such as shape deformation and partial
overlap present topological challenges. Cells dividing, mov-
ing close or colliding further complicate the situation. The
computational complexity of cell tracking algorithms is in-
creased by uneven movement of the cells. Conventional and
manual techniques are tedious and time consuming, and they
limit the amount of data available for analysis. For efficiency
and accuracy, the development of automated tracking meth-
ods that eliminate the bias and variability to a certain degree
is of great importance.

During the past few years, researchers have developed
many algorithms for automated cell tracking. For a com-
prehensive survey on recent work, the reader is referred to
[1–7]. Tracking based on detection methods is discussed in
[1–3, 8]. Classical tracking algorithms usually handle the
detection [9, 10] and tracking tasks separately, but track-
ing may fail under problematic imaging conditions such as
large cell density, cell division events, or segmentation er-
rors. Tracking methods based on evolving models simul-
taneously handle both detection and tracking. These ap-
proaches include mean-shift [4, 11], active contours [5], and
level sets [6]. These methods require extra heuristics to pre-
vent contacting boundaries from merging when two or more
objects approach very closely. Tracking based on Bayesian
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probabilistic framework methods has also been proposed
[7, 12–14], and is more robust to low resolution and high
signal-to-noise (SNR) scenarios than other tracking meth-
ods.

Ant colony optimization (ACO) is a biologically-inspired
optimization approach based on the self-organizing capabil-
ities of ant colonies in their search for food. Since Dorigo
pioneered this approach in [15], ant colony methods have
been successfully applied in diverse combinatorial optimiza-
tion problems [16–18] as well as non-optimization problems
[19–27].

During cell image sequencing, two or more cells will
very likely contact or present occlusions. In such cases, the
image is not easily associated with spatially adjacent images
because the joint observation cannot be easily segmented.
Because the components of corresponding cell states are
now coupled, the tracking of spatially adjacent cells or cell
occlusions becomes a challenging task, rendered more com-
plicated by low SNR in the image data. Although some
effective cell automated methods have been developed in
real tasks, we are aware of few reports on the application
of ant behavior to multiple-cell tracking with spatially ad-
jacent cells. In natural ant colonies, the movement of each
ant is stochastic and typically non-linear. Similarly, in most
cell image sequences, each cell moves in an irregular way
and displays non-linear dynamic behavior. Furthermore, to
some extent, the trails of individual ants are analogous to the
tracks of individual cells. Motivated by these similarities, we
propose that individual cell parameters in sequential frames
could be adaptively and accurately captured by an ant sys-
tem algorithm. To this end, we develop a novel ant system
with multiple tasks that jointly estimates the number of cells
and their individual states in cell image sequences. Depend-
ing on the initial distribution of the ant colony, the colony is
roughly divided into several groups, each assigned the task
of finding a potential cell through the defined ant working
mode. To improve the performance of our proposed ant sys-
tem, we establish three types of ant working modes, namely,
pure cooperation mode, dual competitive mode and interac-
tive mode with cooperation and competition. These modes
are applied to an ensemble of spatially adjacent cells. Fi-
nally, the multiple similar tasks are merged to extract the
multi-cell state and spatially adjacent cells.

The main contributions of our method are summarized as
follows: (1) applying an ant system with multiple tasks to
the tracking of spatially adjacent cells; (2) developing three
types of ant working modes; pure cooperation, dual compe-
tition and an interactive mode with cooperation and compe-
tition to improve the performance of the algorithm.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews related work on cell tracking and mode de-
sign of ACO methods. The conventional ACO algorithm is
briefly introduced in Sect. 3. Section 4 describes our pro-
posed ant system with its multiple tasking algorithm and

examines the three ant working modes. Section 5 presents
the tracking results generated from our three proposed ant
working modes. Also in this section, the performance of our
proposed algorithm is compared with that of other methods.
Our proposed algorithm for tracking spatially adjacent cells
is summarized in Sect. 6.

2 Related works

Works related to our method follow one of two broad ap-
proaches.

The first is developing tracking algorithms for spatially
adjacent objects. The accurate tracking of spatially adja-
cent objects is one of the most difficult problems in multi-
object tracking, and has been extensively investigated in re-
cent years. Here, we present a brief survey of these works.
Huang et al. [28] presented an approach for tracking varying
numbers of objects through temporally and spatially signifi-
cant occlusions. Bose et al. [29] solved the labeling prob-
lem when different objects merge or split using a graph
model, but the computational cost grows exponentially with
the number of objects. Rather than calculating all possible
solutions to the labeling problem, Qian et al. [30] devel-
oped a spatiotemporal Markov chain Monte-Carlo (MCMC)
data association algorithm that efficiently samples the solu-
tion space. The interactive tracking algorithm developed by
Wei et al. [31], adopts a magnetic-inertia potential model to
solve the multiple object labeling problem in the presence
of occlusions. Khan et al. [32] proposed a multiple-people
tracking method that handles occlusion and lack of visibil-
ity in crowded and cluttered scenes. However, the algorithm
fails if two or more people approach too closely to be seg-
mented as separate entities. The tracking of multiple persons
on a mobile robot equipped with a combination of color and
thermal vision sensors was investigated by Cielniak et al.
[33], but appropriate action when a person is occluded be-
hind another person remains an unsolved problem. Tao et al.
[34] presented a real-time system for multiple-object track-
ing that copes with long duration and complete occlusion
without a priori knowledge of the shape or motion of ob-
jects. It is noted that most methods used in multiple people
tracking [31–36] cannot be extended directly to multi-cell
tracking due to cell deformation, small cell size, cell fea-
ture deficiency and cell mitosis, etc. Thus, Dufour et al. [37]
presented a fully automated technique for segmenting and
tracking cells in 3-D+time microscopy data. This method
uses coupled active surfaces with or without edges, together
with a volume conservation constraint and several optimiza-
tions to handle touching and dividing cells, and cells enter-
ing the field of view during the sequence. In the method of
Nguyen et al. [38], multiple cell collisions, cells are auto-
matically tracked by modeling the appearance and motion
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of each collision state and by testing collision hypotheses of
possible state transitions. Although some of the above algo-
rithms have resolved special challenges in spatially adjacent
objects, they are problem-dependent and not applicable to
generic cell tracking problems.

The second broad approach to the tracking problem fo-
cuses on various models of ant behavior to solve differ-
ent problems. In the model of Kanade et al. [22], all ants
have memory and are used primarily to find cluster cen-
ters combined with the fuzzy C-Means algorithm in feature
space. Handl et al. [33] proposed a model in which ants col-
lect and deposit items according to colony similarity mea-
sures in their local environment. Neither of these ant-based
clustering methods utilizes pheromone information. By con-
trast, the model of Zhang et al. [39], designed for fast text
clustering, includes a pheromone weighting function and a
weighting factor that guides the direction of the ant’s move-
ment away from random, and toward the direction of high
pheromone concentration (here, the “pheromones” represent
the text vectors). Lee et al. [40], proposed a model based on
three types of pheromones that handles the efficient-energy
coverage problem in wireless sensor networks. The local
pheromone helps an ant to organize the coverage set with
fewer sensors. Of the two global pheromones, one is used
to optimize the number of required active sensors at each
point of interest; the other is used to assemble a previously-
determined number of sensors at each point of interest. In
the model of Misra et al. [41], pheromones and path time
delays are used to construct fault-tolerant routing in a mo-
bile ad hoc network. Ramos et al. [42] presented an ex-
tended model for digital image habitats, in which artificial
ants can perceive and react to the environment. Merkle et al.
[43] focused on the single-machine total-weighted tardiness
problem. In their model, ants are guided through the deci-
sion space by global pheromone information rather than by
local pheromone information alone. In the above methods,
the probability that any ant will make a decision is affected
by pheromone information. In our proposed approach, the
amount of pheromone not only affects an ant’s behavior but
also allows direct extraction of cell states from the resulting
pheromone field.

3 Conventional ACO algorithm

The conventional ACO algorithm simulates the foraging be-
havior of intelligent multi-agent systems, whereby ants com-
municate among themselves through the environment by de-
positing a chemical substance, known as a “pheromone”.
The pheromone concentration increases in paths that are fre-
quently traveled by the ants, and decays in paths that become
deserted. The higher the pheromone level along a path, the
higher the probability that a given ant will follow that path.

Thus, using pheromone information alone, ants can search
for the shortest path from their nest to a food source.

One of the first problems to be successfully solved by
ACO was the traveling salesman problem (TSP) [17], which
seeks the optimal path that traverses all cites once before
returning to the starting city. Assuming that ant k is currently
located in city i, it selects the next city j with probability

pk
ij =

⎧
⎪⎨

⎪⎩

[τij ]α[ηij ]β
∑

k∈Ωk
[τik]α[ηik]β , if j ∈ Ωk

0, otherwise

(1)

where Ωk denotes the set of cities unvisited by ant k, τij

is the amount of pheromone laid along edge (i, j), ηij is a
heuristic function variable, and α and β are real parameters
that determine the relative influences of pheromone τij and
heuristic ηij , respectively, on the decision of ant k. After all
ants have constructed their individual tours, the correspond-
ing pheromone trail is updated as

τij ← ζ τij + �τij where 0 < ζ < 1 (2)

where ζ is the pheromone persistence coefficient, which
simulates pheromone evaporation in the real world. �τij is
the amount of pheromone added to the trail, defined as

�τij =
∑

k

�τk
ij (3)

where �τk
ij = Q/Lk if edge (i, j ) is traveled by ant k, and 0

otherwise. The fixed constant Q controls the delivery rate of
the pheromone, and Lk is the tour length of ant k. The above
process is repeated until specified termination conditions are
reached.

4 Methods

In this section, we introduce a novel ant system with mul-
tiple tasks that estimates the multi-cell parameters. The ant
colony is initially divided into several groups by K-means
clustering [44]. Each group is assigned a single task; that of
searching for a potential cell. These ant groups accomplish
their different tasks through their individual pheromone
fields and total pheromone field, adopting our proposed ant
working modes. Finally, the estimates of multi-cell state and
the number of cells at each frame are extracted through
merging multiple similar tasks. It is noted that our algo-
rithm builds solutions in a parallel way on N +1 pheromone
fields (where N is the initial number of divided ant groups),
whereas the conventional ACO algorithm computes solu-
tions in an incremental way on only one pheromone field.
The overview of our proposed algorithm is explained in
Fig. 1.
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Fig. 1 The one-cycle overview
of our proposed algorithm

4.1 Initial distribution of ant colony

Background subtraction is commonly used to reduce the
search-space and to focus on features of interest in video
analysis [45–47]. Moving objects are readily segmented by
subtracting the background from the current frame in all re-
gions where the current frame matches the reference frame.
Since the background signals in most cell image sequences
are slowly varying, this problem can be solved by simplis-
tic, static-background models. Here we apply a recursive
technique called the approximate median method to real-
ize fast background subtraction [48]. In this method, each
pixel in the background model is compared to the corre-
sponding pixel in the current frame, and is incremented or
decremented by one if the new pixel is larger or smaller than
the background pixel, respectively. As the iteration evolves,
the intensity of a pixel in the background model fluctuates
about its median value.

The approximate median foreground detection algorithm
compares the current frame to the background model and
further identifies the foreground pixels I1(i) and binary im-
age pixels I2(i) as

I1(i) =
{

I (i), if |I (i) − B(i)| > Th

0, otherwise
(4)

I2(i) =
{

1, if |I (i) − B(i)| > Th

0, otherwise
(5)

where I (i) denote the pixels in the current frame, B(i) are
the background pixels estimated by the recursive technique

B(i) =
{

B(i) + 1 if I (i) > B(i)

B(i) − 1 if I (i) < B(i)

and Th is a predefined threshold. If the absolute difference
between the pixel intensity in the current frame and the
background exceeds the predefined threshold Th, the fore-
ground pixel I1(i) = I (i), otherwise I1(i) = 0. The binary
image pixel I2(i) also evolves by Eq. (5).

Without loss of generality, we demonstrate how the ini-
tial ant colony evolves by a simple example. The corre-
sponding background and foreground obtained by applying
the approximate median method to an original cell image
(Fig. 2(a)) is shown in Figs. 2(b) and 2(c), respectively. We
further assume that an ant is located at pixel i if I2(i) = 1
in the binary image. Thus, a specified number of ants are
“born” in the current frame, as illustrated in Fig. 2(d). These
ants are further divided into N subgroups by the K-means
clustering method, as shown in Fig. 3. As we observe, the
left-bottom ant subgroups are well separated due to large
space distance. However, according to the enlarged region
A in Fig. 3, those ants corresponding to three spatially ad-
jacent cells have been over-divided into seven subgroups.
While such inconsistency typically incurs large errors in the
estimated number of cells and their individual states, our
proposed ant system can overcome these limitations by as-
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Fig. 2 Generation of initial ant
colony (Th = 23)

Fig. 3 Results of K-means clustering (N = 12)

signing different tasks to separate groups, as demonstrated
below.

4.2 Modeling of ant system with multiple tasks

In this section, three types of working modes in an ant sys-
tem with multiple tasks (AS-MT) are proposed and investi-
gated in detail. The ant working environment in the current
cell image (i.e. the pheromone field), is also defined. Each
ant can move directly towards one of its neighbors at each
time, and any pixel can be visited simultaneously by sev-
eral ants that have been guided by our proposed pheromone
update mechanism.

4.2.1 Pure cooperative mode (PCM) in AS-MT

In the pure cooperative mode, all ants assigned a spe-
cific task follow the same pheromone field, as in the tra-
ditional ACO algorithm. Without loss of generality, we de-
note the pheromone field where ants with task s work by
τ s (s = 1,2, . . . ,N), so the pheromone field τ s is reduced
and equivalent to the total one represented by τ in the pure
cooperative mode. Therefore, in the t-th iteration, suppose
that an ant with task s is now located at pixel i. The ant will
move from pixel i to one of neighboring pixels according to

the following probability.

P
s,k
i,j (t) =

⎧
⎪⎨

⎪⎩

[τj (t)]α[ηj (t)]β
∑

j∈H(i)[τj (t)]α[ηj (t)]β , if j ∈ H(i)

0, otherwise

(6)

where H(i) denotes the set of neighbors of pixel i, τj (t) is
the total sum of pheromone amount left by all ants undertak-
ing different tasks on pixel j , ηj is the heuristic information
of pixel j (defined later), and parameters α and β denote the
relative importance of heuristic and pheromone information,
respectively.

Since all ants with multiple tasks share the same phero-
mone field and move to a neighboring pixel with the same
probability, all ants indiscriminately cooperate in the various
tasks. If we combine all ants with different tasks together, it
is predictable that the obtained result is identical to the one
of traditional ACO algorithm.

4.2.2 Dual competitive mode (DCM) in AS-MT

To discern spatially adjacent cells, we regulate the behavior
of each ant group by reinforcing the importance of their in-
dividual pheromones on their decision making. To this end,
we introduce two terms; the ratio of pheromone level of a
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given task to the total pheromone level, and the absolute im-
portance of the pheromone levels of remaining tasks. Sup-
pose that an ant with task s is now at pixel i, then the ant
will move to pixel j with the probability

P
s,k
i,j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

[ τs
j
(t)

τj (t)
]αη

β
j [ Q

τj (t)−τs
j
(t)

]γ

∑
j∈H(i)[

τs
j
(t)

τj (t)
]αη

β
j [ Q

τj (t)−τs
j
(t)

]γ
, if j ∈ H(i)

0, otherwise

(7)

where τ s
j (t) denotes the amount of pheromone deposited by

ants with task s on pixel j , τj (t) is the sum of pheromone
level of all tasks on pixel j , i.e., τj (t) = ∑N

s=1 τ s
j (t), H(i)

and ηj follow the same definitions as in Eq. (6). The pa-
rameters α, β and γ regulate the relative importance of cor-

responding terms. Note that
τ s
j (t)

τj (t)
indicates the ratio of the

pheromone level deposited by task s individuals to the total
pheromone level in the t-th iteration. Thus, the higher the
pheromone level deposited by ants undertaking task s, the
more important this pheromone field becomes in ant deci-
sion making. The quantity Q

τj (t)−τ s
j (t)

denotes the absolute

importance of the pheromone level deposited by ants com-
pleting remaining tasks (where Q is the balance coefficient).
From this expression, we note that the larger the pheromone
quantity deposited by task s, the less the remaining tasks
contribute to ant decision. In addition, both the above rel-
ative and absolute terms of pheromone amount of a given
task are introduced to reinforce the repulsion on the foreign
pheromone, which encourages ants with different tasks to
compete with each other to find their individual areas of cell
occurrence while establishing a solution.

4.2.3 Interactive mode with cooperation and competition
(IMCC) in AS-MT

In our defined interactive mode combining cooperation and
competition, ants with different tasks are modeled to work
together with appropriate cooperation and repulsion. The re-

pulsion term is characterized by
τ s
j (t)

τj (t)
defined in the same

way as in DCM, while cooperation is represented by the to-
tal pheromone τj (t). Therefore, the model of ant decision
is a function of the pheromone amount τj (t), the heuristic
information function ηj , and the pheromone amount of the
current corresponding task τ s

j (t) formulated as

P
s,k
i,j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

[τj (t)]αη
β
j [ τs

j
(t)

τj (t)
]γ

∑
j∈H(i)[τj (t)]αη

β
j [ τs

j
(t)

τj (t)
]γ

, if j ∈ H(i)

0, otherwise

(8)

where H(i), τ s
j (t), τj (t) and ηj follow the same definitions

as in Eq. (7), and parameters α, β and γ regulate the rel-
ative importance of their corresponding terms. It is noted

that, during the process of searching solutions, each ant of
a given task is assumed to sense some information from
its neighboring pixels such as the total pheromone amount
τj (t), the ratio of pheromone level of a given task to the

total pheromone level
τ s
j (t)

τj (t)
, and the heuristic function ηj .

According to the definition of IMCC, if the relative propor-
tion of pheromone s and the total pheromone amount both
remain high at pixel j , the ant of task s is less likely to select
pixel j as its next position than when the relative proportion
alone is high, since cooperation is offset to some extent by
competition with ants undertaking different tasks.

4.2.4 Pheromone update mechanism in AS-MT

In our approach, we assume that N ant groups are utilized
to track n multiple objects (N > n), and each group has its
own pheromone field, thus we have total N + 1 pheromone
fields working in parallel as shown in Fig. 1. In areas occu-
pied by spatially adjacent cells, an ant visiting a pixel will
deposit a specified amount of pheromone, which changes
not only the pheromone intensity of the pixel, but also the
pheromone intensity of nearby pixels during the next itera-
tion. In this manner, information is exchanged both within
each group and among different groups. To model this hap-
pening in real ant world, the pheromone propagation is de-
veloped to produce bounded pheromone field, which obvi-
ously differs from the one in traditional ACO algorithm, and
defined as

τ s
j (t + 1) = ρτ s

j (t) + rs
j (t) + qs

j (t) (9)

where ρ(0 < ρ < 1) is the pheromone persistence coeffi-
cient. The quantity 1 − ρ represents the evaporation coeffi-
cient which simulates the evaporation process of pheromone
in real world. rs

j (t) denotes the pheromone external input to
pixel j at the t-th iteration, given as follows:

rs
j (t) =

∑

k

�r
k,s
j (t) (10)

where �r
k,s
j (t) describes the amount of pheromone de-

posited by ant k with task s on pixel j . Once ant moves to
pixel j it will deposit an amount of pheromone �r

k,s
j (t) =

�τ0, otherwise it remains on its original pixel with
�r

k,s
j (t) = �τ1, where (in our tests on cell image data, we

set �τ0 = 0.09, �τ1 = 0.001).
Compared with the traditional ACO algorithm, it can be

seen that the term of qs
j (t) models the propagation input

to pixel j which improves the inter-communication among
nearby ants and its form is defined as:

qs
j (t + 1) =

∑

j ′∈H(j)

P

|H(j ′)|
(
rs
j ′(t) + qs

j ′(t)
)

(11)



Modeling analysis of ant system with multiple tasks and its application to spatially adjacent cell state 19

where P denotes the propagation coefficient with
0 < P < 1, H(j ′) denotes the set of neighbors of pixel j ′
including position agent j , and |H(j ′)| is the cardinality
of H(j ′). Thus, P

|H(j ′)| characterizes the averaged diffusion
proportion of total received pheromone intensity at pixel j

during the t-th iteration to its neighboring individuals.
It is observed from Eq. (11), the propagation pheromone

field at the next iteration is the propagation results of both
the field of itself and the external input pheromone field at
the current iteration. So, Eq. (11) can be divide two parts and
rewritten as

qs
j (t + 1) =

∑

j ′∈H(j)

P

|H(j ′)| r
s
j ′(t) +

∑

j ′∈H(j)

P

|H(j ′)|q
s
j ′(t)

� �

= Prs
j (t) + Pqs

j (t)
(12)

The above models of pheromone aggregation and prop-
agation lead to an important conclusion: the amount of
pheromone at any pixel in the environment is bounded,
which guarantees stable extraction of each cell state.

Proposition 1 If both functions τ(t + 1) = ρτ(t) + r(t) +
q(t) and q(t) = Pr(t − 1)+Pq(t − 1) hold, where r(t) = R

is constant, and ρ, P ∈ (0,1), q(0) = q0, τ(0) = τ0, q0 > 0,
τ0 > 0, then τ(t + 1) is bounded.

The proof of this proposition is provided in the Appendix.

4.3 The implementation issues of our algorithm

4.3.1 Heuristic information for ant decision

In probabilistic models, heuristic function is another impor-
tant parameter for ant decision. Without loss of generality,
we assume that each ant can achieve cell histogram and cal-
culate the difference between the area represented by any
pixel and the cell sample blobs which is a database of train-
ing blobs provided by the user. If an ant moves from pixel i

to pixel j , the corresponding heuristic value is defined as

ηj = e
−u(1− 1

|T |
∑|T |

i=1
∑M

j=1 min(wi(j),w̃i (j)))υ (13)

where μ and υ are the adjustment coefficients designed to
achieve a higher likelihood difference comparison between
the candidate blob and cell sample blobs, ηj lies in the range
of 0 and 1, w̃i(j) denotes the value of the j -th element of w̃i

in cell sample pool,wi(j) denotes the histogram at pixel j ,
M is the total number of elements in histogram w, and |T |
is the number of cell samples in the template pool.

4.3.2 Merging and pruning processes

It can be observed from Fig. 3 that ants related to three
spatially adjacent cells are divided into seven groups, and
this directly results in large errors in cell number or la-
beling. Such over-segmentation can be eliminated to some
extent by merging multiple groups of similar tasks af-
ter all pheromone fields have been formed. Considering
the different ant pheromone fields, if more than one ant
group tends to search for the same cell, the correspond-
ing pheromone fields are probably partially overlapped, and
the absolute distance between pheromone peaks is rela-
tively small. However, spatially distant ant groups naturally
search for different objects. In these cases, the peak dis-
tances between ant pheromone fields are easily discrimi-
nated and well separated. Therefore, we introduce the over-
lapping ratio Ooverlap, which determines the extent to which
two pheromone peak blobs coincide. In our experiments,
two pheromone peak blobs are merged if the overlapping
ratio Ooverlap > σ , where the threshold σ is set to σ = 0.3
in our investigated cell image data.

To remove the false alarms caused by noise and clut-
ter, we adopt a pruning procedure. Suppose that cell size
is known a priori. If the number of ants in a group is below
the threshold, the irrelevant object is removed by the prun-
ing process. Finally, to establish the individual trajectories of
cells of interest, the data in sequential frames are associated
by the easily-implemented nearest neighboring method.

To visualize our proposed algorithm in a full view,
we summarize the procedure in Table 1 according to the
flowchart in Fig. 1.

5 Results and discussions

In this section, our proposed algorithm is tested on two chal-
lenging low-SNR image sequences containing spatially ad-
jacent and dividing cells, cells of varying shape, varying
numbers of cells in different frames, and other complica-
tions. We first investigate the effects of the three ant working
modes on the estimated performance. Next, the performance
of our algorithm is compared among the three modes, and
with that of state-of-the-art approaches. Finally, the param-
eter settings are discussed in detail.

5.1 Estimate results

To evaluate the tracking accuracy between frames, we adopt
three measure criterions, namely, label switching rate (LSR),
lost tracks ratio (LTR) and false tracks ratio (FTR). The label
switching rate is the number of label switching events nor-
malized over the total number of ground truth tracks cross-
ing events, which happen when two objects get very close to
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Table 1 Pseudo-code of our proposed algorithm (not considering data association)

Input: Image frame by frame

Generate initial distribution of ant groups by the approximate median method;

The initial ant distribution is roughly divided into N groups using K-means method;

t = 1, qs
j (0) = 0, τ s

j (0) = c;

While t < tmax

For task s = 1 : N
For ant k = 1 : K

Ant k moves from pixel i to pixel j with a probability:

P
s,k
i,j (t) =

⎧
⎨

⎩

[τj (t)]α [ηj (t)]β
∑

j∈H(i)[τj (t)]α [ηj (t)]β , if j ∈ H(i)

0, otherwise

or P
s,k
i,j (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[ τs
j
(t)

τj (t)
]αη

β
j [ Q

τj (t)−τs
j

(t)
]γ

∑
j∈H(i)[

τs
j
(t)

τj (t)
]αη

β
j [ Q

τj (t)−τs
j

(t)
]γ

, if j ∈ H(i)

0, otherwise

orP s,k
i,j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

[τj (t)]αη
β
j [ τs

j
(t)

τj (t)
]γ

∑
j∈H(i)[τj (t)]αη

β
j [ τs

j
(t)

τj (t)
]γ

, if j ∈ H(i)

0, otherwise

Deposit corresponding pheromone amount according to �r
k,s
j (t) = �τ0;

end

Propagated input to pixel jqs
1,j (t) = ∑

j ′∈H(j)
P

|H(j ′)| r
s
j ′ (t) = P

|H(j ′)|
∑

j ′∈H(j)

∑
k �r

s,k
j ′ ;

Pheromone update on each pixel at task sτ s
j (t + 1) = ρτ s

j (t) + rs
j (t) + qs

j (t);

Propagated input evolution qs
j (t) = qs

1,j (t) + ∑
j ′∈H(j)

P
|H(j ′)|q

s
j ′ (t);

end

Total pheromone τj (t + 1) = ∑
s τ s

j (t + 1);

end

If the blob overlap ratio between two pheromone field peaks is greater than a given threshold then

The merge process is performed.

end

If the number of ant group is less than the given threshold then

the prune processes is carried out.

end

Output: Cell state

each other, sometimes merging into one object. After they
are separated, one object is treated as a new object and its
label is changed. The lost tracks ratio is the number of tracks
lost over the total number of ground truth tracks. The false
tracks ratio is the number of false objects that are tracked
over the total number of ground truth tracks. All experiments
were performed in MATLAB (R2012a) on a 1.7 GHz pro-
cessor computer with 4 G random access memory.

In case 1, the experiment includes image sequences of
closely moving cells and varying numbers of cells, which
compares the accuracy and robustness of three types of ant
working modes, PCM, DCM and IMCC. The comparison
results for tracking performance of three types of modes are
presented in Table 2 and Figs. 4, 5, 6 to 7.

The LSR, LTR and FTR in each frame are recorded
throughout 50 Monte-Carlo simulations, and their averages
are listed in Table 2. In PCM mode, the parameters are set
as ρ = 0.7, P = 0.6, α = 2.5, β = 1.2, in DCM they are
ρ = 0.8, P = 0.6, α = 3, β = 1, γ = 1 and in IMCC they
are ρ = 0.7, P = 0.8, α = 2.5, β = 1.5, γ = 1. According
to the statistic results, the LSR, LTR and FTR with mode
IMCC are all the smallest when compared to the other two
modes. It is obvious that IMCC mode performs better than
mode PCM and DCM.

Figure 4 presents an example of successful tracking re-
sults using our proposed mode, IMCC, where cell 3 enters
the field of view in frame 31 then moves close to cell 1. Af-
terward, two cells are spatially adjacent and move slowly
from frame 31 to 45 while cell 2 undergoes relatively fast
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Fig. 4 Tracking results of
model IMCC

Fig. 5 Tracking results of
model PCM

Fig. 6 Tracking results of the
DCM model

Table 2 Comparison results for tracking performance of three modes

Mode LSR (%) LTR (%) FTR (%)

PCM 10.98 3.29 2.19

DCM 3.29 2.19 12.09

IMCC 1.09 1.09 1.09

speed. It can be observed that our proposed mode IMCC
can automatically track cells with spatially adjacent, differ-
ent dynamics and varying numbers (cell 4 enters the field
of view in frame 39 and leave in frame 42, and cell 5 en-
ters the field of view in frame 40). Figure 5 shows the re-
sults corresponding to our proposed PCM mode. It is noted
that cell 1 and cell 3 are falsely merged into one, i.e., cell 3
in frame 39, while the original cell 1 is falsely labeled by
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Fig. 7 Comparison of cells number estimates by various modes

cell 6 in frame 40. A similar result occurs in frames 42. We
find that label switching happens in these two frames. Fig-
ure 6 shows the results using mode DCM. Cell 1 and cell 3
are wrongly divided into three cells i.e., cell 1, cell 4 and
cell 3 in frame 30. A similar case happens in frame 42,
and it could be seen that false objects are tracked. From
what has been discussed above, the performance of model
PCM and model DCM is degraded in the case of close
data.

Figure 7 presents the comparison of the averaged number
of cells, estimated over 20 simulations by various modes.
It can be seen that the averaged number of cells estimated
by mode IMCC is closed to manual tracking method, while
mode PCM and DCM may cause under-estimated or over-
estimated number of cells, respectively.

So far, we have evaluated the performance of the three
modes on the same image sequence, and it is found that
mode IMCC does work and had achieved satisfactory re-
sults as we expected. We can conclude that the mode IMCC
is more efficient and accurate than other modes.

In case 2, the tracking performance of mode IMCC is fur-
ther evaluated on dividing cells, different dynamics and
varying numbers of cells in cell image sequences. Exam-
ples of IMCC-mode tracking results of selected images are
presented in Fig. 8. In Fig. 8(a), the two cells occupying the
upper right are spatially adjacent and move slowly, while
the central cell moves relatively quickly. Two pairs of spa-
tially adjacent cells persist in frames 15–27. In frame 23, the
lower right partner of two spatially adjacent cells divides, re-
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Fig. 8 Tracking results of multi
close moving cells. (ρ = 0.8,
P = 0.6, α = 2.5, β = 1,
γ = 1.1)

sulting in three close cells. Figure 8(b) displays the resulting
ant distribution in each frame.

According to the tracking results presented in Fig. 8(c),
our proposed algorithm could tackle the following challeng-
ing cases: cell 3 partly enters the field of view in frame 1,
then moves left, partially leaves the field of view in frame 15,
and fully leaves the field of view in frame 17. New cells
6 and 5 enter the field of view in frame 15, cell 6 leaves
the field of view in frame 19. Cell 4 divides into two cells

(labeled 4 and 7) in frame 23. All cells are continuously
tracked by our algorithm in succeeding frames. It can be
observed that the initial ant distribution of three spatially
adjacent cells is adhered in frame 23. Under the coopera-
tion and compete mode of our proposed algorithm, all spa-
tially adjacent cells are successfully separated and tracked.
After 50 iterations, the adhesion of the pheromone field is
well separated. All these are illustrated in Fig. 8(d). In ad-
dition, Figs. 9 and 10 plot the position and instant velocity
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Fig. 9 Position estimate of each cell in x and y directions

Fig. 10 Instant velocity estimate of each cell in x and y directions

Table 3 Comparison results for tracking performance of various
methods

Method LSR (%) LTR (%) FTR (%)

PF 15.87 9.52 19.05

Multi-Bernoulli filter 12.39 11.11 17.46

GM-PHD 9.52 6.34 3.17

Our method 1.57 3.17 1.57

estimates of each cell. It can be seen that cell 1 undergoes
fast dynamics, and cell 3 also moves rapidly both in x and y

directions.
To better evaluate the tracking performance of our pro-

posed algorithm, we thoroughly compared our proposed al-

gorithm based on mode IMCC with other three recently
developed multi-cell tracking algorithms, the particle filter
(PF) [46], the multi-Bernoulli filter [7] and the Gaussians
Mixture Probabilistic Hypothesis Density (GM-PHD) fil-
ter [47]. To ensure an objective and fair comparison, both
of which are “detect-before-track” methods, the algorithms
were evaluated on the same detection data obtained by a hy-
brid cell detection algorithm [48]. By contrast, the multi-
Bernoulli filter and IMCC are examples of “track-before-
detect” techniques. The likelihood function in the multi-
Bernoulli filter takes the same form as the heuristic informa-
tion function used in our ant system (Eq. (12)). As in case 1,
all label switching reports, lost track reports and false track
reports in each frame are recorded over 50 Monte-Carlo sim-
ulations, and their averaged values are listed in Table 3. Ac-
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Fig. 11 Comparison of cell 1 position error estimates by various methods

Fig. 12 Comparison of executing time using various methods

cording to the statistic results in Table 3, the averaged LSR,
LTR and FTR are only 1.57 %, 3.17 % and 1.57 %, respec-
tively, using our algorithm. The comparison results demon-
strate that our algorithm performs better than the other meth-
ods when cells are closely spaced.

Without loss of generality, we present the averaged po-
sition errors using the manual tracking result as the ground
truth. The positional error in cell 1 in each frame obtained
by various methods is shown in Fig. 11. Comparing the per-
formance of the three methods, we again draw the above
conclusions.

Computational burden is a major concern when applying
ant-system methods to practical problems. For our studied
multi-cell tracking approach, real-time tracking is required,
and the total processing time must be in principle less than
the interval between consecutive samplings. We observe that

the computational burden of our algorithm mainly comes
from the module of formations of pheromone field, which is
calculated with a maximum value of tmax ·N ·K , where tmax

represents the required iterations, N denotes the number of
ant tasks, and K describes the number of birth ants gener-
ated at each frame. Figure 12 illustrates the comparisons of
executing time using various methods. It is observed that,
although our algorithm spends a little more time, which is
still less than the sampling interval T = 60 s for our stud-
ied image sequences, it has achieved better and more stable
performance for tracking spatially adjacent cells in terms of
LSR, LTR and FTR. As part of future work, the computa-
tional burden should be seriously considered and the execu-
tion speed should be improved.

5.2 Discussions on parameter settings

As mentioned above, three adjustment parameters in the
IMCC mode α,β and γ regulate the importance of the to-
tal pheromone amount τj (t), the ratio of pheromone level of

a given task to total pheromone level
τ s
j (t)

τj (t)
, and the heuris-

tic function ηj , respectively. In this subsection, the effects
of varying these three parameters are evaluated on the esti-
mated performance. This test determines the sensitivity of
the algorithm performance to each parameter.

Without loss of generality, different combinations of the
three parameters are tested in each frame of case 1 over
50 Monte-Carlo simulations. Other parameters are set as
ρ = 0.7, P = 0.6. The tracking performances of the param-
eter combinations, in terms of LSR, LTR, and FTR, are sum-
marized in Tables 4 and 5.

As implicated in Table 4, as the parameter α increases,
both the FTR and LSR decrease significantly, and the LTR
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Table 4 Statistical results of tracking performance varying α, γ (β = 1)

γ = 0.5 γ = 1 γ = 1.5 γ = 2

PLSR
(%)

LTR
(%)

FTR
(%)

LSR
(%)

LTR
(%)

FTR
(%)

LSR
(%)

LTR
(%)

FTR
(%)

LSR
(%)

LTR
(%)

FTR
(%)

α = 0.1 5.49 2.19 13.19 4.39 1.09 10.99 5.49 3.29 10.99 6.59 2.19 12.09

α = 1.5 7.69 3.29 6.59 6.59 2.19 4.39 5.49 1.09 3.29 6.59 4.39 8.78

α = 2.5 5.49 5.49 5.49 4.39 1.09 3.29 3.29 1.09 2.19 5.49 2.19 6.59

α = 3.5 2.19 2.19 5.49 1.09 1.09 1.09 1.09 1.09 1.09 2.19 2.19 7.69

Table 5 Statistical results of tracking performance varying α, γ (β = 2)

γ = 0.5 γ = 1 γ = 1.5 γ = 2

PLSR
(%)

LTR
(%)

FTR
(%)

LSR
(%)

LTR
(%)

FTR
(%)

LSR
(%)

LTR
(%)

FTR
(%)

LSR
(%)

LTR
(%)

FTR
(%)

α = 0.1 4.39 2.19 12.09 3.29 1.09 9.89 3.29 3.29 9.89 6.59 2.19 10.99

α = 1.5 6.59 3.29 7.69 6.59 2.19 4.39 5.49 1.09 3.29 7.69 4.39 8.78

α = 2.5 5.49 2.19 5.49 4.39 1.09 3.29 3.29 1.09 2.19 5.49 2.19 6.59

α = 3.5 2.19 4.39 5.49 1.09 1.09 1.09 1.09 1.09 1.09 2.19 2.19 6.59

changes a little but remains in a low level for a large α value.
Therefore, a large value of α is preferred, i.e., α ≥ 2.5. On
the other hand, if the parameter γ varies between 0.5 and 2,
we observe that the all performance measures degrade for
small and large values of γ , and an appropriate value for
γ is taken in the range [1,1.5]. When the parameter β in-
creases from β = 1 to β = 2, the corresponding statistic
results are obtained in Table 5, and it is noted that the ob-
tained performance keeps the same level as in Table 4. In
other words, the tracking ability is insensitive to the param-
eter β . As discussed above, in our proposed ant system with
different tasks, we suggest the following ranges of the three
main parameters: 2.5 ≤ α < 5, 1 ≤ β ≤ 2, 1 ≤ γ ≤ 1.5.

6 Conclusion

The proper tracking of spatially adjacent objects remains
one of the most difficult problems in automated cell track-
ing. This paper has introduced a novel ant system with mul-
tiple tasks that jointly estimates the number of cells and
their individual states in sequences of cell images. To enable
tracking of spatially adjacent cells, we devised three types
of ant working modes, namely, PCM, DCM, and IMCC.
Numerous simulation results on two challenging low-SNR
image sequences demonstrated that mode IMCC is more ef-
ficient and accurate than the PCM and DCM modes. We also
demonstrated the robust tracking performance of our IMCC
algorithm, by comparing the LSR, LTR and FTR measures
with those of three recently-developed multi-cell tracking
algorithms. Finally, the three importance values taken in

IMCC mode are discussed and suggested for spatially ad-
jacent multiple cell tracking.
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Appendix

Proof The function q(t) in Eq. (9) can be rewritten as

q(t) = P
[
R + q(t − 1)

]
(14)

τ(t + 1) = ρτ(t) + q(t) + R (15)

Take a constant λ, let λ − Pλ = PR, then we have

λ = P

1 − P
R (16)

Then, the Eq. (14) is reduced to

q(t) − λ = P
[
q(t − 1) − λ

]
(17)

Due to q(0) = q0, then

q(t) = λ + (q0 − λ)P t (18)

Substituting Eq. (18) into Eq. (15), we have

τ(t + 1) = ρτ(t) + AP t + B (19)



Modeling analysis of ant system with multiple tasks and its application to spatially adjacent cell state 27

where A = q0 −λ,B = R+λ are constants, let ν is constant

ν = B

1 − ρ
(20)

The Eq. (18) can be rewritten as

τ(t + 1) − ν

P t
= ρ

P
· τ(t) − ν

P t−1
+ A (21)

Case 1: If ρ �= P , let κ is constant

κ = A

1 − ρ
P

(22)

Then Eq. (21) can be rewritten as

τ(t + 1) − ν

P t
− κ = ρ

P

(
τ(t) − ν

P t−1
− κ

)

(23)

The above form can be rewritten as

τ(t) − ν

P t−1
− κ = C

(
ρ

P

)t

(24)

where C is constant, due to τ0 = τ(0), then C = P(τ0 −ν)−
κ , so we have

τ(t) = ν + κP t−1 + C

P
ρt (25)

Due to ρ,P ∈ (0,1), when t > 0, we have

∣
∣τ(t)

∣
∣ ≤ |ν| +

∣
∣
∣
∣
κ

P

∣
∣
∣
∣ +

∣
∣
∣
∣
C

P

∣
∣
∣
∣ (26)

So, we say, τ (t) is bounded

Case 2: If ρ = E, Then Eq. (21) can be rewritten as

τ(t + 1) − ν

P t
= τ(t) − ν

P t−1
+ A (27)

The above form can be rewritten as

τ(t) − ν

P t−1
= At + C (28)

where C is constant, then

τ(t) = ν + (At + C)P t−1 (29)

Due to P ∈ (0,1), we say τ(t) is bounded.
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