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Abstract Recently, semi-supervised learning (SSL) has at-
tracted a great deal of attention in the machine learning com-
munity. Under SSL, large amounts of unlabeled data are
used to assist the learning procedure to construct a more
reasonable classifier. In this paper, we propose a novel man-
ifold proximal support vector machine (MPSVM) for semi-
supervised classification. By introducing discriminant infor-
mation in the manifold regularization (MR), MPSVM not
only introduces MR terms to capture as much geometric
information as possible from inside the data, but also uti-
lizes the maximum distance criterion to characterize the dis-
crepancy between different classes, leading to the solution
of a pair of eigenvalue problems. In addition, an efficient
particle swarm optimization (PSO)-based model selection
approach is suggested for MPSVM. Experimental results
on several artificial as well as real-world datasets demon-
strate that MPSVM obtains significantly better performance
than supervised GEPSVM, and achieves comparable or bet-
ter performance than LapSVM and LapTSVM, with better
learning efficiency.
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1 Introduction

Over the last decade, support vector machines (SVMs) have
been recognized as a powerful kernel-based tool for machine
learning because of their remarkable generalization perfor-
mance [1–3]. In contrast with the conventional artificial neu-
ral networks, which aim to reduce the empirical risk, SVMs
are guided by the principle of structural risk minimization
(SRM) to guarantee the upper bound of the generalization
error [1, 2]. The central idea of SVMs is to construct two
optimal parallel hyperplanes that maximize the margin be-
tween two classes (data labeled as “+1” or “−1”) by solv-
ing a quadratic programming problem (QPP). Within a few
years of their introduction, SVMs had already outperformed
most machine learning methods in a wide variety of appli-
cations [4–8].

Recently, Mangasarian et al. [9] proposed a generalized
eigenvalue proximal support vector machine (GEPSVM) for
supervised classification problems. GEPSVM aims to gener-
ate two nonparallel proximal hyperplanes, with each hyper-
plane closer to its own class and as far as possible from the
other. For this purpose, it solves a pair of relatively smaller
optimization problems, instead of the large one considered
by traditional SVMs [1]. As a result, the learning proce-
dure of GEPSVM is more efficient than that of SVMs [9].
In addition, GEPSVM is excellent at dealing with “xor”
problems. Thus, methods of constructing nonparallel prox-
imal classifiers have been extensively studied, such as im-
proved GEPSVM [10], DGEPSVM [11], TWSVM [12, 13],
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twin parametric-margin SVM (TPMSVM) [14], structural
TWSVM (S-TWSVM) [15] and so on [16–20].

The above nonparallel proximal classifiers are fully su-
pervised, and their generalization performance is very de-
pendent on whether there is sufficient labeled information
[21, 22]. That is to say, only labeled data are considered for
model training. However, in many real-world learning prob-
lems, e.g., natural language parsing [23], spam filtering [24],
video surveillance [25] and protein 3D structure prediction
[26], the acquisition of labeled data is usually hard or ex-
pensive, whereas the collection of unlabeled data is much
easier. In such a situation, the performance of these fully
supervised classifiers usually deteriorates because of an in-
sufficient volume of labeled information.

To deal with the situation of large amounts of unlabeled
data and relatively few labeled data, the paradigm of semi-
supervised learning (SSL) has been proposed. Comprehen-
sive reviews of SSL can be found in [21, 22, 27, 28]. Among
these, manifold regularization (MR) is one of the most el-
egant constructions [29, 30]. In the MR framework, two
regularization terms are introduced: one concentrates on
the complexity of the classifier in the Reproducing Kernel
Hilbert Spaces (RKHS), and the other enforces the smooth-
ness of the classifier along the intrinsic manifold. Following
the MR framework, Qi et al. [31] first extended the super-
vised nonparallel proximal classifier to the semi-supervised
case and proposed a Laplacian twin support vector ma-
chine (LapTSVM). Extensive experimental results [31–33]
demonstrated the effectiveness of this approach. However,
one of the main challenges in LapTSVM is that the objec-
tive functions of its dual QPPs require two matrix inversion
operations. These matrices are of size (n + 1) × (n + 1) for
the linear case and (l +u+1)× (l +u+1) for the nonlinear
case, where n is the feature dimension and l/u is the number
of labeled/unlabeled data. To our knowledge, this matrix in-
version is the main bottleneck of LapTSVM, greatly reduc-
ing its learning efficiency. Another challenge is that there
are at least three predetermined parameters in LapTSVM.
Although a grid-based approach can be used to optimize
these parameters [31], this makes the model selection of
LapTSVM something of a burden. These drawbacks restrict
the application of LapTSVM to many real-world problems.

In this paper, we propose a novel nonparallel proximal
classifier, termed as a manifold proximal support vector ma-
chine (MPSVM), for semi-supervised classification prob-
lems. In MPSVM, we not only introduce MR terms to cap-
ture as much geometric information as possible from inside
the data, but also utilize the maximum distance criterion
to characterize the discrepancy between different classes.
MPSVM has the following properties:

– MPSVM determines a pair of nonparallel proximal hy-
perplanes by solving two standard eigenvalue problems,
successfully avoiding the matrix inversion operations.

– An efficient particle swarm optimization (PSO)-based
model selection (parameter optimization) approach is de-
signed for MPSVM. By applying PSO, our MPSVM
achieves better learning efficiency.

– MPSVM has a natural out-of-sample extension property
from training data to unseen data. This can handle both
the transductive and inductive learning cases.

– Finally, by choosing an appropriate parameter, MPSVM
can degenerate to a supervised nonparallel proximal clas-
sifier, i.e., GEPSVM [9] and DGEPSVM [11].

The remainder of this paper is organized as follows: In
Sect. 2, a brief review of SVM and GEPSVM is given. Our
linear and nonlinear MPSVM is formulated in Sect. 3. The
relations between MPSVM and some other related methods
are also discussed in Sect. 3. In Sect. 4, PSO-based model
selection approach for MPSVM is arranged. Experimental
results are described in Sect. 5 and concluding remarks are
given in Sect. 6.

2 Preliminaries

In this paper, all vectors are column vectors unless trans-
formed to a row vector by a prime superscript ′. A vector of
zeros of arbitrary dimension is represented by 0. In addition,
we denote e as a vector of ones of arbitrary dimension and
I as an identity matrix of arbitrary dimensions.

2.1 Support vector machine

As a state-of-the-art of supervised machine learning method,
support vector machine (SVM) [1, 3] has been introduced
under the framework of statistical learning theory, which is
known as the SRM principle. Consider a binary classifica-
tion problem in the n-dimensional real space Rn. Given a set
of labeled data T = {(x1, y1), (x2, y2), . . . , (xl, yl)}, where
Xl = {xi}li=1 ∈ R

l×n are inputs and Y l = {yi}li=1 ∈ {1,−1}l
are corresponding labels. SVM aims to maximize the margin
between two different classes by constructing the following
separating hyperplane:

f (x) : w′x + b = 0, (1)

where w ∈ R
n is the normal vector and b ∈ R is the bias

term. Then, the hyperplane (1) is obtained by solving the
following QPP:

min
w1,b1,ξ

1

2
‖w‖2 + ce′ξ ,

s.t. Y l (Xlw + eb) + ξ ≥ e, ξ ≥ 0,

(2)

where ‖ · ‖ stands for the L2-norm, ξ ∈R
l are the slack vari-

ables, c > 0 is the regularization factor that balances the im-
portance between the maximization of the margin and the
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Fig. 1 Geometric interpretation
of SVM, GEPSVM and
MPSVM on the toy example
(Color figure online)

minimization of the empirical risks. An intuitive geometric
interpretation for the linear SVM is shown in Fig. 1(a).

Note that the minimization of the regularization term
1
2‖w‖2 is equivalent to the maximization of the mar-
gin between two parallel hyperplanes w′x + b = 1 and
w′x + b = −1. When we obtain the optimal solution of (2),
a new point x ∈ R

n is classified as “+1” or “−1” according
to whether the decision function,

Class i = sign
(
w′x + b

)
, (3)

yields “+1” or “−1”.

2.2 Generalized eigenvalue proximal SVM

Generalized eigenvalue proximal SVM (GEPSVM) is one of
the most well-known supervised nonparallel proximal clas-
sifiers. Let us denote A ∈R

m1×n as the labeled data belong-
ing to “+1” class, and B ∈ R

m2×n as the labeled data be-
longing to “−1” class, where m1 + m2 = l. The original
idea of GEPSVM [9] is to seek the following two nonpar-
allel proximal hyperplanes1

f1(x) : w′
1x + b1 = 0 and f2(x) : w′

2x + b2 = 0, (4)

1We use b1 and b2 instead of −γ1 and −γ2 in the original paper [9]
only for the unified notation.

where w1,w2 ∈ R
n are the normal vectors and b1, b2 ∈ R

are the bias terms, each hyperplane is closer to its class and
is as far as possible from the other. Then, the optimization
problems for GEPSVM can be expressed as

min
(w1,b1)�=0

‖Aw1 + e1b1‖2/‖[w1
b1

]‖2

‖Bw1 + e2b1‖2/‖[w1
b1

]‖2
, (5)

and

min
(w2,b2)�=0

‖Bw2 + e2b2‖2/‖[w2
b2

]‖2

‖Aw2 + e1b2‖2/‖[w2
b2

]‖2
. (6)

In order to reduce the norm problem of variables (wi , bi)

(i = 1,2) in (5) and (6), GEPSVM introduces a Tikhonov
regularization term [9, 34] and further regularizes the opti-
mization problems as

min
(w1,b1)�=0

‖Aw1 + e1b1‖2 + δ‖[w1
b1

]‖2

‖Bw1 + e2b1‖2
, (7)

and

min
(w2,b2)�=0

‖Bw2 + e2b2‖2 + δ‖[w2
b2

]‖2

‖Aw2 + e1b2‖2
, (8)
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Fig. 2 Synthetic smile datasets
without noise. The upper part
corresponds to positive class,
and the lower part corresponds
to negative class. The squares
denote a large set of unlabeled
data points. The red diamond or
blue circle denotes the labeled
data points of positive or
negative class, respectively. The
black solid curve is the decision
boundary. The blue and red
dashed curves are the two
kernel-generated hyperplanes.
The nonlinear classification
accuracy of SVM 87.83 %,
GEPSVM 89.41 %, and
MPSVM 100.00 % (Color
figure online)

where δ > 0 is the regularization parameter. An intuitive ge-
ometric interpretation for the linear GEPSVM is shown in
Fig. 1(b).

By defining G = [A e1]′[A e1]+ δI , H = [B e2]′[B e2],
L = [B e2]′[B e2]+ δI , M = [A e1]′[A e1], v1 = [ w1

b1

]
and

v2 = [ w2
b2

]
, we can reformulate (7) and (8) as

min
v1 �=0

v′
1Gv1

v′
1Hv1

and min
v2 �=0

v′
2Lv2

v′
2Mv2

. (9)

According to [9, 35], the above two minimization prob-
lems are exactly Rayleigh quotient and the solutions can be
readily computed by solving the following two related gen-
eralized eigenvalue problems (GEPs)

Gv1 = λ1Hv1 and Lv2 = λ2Mv2. (10)

Specially, the eigenvectors of (10) corresponding to the
smallest eigenvalues are the optimal solutions to (7) and (8).
Once the solutions (w1, b1) and (w2, b2) are obtained, a new
point x ∈ R

n is assigned to class i (i = “+1” or “−1”), de-
pending on which of the two hyperplanes (4) it lies closer
to, i.e.,

Class i = arg min
k=1,2

|w′
kx + bk|
‖wk‖ , (11)

where | · | is the absolute value.

3 Manifold proximal SVM

3.1 Motivation

Let us denote Xu = {xi}l+u
i=l+1 ∈R

u×n as the unlabeled data,

and X = {xi}l+u
i=1 ∈ R

(l+u)×n as all the training data. As
mentioned previously, the optimization problems in both
SVM and GEPSVM only consider the labeled data Xl , but
omit the distribution information revealed by the unlabeled
data Xu. Therefore, their performance will deteriorate when
the amount of labeled information is insufficient.

For example, imagine a situation where three labeled data
(two positive and one negative) and some unlabeled data are
given, as illustrated in Fig. 2(a). If a classifier is constructed
using only these three labeled data, an optimal choice ap-
pears to be the “mid” hyperplane between them. As a result,
SVM and GEPSVM cannot capture the real data distribu-
tion/tendency, which is shown in Figs. 2(b) and (c).

Thus, to make full use of both the labeled data Xl and
unlabeled data Xu, we primarily propose a novel manifold
proximal SVM (MPSVM) for semi-supervised classifica-
tion problems. Inspired by the maximum distance criterion
[9–11] and MR technique [29, 30], our MPSVM incorpo-
rates both discriminant information and distribution infor-
mation by minimizing the following two optimization prob-
lems

f ∗
1 = arg

(
min
f1∈H

Remp
(
f1(Xl )

) + γM
∥∥f1(X)

∥∥2
M

s.t. ‖f1‖2
H = 1

)

,
(12)
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and

f ∗
2 = arg

(
min
f2∈H

Remp
(
f2(Xl )

) + γM
∥∥f2(X)

∥∥2
M,

s.t. ‖f2‖2
H = 1

)

,

(13)

where Remp(f ) denotes the empirical risks on the labeled
data Xl , which are used to extract the discriminant infor-
mation for MPSVM. In light of the manifold assumption
that two points x1,x2 that are close on the intrinsic man-
ifold M should share similar labels, the MR term ‖f ‖2

M
enforces the smoothness of f along the underlying distribu-
tion (intrinsic manifold M). Moreover, ‖f ‖2

H is the norm of
f in the RKHS, and the constraint controls the complexity
of MPSVM to avoid over-fitting. In the following subsec-
tions, we will give the derivation of these terms in (12) and
(13) for both linear and nonlinear cases.

3.2 Linear MPSVM

For the linear case, our MPSVM finds the following two
nonparallel proximal hyperplanes

f1(x) : w′
1x + b1 = 0 and f2(x) : w′

2x + b2 = 0, (14)

where w1,w2 ∈ R
n are the normal vectors and b1, b2 ∈ R

are the bias terms.
Motivated by the maximum distance criterion,2 we use

the “difference” instead of the “ratio” (used in GEPSVM) to
characterize the discrepancy between two different classes.
Thus, the empirical risk Remp(f ) in (12) and (13) can be
represented as

Remp(f1) = ‖Aw1 + e1b1‖2/

∥∥∥
[

w1
b1

]∥∥∥
2

− c1‖Bw1 + e2b1‖2/

∥∥∥
[

w1
b1

]∥∥∥
2
, (15)

and

Remp(f2) = ‖Bw2 + e2b2‖2/

∥∥∥
[

w2
b2

]∥∥∥
2

− c1‖Aw2 + e1b2‖2/

∥∥∥
[

w2
b2

]∥∥∥
2
, (16)

where c1 > 0 is the empirical risk penalty parameter that
determines the trade-off between the two terms in (15)
and (16). That is to say, introducing the parameter c1 allows
our MPSVM to have a bias factor for different data classes.

2According to [10, 11], using the “difference” instead of the “ratio”
does not change the geometrical interpretation of GEPSVM, results in
standard eigenvalue problems, which are more efficient than the gen-
eral eigenvalue problems solved in GEPSVM. Moreover, comprehen-
sive comparisons in [10, 11] show that the “difference” has comparable
or better performance compared to the “ratio” (GEPSVM), but with the
less learning time.

Generally, in SSL [29, 30], the MR terms ‖f ‖2
M can be

approximated by

‖f1‖2
M =

l+u∑

i,j=1

wij

(
f1(xi ) − f1(xj )

)2 = f ′
1(X)Lf1(X)

= (Xw1 + eb1)
′L(Xw1 + eb1), (17)

and

‖f2‖2
M =

l+u∑

i,j=1

wij

(
f2(xi ) − f2(xj )

)2 = f ′
2(X)Lf2(X)

= (Xw2 + eb2)
′L(Xw2 + eb2), (18)

where wij is the edge-weight defined for a pair of points
(xi ,xj ) of the adjacency matrix W = (wij ) ∈ R

(l+u)×(l+u),
f1(X) = Xw1 + eb1, f2(X) = Xw2 + eb2, and L is the
graph Laplacian defined as L = D − W . Furthermore, the
diagonal matrix D is given by Dii = ∑l+u

j=1 wij . More de-
tails can be seen in [29].

Similar to [9, 10, 31], we introduce a constraint to control
and normalize the norm of the problem variables (wi, bi)

(i = 1,2). By defining H = [A e1], G = [B e2], J = [X e],
v1 = [ w1

b1

]
, and v2 = [ w2

b2

]
, the primal problems for our

MPSVM can be expressed as

min
v1

f(1,obj)(v1) = v′
1H

′Hv1 − c1v
′
1G

′Gv1

+ c2v
′
1J

′LJv1,

s.t. ‖v1‖2 = 1,

(19)

and

min
v2

f(2,obj)(v2) = v′
2G

′Gv2 − c1v
′
2H

′Hv2

+ c2v
′
2J

′LJv2,

s.t. ‖v2‖2 = 1,

(20)

where c2 > 0 is the MR parameter. An intuitive geometric
interpretation for the linear MPSVM is shown in Fig. 1(c).
Let us give a detailed explanation of the optimization prob-
lem in (19). The first term in the objective function of (19)
minimizes the squared sum of values of A (the data labeled
“+1”) on f1(x), which makes the labeled data A be as close
as possible to the “+1” proximal hyperplane f1(x). Opti-
mizing the second term leads to B (the data labeled “−1”)
being as far as possible from f1(x). It is noteworthy that
the first and second terms in (19) integrate the supervised
information into MPSVM according to the maximum dis-
tance criterion. The third term exploits the underlying dis-
tribution between the labeled and unlabeled data. Minimiz-
ing this term enforces the smoothness of f1(x) along the
intrinsic manifold. The constraint in (19) controls the model
complexity of f1(x) to avoid over-fitting.
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Because the optimization problem in (20) is similar to
that in (19), we mainly focus on the solution of (19). Con-
structing the Lagrange function of (19) with the multiplier
λ1, gives

L(v1, λ1) = v′
1H

′Hv1 − c1v
′
1G

′Gv1 + c2v
′
1J

′LJv1

− λ1
(‖v1‖2 − 1

)
. (21)

Setting the partial derivatives of v1 in (21) equal to zero, we
obtain

∇v1L = 2
(
H ′H − c1G

′G + c2J
′LJ

)
v1 − 2λ1v1 = 0, (22)

which is equal to

(
H ′H − c1G

′G + c2J
′LJ

)
v1 = λ1v1. (23)

In fact, λ1 is an eigenvalue of the symmetric matrix
(H ′H − c1G

′G + c2J
′LJ ). In particular, we can rewrite

the objective function f(1,obj)(v) in (19) as

f(1,obj)(v) = v′
1H

′Hv1 − c1v
′
1G

′Gv1 + c2v
′
1J

′LJv1

= v′
1

(
H ′H − c1G

′G + c2J
′LJ

)
v1. (24)

Then, substituting (23) into (24), we obtain

f(1,obj)(v1) = v′
1λ1v1 = λ1‖v1‖2 = λ1 ≥ λ(1,s)

= v′
(1,s)λ(1,s)v(1,s) = f(1,obj)(v(1,s))

= f(1,obj)

(
v∗

1

)
, (25)

where λ(1,s) is the smallest eigenvalue of (23) and v(1,s) is
the corresponding eigenvector. From (25), we can conclude
that the eigenvector corresponding to the smallest eigen-
value of (23) is the optimal solution of (19).

In a similar way, we can find the solution of the optimiza-
tion problem (20) by solving the following standard eigen-
value problem:

(
G′G − c1H

′H + c2J
′LJ

)
v2 = λ2v2, (26)

where the optimal solution is the eigenvector corresponding
to the smallest eigenvalue.

Once solutions (w1, b1) and (w2, b2) have been obtained
by solving the two eigenvalue problems of (23) and (26),
a new data x ∈R

n is assigned to class i (i = “+1” or “−1”),
depending on which of the two proximal hyperplanes (14) it
lies closer to, i.e.,

Class i = arg min
k=1,2

|w′
kx + bk|
‖wk‖ . (27)

3.3 Nonlinear MPSVM

In order to extend our model to the nonlinear case, we con-
sider the following two kernel-generated proximal hyper-
planes

f1(x) : K(
x′,X′)w1 + b1 = 0 and

f2(x) : K(
x′,X′)w2 + b2 = 0,

(28)

where X ∈ R
(l+u)×n denotes all the training data and K(·, ·)

is an appropriately chosen kernel, such as the radial basis
function (RBF) kernel K(u,v) = e−γ ‖u−v‖2

, γ > 0. The op-
timization problems for the nonlinear MPSVM can be ex-
pressed as

min
w1,b1

∥∥K(A,X′)w1 + e1b1
∥∥2

− c1
∥∥K(B,X′)w1 + e2b1

∥∥2

+ c2(Kw1 + eb1)
′L(Kw1 + eb1),

s.t. ‖w1‖2 + b2
1 = 1,

(29)

and

min
w2,b2

∥∥K(B,X′)w2 + e2b2
∥∥2

− c1
∥∥K(A,X′)w2 + e1b2

∥∥2

+ c2(Kw2 + eb2)
′L(Kw2 + eb2),

s.t. ‖w2‖2 + b2
2 = 1,

(30)

where K denotes K(X,X′), c1 > 0 is the empirical risk
penalty parameter, c2 > 0 is the manifold regularization pa-
rameter, and L is the graph Laplacian.

By defining H ϕ = [K(A,X′) e1], Gϕ = [K(B,X′) e2],
J ϕ = [K e], v1 = [ w1

b2

]
and v2 = [ w2

b2

]
, the above problems

can be rewritten as

min
v1

v′
1H

′
ϕH ϕv1 − c1v

′
1G

′
ϕGϕv1 + c2v

′
1J

′
ϕLJ ϕv1,

s.t. ‖v1‖2 = 1,
(31)

and

min
v2

v′
2G

′
ϕGϕv2 − c1v

′
2H

′
ϕH ϕv2 + c2v

′
2J

′
ϕLJ ϕv2,

s.t. ‖v2‖2 = 1.
(32)

Similar to the linear case, the solutions of the optimiza-
tion problem (31) and (32) can be obtained by solving the
following two standard eigenvalue problems:

(
H ′

ϕH ϕ − c1G
′
ϕGϕ + c2J

′
ϕLJ ϕ

)
v1 = λ1v1, (33)

and

(
G′

ϕGϕ − c1H
′
ϕH ϕ + c2J

′
ϕLJ ϕ

)
v2 = λ2v2. (34)

where the optimal solutions are the eigenvectors correspond-
ing to the smallest eigenvalues.
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Table 1 Summary of
parameters in MPSVM Parameter Description Range Type

c1 Penalty parameter for the empirical risk [2−7–25] Double

c2 Penalty parameter for the manifold regularization [2−7–25] Double

γ RBF kernel parameter (for the nonlinear case) [2−3–26] Double

Once the solutions (w1, b1) and (w2, b2) of (31) and
(32) are obtained, a new data x ∈ R

n is assigned to class i

(i = “+1” or “−1”), depending on which of the two kernel-
generated proximal hyperplanes (28) it lies closer to, i.e.,

Class i = arg min
k=1,2

|K(x ′,X′)wk + bk|√
w′

kKwk

. (35)

3.4 Relationship with some other related methods

3.4.1 Relationship with GEPSVM and DGEPSVM

As mentioned above, in (5) and (6), GEPSVM uses a “ratio”
to quantify the discrepancy between two different classes,
resulting in the generalized eigenvalue problems. To en-
hance its performance, DGEPSVM [11] uses the “differ-
ence” instead of the “ratio”, leading to simpler optimiza-
tion problems (standard eigenvalue problems). If we drop
the MR terms ‖f (X)‖2

M in (12) and (13) by setting c2 = 0,
our MPSVM will degenerate to the DGEPSVM. Therefore,
we can see that DGEPSVM is a special case of MPSVM.
From another perspective, our MPSVM is a useful exten-
sion of GEPSVM and DGEPSVM to the semi-supervised
case.

3.4.2 Relationship with LapTSVM

Both LapTSVM and MPSVM utilize information about the
underlying distribution (via MR) to construct a more rea-
sonable classifier. However, there are several obvious dif-
ferences between them. First, the empirical risk Remp(f )

in LapTSVM [31] is implemented by minimizing both the
L1 and L2-norm loss functions for each class, whereas,
in (15) and (16), our MPSVM implements Remp(f ) by
maximizing the L2-norm distances between two different
classes. Second, during the learning procedure, the solu-
tions of LapTSVM are obtained by solving two QPPs with
computational-costly matrix inversion operations. In con-
trast, our MPSVM solves two standard eigenvalue problems
without matrix inversion, resulting in more effective learn-
ing ability.

4 Model selection for MPSVM

In this section, we consider the model selection (parame-
ter optimization) for MPSVM. The parameters that should

Fig. 3 The population-based search behavior of PSO. The blue cir-
cle denotes a particle and the arrow navigates the particle’s motion
(search) direction (Color figure online)

be optimized in MPSVM include the empirical risk penalty
parameter c1, the MR parameter c2, and the RBF kernel pa-
rameter γ (for the nonlinear case), as detailed in Table 1.
Different parameter settings can have a great impact on the
performance of MPSVM. However, to our knowledge, the
parameter optimization is recognized as a combinatorial op-
timization problem (NP-hard problem), which is one of the
main unsolved problems of computer science [36–38]. Typ-
ically, metaheuristics are used to obtain approximate solu-
tions to NP-hard problems [39]. In our implementation, in-
stead of using a genetic algorithm (GA), we apply the excel-
lent population-based PSO metaheuristic [40, 41] to assist
the parameter optimization.

4.1 Concept of particle swarm optimization (PSO)

PSO is an artificial intelligence technique that can be used
to seek approximate solutions to extremely difficult nu-
meric optimization problems [40]. Its main idea is that,
inspired from the social behavior of organisms, PSO con-
sists of a swarm (population) of particles (potential solu-
tions) that search for the best position (solution) in the multi-
dimensional space, and each particle adjusts its moving di-
rection (velocity) according to its personal best position
(cognition parts) and the best global position of all particles
(social parts) during each iteration. An intuitive illustration
for the population-based search behavior of PSO is shown
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Fig. 4 The architecture of the
proposed PSO-based parameter
optimization approach for
MPSVM

in Fig. 3. The iteration strategy for each particle is described
as

Velocity update:
vt+1

i = vt
i + τ1r1

(
pt

i − xt
i

) + τ2r2
(
gt − xt

i

)
,

Position update: xt+1
i = xt

i + vt+1
i ,

(36)

where superscript t denotes the t-th iteration; vi = (vi1, vi2,

. . . , vid)′ and xi = (xi1, xi2, . . . , xid)′ denote the velocity
and position of the particle i in d-dimensional space, respec-
tively; pi = (pi1,pi2, . . . , pid)′ represents the personal best
position of particle i, and g = (g1, g2, . . . , gd)′ is the best
position obtained from pi for all particles; τ1, τ2 ∈ (0 2]
indicate the cognition and social learning parameter, re-
spectively; r1 and r2 are the random numbers generated
by uniform distribution U [0,1]. More details can be seen
in [40, 41].

4.2 Parameter optimization for MPSVM

In this subsection, we develop a PSO-based parameter op-
timization approach for our MPSVM. As indicated above,
some parameters must be predetermined. These are the
penalty parameters c1, c2 and an extra RBF kernel param-
eter γ for the nonlinear case. In our implementation, we
first transform the above set of parameters into a parti-
cle x, which is composed of (c1, c2) for the linear case or
(c1, c2, γ ) for the nonlinear case. The main process is illus-

trated in Fig. 4, for which we give the following explana-
tion:

(1) Initialization: A swarm of N particles is initialized to
have position X0 = {x0

i }Ni=1 and velocity V 0 = {v0
i }Ni=1.

Each x0
i and v0

i are generated by the uniform distribu-
tion according to the range shown in Table 1. By default,
the cognition learning parameter is set to τ1 = 1.3 and
the social learning parameter is set to τ2 = 1.5.

(2) Fitness evaluation: The fitness of each particle used
to train MPSVM is evaluated according to Fit(xt

i ) =
1 − Acc(xt

i ), where Acc(xt
i ) denotes the classification

accuracy of MPSVM under the parameter xt
i , and the

fitness Fit(xt
i ) denotes the corresponding training error.3

(3) Update operation: If the fitness of xt
i is better than its

previous best value (i.e., Fit(xt
i ) < Fit(pt−1

i )), the cur-
rent position xt

i is taken as the new personal best posi-
tion pt

i . The best {pt
i}Ni=1 is then chosen as the new best

global position gt . After finding the two best positions,
the particle updates its velocity and position according
to (36).

(4) Stopping criterion: The process is terminated if the
minimum error criterion is satisfied or the maximum it-
eration number is reached.

3A particle xt
i with higher classification accuracy produces a better

fitness value (lower training error). That is, better fitness is represented
by lower value.
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5 Experimental results

To evaluate the performance of our MPSVM,4 we inves-
tigated its classification accuracy5 and computational effi-
ciency6 on both artificial and real-world datasets. In our
implementation, we focused on the comparison between
MPSVM and several state-of-the-art classifiers, including
GEPSVM, LapSVM, and LapTSVM:

– GEPSVM [9]: It is a supervised algorithm for classifica-
tion. GEPSVM relaxes the universal requirement that the
hyperplanes generated by SVMs should be parallel, and
attempts to seek a pair of optimal nonparallel proximal
hyperplanes by solving generalized eigenvalue problems.
The parameter settings in GEPSVM are (δ) for linear and
(δ, γ ) for nonlinear.

– LapSVM [29]: It is an extension of SVM [1] for semi-
supervised classification. LapSVM adopts the manifold
assumption, and uses the hinge loss to construct a paral-
lel hyperplane classifier by seeking a maximum margin
boundary on both labeled and unlabeled data. The pa-
rameter settings in LapSVM are (c1, c2) for linear and
(c1, c2, γ ) for nonlinear.

– LapTSVM [31]: It is an extension of TWSVM [12] for
semi-supervised classification. LapTSVM also adopts the
manifold assumption and exploits the geometric informa-
tion embedded in the training data to construct a non-
parallel hyperplane classifier. The parameter settings in
LapTSVM are (c1, c2, c3) for linear and (c1, c2, c3, γ ) for
nonlinear.

All the classifiers are implemented in Matlab (R14)7

on a personal computer (PC) with an Intel P4 proces-
sor (2.9 GHz) and 2 GB random-access memory (RAM).
The general eigenvalue problem in GEPSVM and stan-
dard eigenvalue problem in MPSVM were solved by the
Matlab function “eig( )”. For the QPPs in LapSVM and
LapTSVM, we used the Matlab function “quadprog( )”.
With regard to parameter selection, we employed the stan-
dard 10-fold cross-validation technique [3]. Furthermore,
as in [9, 29, 31], we used a grid-based approach to ob-
tain the optimal parameters for GEPSVM, LapSVM, and
LapTSVM. For the grid-based approach, the optimal penalty
parameters δ, c1, c2, c3 and RBF kernel parameter γ were

4Matlab code is available at http://www.optimal-group.org/Resource/
MPSVM.html.
5Classification accuracy is defined as: Acc = TP+TN

TP+FP+TN+FN , where TP,
TN, FP and FN are the number of true positive, true negative, false
positive and false negative, respectively.
6We use the training time Ttrain and parameter search time Tpara to
denote the computational efficiency (learning time) for each algorithm.
7Matlab is available at http://www.mathworks.com.

selected from the set {2i |i = −5,−4, . . . ,4,5}. Addition-
ally, the PSO-based approach was utilized for our MPSVM.
Once selected, the optimal parameters were employed to
learn the final decision function.

5.1 Results on artificial datasets

In this subsection, we compare the effectiveness of our
MPSVM with GEPSVM, LapSVM and LapTSVM for three
semi-supervised artificial datasets, in terms of the classifica-
tion performance and decision boundary.

First, we consider a two-dimensional “xor” dataset,
which is usually used to demonstrate the effectiveness of
nonparallel proximal SVM [9, 12, 13]. The “xor” dataset
was obtained by perturbing the points that lie on two in-
tersecting planes (lines) with three labeled data points, as
shown in Fig. 5(a), where each plane corresponds to one
class. Figure 5 shows the one-run results from this dataset of
GEPSVM, LapSVM, LapTSVM and MPSVM for the case
of a linear kernel. We can see that: (1) supervised GEPSVM
obtains poor results because of the insufficient labeled infor-
mation; (2) although both LapSVM and LapTSVM utilize
the unlabeled data to assist training, they are not suited to the
“xor” dataset; (3) taking advantage of the maximum distance
criterion, our MPSVM is able to deliver a more reasonable
decision boundary than the others.

A more challenging case is illustrated in Fig. 6(a), which
is a variant of the “smile” dataset corrupted by the Gaus-
sian noise. Figure 6 shows the learning results of each
classifiers using an RBF kernel. We can see that: (1) as
might be expected, GEPSVM simply constructs the decision
boundary across the minpoints of the labeled data points;
(2) LapTSVM and MPSVM obtain 100 % classification ac-
curacy. However, our MPSVM obtains a smoother decision
boundary, resulting in better generalization ability.

For the third dataset (inverse half-moons, see Fig. 7(a)),
we labeled three data points for each moon-shaped class.
Figure 7 describes the one-run results from each classifier
with this dataset using an RBF kernel. It can be seen that our
MPSVM makes full use of the geometric information, and
obtains a more reasonable decision boundary, whereas the
other classifiers cannot achieve satisfactory performance.

We also plot the iterative PSO procedure for our MPSVM,
shown in Figs. 5–7(f). We can see that the optimal model/
parameters of MPSVM can be obtained after a few PSO
iterations. To further illustrate the learning results of these
classifiers, Table 2 lists the classification accuracies (Acc),
training time (Ttrain), optimization parameters, and param-
eter search time (Tpara) with these three artificial datasets.
We have highlighted the best performance. The results in-
dicate that MPSVM obtains the best classification perfor-
mance among these classifiers. In terms of the training time,
LapTSVM and MPSVM are more efficient than GEPSVM

http://www.optimal-group.org/Resource/MPSVM.html
http://www.optimal-group.org/Resource/MPSVM.html
http://www.mathworks.com
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Fig. 5 Synthetic xor dataset
with noise. Each cross line
corresponds to one class. The
squares denote a large set of
unlabeled data points. The red
diamond or blue circle denotes
the labeled data points of
positive or negative class,
respectively. The black curve is
the decision boundary. The blue
and red dashed curves are the
two linear hyperplanes. The
linear classification accuracy of
GEPSVM 69.89 %, LapSVM
69.89 %, LapTSVM 68.82 %
and MPSVM 100.00 % (Color
figure online)

and LapSVM. Furthermore, the parameter search time of
our PSO-based MPSVM is orders of magnitude faster than
the grid-based approach.

5.2 Results on UCI datasets

To further evaluate the performance of MPSVM, we applied
each algorithm to several real-world datasets from the UCI
machine learning repository,8 and investigated the results in
terms of classification accuracy, training time, and parame-
ter search time. We used the Hepatitis, Ionosphere, WDBC,
Australian and CMC datasets for our comparison. These
datasets represent a wide range of fields (include pathology,
biological information, finance and so on), sizes (from 155
to 1437) and features (from 6 to 34). Note that all datasets

8The UCI datasets are available at http://archive.ics.uci.edu/ml.

are normalized such that the features scale in [−1 1] before
training. Similar to [27, 42], our experiments were set up in
the following way. First, each dataset was divided into two
subsets: 65 % for training and 35 % for testing. Then, we
randomly labeled m of the training set, and used the remain-
der as unlabeled data, where m is the ratio of labeled data.
Finally, we transformed them into semi-supervised tasks.
Each experiment is repeated 10 times.

Table 3 lists the learning results of each algorithm using
an RBF kernel, and includes the mean and deviation of the
testing accuracy for various m from 5 % to 30 %. We have
highlighted the best performance. From Table 3, it is easy
to see that increasing the ratio of labeled data generally im-
proves the classification performance for all algorithms. For
example, in the Australian dataset, the accuracy of MPSVM
improved more than 5 % when m increased from 5 % to
10 %. Furthermore, we also find that the traditional prox-

http://archive.ics.uci.edu/ml
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Fig. 6 Synthetic smile datasets
with noise. The upper part
corresponds to positive class,
and the lower part corresponds
to negative class. The squares
denote a large set of unlabeled
data points. The red diamond or
blue circle denotes the labeled
data points of positive or
negative class, respectively. The
black curve is the decision
boundary. The blue and red
dashed curves are the two
kernel-generated hyperplanes.
The nonlinear classification
accuracy of GEPSVM 93.65 %,
LapSVM 98.17 %, LapTSVM
100.00 % and MPSVM
100.00 % (Color figure online)

imal algorithm GEPSVM performed relatively poorly with
almost all datasets, which was due to insufficient numbers of
labeled data. On the contrary, our MPSVM fully utilizes the

underlying data information to enable better classification.
To provide more statistical evidence [27, 43], we per-

formed a paired t-test to compare the testing accuracy of
GEPSVM, LapSVM, and LapTSVM to that of MPSVM.
The significance level (SL) was set to 0.05. That is, when the

t-test value is greater than 1.7341, the classification results
of the two algorithms significantly different. Consequently,
as shown in Table 3, we can see that our MPSVM sig-
nificantly outperforms GEPSVM and LapSVM with most
datasets. A Win/Tie/Loss (W/T/L) summarization based on

the t-test is also listed at the bottom of Table 3. This shows
that our MPSVM obtains better classification performance
than the others. This is because MPSVM combines both the

maximum distance criterion and MR to enhance its general-
ization ability.

The average training time (Ttrain) and parameter search
time (Tpara) of each algorithm with the above datasets
are shown in Figs. 8 and 9, respectively. These reveal
that the training time of MPSVM is comparable to that of
LapTSVM, and the parameter search time of MPSVM is
several orders of magnitude faster than that of the other clas-
sifiers.

5.3 Results for handwritten symbol recognition

In this section, we investigate the impact of the number of
unlabeled data on the performance of MPSVM. The USPS
handwritten dataset9 was used for these experiments. The

9The USPS datasets are available at www.cs.nyu.edu/~roweis/data.
html.

http://www.cs.nyu.edu/~roweis/data.html
http://www.cs.nyu.edu/~roweis/data.html
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Fig. 7 Synthetic two inverse
half-moons datasets with noise.
Each half-moon corresponds to
one class. The squares denote a
large set of unlabeled data
points. The red diamond or blue
circle denotes the labeled data
points of positive or negative
class, respectively. The black
curve is the decision boundary.
The blue and red dashed curves
are the two kernel-generated
hyperplanes. The nonlinear
classification accuracy of
GEPSVM 89.41 %, LapSVM
97.81 %, LapTSVM 98.90 %
and MPSVM 99.64 % (Color
figure online)

Table 2 Results of GEPSVM,
LapSVM, LapTSVM and
MPSVM on three artificial
datasets

aLinear kernel K(u,v) = u′v
bRBF kernel

K(u,v) = e−γ ‖u−v‖2

Datasets Algorithm Acc (%) Ttrain (s) Parameters Tpara (s)

Cross-linea (m × n) GEPSVM 69.89 0.0182 (2−3) 1.3609

LapSVM 69.89 0.0296 (22,20) 8.3180

LapTSVM 68.82 0.0109 (21,2−3,22) 13.1091

MPSVM 100.00 0.0071 (0.371,0.539) 0.1478

Simple-noiseb (m × n) GEPSVM 93.65 0.1457 (21,2−2) 26.8370

LapSVM 98.17 0.26782 (2−2,23,2−3) 526.8302

LapTSVM 100.00 0.0841 (21,2−3,23,20) 1138.1428

MPSVM 100.00 0.0902 (2.530,0.792,0.238) 8.7524

Half-moonb (m × n) GEPSVM 89.41 0.1794 (2−2,20) 37.4364

LapSVM 97.81 0.3169 (2−2,21,22) 682.4264

LapTSVM 98.90 0.0918 (21,2−1,23,2−2) 1424.6019

MPSVM 99.64 0.1266 (8.383,2.327,0.429) 8.7328
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Table 3 Mean and standard
deviation of testing accuracy
with different labeled ratio m on
UCI dataset. �/� indicates
whether MPSVM is statistically
superior/inferior to the
compared algorithm, according
to pairwise t-test 95 %
significance level. Win/Tie/Loss
denotes the number of datasets
where MPSVM is significance
Superior/Equal/Inferior to the
compared algorithm. Ave. mean
and std denotes the average
mean and standard deviation
accuracy of each algorithm over
all datasets

Datasets Ratio (%) GEPSVM (%) LapSVM (%) LapTSVM (%) MPSVM (%)

Hepatitis (155 × 9) m = 5 42.74 ± 9.39� 63.82 ± 7.62 64.23 ± 7.12 64.39 ± 6.34

m = 10 55.21 ± 8.67� 68.08 ± 6.51� 69.67 ± 6.64 69.21 ± 6.30

m = 20 60.82 ± 7.21� 72.25 ± 6.97� 73.76 ± 6.76 74.63 ± 5.88

m = 30 66.72 ± 8.64� 74.62 ± 5.92 72.82 ± 5.68� 74.82 ± 6.52

Ionosphere (351 × 34) m = 5 47.38 ± 9.85� 63.68 ± 8.83 60.59 ± 7.41� 63.29 ± 7.24

m = 10 54.39 ± 8.61� 65.57 ± 6.59� 66.79 ± 7.85 66.93 ± 7.08

m = 20 62.20 ± 7.34� 71.58 ± 7.19 71.21 ± 6.62� 72.87 ± 6.57

m = 30 66.96 ± 8.59� 72.45 ± 6.88 73.78 ± 7.34 73.63 ± 6.39

WDBC (569 × 30) m = 5 43.98 ± 9.76� 64.13 ± 8.01 62.30 ± 7.32� 64.42 ± 8.53

m = 10 52.84 ± 9.72� 65.47 ± 7.83� 67.43 ± 7.61 67.72 ± 7.53

m = 20 58.39 ± 8.87� 70.38 ± 8.06� 71.73 ± 7.82� 73.05 ± 7.28

m = 30 64.92 ± 8.94� 71.40 ± 7.63� 73.09 ± 6.83 72.93 ± 6.62

Australian (690 × 14) m = 5 39.18 ± 12.35� 51.18 ± 9.36� 54.72 ± 8.54� 52.87 ± 7.81

m = 10 45.85 ± 9.46� 54.62 ± 8.73� 58.51 ± 8.19 59.53 ± 7.49

m = 20 51.39 ± 10.28� 58.87 ± 8.08 57.73 ± 7.82 58.62 ± 7.60

m = 30 53.96 ± 9.26� 59.16 ± 7.39� 60.10 ± 8.05 61.58 ± 8.31

CMC (1473 × 9) m = 5 42.86 ± 13.39� 51.24 ± 8.64 52.89 ± 9.19 51.72 ± 7.38

m = 10 47.56 ± 10.61� 53.46 ± 7.84� 55.60 ± 8.11� 56.94 ± 7.20

m = 20 51.72 ± 9.73� 56.74 ± 6.88� 58.66 ± 7.59 58.82 ± 7.57

m = 30 52.58 ± 9.26� 56.22 ± 7.29� 60.72 ± 8.71 60.59 ± 6.83

W/T/L 20/0/0 12/8/0 6/13/1 /

Ave. mean 53.08 63.24 64.31 64.92

Ave. std 9.49 7.61 7.56 7.12

Fig. 8 The training time Ttrain

of the GEPSVM, LapSVM,
LapTSVM and MPSVM on
real-world datasets for the case
of RBF kernel in the logarithmic
scale, where m is the ratio of
labeled data (Color figure
online)
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Fig. 9 The parameter searching
time Tpara of the GEPSVM,
LapSVM, LapTSVM and
MPSVM on real-world datasets
for the case of RBF kernel in the
logarithmic scale, where m is
the ratio of labeled data (Color
figure online)

Fig. 10 An illustration of 10 subjects in the USPS database

USPS database consists of grayscale images of handwritten
digits from ‘0’ to ‘9’, as shown in Fig. 10. The size of each
image is 16 × 16 pixels with 256 gray levels. Similarly to
[31], we choose four pairwise digits (200 images) on raw
pixel features for our comparisons, and set up experiments
in the following way. First, each dataset was divided into
two subsets: 150 images for training and 50 images for test-
ing. Then, we randomly labeled 40 images for the training
set with m unlabeled images chosen from the remainder. Fi-
nally, we transformed them into semi-supervised tasks. Each
experiment was repeated 10 times.

Figure 11 plots the learning results of each algorithm us-
ing a linear kernel, and includes the mean and deviation of
testing accuracy for values of m from 20 to 100. As demon-
strated in this figure, MPSVM generally has an obvious su-
periority over the other classifiers.

Overall, our MPSVM obtains significantly better classi-
fication accuracy than the other classifiers, but with remark-
ably lower learning time.

6 Conclusions

In this paper, we have proposed a novel MPSVM for binary
semi-supervised classification. MPSVM incorporates both
discriminant information and underlying geometric infor-
mation to construct a more reasonable classifier. The optimal
nonparallel proximal hyperplanes of MPSVM are obtained
by solving a pair of standard eigenvalue problems. In ad-
dition, we designed an efficient PSO-based model selection
approach, instead of a conventional grid search. We carried
out a series of experiments to analyze our classifier against
three state-of-the-art learning classifiers. The results demon-
strate that MPSVM obtains significantly better performance
than supervised GEPSVM, and achieves comparable or bet-
ter performance than LapSVM and LapTSVM, with greater
computational efficiency (including training time and pa-
rameter search time).

One of our future work is to construct the sparse L ma-
trix in ‖f (X)‖2

M for the underlying manifold (distribution)
representation. We also feel that extending our MPSVM to
semi-supervised feature selection and multi-category classi-
fication would be interesting.
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Fig. 11 The test accuracy and
standard deviation of GEPSVM,
LapSVM, LapTSVM and
MPSVM on USPS dataset for
the case of linear kernel (Color
figure online)
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