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Abstract Researchers and practitioners who use databases
usually feel that it is cumbersome in knowledge discovery
or application development due to the issue of missing data.
Though some approaches can work with a certain rate of in-
complete data, a large portion of them demands high data
quality with completeness. Therefore, a great number of
strategies have been designed to process missingness par-
ticularly in the way of imputation. Single imputation meth-
ods initially succeeded in predicting the missing values for
specific types of distributions. Yet, the multiple imputation
algorithms have maintained prevalent because of the further
promotion of validity by minimizing the bias iteratively and
less requirement on prior knowledge to the distributions.

This article carefully reviews the state of the art and
proposes a hybrid missing data completion method named
Multiple Imputation using Gray-system-theory and Entropy
based on Clustering (MIGEC). Firstly, the non-missing data
instances are separated into several clusters. Then, the im-
puted value is obtained after multiple calculations by uti-
lizing the information entropy of the proximal category for
each incomplete instance in terms of the similarity metric
based on Gray System Theory (GST).

Experimental results on University of California Irvine
(UCI) datasets illustrate the superiority of MIGEC to other
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current achievements on accuracy for either numeric or cat-
egorical attributes under different missing mechanisms. Fur-
ther discussion on real aerospace datasets states MIGEC is
also applicable for the specific area with both more precise
inference and faster convergence than other multiple impu-
tation methods in general.

Keywords Missing data · Multiple imputation · Gray
System Theory · Entropy · Clustering

1 Introduction

Machine learning and data mining algorithms are frequently
used for knowledge discovery in databases since they are
non-trivial processes of exploring the new facts and iden-
tifying helpful relationships or patterns in data [5, 21, 26].
However, analysts using real-world databases or datasets
constantly encounter data imperfection in the form of in-
completeness [3, 8]. Thus, plenty of resolutions have been
devised to tackle the unfavorable phenomenon. Even though
missing data might not cause any serious trouble especially
when the missing ratio is not significantly high, it would
not be an ideal case to ensure the data quality. Addition-
ally, some opinions argue that fragmentary data should be
directly discarded without any further considerations. Nev-
ertheless, the opinion has obvious shortcomings which are
articulated that the other observed factual values of the
same instance may simultaneously be absent [11, 18, 35].
In some high-missing-rate environment, this strategy is pre-
sumed unreasonable and infeasible. Consequently the han-
dling for substitution or replacement draws increasing atten-
tions, termed as imputation. In broad outline, the methods
available can be separated into two categories: single impu-
tation and multiple imputation methods. Single imputation,
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i.e. filling in precisely one value for each missing one, intu-
itively has many appealing features, e.g. standard complete-
data methods can be applied directly and the substantial ef-
fort required to create imputations needs to be carried out
only once [23, 47]. At the same time, it cannot provide valid
standard errors and confidence intervals, because it ignores
the uncertainty implicit in the fact that the imputed values
are not the actual values. Oppositely, multiple imputation
generates a quantity of simulated values for each missing
item, in order to reflect properly the uncertainty attached to
missing data [42, 58]. More importantly, multiple imputa-
tion accounts for missing data by restoring not only the nat-
ural variability in the missing-data, but also by also incor-
porating the uncertainty caused by the interpolation process.
This type of data imputation has been advocated as a statis-
tically sound approach, but so far its use has been limited
mainly to the social and medical sciences.

Multiple imputation recently has emerged as an inter-
esting and quite visible direction in missing data analy-
ses. The versions of the sophisticated approach are advan-
tageous to these conventional techniques because they re-
quire less stringent assumptions and mitigate the pitfalls
of traditional ones [19, 36, 49]. Nevertheless, for most of
the existing solutions, the following facets retain defective:
(a) The clustering strategy combining complete instances
with incomplete instances violates the formation of good
clusters. In other words, the entire-instances-involved clus-
tering generates biased values due to the imperfection [57,
59]. (b) The common distance metrics such as Minkowski’s
Lp (p = 1,2,∞) and Cosine Correlation (CC) [34, 41] is
imprecise to scale the dissimilarity among instances; (c) The
current methodologies are hardly applicable to handling the
missing aerospace data due to the their underperformance
on validity.

In this paper, data imputation is formulated as a prob-
lem of estimation of missing values by multiple operations
based on clustering. Furthermore, the prime contribution of
this paper could be described as: (a) Dividing non-missing
items into a finite number of well-partitioned clusters con-
tributes to make the completion in the optimal tailored area.
(b) GST, which signifies the situational variation of the
curve, could characterize the relative discrepancy more pre-
cisely; (c) MIGEC performs accurately on the real aerospace
datasets than other multiple imputation strategies.

The rest of this paper is organized as: Sect. 2 first briefly
introduces both the missingness mechanisms and the em-
blematic patterns of missing data treatment then reviews the
diverse related literatures about imputation. In Sect. 3, the
detailed process of the MIGEC algorithm is illustrated in
three primary procedural sub-items. Section 4 demonstrates
a series of experimental results on both UCI datasets and
empirical aerospace datasets to compare the performance
with other state of the art including both single imputation

and multiple imputation. Finally conclusions are given in
Sect. 5.

2 Related work

2.1 Missingness mechanisms

Before the discussions on different handling options, it is
necessary to have a solid comprehension of missingness
mechanism. That is because the performance of methods
does not depend only on the amount of absent data but on
the characteristics of the missing data patterns. According
to Rubin and his colleagues’ taxonomy, the mechanisms are
categorized as follows [5, 19, 31, 48]:

1. Missing Completely At Random (MCAR). The MCAR
refers to the case that the distribution of an example hav-
ing a missing value for an attribute does not depend on
either the observed data or the missing data. The proba-
bility that units provide data on a particular variable, thus,
does not depend on the value of that variable or the value
of any other variable. An example of the mechanism is
that a laboratory sample is dropped, so the resulting ob-
servation is missing.

2. Missing At Random (MAR). Once the distribution of an
example having a missing value for an attribute depends
on the observed data, but does not depend on the miss-
ing data, the mechanism is MAR. As the probability of a
value being missing will generally depend on observed
values, it does not correspond to the intuitive notion of
’random’. For example, if income is more likely to be
missing for the more educated and education is fully ob-
served.

3. Not Missing At Random (NMAR). It implies that the pat-
tern of data missingness is non-random and it is unpre-
dictable from other variables in the database. If miss-
ing data are NMAR, even accounting for all the available
observed information, the reason for observations being
missing still depends on the unseen observations them-
selves. In other words, the missing entry relies on the ob-
served data as well as on the value of the data which is
missing.

These terms own precise probabilistic and mathematical
implications since they explain why the data are missing.
Moreover, the conceptual descriptions state the relationships
between observed variables and the probability of missing
data. So they have to be involved into missing data analysis.

2.2 Methods for missing data analysis

Current administrations of processing missing data can be
approximately divided into three categories: tolerance, ig-
noring and imputation-based procedures.
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2.2.1 Tolerance

The straightforward method aims to maintain the source en-
tries in the incomplete fashion. It may be a practical and
computationally low cost solution, whereas it requires the
techniques to work robustly even if the data quality stays
low [20, 48].

2.2.2 Ignoring

Missing data ignorance often refers to “Case Deletion”. It
is the most frequently applied procedure, but it is prone to
diminish the data quality. The strength lies in the ease of ap-
plication: deleting the elements with missing values in two
manners [15, 55]:

(a) List-wise/Case-wise Deletion: it performs indiscrimi-
nately deleting from the database any elements with
missing data for any of the attributes being examined.

(b) Pairwise Deletion: incomplete cases are removed on an
analysis-by-analysis basis, such that any given case may
contribute to some analyses but not to others.

2.2.3 Imputation

Mean/Mode Substitution (MMS): It replaces the missing val-
ues by the mean (the arithmetic average value) or mode (the
highest frequency of occurrence) of all the observations or
a subgroup at the same variable. It consists of replacing the
unknown value for a given attribute by the mean (quanti-
tative attribute) or mode (qualitative attribute) of all known
values of that attribute. Replacing all missing records with a
single value distorts the input data distribution [9, 22].

Hot-deck/Cold-deck Imputation [9, 21]: Given an incom-
plete pattern, Hot-Deck Imputation (HDI) replaces the miss-
ing data with the values from the input vector that is closest
in terms of the attributes that are known in both patterns.
This method attempts to preserve the distribution by substi-
tuting different observed values for each missing item. An-
other possibility is the Cold-Deck Imputation (CDI) method,
which is similar to hot deck but the data source must be other
than the current dataset. For example, in a survey context,
the external source can be a previous realization of the same
survey.

Regression imputation: This method uses multiple linear
regression to obtain estimates of the missing values. It is
applied by estimating a regression equation for each vari-
able, using the others as predictors. This solves the problems
concerning variance and covariance raised by the previous
method but leads to polarization of all the variables if they
are not linked in a linear fashion. Possible errors are due to
the insertion of highly correlated predictors to estimate the
variables. The advantage of this method is that existing re-
lationships between the variables can be used to calculate

missing data, but it is rarely used as it amplifies the correla-
tion between variables [18, 44, 56].

Expectation Maximization Estimation (EME): The algo-
rithm can handle parameter estimation in the presence of
missing data, based on Expectation-Maximization (EM) al-
gorithm proposed by Dempster, Laird and Rubin. These
methods are generally superior to case deletion methods, be-
cause they utilize all the observed data. However, they suffer
from a strict assumption of a model distribution for the vari-
ables, such as a multivariate normal model, which has a high
sensitivity to outliers [17, 24].

Machine-learning-based imputation: It acquires the fea-
tures of interested unknown data by behavior evolution after
sample data processed. The essence is to automatically learn
sample for complicated pattern cognition and intelligently
predict the missing values. The methods mainly include de-
cision tree based imputation, association rules based impu-
tation and clustering-based imputation [39, 43, 55].

Multiple imputation: Several, usually likelihood, ordered
choices for imputing the missing value are computed. Each
of the two or more resulting complete data sets is then an-
alyzed using standard complete-data methods. All the anal-
ysis becomes combined to reflect both the inter-imputation
variability and intra-imputation variability [30, 40, 46].

2.2.4 State of the art for missing data imputation

Historically, people have relied on diverse ad hoc techniques
to deal with missing data. These related methodologies have
accomplished substantial and rapid developments during the
last decades. Baraldi A. and Enders C. [5] made a com-
parison of the conventional literatures with the most recent
methodological researches. They pointed out that the tra-
ditional techniques could only work in some limited cir-
cumstances with strict assumptions proposed by Little and
Rubin [35]. Magnani [38] also investigated the main miss-
ing data techniques, including conventional methods, global
imputation, local imputation, parameter estimation and di-
rect management of missing data. They tried to highlight
the advantages and disadvantages for all kinds of missing
data mechanisms. Clearly, the major problem of these tech-
niques is under strong model assumptions. Chen and Chen
[11] developed an estimating null value method, where a
fuzzy similarity matrix is used to represent fuzzy relations,
and the method is used to deal with one missing value in
an attribute. The K Nearest Neighbors (KNN) [8, 22] is an-
other prevailing means to explore missing data completion,
such as Sequential KNN (SKNN) and Iterative KNN (IKNN).
Li D. et al. [33] represented the missing data as intervals
which were clustered by a nearest-neighbor-intervals-based
Fuzzy C-Means (FCM) resulting in interval cluster proto-
types that reflect both uncertainty and the shape of clusters.
García-Laencina, P.J. et al. [22] established a new KNN
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variant that selects the k nearest cases considering the rel-
evance between the input and target attribute to classify and
impute missing data using mutual-information-based dis-
tance metric. Bose S. et al. [8] invented a local interpola-
tion based imputation method which each time generates
a similarity sub-matrix about a missing position in a tar-
get gene and interpolate the missing data rather than us-
ing all genes and samples. Soft computing techniques were
also introduced to seek for the solutions. García, J.C.F. et
al. [23] presented a genetic algorithm taking advantages of
the flexibility and non-linear capability and got successful
results even without conditional information. Huang and
Lee [27] employed a gray-based nearest neighbor method
to handle the missing data problem. The gray association
analysis is employed to determine the nearest neighbors of
an instance with missing values. And those unknown val-
ues are inferred by the known attribute values from these
nearest neighbors. Chen and Huang [12] used the weighted
fuzzy rules to estimate null values in relational database. Di
Nuovo, A.G. [15] made the comparisons among four solu-
tions of FCM in the psychological research environment.
The result revealed that the FCM based on Optimal Comple-
tion Strategy (FCMOCS) lead to effective data imputation
instead of deleting elements with missing values. The theo-
retical underpinnings of multi-imputation are Bayesian [52].
Hruschka Jr. et al. [26] used Bayesian networks to fulfill
missing values in a hybrid model, which applies the cluster-
ing genetic algorithm in objects without missing values and
generates Bayesian networks to substitute the missing val-
ues. Predictive Mean Matching (PMM) [10, 16] is to fill in
the blanks based on the combined residuals, with the resid-
ual value forecasts to reflect the uncertainty. The distribu-
tion of residuals can be either normal or non-normal. Yet the
random error term is often difficult to determine. Propen-
sity Score (PS) [37, 45] is a particular processing of con-
ditional probability as the observed covariates in a provided
time-scale. Each parametric value with missing scores owns
a tendency to imply the probability of lost observations. The
observations were categorized into groups according to the
trends scores and consequently applied to each group to
predict the approximate Bayesian bootstrap. Markov Chain
Monte Carlo (MCMC) [2, 7] is another kind of Bayesian
inference that it explores the posterior distribution. Zhang
C. et al. [53] generalized the random regression estimation
with a method named “Clustering-based Random Imputa-
tion (CRI)”, which fills the unknown values with those plau-
sible ones generated from the same cluster using a kernel
based random method after splitting the raw data into com-
plete and incomplete sets. Clustering-based Multiple Impu-
tation (CMI) [58] was designed to utilize the kernel func-
tion nonparametric random imputation to make inference
for the missing data after k-means clustering. Zhang S. et al.
[56] utilized the information within the incomplete instances

since the second imputation iteration. The Non-Parametric
Iterative Imputation (NIIA) is an improvement of the classic
multiple imputation, which is based on kernel function. The
experimental results on UCI datasets unfolded that the NIIA
could easily capture the distribution of a dataset even when
there is no prior knowledge of the datasets.

3 The MIGEC algorithm

The global procedure of the MIGEC algorithm is schema-
tized in Fig. 1. And each of the key components is detailed
in the following subsections.

Our method pursues to make full use of the uncorrupt in-
formation at instance level. For this reason, the items from
the raw data set are divided into two disjoint subsets, namely
the complete dataset and the incomplete dataset. It is ex-
pected to minimize the negative impact due to the informa-
tion loss of missing values by the way of separation. On one
hand, the objects of the complete set constitute a number of
clusters via FCM. On the other hand, the items in the in-
complete set are reordered according to the missing severity
from high to low. That is, the specific record with the least
missing parametric values is firstly allocated to the closest
group quantified by the GST-based distance metric. Next,
each missing attributive value of the record is estimated by
the proposed multiple imputation (including the initial and
successive stages). Then the imputed item is included into
the complete set along with excluding the original copy from
the incomplete set. And the next element in the rearranged
incomplete data set repeats the similar solution until no more
elements exist in that set. The strategy ensures that all the
missing-valued instances could be processed through utiliz-
ing the known information as much as possible in the most
similar region.

3.1 The clustering strategy

Clustering divides target elements into classes or clusters
so that items in the same class are as similar as possible,
and items in different classes are as dissimilar as possible.
This is important because it helps to categorize the raw sam-
ples into groups with high level of intra-cohesion and inter-
separation. In hard clustering (such as k-means [1]), data
is identified into distinct clusters, where each item precisely
belongs to one cluster. Soft clustering ensures data elements,
which gain a set of membership levels, belong to more than
one cluster, though. Moreover, the soft clustering has been
successfully applied to a variety of domains with variants.

The specific clustering schema utilizes the standard
FCM [6, 25], which aims to minimize the following ob-
jective function with respect to fuzzy memberships U(r) =
[u(r)

ij ] and cluster centroids C(r) = c
(r)
j : J =
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Fig. 1 The flowchart of the
MIGEC algorithm

∑G
j=1

∑M
i=1(u

(r)
ij )sd(xi, c

(r)
j ). In these expressions, r is the

ordinal number of the iterations with xk and c
(r)
j respectively

denoting the kth complete data instance and the j th cluster,
while d(·, ·) is the distance metric between two instances
and u

(r)
ij is the degree of membership that the ith instance

is subordinate to the j th cluster under the “fuzzier” s, as G

defines the total number of clusters and M represents the
number of data instances.

The FCM can be summarized in 4 steps:

Step 1. Randomly initialize the matrix U (0), which satisfies
∑G

j=1 u
(0)
ij = 1; i = 1,2, . . . ,M

Step 2. From the r th iteration (r > 0), calculate the cen-
troids C(r):

c
(r)
j =

∑N
i=1 u

(r)
ij xi

∑N
i=1 u

(r)
ij

(1)

Step 3. Update the membership matrix U(r):

u
(r)
ij =

G∑

g=1

[
d(xi, c

(r)
j )

d(xi, c
(r)
g )

]− 2
s−1

(2)

Step 4. Check whether the following STOP conditions are
satisfied. If not, it returns to Step 2, otherwise the
iterative procedure immediately ends with formed
clusters.
∥
∥U(r) − U(r−1)

∥
∥ < ε; ε > 0

or r accumulatively reaches the predefined num-
ber R.

3.2 The classification of incomplete instances

GST is established by Deng [13, 14], combined with Gray
Control Theory. Both of the two branches adapt to the sit-
uation where partial information is difficult to acquire as
well as information stays extensional explicit or intensional
implicit. For GST, the concept of Gray Relational Analysis
(GRA) remains crucial, as it includes Gray Relational Co-
efficient (GRC) and Gray Relational Grade (GRG). GRA is
used to scale the influence of a compared series on the refer-
ence series in the gray space without prior assumption about
the distribution type. Furthermore, it could generate the sat-
isfactory outcome among target objects even if the amount
is small or with great variability. Thus, the correlation can
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be regarded as a new distance metric, for smaller distance
indicates strong influence.

Two steps for distance calculation are needed in a missing
environment:

Step 1. The processing of initialization is indispensible in
order to map the original data into a particular interval and
eliminate the outliers. Then GRC is formulated by (3):

GRC
(
xmis
k , ci

)

= mini minp |xmis
kp

− cip| + ζ maxi maxp |xmis
kp

− cip|
|xmis

kp
− cip| + ζ maxi maxp |xmis

kp
− cip| ,

p = 1,2, . . . ,N, 0 ≤ ζ ≤ 1 (3)

In (3), xmis
k is the kth incomplete instance and p is the

pth attribute with non-missing values, while ci denotes the
centroid of the ith cluster. In other words, the calculation
only happens when the pth attributive value of xmis

k exists.
Another important parameter is ζ ∈ (0,1], which is used
to control the level of differences with respect to the rela-
tional coefficient. When ζ = 0, the comparison environment
does not occur any more. On the contrary, ζ = 1 shows that
the comparison environment remains the unchanged status.
A proper value of ζ could favorably manage the impact of
the maximum value in the matrix. Nevertheless, no meth-
ods have been convinced about the optimum value selection
so far. Instead, researchers usually choose to empirically set
it as 0.5 or learn the optimized one from experimental re-
sults [28].

Step 2. Integrating each parameter’s GRC between an in-
complete instance and the reference, the GRG is calculated
in (4).

GRG
(
xmis
k , ci

) = 1

N

N∑

p=1

GRC
(
xmis
k , ci

)
,

i = 1,2, . . . ,M (4)

In terms of the maximal value of GRG, each incomplete
instance is individually incorporated into the closest cluster
[6, 54].

From the above descriptions, it should be pointed out that
the rationale of the GRA is to quantify the similarity and the
degree of compactness for the different items based on their
geometric relationship.

3.3 The entropy-based multiple imputation

Each time that one instance has been assigned to the most
proximate group, an internal multiple imputation strategic
approach starts as follows:

3.3.1 First imputation

The MMS is employed to initialize missing values in the
first imputation. The simple technique could perform well
only when the data is normally distributed. Yet, it is believed
that it could produce excellent performance provided that
the missing ones are initialized by MMS before the multi-
ple imputation, even without any prior knowledge about the
pattern of distribution [56].

3.3.2 Successive imputation

In the authors’ opinion, the imputation of one specific miss-
ing instance could benefit from all the other instances within
the particular cluster. As a result, a method involving all the
instances via entropy is proposed. In this context, the term
“entropy” refers to the Shannon’s entropy [29, 50], which
quantifies the expected value of the information contained
in a message. It states that a broad distribution represents
more uncertainty than does a sharply peaked one. And it is
used to determine the relative importance of each criterion
in the matrix as follows.

R = (rij )m×n associates with the data matrix of the clus-
ter, into which xmis

i ∈ Xic is attached. That is, it includes
m − 1 complete elements and one initialized element.

Step 1. Calculate the entropy value of the f th data in-
stance [29]:

If = −k ∗ hf ∗ lnpf ,

k = 1

lnm
, hf = ‖rf l − ril‖

∑m
i=1 ‖rf l − ril‖ , (l �= j) (5)

If measures the decision information that the f th param-
eter contains.

Step 2. Compute the coefficient of difference for the f th
instance:

tf = 1 − If , f = 1,2, . . . , n (6)

tf represents the inherent contrast intensity of the f th
parameter. The greater value of tf signifies the more signif-
icance of that parameter.

Step 3. Elicit the coefficient of weight for the f th copy:

wf = tf
∑n

f =1 tf
(7)

Step 4. Estimate the j th attributive missing value of xmis
i :

xmis
ij =

n∑

q=1,q �=j

wqxmis
iq (8)

If the estimated values of the individual instance vary be-
yond a tolerable interval compared with the calculated value
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of the last iteration or the number of iteration times does not
reach the threshold, the operations from (5) to (8) continue
iteratively. Otherwise, the iterative process mentioned above
terminates as the assessed value is considered as the imputed
one. Consequently, the imputed instance is aggregated into
the corresponding cluster afterwards with updated centroids.

3.4 The framework of the MIGEC algorithm

Input: Xraw, the n × m dimensional dataset with missing
values

G, the number of clusters
Output: Xfull, the n×m dimensional complete dataset with

imputed values

Xraw → Xobs,Xmis,

where Xraw = Xobs ∪ Xmis and ∅ = Xobs ∩ Xmis

FCM(Xobs,G) → C = {C1,C2, . . . ,CG} according to
Sect. 3.1
For each element xk in Xmis

Allocate xk to the closest cluster cq according to
Sect. 3.2

Complete the missing values of xk and according to
Sect. 3.3

Integrate the xk into corresponding cluster and update
cq according to Sect. 3.3

Xfull ←
G⋃

i=1

ci

4 Experimental evaluation

In this section, the assessment criteria are primarily ex-
plained in terms of the types of the attributes in Sect. 4.1.
Then the general effectiveness of our algorithmic approach
is presented by comparative experiments on two UCI
datasets [4], remaining superior to other methods in
Sect. 4.2.1. Section 4.2.2 shows that the technique also
outperforms these aforementioned approaches by applying
MIGEC to a real case analysis in two aerospace datasets.

4.1 The evaluation criterion

4.1.1 Missing data on numeric attributes

The Root Mean Square Error (RMSE) is used to evaluate the
predictive ability of the various data imputation algorithms
within which the attributes are quantitative:

RMSE =
√
√
√
√ 1

m

m∑

i=1

(ei − ẽi )2 (9)

where ei is the original value, ẽi is the predicted plausible
value and m is the total number of estimations. The larger
value of RMSE suggests the less accuracy that the algorithm
holds [58].

4.1.2 Missing data on nominal attributes

The performances of the algorithms for categorical attributes
are appraised by the Classification Accuracy (CA):

CA = 1

n

n∑

i=1

l(ECi, T Ci) (10)

where ECi and T Ci are the estimated and true class la-
bel for the ith missing value respectively with n indicat-
ing the total number of the missing values. The function
l(x, y) = 1 if x = y, otherwise l(x, y) = 0. For this reason,
the larger value of function l indicates the more correct im-
puted value [56].

4.2 Empirical result analysis

4.2.1 UCI datasets

Two UCI datasets, i.e. Wine and Thyroid Disease, are se-
lected to test the validity of the algorithms. Wine contains
178 instances and 13 attributes. The variable values are ei-
ther real or integer. Thyroid Disease includes 7200 instances
and 21 attributes. The multivariate factual data are either cat-
egorical or real.

Missing data generation To intrinsically examine the ef-
fectiveness and validity and ensure the systematic nature of
the research, we artificially generated a lack of data at four
distinct missing ratios, i.e. 5 %, 10 %, 15 % and 20 % under
three different modalities, namely MCAR, MAR, NMAR in
the complete datasets via the means that Twala did [51, 59].

Parametric values determination Before the comparative
demonstrations, it is requisite to select the optimum values
for fuzzier s and ζ . In the section, they are both determined
by practical testing in a specific interval (s ∈ (1,2), ζ ∈
(0,1)). Here, we choose a typical scenario “at MAR with
10 % missing rate and three clusters” and the variables pro-
cesses are displayed in Table 1. These parametric values un-
der the other circumstances could be found in a similar way.

From Table 1, it can be seen that the selection of the val-
ues for s and ζ could influence the precision of the imputa-
tion in a manner. The worst situation, which yields the max-
imum RMSE, usually occurs when approaching to the upper
and (or) lower boundaries of the intervals. And when s = 1.3
and ζ = 0.5, the RMSE declines to the least. So they are the
optimum parametric values respectively.
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Table 1 The impact on RMSE
in Wine at MAR with 10 %
missing rate by s and ζ

ζ s

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.1 0.190 0.188 0.183 0.186 0.185 0.183 0.191 0.185 0.191

0.2 0.186 0.185 0.181 0.188 0.192 0.193 0.186 0.189 0.181

0.3 0.179 0.181 0.178 0.179 0.182 0.186 0.183 0.177 0.178

0.4 0.182 0.175 0.173 0.175 0.185 0.187 0.192 0.188 0.189

0.5 0.187 0.174 0.172 0.177 0.184 0.183 0.196 0.201 0.199

0.6 0.188 0.178 0.174 0.176 0.179 0.181 0.196 0.220 0.213

0.7 0.195 0.181 0.177 0.179 0.187 0.185 0.199 0.213 0.220

0.8 0.197 0.192 0.188 0.195 0.198 0.208 0.205 0.202 0.211

0.9 0.201 0.196 0.198 0.203 0.199 0.207 0.213 0.218 0.222

Fig. 2 The performances of distance metrics on (a) Wine and (b) Thyroid Disease

Distance metric selection To clarify the different distance
metrics that influence the accuracy of the results, the test is
supposed to happen under MAR. Then the GST-based metric
is practically compared with both the Minkowski Distance
family (referring to Manhattan Distance (MD), Euclidean
Distance (ED) and Chebyshev Distance (CD)) and CC.

As seen in Fig. 2, we could assume that GST-based dis-
tance metric generates the least bias at different missing
rates comparing with both the Minkowski’s Lp and CC. Par-
ticularly, the discrimination is even more significant when
GST is contrasted with CD according to either RMSE or
CA.

Comparative experiments In consideration of making
comparisons as extensively as possible, we thoughtfully se-
lect seven other approaches, which are MMS, HDI, Gar-
cia’s KNN Imputation with Mutual Information [22] (de-
noted as KNNMI), FCMOCS [15], CRI [53], CMI [58] and
NIIA [56]. These methods involve both single methods (i.e.
MMS, HDI, KNNMI and FCMOCS) and multiple methods
(i.e. CRI, CMI and NIIA).

The experimental data provided in Table 2 and Table 3
illustrate some phenomena that we would like to discuss as
follows:

(a) Increasing proportion of missing instances deteriorates
the accuracy of the interpolation in either RMSE or CA.
It states that incomplete values negatively impact on the
completion, in other words, more available information
could promote the precision of the final predictions.

(b) For each individual method, the best result (namely, the
minimal value of RMSE or the maximal value of CA)
at the same missing ratio always appears when data are
NMAR distributed, whilst MCAR yields the opposite oc-
casions.

(c) Concerning imputation types, the performance of sin-
gle imputation techniques (MMS, HDI, KNNMI and FC-
MOCS) stays inferior to the multiple imputation ones
(NIIA, CMI, CRI and MIGEC). There are clear improve-
ments between the two categories of methods. There-
fore, imputing the absent value by multiple times can
significantly alleviate the biased effect of single imputa-
tion.

(d) It could be obviously observed that MMS does worst
while MIGEC does best, which has the average abso-
lute difference beyond 0.020 (measured by RMSE in Ta-
ble 2) or 0.030 (measured by CA in Table 3). Nonethe-
less, MIGEC amalgamates MMS into itself as the first
step. Hence, it is a feasible and proper option to take
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Table 2 RMSE on Wine under
different mechanism with
varying missing rates

Missing
Mechanism

Missing
Rate

Methods

MMS HDI KNNMI FCMOCS NIIA CMI CRI MIGEC

MCAR 5 % 0.201 0.197 0.191 0.188 0.179 0.176 0.172 0.174

10 % 0.203 0.202 0.195 0.189 0.182 0.180 0.179 0.179

15 % 0.205 0.203 0.196 0.192 0.186 0.181 0.181 0.182

20 % 0.213 0.205 0.198 0.195 0.188 0.184 0.188 0.189

MAR 5 % 0.192 0.188 0.186 0.185 0.172 0.171 0.171 0.169

10 % 0.194 0.196 0.194 0.189 0.176 0.177 0.173 0.172

15 % 0.204 0.206 0.202 0.192 0.178 0.182 0.185 0.184

20 % 0.21 0.208 0.204 0.198 0.185 0.188 0.183 0.187

NMAR 5 % 0.171 0.169 0.168 0.165 0.160 0.159 0.158 0.155

10 % 0.176 0.172 0.172 0.169 0.163 0.166 0.163 0.157

15 % 0.183 0.178 0.174 0.171 0.164 0.168 0.167 0.164

20 % 0.192 0.189 0.180 0.175 0.167 0.169 0.168 0.168

Table 3 CA on Thyroid
Disease under different
mechanism with varying
missing rates

Missing
Mechanism

Missing
Rate

Methods

MMS HDI KNNMI FCMOCS NIIA CMI CRI MIGEC

MCAR 5 % 0.852 0.856 0.864 0.868 0.875 0.876 0.879 0.881

10 % 0.849 0.852 0.863 0.866 0.873 0.874 0.873 0.879

15 % 0.846 0.848 0.862 0.863 0.872 0.871 0.868 0.875

20 % 0.841 0.842 0.860 0.861 0.870 0.870 0.863 0.865

MAR 5 % 0.877 0.883 0.889 0.892 0.887 0.889 0.895 0.901

10 % 0.873 0.882 0.887 0.887 0.884 0.886 0.892 0.889

15 % 0.867 0.880 0.886 0.885 0.881 0.883 0.883 0.885

20 % 0.861 0.873 0.882 0.883 0.872 0.880 0.872 0.874

NMAR 5 % 0.894 0.891 0.896 0.897 0.897 0.901 0.905 0.908

10 % 0.89 0.886 0.893 0.895 0.895 0.897 0.894 0.903

15 % 0.886 0.883 0.887 0.894 0.891 0.894 0.892 0.899

20 % 0.878 0.872 0.882 0.886 0.888 0.891 0.890 0.886

MMS to initialize the unknown data before the subse-
quent multiple completion.

(e) For the multiple imputation methodologies, though the
results generated from NIIA, CMI, CRI and MIGEC
overlaps slightly at some points, the three clustering-
based methods (CMI, CRI and MIGEC) outperform
the non-clustered one (NIIA). Hence, clustering could
actually help ameliorate the accuracy of the predic-
tion through narrowing the potential space of the target
value.

(f) For the clustering-based solutions, CMI works slightly
worse than those strictly split missing and non-missing
values before dividing them into a finite set of groups.
So it could be presumed that information loss can dis-
turb the formation of clustering.

According to factual values and the above analyzing,
MIGEC performs better than the other seven approaches un-
der any missingness mechanism no matter the data is nu-
meric or categorical, in general.

4.2.2 Aerospace datasets

Aerospace is a special but critical field that associates with
both nations’ military and residents’ daily life. In this pa-
per, it refers to the diverse procedures of spacecrafts. Like a
great quantity of other businesses or industries, aerospace
analysis confronts the data quality problem as well. The
specific issue derives from numerous facets such as diffi-
culties in sensing the target objects restricted by the phys-
ical environment or in data acquisition because of au-
tonomous units’ regulations. The loss of information neg-
atively blocks further handling or analysis, for instance,
curve fitting and rules mining. Nonetheless, open-access
researches in aerospace data imputation remain hard to
achieve for its confidentiality and particularity. Thereupon,
we try our best to explore some of the known parts by
using the current accomplishments in other industries e.g.
medicine or biology for reference together with our afore-
mentioned MIGEC [32].
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Fig. 3 The RMSE influenced by (a) imputation times and (b) number of clusters on RCSF dataset

Fig. 4 The CA influenced by (a) imputation times and (b) number of clusters on SOMD dataset

To capture the result of the data imputation accurately, we
chose the complete data entries and artificially simulated the
missing situation according with Missing data generation.
In this part, the missingness is established under MAR at
missing rate 15 % on two datasets, as three imputation
methods in Parametric values determination (NIIA, CMI and
CRI) are selected as the competitors of MIGEC.

The Remote Controlling for Spacecraft Flying (RCSF)
dataset is comprised of the data produced by one particular
unmanned spaceship in real time condition when flying in
the outer space with remote controlling by the experts on
the ground. Due to the huge amount of the raw data, we just
extract the data produced within one minute. Subsequently,
the experiment is designed on the 953 records of 20 contin-
uous attributes.

When MIGEC is applied to RCSF dataset, the maximum
times of the iteration in all the clusters is 18 loops, which
is faster than NIIA’s 27 times, CMI’s 22 times and CRI’s 25
times of iterations respectively in Fig. 3(a). What is more,
the RMSE is slightly lower than in the other counterparts.

As versions of clustering principles, interrelationship be-
tween RMSE and the number of clusters in these tech-
niques should be discussed except the non-clustering NIIA.

In Fig. 3(b), it appears that when the whole data is agglom-
erated into 6 groups, the RMSE of MIGEC declines to the
minimum. Differently, CMI performs best with 5 clusters
while CRI requires 6 partitions.

The Spacecraft Overall Mechanical Design (SOMD)
dataset comprises the data related to the assembling and
fabrication of one specific model of manned spaceship. Both
the numeric and categorical values are mixed in the dataset.
The total number of instances is beyond 300,000. 1,221 el-
ements with the 30 variables belonging to a certain step of
the entire manufacturing process are chosen.

It is easy to perceive that the three algorithms advance
CA as the number of iteration aggrandizes until the conver-
gence emerges in Fig. 4(a). Concurrently, MIGEC attains the
best CA in the minimum time of the repetitions comparing
with the other opponents on SOMD.

The CA fluctuates irregularly in the interval [0.83, 0.88],
when the amount of clusters rises. And MIGEC approaches
to the optimized CA when 11 clusters exist in Fig. 4(b).
Generally, CMI and CRI undulate in an inferior range of CA

to MIGEC, which demands the different optimal number of
clusters respectively.
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5 Conclusion

Revisiting various missing data analysis techniques, this
study advocates the clustering-based imputation via par-
titioning original data into two non-overlapped subsets,
i.e. the missing-valued subsets and the complete-valued
subsets. Then the iterative imputation is combined within
the categorized groups after each missing-valued entry has
been merged into the most homogeneous cluster through
GST-based distance metric. The experiments demonstrate
that MIGEC operates better than the existing methods, like
MMS, HDI, KNNMI, FCMOCS, CMI and CRI, in terms of
the RMSE (for continuous missing attributes), and the CA

(for discrete missing attributes) at different missing ratios
in two canonical UCI datasets. In particular, MIGEC has
been successfully applied into the aerospace datasets. The
RMSE and CA affected by the iteration times indicate that
MIGEC converges more rapidly than the other iterative im-
putation techniques with better accuracy in the real applica-
tion environment. The ongoing research focuses on how to
infer and impute missing values more effectively when the
dimensionality becomes high.
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