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Abstract An interval type-2 fuzzy weighted support vec-
tor machine (IT2FW-SVM) is proposed to address the prob-
lem of high energy consumption for biped walking robots.
Different from the traditional machine learning method of
‘copy learning’, the proposed IT2FW-SVM obtains lower
energy cost and larger zero moment point (ZMP) stability
margin using a novel strategy of ‘selective learning’, which
is similar to human selections based on experience. To han-
dle the uncertainty of the experience, the learning weights
in the IT2FW-SVM are deduced using an interval type-2
fuzzy logic system (IT2FLS), which is an extension of the
previous weighted SVM. Simulation studies show that the
existing biped walking which generates the original walk-
ing samples is improved remarkably in terms of both energy
efficiency and biped dynamic balance using the proposed
IT2FW-SVM.
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1 Introduction

Energy efficiency is a fatal problem for the practical applica-
tion of biped robots. Control methods based on the ZMP the-
ory are already comparatively mature, while actuated bipods
such as ASIMO [1] of Honda, needs tens of times as much
energy as humans need. Passive dynamic walking (PDW)
provided clues to solve the problem of generating a natu-
ral and energy efficient gait [2]. However, it is difficult to
achieve complex dynamics, and a very small disturbance
may lead to failure. Semi-passive walkers [3, 4] maintain
walking with a minimum amount of joint control. They in-
troduce some robustness and they can walk without a slope.
However, the semi-passive walkers are less capable and less
robust relative to fully actuated walkers.

Recently, from the point of machine learning, several ap-
proaches have been proposed to generate biped gaits that
ensure maximum dynamic balance margin and minimum
power consumption. In the literatures [5–7], the GA (ge-
netic algorithm), the PSO (particle swarm optimization) al-
gorithm, an approach of GA-FL (genetic-algorithm-trained
fuzzy logic) and an approach of GA-NN (genetic-algorithm-
trained neural network) are applied to optimize the energy
cost and the ZMP stability of a biped robot. These studies
provided promising results for energy efficient biped walk-
ing on rough terrain.

On the other hand, some researchers have proposed sig-
nificant solutions for biped dynamic balance using the sup-
port vector machine (SVM), which has been proved to pos-
sess remarkable characteristics of good generalization per-
formance, the absence of local minima, and sparse repre-
sentation of solution [8–16]. Instead of the standard SVMs,
we find interesting clues to learn biped walking locomotion
with both low energy consumptions and dynamic balance
using weighted SVMs. Weighted SVMs increase the impor-
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tance of certain training points by assigning bigger learn-
ing weights to the concerned samples [17–21], it is a typical
way to realize the ‘selective learning’. There is no formulaic
way of designing the learning weights of samples. Differ-
ent criteria such as ‘error variables’ [17], ‘number of exam-
ples’ [18], ‘approximate entropy’ [19], ‘posterior probabil-
ity’ [20] and ‘distance’ [21] are proposed to design weights
of the weighted SVM. As we can see, designing the weights
is a key issue in weighted SVMs, and appropriate methods
must be proposed to solve various problems.

To address the problem of weight-designing for energy
efficient biped walking, fuzzy logic systems (FLSs) are con-
sidered because there exist complex uncertainties in the
evaluation criteria for the biped walking samples and the
biped walking samples themselves, and FLSs are power-
ful tools for handling uncertainties. Some studies on fuzzy
weighted SVM have previously been presented [22–26].
However, most of previous researches have focused on
type-1 FLSs, although type-2 FLSs [27–32] appears to be
a more promising method than their type-1 [33–35] coun-
terparts for handling uncertainties in rule-based systems.

In this work, an IT2FW-SVM is proposed to cope with
the fatal problem of high energy consumption for biped
walking robots. The training samples are evaluated by two
important indexes (the energy cost and the ZMP stability
margin of biped walking robots). The principle of design-
ing the learning weights is that samples with better perfor-
mances are treated as more important ones in the training.
Considering the numerical and linguistic uncertainty from
original data and the evaluation mechanism, the learning
weights are deduced using an IT2FLS. As a result, walk-
ing samples with lower energy cost and larger ZMP stability
margin contribute more to the learning of the energy effi-
ciency biped walking. Using the proposed IT2FW-SVM, the
existing biped walking which generates the original walking
samples is improved remarkably in terms of both energy ef-
ficiency and biped dynamic balance.

Main contributions of this work could be summarized as
follows:

• High energy consumption is a fatal problem for the prac-
tical application of biped robots. The proposed approach
provides a novel clue to address this problem.

• The weights in the IT2FW-SVM are determined by two
important indexes of biped walking (the energy cost and
the ZMP stability margin). This strategy has not been re-
ported before.

• To handle the complex uncertainties of biped systems, the
learning weights in the IT2FW-SVM are deduced using an
IT2FLS, which is an extension of the previous weighted
SVM.

The organization of this paper is as follows. In Sect. 2, the
background about the energy cost and the dynamic balance

of biped robots are represented. An IT2FW-SVM learning
system for biped robots is designed in Sect. 3. Simulation
results are provided in Sect. 4, followed by the conclusions
in Sect. 5.

2 Primary features of biped walking

2.1 Energy cost of the joints

Energy efficiency is an important problem which has been
recognized as one of the central problems for biped walk-
ers today. In order to achieve energy efficient biped walk-
ing, performance indexes of energy consumption for biped
walking robots are defined here first. There are two common
indexes for energy consumption of biped robots [36], which
can be calculated as follows:

S =
∫ tend

tstart

|θ̇ τ |dt (1)

E =
∫ tend

tstart

τ 2dt (2)

where S is the mechanical energy cost of biped robots, E

is the torque cost of the biped joints. θ̇ is a joint veloc-
ity, and τ is a control torque of biped joints. tstart and tend

are the beginning and the ending time for the energy cost
of biped robots. The energy consumption index shown in
Eq. (1) characterizes the variation of the mechanical energy
of the system. It is less dependent on the driving actuator.
No brake is used, so the negative work must be produced
by the actuators. Therefore the absolute value of the work is
considered. The index shown in Eq. (2) characterizes the en-
ergy that must be produced by the battery to allow the biped
motion. In this work, the primary consideration is the energy
cost shown in Eq. (2).

2.2 ZMP stability margin

Dynamic balance of legged systems is analyzed according
to the concept of ZMP introduced by Vukobratovic et al. in
1990. ZMP is defined as that point on the ground at which
the net moment of the inertial forces and the gravity forces
has no component along the horizontal axes. At a given time
instant, the ZMP position is influenced by all the forces act-
ing on the system. The dynamic balance of the system is
ensured if the ZMP is inside the support area [37].

To avoid having only one edge of the foot sole contact-
ing the ground, there should be some distance between the
actual ZMP and the boundary of the support area. In the
following, the minimum distance between the ZMP and the
boundary of the support area is called the ZMP stability mar-
gin.
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The ZMP can be computed using the following equa-
tions:

xzmp =
∑m

i=1 mi(z̈i + g)xi − ∑m
i=1 miẍizi − ∑m

i=1 IiyΩiy∑m
i=1 mi(z̈i + g)

(3)

yzmp =
∑m

i=1 mi(z̈i + g)yi − ∑m
i=1 miÿizi + ∑m

i=1 IixΩix∑m
i=1 mi(z̈i + g)

(4)

where (xzmp, yzmp,0) is the coordinate of the ZMP, and
(xi, yi, zi) is the coordinate of the mass center of link i on
an absolute Cartesian coordinate system. mi is the mass of
link i, Iix and Iiy are the inertial components, Ωix and Ωiy

are the absolute angular accelerations components around x

axis and y axis at the center of gravity of link i, g is the
gravitational acceleration.

3 Learning energy efficient biped walking using the
IT2FW-SVM

Using the proposed IT2FW-SVM, we try to improve the
existing biped walking which generates the original walk-
ing samples. The original walking samples are generated
by a proportion-integration-differentiation (PID) [38] con-
troller according to the planned gait, and the IT2FW-SVM
is trained offline. Using the energy cost and the ZMP stabil-
ity margin as inputs, and the learning weights as outputs, an
IT2FLS provides a comprehensive criterion to the IT2FW-
SVM for ‘selective learning’. By learning the weighted
walking samples evaluated by the IT2FLS, the IT2FW-
SVM obtains regression equations for energy efficient con-
trol torque of the key joints (the supporting hip and the sup-
porting ankle), which are used to realize the energy efficient
biped walking.

3.1 Biped dynamic to be built using the IT2FW-SVM

In the single support phase (SSP), the effective control of the
supporting ankle and the supporting hip plays a key role in
ensuring the dynamic biped balance. When the ZMP crite-
rion is satisfied, the dynamic between the driving torque and
the joint angles can be written as [39]:

τsup_hip = UEE(θsup_hip, θsup_ankle) (5)

τsup_ankle = VEE(θsup_hip, θsup_ankle) (6)

where UEE(·) and VEE(·) are the energy efficient nonlinear
dynamic that the IT2FW-SVM tries to build. τsup_hip and
τsup_ankle are driving torques, θsup_hip and θsup_ankle are
joint angles.

3.2 Objective functions of the IT2FW-SVM

In the objective functions of the IT2FW-SVM, the most im-
portant thing is that an IT2FLS [40] is used to design learn-
ing weights for each sample. Taking the learning of driv-
ing torque of the supporting hip as an example, designing a
learning weight dl for each of the training samples, and the
training sample set can be denoted as {θ(l)

sup_hip, θ
(l)
sup_ankle,

τ
(l)
sup_hip, dl}, 0 ≤ dl ≤ 1, l = 1,2, . . . ,N . Then the IT2FW-

SVM objective function for regressing the driving torque of
the supporting hip is

min
1

2
ωT ω + 1

2
C

N∑
l=1

dlξ
2
l

s.t. τ
(l)
sup_hip = ωT φ

(
θ

(l)
sup_hip, θ

(l)
sup_ankle

)
+ bsup_hip + ξl, l = 1, . . . ,N

(7)

where ω is a weight vector. φ(·) is a nonlinear mapping
function for mapping the input space into a higher dimen-
sion feature space. C is a penalty coefficient, ξl and ξ∗

l are
positive slack variables enabling the objective functions to
deal with permitted errors, N is the number of the samples.
(θ(l)

sup_hip, θ
(l)
sup_ankle) are the input vectors and τ

(l)
sup_hip is

the output of the lth sample. bsup_hip is the corresponding
bias. dl is the learning weight to be designed in the next sec-
tion.

3.3 Designing the learning weights using an IT2FLS

This section designs the learning weights of the IT2FW-
SVM using an IT2FLS. The antecedent part of the IT2FLS
uses interval type-2 fuzzy sets, and the consequent part is of
the Mamdani-type. The ith rule in the system has the fol-
lowing form:

Rule i: IF e is Ãi,1 AND z is Ãi,2

THEN d is G̃i, i = 1, . . . ,M
(8)

where e and z are the energy cost and the ZMP stability
margin respectively, d is the learning weights of the IT2FW-
SVM. Ãi,j , j = 1, . . . , n is an interval type-2 fuzzy set, G̃i is
the output interval type-2 fuzzy set of the ith rule, and M is
the number of rules. Based on the rule base in (8), the com-
putation of the IT2FLS involves the fuzzifier, inference en-
gine, type reducer, and defuzzifier, which will be described
in detail next.

3.3.1 Fuzzification

The fuzzifier maps crisp input values to fuzzy sets. For the
ith fuzzy set Ãi,j in the input variables, a Gaussian primary
membership function is used, which has a fixed standard
deviation σ and an uncertain mean that takes on values in
[m,m̄].
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For example, the membership degree of the energy cost
is

μ
Ãi,j

(ej ) = exp

{
−1

2

(
ej − me

ij

σij

)2}
≡ N

(
me

ij , σij ; ej

)
,

me
ij ∈ [

me
ij , m̄

e
ij

]
(9)

Here, the membership degree μ
Ãi,j

(ej ) is an interval set and
is denoted by μ

Ãi,j
(ej ) = [μ

Ãi,j
(ej ), μ̄Ãi,j

(ej )]. The mathe-

matical functions of the lower and upper MFs, μ
Ãi,j

(ej ) and

μ̄
Ãi,j

(ej ), are described as follows:

μ̄
Ãi,j

(ej ) =

⎧⎪⎨
⎪⎩

N(me
ij , σij ; ej ), ej < me

ij

1, me
ij ≤ ej ≤ m̄e

ij

N(m̄e
ij , σij ; ej ), ej > m̄e

ij

(10)

μ
Ãi,j

(ej ) =
⎧⎨
⎩

N(m̄e
ij , σij ; ej ), ej ≤ me

ij +m̄e
ij

2

N(me
ij , σij ; ej ), ej >

me
ij +m̄e

ij

2

(11)

Similarly, the membership degree of the ZMP stability
margin can be expressed as

μ
Ãi,j

(zj ) = N
(
mz

ij , σij ; zj

)
, mz

ij ∈ [
mz

ij , m̄
z
ij

]
(12)

And the membership degree of the learning weights can
be expressed as

μ
G̃i

(d) = N
(
md

i , σi;d
)
, md

i ∈ [
md

i , m̄d
i

]
(13)

3.3.2 Inference

The inference engine operation performs the fuzzy meet
operation by using an algebraic product operation. The re-
sult of the input and antecedent operations Fi is an interval
type-1 set, i.e.,Fi = [f

i
, f̄i], where

f̄i =
n∏

j=1

μ̄
Ãi,j

, f
i
=

n∏
j=1

μ
Ãi,j

(14)

The ith rule fired output consequent set

μ
B̃i

(d) =
∫

bi∈[f
i
μ

G̃i
(d),f̄i μ̄G̃i

(d)]
1

bi

(15)

where μ̄
G̃i

(d) and μ
G̃i

(d) are the lower and upper member-
ship grades of μ

G̃i
(d). The output fuzzy set μ

B̃
(d) is

μ
B̃
(d)

=
∫

b∈[[f
1
μ

G̃1
(d)]∨···∨[f

M
μ

G̃M
(d)],[f̄1μ̄G̃1

(d)∨···∨f̄M μ̄
G̃M

(d)]]
1

b

(16)

where ‘∨’ operation is the maximum operation.

3.3.3 Type reduction

For IT2FLSs, the final crisp output is the center of the
type-reduced set. There exist many kinds of type-reduction,
such as centroid, center-of-sets, height, and modified height [40].
In this paper, center-of-sets type-reduction is used as fol-
lows:

D(e, z) = [dlow, dhigh]
=

∫
d1

· · ·
∫

dM

∫
f1

· · ·
∫

fM

1∑M
i=1 fidi∑M
i=1 fi

(17)

where low and high represent the left and right limits, re-
spectively. di is the centroid of the type-2 interval conse-
quent set G̃i .

There is no direct theoretical solution for Eq. (17). The
computation of the reduced set requires an iterative pro-
cedure. This paper computes Eq. (17) using the Karnik-
Mendel iterative procedure, which consists of an initializa-
tion step followed by four iterative steps [41]. In this pro-
cedure, the rule’s consequent parts should first be arranged
in ascending order. Let d = (d1, . . . , dM) denote the original
rule-ordered consequent values and let d̃ = (d̃1, . . . , d̃M) de-
note the reordered sequence, where d̃1 ≤ d̃2 ≤ · · · ≤ d̃M . The
relationship between d and d̃ can be represented as d̃ = Qd ,
where Q is an M ×M permutation matrix. This permutation
matrix uses elementary vectors as columns, and these vec-
tors are arranged to move elements in d to new locations
in ascending order in the transformed vector d̃ . Reorder the
original rule firing strength orders f = (f

1
, f

2
, . . . , f

M
)T

and f̄ = (f̄1, f̄2, . . . , f̄M)T accordingly, and the new orders
become Qf and Qf̄ , respectively. The outputs dlow and
dhigh can be computed as follows:

dlow =
∑L

i=1(Qf̄ )i d̃i + ∑M
j=L+1(Qf )j d̃j∑L

i=1(Qf̄ )i + ∑M
j=L+1(Qf )j

(18)

dhigh =
∑R

i=1(Qf )i d̃i + ∑M
j=R+1(Qf̄ )j d̃j∑R

i=1(Qf )i + ∑M
j=R+1(Qf̄ )j

(19)

where L and R denote the left and right crossover points,
respectively. These two points vary with different inputs.
Karnik-Mendel iterative procedure can be used here to find
these two points.

3.3.4 Defuzzification

The defuzzifier computes the system output variable d by
performing the defuzzification operation on the interval set
[dlow, dhigh] from the type reduction. Based on the cen-
troid defuzzification operation, the centroid of the interval
set [dlow, dhigh] is the average of dlow and dhigh. Hence, the
defuzzified output is

d = dlow + dhigh

2
(20)
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Up to now, with type-2 fuzzy inputs of the energy cost
and the ZMP stability margin for biped robots, the corre-
sponding learning weight of the biped walking sample is
deduced using an IT2FLS. The deduced learning weights
are then used in the learning process of the IT2FW-SVM as
shown in the next section.

3.4 Learning algorithms of the IT2FW-SVM

To solve the proposed optimization problem in Eq. (7), we
construct the Lagrangian

L(ω,bsup_hip, ξ,α) = 1

2
ωT ω + C

N∑
l=1

dlξ
2
l

−
N∑

l=1

αl

[
ωφ

(
θ

(l)
sup_hip, θ

(l)
sup_ankle

)

+ bsup_hip + ξl − τ
(l)
sup_hip

]
(21)

and find the saddle point of L(ω,b, ξ,α). The parameters
must satisfy the following conditions:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂ω

= 0 → ω = ∑N
l=1 αlφ(θ

(l)
sup_hip, θ

(l)
sup_ankle)

∂L
∂b

= 0 → ∑N
l=1 αl = 0

∂L
∂ξ

= 0 → αl = Cdlξl

∂L
∂α

= 0 → ωφ(θ
(l)
sup_hip, θ

(l)
sup_ankle) + bsup_hip

+ ξl − τ
(l)
sup_hip = 0

(22)

eliminating ω and ξ using Eq. (22), the problem Eq. (7) can
be transformed into[

0 AT

A Ω + (Cdl)
−1I

][
bsup_hip

α

]
=

[
0

τsup_hip

]
(23)

where τsup_hip = [τ (1)
sup_hip, τ

(2)
sup_hip, . . . , τ

(N)
sup_hip]T , A =

[1,1, . . . ,1]T , α = [α1, α2, . . . , αN ]T , Ω is a square matrix,
which has elements of

Ωlk = K
[(

θ
(l)
sup_hip, θ

(l)
sup_ankle

)
,
(
θ

(k)
sup_hip, θ

(k)
sup_ankle

)]
= φ

(
θ

(l)
sup_hip, θ

(l)
sup_ankle

)T
φ
(
θ

(k)
sup_hip, θ

(k)
sup_ankle

)
(24)

Submitting the optimal α and bsup_hip , the regression func-
tion of the IT2FW-SVM for learning the driving torque of
the supporting hip is

τsup_hip

=
N∑

l=1

αlK
[(

θ
(l)
sup_hip, θ

(l)
sup_ankle

)
, (θsup_hip, θsup_ankle)

]

+ bsup_hip (25)

where τsup_hip is the energy efficient driving torque of the
supporting hip. bsup_hip is the corresponding bias. αl ≥ 0,
l = 1, . . . ,N are Lagrangian multipliers, N is the number of

the samples. K(·) is a kernel function. Here, the Gaussian
kernel

K(xi, x) = exp

(
− (xi − x)2

2σ 2

)

is used, where σ is the width of the Gaussian kernel. Using
the same algorithm presented in this section, IT2FW-SVM
learning results for the energy efficient driving torque of the
supporting ankle can be obtained as follows:

τsup_ankle

=
N∑

l=1

αlK
[(

θ
(l)
sup_hip, θ

(l)
sup_ankle

)
, (θsup_hip, θsup_ankle)

]

+ bsup_ankle (26)

4 Simulation research

In this section, we test our proposed IT2FW-SVM system
on the learning of a seven-link biped walking in the sagittal
plane by simulation experiments. Data of the implemented
biped robot are given from the GDUT-I biped robot, which is
designed and built at the Faculty of Automation, Guangdong
University of Technology, Guangzhou, Guangdong, China.
Details about GDUT-I biped robot can be found in the liter-
ature [42].

4.1 Generating sample sets

There are 160 groups of walking samples in the simulations.
The first 120 groups are chosen for training and the last 40
groups are chosen for test. Sample sets for the IT2FW-SVM
include three parts: the joint angles, the driving torques and
the learning weights. The way we get all the three parts of
the training data is described in detail next.

4.1.1 Joint angles

The joint angles come from reference trajectory planned of-
fline.

The walking period of the biped robot is planned to be
composed of a SSP and an instantaneous double support
phase (DSP). The supporting foot remains in full contact
with the ground during the SSP. The walk cycle is Tc = 1 s.
Three different motions are considered: Motion1 has a step
length of 0.16 m, motion2 has a step length of 0.18 m, and
motion3 has a step length of 0.20 m. The three motions have
the same step height of 0.02 m. The trajectories are repre-
sented as follows:⎧⎪⎪⎨
⎪⎪⎩

xankle(l) = (s/π){2πl/N − sin(2πl/N)}
zankle(l) = (q/π){1 − cos(2πl/N)}
xhip(l) = (1/2)xankle(l) + (s/2)

zhip(l) = (1/2)zankle(l) + lthigh + lshank − (q/2)

(27)
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Table 1 PID control parameters for the joints

θsup_ankle θsup_knee θsup_hip θtrunk θsw_hip θsw_knee θsw_ankle

Pj 8.2 7.4 6.9 6.9 6.9 7.4 8.2

Ij 0 0 0 0 0 0 0

Dj 0.4 0.4 0.4 0.4 0.4 0.4 0.4

where xhip, zhip represents the position of the hip and
xankle, zankle represents the position of the swinging ankle
joint. s denotes the walking step length, and q denotes the
height of swinging ankle. N denotes the total sampling num-
ber for a step, l denotes the sampling index, and lthigh, lshank

represent the length of lower limbs.

4.1.2 Driving torques

The driving torques are obtained using a PID controller.
In this work, the initial driving torques of all the joints

are obtained using a PID controller. Then the key driving
torques, including driving torques for the support hip and
support ankle, are improved using the proposed IT2FW-
SVM. The initial driving torques of all the joints are ob-
tained using the following PID controller:

τj = Pjej + Ij

∫ T

0
ejdt + Dj

dej

dt
(28)

where τj (j = 1, . . . , n, n = 7) is the torque of the joints.
ej denotes the offset of the desired reference trajectories and
the actual trajectories. The integral period is T = 0.025 s.
The proportional gains Pj , integral gains Ij and differential
gains Dj are slightly modified by the trial-error method. The
parameters are shown in Table 1.

4.1.3 Learning weights

The learning weights are obtained using an IT2FLS, which
has the energy cost and the ZMP stability margin as inputs,
and the learning weights as outputs. The ith rule in the sys-
tem has the following form:

Rule i: IF e is Ãi,1 AND z is Ãi,2

THEN d is G̃i, i = 1, . . . ,25
(29)

where e and z are the energy cost and the ZMP stability
margin, respectively. d is the learning weights of the IT2FW-
SVM. Ãi,j , j = 1, . . . ,5 is an interval type-2 fuzzy set, G̃i

is the output interval type-2 fuzzy set of the ith rule, and the
number of rules is 25.

Here, two steps are involved in the derivation procedures
of the fuzzy rules. Firstly, primary fuzzy rules are initialized
by expert experience. Secondly, the final fuzzy membership
functions are obtained through fine adjustments according to
the experimental data. The principle of designing the learn-
ing weights is that samples with better features are treated

Table 2 The rule base for the weights designing

Energy cost Stability margin

UB B M S US

UB S S VS US US

B M S S VS US

M B M M S VS

S VB B M M S

US UB VB B M S

Fig. 1 Interval type-2 fuzzy membership function of the energy cost

as more important ones in the training. So, larger learning
weights are assigned to walking samples with less energy
cost and larger ZMP stability margin. The rule base for the
weights designing is shown in Table 2.

The details about Table 2 will be described next:

(1) Energy cost of the biped joints can be calculated using
Eq. (2). To express the linguistic and numerical uncer-
tainty, interval type-2 fuzzy membership functions of
the energy cost are designed as Fig. 1. Gaussian primary
membership functions are used, which have a fixed stan-
dard deviation σ = 50 and uncertain means that take on
values in the following intervals:
[
me

i1, m̄
e
i1

] = [0,10], [
me

i2, m̄
e
i2

] = [100.63,110.63][
me

i3, m̄
e
i3

] = [206.25,216.25][
me

i4, m̄
e
i4

] = [311.88,321.88][
me

i5, m̄
e
i5

] = [417.5,427.5]
The domain of the energy cost is

[emin, emax] = [
0,422.5 N2 m2] (30)
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Fig. 2 Interval type-2 fuzzy membership function of the ZMP stability
margin

Here, each servomotor in the implemented biped joint
has a maximum torque of 130 N m, so the corresponding
maximum energy cost is

emax =
∫ t+0.025

t

(130 N m)2dt = 422.5
(
N2 m2) (31)

(2) The ZMP stability margin can be deduced using the
ZMP position calculated by Eq. (3). Considering the lin-
guistic and numerical uncertainty of the system, interval
type-2 fuzzy membership functions of the ZMP stabil-
ity margin are designed as Fig. 2. In the SSP, the maxi-
mum ZMP stability margin is half of the foot-length in
the sagittal plane, which is 0.04 m for the implemented
biped robot. So the domain of the ZMP stability margin
is

[zmin, zmax] = [0,0.04 m] (32)

Also, Gaussian primary membership functions are used
here, which have a fixed standard deviation σ = 0.005
and uncertain means that take on values in the following
intervals:[
mz

i1, m̄
z
i1

] = [0,0.001][
mz

i2, m̄
z
i2

] = [0.0095,0.0105][
mz

i3, m̄
z
i3

] = [0.0195,0.0205][
mz

i4, m̄
z
i4

] = [0.0295,0.0305][
mz

i5, m̄
z
i5

] = [0.0395,0.0405]
(3) The learning weight. The domain of the learning weight

is specified as

[dmin, dmax] = [0,1] (33)

Interval type-2 fuzzy membership functions of the
learning weights are designed as Fig. 3. Still, Gaussian
primary membership functions are used, which have a

Fig. 3 Interval type-2 fuzzy membership function of the learning
weight

fixed standard deviation σ = 0.1 and uncertain means
that take on values in the following intervals:

[
md

i1, m̄
d
i1

] = [0,0.028], [
md

i2, m̄
d
i2

] = [0.156,0.184][
md

i3, m̄
d
i3

] = [0.316,0.344][
md

i4, m̄
d
i4

] = [0.486,0.514][
md

i5, m̄
d
i5

] = [0.656,0.684][
md

i6, m̄
d
i6

] = [0.816,0.844], [
md

i7, m̄
d
i7

] = [0.972,1]

4.2 Hyper-parameters designing for the IT2FW-SVM

In general, the search algorithms used to obtain SVM hyper-
parameters include grid search, local search and global op-
timization algorithms [43]. In this work, a 10-fold cross-
validation strategy is applied to find the optimal hyper-
parameters for the proposed IT2FW-SVM. The optimal
hype-parameters of the IT2FW-SVM include a penalty fac-
tor C = 1000, an insensitive loss parameter ε = 0.001, the
width of the Gaussian kernel σ = 0.9.

Remark 1 Considering that all the search algorithms have
the similar difficulty in the selection of the initial ranges for
parameters, the literature [43] presents a novel study of the
effect of including reductions in the range of SVM hyper-
parameters, in order to reduce the SVM training time, but
with the minimum possible impact in its performance. It will
be interesting to improve the training time of support vec-
tor regression algorithms through novel hyper-parameters
search space reductions in the future.
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4.3 Performance analysis and comparisons

Two primary features of biped walking (described in the
Sect. 2 of this paper, including the energy cost and the ZMP
stability margin) are analyzed in this section.

4.3.1 Other methods to be compared with

Because we try to improve the existing biped walking us-
ing the proposed IT2FW-SVM, performance of the proposed
method is first compared to the existing PID controller. De-
tails of the PID controller can be found in Eq. (28).

Then, the IT2FW-SVM is compared to a standard SVM
to show the effect of the ‘selective learning’ using learning
weights. The standard SVM has an objective function ex-
pressed as:

min
1

2
ωT ω + 1

2
C

N∑
l=1

ξ2
l

s.t. τ
(l)
sup_hip = ωT φ

(
θ

(l)
sup_hip, θ

(l)
sup_ankle

)
+ bsup_hip + ξl, l = 1, . . . ,N

(34)

where the symbols have the same definitions as those in
Eq. (7).

On the other hand, to illustrate the necessity of adopting
the IT2FLS in the proposed IT2FW-SVM, a type-1 fuzzy
weighted SVM (T1FW-SVM) is presented for comparisons.
The j th rule of the T1FW-SVM is expressed as follows:

Rule j : IF e is A1,j AND z is A2,j

THEN d is Gj

(35)

where e and z are the energy cost and the ZMP stability
margin respectively, d is the learning weights of the T1FW-
SVM. A1,j ,A2,j ,and Gj are type-1 fuzzy sets. Both the in-
puts and the outputs are fuzzified with Gaussian fuzzy mem-
bership functions, as shown in Fig. 4.

4.3.2 Analysis and comparisons of the energy cost

Energy cost of the supporting hip is considered as follows:

E
(l)
sup_hip =

∫ tl

tl−1

(
τ

(l)
sup_hip

)2
dt (36)

where τ
(l)
sup_hip and E

(l)
sup_hip are energy cost and driving

torque of the supporting hip on the lth sampling point in a
walk cycle. tl−1 and tl are the beginning and ending time
of the lth sampling interval, l = 1,2, . . . ,40. The whole
energy-cost index expression is given as

Esup_hip =
40∑
l=1

E
(l)
sup_hip =

40∑
l=1

∫ tl

tl−1

(
τ

(l)
sup_hip

)2
dt (37)

Energy cost of the supporting ankle can be obtained in the
same way.

Table 3 Energy cost comparisons with other methods

Method Step length
(m)

Energy cost (N2 m2)

Esup_hip Esup_ankle

PID 0.16 146.79 1693.54

SVM 152.63 1688.26

T1FW-SVM 123.85 1397.66

IT2FW-SVM 116.02 1244.39

PID 0.18 161.61 1854.25

SVM 159.36 1855.03

T1FW-SVM 138.45 1501.30

IT2FW-SVM 120.98 1366.14

PID 0.20 178.22 1932.50

SVM 177.86 1969.65

T1FW-SVM 149.93 1616.71

IT2FW-SVM 134.55 1490.30

Comparisons of the energy cost are shown in Table 3. The
proposed IT2FW-SVM does the best when the energy cost
performance index is analyzed, and simulation results show
that all the gaits have a similar trend of increasing the en-
ergy cost as the step lengths increase. The energy cost per-
formance of the standard SVM controller is very close to
the PID controller, which is in line with the fact that the un-
weighted standard SVM is trained to mimic the PID one. On
the other hand, by evaluating the energy cost of the samples
and assign learning weights to the training samples accord-
ingly, the T1FW-SVM controller reduces the energy cost to
a certain degree. With further consideration, the proposed
IT2FW-SVM translates the linguistic and numerical uncer-
tainty from original data into fuzzy rules uncertainty, thus it
enhances the energy efficiency of the biped robots remark-
ably, which demonstrates the effectiveness of the proposed
IT2FW-SVM.

4.3.3 Analysis and comparisons of the dynamic biped
balance

To analyze the performance index of the dynamic biped bal-
ance, mean of the ZMP stability margin (MZSM) is calcu-
lated during one whole walking step using the next formula:

MZSM

= 1

N

N∑
l=1

{
[xtoe − xzmp(l)], if xzmp(l) >

xheel+xtoe

2

[xzmp(l) − xheel], if xzmp(l) ≤ xheel+xtoe

2
(38)

where xzmp(l) is the position of the ZMP on the lth sampling
point in a walk cycle, which can be obtained using Eq. (3),
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(a) (b)

(c)

Fig. 4 Type-1 fuzzy membership functions for the inputs and
outputs. (a) Fuzzy membership functions for the inputs (the en-
ergy cost) with a fixed standard deviation σ = 50 and fixed
means of {m1,m2,m3,m4,m5} = {0.0,105.6,211.3,316.9,422.5}.
(b) Fuzzy membership functions for the inputs (the ZMP stabil-
ity margin) with a fixed standard deviation σ = 0.005 and fixed

means of {m1,m2,m3,m4,m5} = {0.00,0.01,0.02,0.03,0.04}.
(c) Fuzzy membership functions for the outputs (learning weights)
with a fixed standard deviation σ = 0.1 and fixed means of
{m1,m2,m3,m4,m5,m6,m7} = {0.00,0.17,0.33,0.50,0.67,0.83,

1.00}

and l = 1,2, . . . ,N (N = 40). xtoe and xheel are the posi-
tions of the toe and the heel of the biped robot.

Comparisons for MZSM using different methods are
shown in Table 4. Compared to the PID-controlled loco-
motion which generated the original walking samples, the
proposed IT2FW-SVM improves the ZMP stability mar-
gin effectively, and the T1FW-SVM enhances the ZMP-
based performance in a less degree. On the other hand,
the standard SVM-controlled walking has similar ZMP sta-
bility margins as the existing PID-controlled ones. That is
to say, different results come after the same training data
because of the different learning strategy. Compared with
the ‘copy learning’ of the standard SVM, the proposed

IT2FW-SVM obtains better performance using a kind of
‘selective learning’ strategy, which is like human behav-
iors.

4.3.4 Analysis and comparisons of the computation time

Compared to the standard SVM and the T1FW-SVM, the
proposed IT2FW-SVM consumes more time to train the
robot, while the computation time of the proposed algorithm
is adequate for training the biped robot offline. Once trained,
the consumed time of the IT2FW-SVM is the same as those
of the standard SVM and the T1FW-SVM for on-line con-
trol.
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Table 4 Comparisons of mean of the ZMP stability margin (MZSM)

Method Step length (m) MZSM (m)

PID 0.16 0.0310

SVM 0.0319

T1FW-SVM 0.0362

IT2FW-SVM 0.0389

PID 0.18 0.0251

SVM 0.0240

T1FW-SVM 0.0359

IT2FW-SVM 0.0373

PID 0.20 0.0238

SVM 0.0241

T1FW-SVM 0.0320

IT2FW-SVM 0.0346

5 Conclusions

An IT2FW-SVM learning system based on the ZMP sta-
bility criterion is proposed aiming at the fatal problem of
high energy consumption for biped walking robots. A strat-
egy of evaluating the walking samples is proposed accord-
ing to two important performance indexes (the energy cost
and the ZMP stability margin). Considering the numerical
and linguistic uncertainty from original data and the evalu-
ation mechanisms, the learning weights are deduced using
an IT2FLS. The proposed IT2FW-SVM is compared to the
PID, the standard SVM and the T1FW-SVM. Simulation re-
sults show the superiority of the proposed method when per-
formance indexes of the energy cost and the ZMP stability
margin are analyzed.

We believe that the proposed method will be very promis-
ing for energy efficient biped walking. Future works include
the feature extraction and the data-based learning from en-
ergy efficient human locomotion.
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