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Abstract Container terminals are open systems that gen-
erally serve as a transshipment zone between vessels and
land vehicles. These terminals carry out a large number of
planning and scheduling tasks. In this paper, we consider the
problem of scheduling a number of incoming vessels by as-
signing a berthing position, a berthing time, and a number of
Quay Cranes to each vessel. This problem is known as the
Berth Allocation Problem and the Quay Crane Assignment
Problem. Holds of vessels are also managed in order to ob-
tain a more realistic approach. Our aim is to minimize the
total waiting time elapsed to serve all these vessels. In this
paper, we deal with the above problems and propose an in-
novative metaheuristic approach. The results are compared
against other allocation methods.

Keywords Planning · Scheduling · Optimization methods ·
Algorithms · Metaheuristic · GRASP

1 Introduction

Container terminals generally serve as a transshipment zone
between ships and land vehicles (trains or trucks). In [12], it
is shown how this transshipment market has grown rapidly.
Between 1990 and 2008, container traffic grew from 28.7
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million TEU (Twenty-foot Equivalent Unit) to 152.0 mil-
lion TEU, an increase of about 430 %. This corresponds to
an average annual compound growth of 9.5 %. In the same
period, container throughput went from 88 million TEU to
530 million TEU, an increase of 500 %, which is equiva-
lent to an average annual compound growth of 10.5 %. The
surge of both container traffic and throughput is linked with
the growth of international trade as well as to the adoption of
containerization as the privileged vector for maritime ship-
ping and inland transportation [5]. However, the Global Eco-
nomic Crisis of 2008 has had a negative impact over the con-
tainer traffic [25].

The evolution of the container traffic has motivated the
artificial intelligence research community to develop opti-
mization techniques to manage combinatorial problems re-
lated to seaport terminals efficiently. These problems oc-
cur in transportation [4, 34] as well as within the container
terminals. Container terminals are open systems where ter-
minal operators must face combinatorial optimization prob-
lems to ensure the fast loading and unloading of the vessels.
In container terminals, there are three distinguishable areas
(see Fig. 1): the berth area, where vessels are berthed for
service; the storage yard, where containers are temporarily
stored to be exported or imported; and the terminal receipt
and delivery gate area, which connects the container termi-
nal to the hinterland. Each one presents different planning
and scheduling problems to be optimized [15, 32, 33]. For
example, berth allocation, quay crane assignment, stowage
planning, and quay crane scheduling must be managed in
the berthing area; the container stacking problem, yard crane
scheduling, and horizontal transport operations must be car-
ried out in the yard area; and the hinterland operations must
be solved in the land side area. Figure 2 shows the main
planning and scheduling problems that must be managed in
a container terminal [37].
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We focus our attention on the Berth Allocation Problem
(BAP) and the Quay Crane Assignment Problem (QCAP)
taking into account the holds of each vessel. The former
is a well-known, NP-hard combinatorial optimization prob-
lem [22], which consists of assigning incoming vessels to
berthing positions. The latter deals with assigning a certain
number of QCs to each vessel such that all required move-
ments of containers can be fulfilled.

Containers to be loaded/unloaded in the vessel are stored
on the deck as well as in the holds. The holds of the ves-
sels are structures that speed up both loading and unloading
and keep the containers secure while at sea. Once a vessel
arrives at the port, it waits at the roadstead until it has per-
mission to moor at the quay. The quay is a platform that pro-
trudes into the water to facilitate the loading and unloading
of cargo. The locations where mooring can take place are
called berths. These are equipped with giant cranes, called
pier or Quay Cranes (QCs), that are used to load and unload
containers, which are transferred to and from the yard by a
fleet of vehicles. In a transshipment terminal, the yard al-
lows temporary storage before containers are transferred to
another ship or to another transportation mode (e.g., rail or
road).

Fig. 1 Container terminal in Valencia

Managers at container terminals are confronted with two
interrelated decisions: where and when the vessels should
moor. First, they have to take into account physical restric-
tions such as length or draft, and they also have priorities
to take into account, as well as other aspects to minimize
both port and user costs, which are usually opposites. Gen-
erally, this process is solved manually. It is usually solved
by means of a policy to serve the first vessel that arrives
(FCFS). Figure 3 shows an example of the graphical space-
time representation of a berth plan with 6 vessels. Each rect-
angle represents a vessel with its handling time and length.
For instance, vessel 4 must moor after vessels 1 and 2 depart.

The overall collaboration goal of our group at the Univer-
sitat Politècnica de València (UPV), the Valencia Port Foun-
dation, and the maritime container terminal MSC (Mediter-
ranean Shipping Company S.A.) is to offer assistance to
help in planning and scheduling tasks such as allocating
spaces to outbound containers [28, 29], to berth incoming
vessels [31], to identify bottlenecks, to determine the con-
sequences of changes [30], to provide support in the reso-
lution of incidences, to provide alternative berthing plans,
etc. Researchers commonly develop mathematical or statis-
tical models that represent real-world systems. Nevertheless,
these systems are very complex and composed of different
problems that sometimes have opposing goals. These prob-
lems must be simplified with several assumptions in order to

Fig. 3 A berth plan with 6 vessels

Fig. 2 Planning and scheduling
problems in container terminals
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Fig. 4 Simulator developed
within the Masport Project [36]

Fig. 5 A classification scheme
for BAP formulation [2]

be appropriately modeled. Mathematical models are neces-
sary but exact optimization methods algorithms cannot ob-
tain the optimal solution in a reasonable time. Thus, tech-
niques from the artificial intelligence field (such as local
search or metaheuristics) must be applied in order to solve
these combinatorial optimization problems efficiently and
get near-optimal solutions in an efficient way [1]. Our ar-
tificial intelligence techniques are included within a simula-
tor that is able to represent a given state of the terminal and
simulate the behavior in different parts of the terminal (see
Fig. 4). In this paper, a metaheuristic has been developed to
schedule the incoming vessels and has been compared with
several real world rules, commonly used by expert terminal
operators.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a review of the literature about the BAP
and QCAP and different techniques to manage them. Sec-
tion 3 presents the problem definition. Section 4 explains the
whole process of mooring one vessel and Sect. 5 describes

the developed metaheuristic technique. Section 6 presents
the computational results, and Sect. 7 summarizes our con-
clusions.

2 Literature review

In [35], the authors present a complete comparative study
about different solutions for the BAP according to their ef-
ficiency in addressing key operational and tactical questions
relating to vessel service. They also study the relevance and
applicability of the solutions to the different strategies and
contractual service arrangements between terminal opera-
tors and shipping lines.

To show similarities and differences in the existing mod-
els for berth allocation, a classification scheme is presented
in [2] (see Fig. 5). They classify the BAP according to four
attributes. The spatial attribute concerns the berth layout and
water depth restrictions. The temporal attribute describes the
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temporal constraints for the service process of vessels. The
handling time attribute determines the way that vessel han-
dling times are considered in the problem. The fourth at-
tribute defines the performance measure to reflect different
service quality criteria. The most important are the crite-
ria that minimize the waiting time (wait) and the handling
time (hand) of a vessel. Both these measures aim at pro-
viding a competitive service to vessel operators. If both ob-
jectives are pursued (i.e., wait and hand are set), the port
stay time of vessels is minimized. Other measures are fo-
cused on minimizing the completion times of vessels. Thus,
by using the above classification scheme, a certain type of
BAP is described by a selection of values for each one of
the attributes. For instance, given a problem where the quay
is assumed to be a continuous line (cont). The arrival times
restrict the earliest berthing of vessels (dyn), and the han-
dling times depend on the berthing position of the vessel
(pos). The objective is to minimize the sum of the wait-
ing time (wait) and the handling time (hand). According to
the scheme proposed by [2], this problem is classified by
cont|dyn|pos|Σ(wait + hand).

One of the early works that appeared in the literature
developed a heuristic algorithm by considering a First-
Come-First-Served (FCFS) rule [17]. However, some au-
thors maintain the idea that for high port throughput, op-
timal vessel-to-berth assignments should be found without
considering the FCFS policy [13]. Therefore, in this paper,
we use the FCFS policy in order to get an upper bound. Nev-
ertheless, this approach may result in some vessels’ dissat-
isfaction regarding the order of service.

Several heuristic and metaheuristic approaches have been
developed to solve different problems in container terminals.
In [2], the authors give a comprehensive survey of berth al-
location and quay crane assignment formulations from the
literature. Some authors outline approaches more or less
informally while others provide precise optimization mod-
els. More than 40 formulations that are distributed among
discrete problems, continuous problems, and hybrid prob-
lems are presented. These problems have been mostly con-
sidered separately and with an interest mainly focused on
BAP [3, 6, 11].

In the integration of both problems, BAP+QCAP, differ-
ent approaches have been developed considering a discrete
quay line, specially genetic algorithms. In [14], a solution
based on genetic algorithms is presented for the integration
of BAP with the QCAP with the objective of minimizing the
total service time. A hybrid genetic algorithm is also pre-
sented in [21] where they minimize the sum of the handling
time, the waiting time, and the delay time for every ship. In
this sense, [10] presents the integration through two mixed
integer programming formulations including a tabu search
method (adapted from [6]), with the objective of minimiz-
ing the yard-related housekeeping costs that are generated
by the flows of containers exchanged between vessels.

The integration of BAP+QCAP when the quay line is
continuous was first introduced in [26] with a method of
two phases. In the first phase, a Lagrangian relaxation based
heuristic is used to obtain the berthing position and the
number of QCs, and the second phase applies a dynamic
programming to obtain the detailed schedule of the QCs.
In [24], two different heuristics are presented to solve this
model: squeaky wheel optimization and tabu search that
show significant results compared with solutions reported
by [26].

Focusing only on the holds of one vessel, a genetic al-
gorithm able to solve the quay crane scheduling problem
is presented in [19] by determining a handling sequence of
holds for the quay cranes assigned to a vessel. Furthermore,
in [19], the NP-completeness of this problem for one vessel
was proved. The integration of BAP+QCAP problems con-
sidering the holds of vessels was first studied by [7] and [27],
but they did not consider the interference among QCs. There
are similar problems solved by MILP approaches [23]. Re-
sults obtained by these exact approaches show that this prob-
lems needs to be decomposed into two phases and they can-
not solve realistic problems of medium size in a reasonable
time.

Our approach deals with the integration of these two
problems (BAP+QCAP) through a metaheuristic called
Greedy Randomized Adaptive Search Procedures (GRASP)
[8], taking into account the requirements of container op-
erators of MSC (Mediterranean Shipping Company S.A.).
This metaheuristic is able to find optimized solutions within
an acceptable computation time in a very efficient way and
it has been applied in a wide range of combinatorial op-
timization problems [9]. Moreover, several GRASP-based
approaches have been developed and applied in different
container terminal problems [16, 20].

Following the classification scheme in [2], our approach
is represented by BAP, QCAP; and specifically, the BAP is
defined as by cont|dyn|QCAP|Σwait. Thus, we focused on
the following attributes and performance measure:

– Spatial attribute: we assume that the quay is a continuous
line (cont), so there is no partitioning of the quay and the
vessel can berth at arbitrary positions within the bound-
aries of the quay. It must be taken into account that for
a continuous layout, berth planning is more complicated
than for a discrete layout, but it utilizes quay spaces bet-
ter [2].

– Temporal attribute: we assume dynamic problems (dyn)
where arrival times restrict the earliest berthing times.
Since fixed arrival times are given for the vessels, vessels
cannot berth before their expected arrival time.

– Handling time attribute: we assume that the handling time
of a vessel depends on the assignment of QCs (QCAP).

– Performance measure: Our objective is to minimize the
sum of the waiting time (wait) of all the scheduled vessels
to be served.
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This paper presents two approaches for modelling QCAP:

– Static: QCs are assigned to one vessel i and they cannot
move to another vessel j until the vessel i leaves the con-
tainer terminal.

– Dynamic: QCs are assigned to the holds of the vessel.
Thus, once all the movements of one hold are done, the
QC can move to another location (another hold in the
same or other vessel).

Our approach presents a dynamic and continuous berth-
ing model that takes into account the QCs and the holds of
the vessels in order to obtain the handling time. Most of
the studies presented above are focused on discrete models
without managing the holds of the vessels. Unlike the mod-
els presented above having regard to the holds, our approach
manages the constraints related to the cranes. Furthermore,
our approach differs from crane scheduling problems in that
several vessels with different arrival times are the input data.

In the rest of the paper, we specify the above problems
(BAP+QCAP, including management of holds) and propose
an innovative GRASP-based metaheuristic approach. The
results obtained with several scenarios are compared to other
allocation methods, contrasting the usefulness of our pro-
posal by efficiently obtaining optimized solutions to these
problems.

3 Problem description

The objective in BAP+QCAP is to obtain an optimal distri-
bution of the docks and cranes for vessels waiting to berth.
An optimal distribution that takes into account specific con-
straints (length and depth of vessels, ensuring a correct or-
der for vessels that exchange containers, ensuring departure
times, etc.) and optimization criteria (priorities, minimiza-
tion of waiting and staying times of vessels, satisfaction with
the order of berthing, minimization of crane moves, degree
of deviation from a pre-determined service priority, etc.).
When the quay is discrete (it is divided in berths), the BAP
could be considered as a special kind of machine scheduling
problem, where the job and machine are the vessel and the
berth, respectively. In machine scheduling, only the starting
times of jobs are determined, but in continuous BAPs the
berthing positions are also necessary for the output sched-
ule.

In the following, we introduce the notation used for each
vessel:

V The set of incoming vessels. Each vessel is denoted
as Vi ∈ V .

QC Available QCs in the container terminal. These QCs
are identical in terms of the productivity of load-
ing/unloading containers. The parameters of QCs
are:

movsQC Number of QC moves per time unit.
HHQC Time units required to reallocate the QC

to another hold from the same vessel
(Hold-to-Hold movement).

VVQC Time units required to move the QC to
another vessel (Vessel-to-Vessel move-
ment).

L Total length of the berth in the container terminal.
a(Vi) Arrival time of the vessel Vi at port.
l(Vi) Length of Vi . There is a safe distance

(safeLength) between two moored vessels: we
assume 5 % of the length of the vessels.

pr(Vi) Vessel priority.
h(Vi) Number of holds in Vi . All the holds of the vessels

have the same width.
cj (Vi) Number of required movements to load or unload

containers from/into the hold j , 1 ≤ j ≤ h(Vi). The
handling time of each hold j (1 ≤ j ≤ h(Vi)) is

given by:
cj (Vi)

movsQC .
m(Vi) Mooring time of Vi .
p(Vi) Berthing position where Vi will moor.
q(Vi) Number of assigned QCs to Vi . The maximum

number of assigned QCs by vessel depends on its
length since a safety distance is required between
two contiguous QCs (safeQC) and the maximum
number of QCs that the container terminal allows
per vessel (maxQC).

stj (Vi) Starting time of QC j at Vessel Vi , 1 ≤ j ≤ q(Vi).
Only one QC can be assigned to one hold.

htj (Vi) Handling time of the QC j , 1 ≤ j ≤ q(Vi).
hj (Vi) Set of handling times of each hold assigned to the

QC j , 1 ≤ j ≤ q(Vi).
d(Vi) Departure time of Vi , which depends on m(Vi),

c(Vi), and q(Vi).
w(Vi) Waiting time of Vi from its arrival at port until it

moors: w(Vi) = m(Vi) − a(Vi).

To simplify the problem, we assume that mooring and
unmooring does not consume time, simultaneous berthing is
allowed, and every vessel has a draft lower than or equal to
the water-depth of the berth. Furthermore, once a QC starts
to work in a hold, it must complete it without any pause or
shift (non-preemptive tasks). When a QC finishes the move-
ments of one hold, it can move to another hold from the
same vessel or to another vessel.

The goal of the BAP+QCAP is to allocate each vessel
according to the existing constraints and to minimize the to-
tal weighted waiting time of all the vessels:

Tw =
∑

Vi∈V

[[
w(Vi)

]γ × pr(Vi)
]

(1)

The parameter γ (γ ≥ 1) prevents lower priority vessels
from being systematically delayed. Thus, the component of
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Table 1 Example of the γ parameter over two different schedules

Schedule pr(V1) pr(V2) w(V1) w(V2) Tw (γ = 1) Tw (γ = 1.2)

A 6 2 150 500 1900 5917

B 6 2 220 310 1940 5835

each vessel in the optimization function is not exactly lin-
ear with its waiting time (w(Vi)). In this way, vessels with
large waiting times (w(Vi)) will have a proper weighting in
the objective function, although they have low priority val-
ues (p(Vi)). For instance, let A and B be two alternative
schedules for two vessels V1 and V2 with pr(V1) = 6 and
pr(V2) = 2, respectively (see Table 1). In the schedule A,
the waiting time of V2 (w(V2) = 500) is much larger than V1

(w(V1) = 150); whereas the waiting times in schedule B are
closer to each other (w(V1) = 220;w(V2) = 310). Table 1
also shows the values of the objective functions with respect
to the γ value for both schedules. If γ is not considered in
the objective function (γ = 1), it is preferable to chose the
schedule A (Tw = 1900) although V2 must wait 500 time
units. However, with a γ value greater than 1 (γ = 1.2), the
schedule B, which balances the waiting times of V1 and V2,
is chosen as the best schedule (Tw = 5835) avoiding that the
vessel with the lowest priority (V2) is delayed.

There are two other key factors within container ter-
minals: the ratio of berth usage (Bu), and the quay crane
throughput (Tqc). Berth usage is obtained by Eq. (4). It re-
flects the area held by vessels with respect to the maximum
area. The maximum area depends on the length of the quay
(L) and the mooring time of the first vessel calculated by (2)
and the departure time of the last vessel calculated by (3).

firstArrival = min
Vi∈V

{
m(Vi)

}
(2)

lastDeparture = max
Vi∈V

{
d(Vi)

}
(3)

Thus, the ratio of the berth usage (Bu) is:

Bu =
∑

Vi∈V [l(Vi) × (d(Vi) − m(Vi))]
L × (lastDeparture − firstArrival)

(4)

The QC throughput factor (Tqc) depends on the model
for the QCAP under consideration. The static QCAP model
calculates Tqc by means of (5), taking into consideration that
one QC remains at the same vessel until it departs. Thereby,
all the QCs are assigned to vessel Vi up to its departure time
d(Vi) even though these QCs are not moving any container
from/to the vessel:

Static QCAP: Tqc =
∑

Vi∈V

[
q(Vi) × (

d(Vi) − m(Vi)
)]

(5)

Dynamic QCAP: Tqc =
∑

Vi∈V

∑

1≤j≤q(Vi )

htj (Vi) (6)

Fig. 6 Differences between static and dynamic models for calculating
Tqc for QCAP

However, the dynamic QCAP model uses (6). This model
considers that once one QC finishes its task at one hold, it
can move to another location. Therefore, the time that each
QC is busy is just its handling time.

Figure 6 shows an example of a vessel containing 5 holds
with a different number of containers each, thus with dif-
ferent handling times for each hold. In this example, a QC
has been allocated to each hold. The shaded rectangle indi-
cates the time a QC works on a hold and the arrow represents
the time that the QC is assigned to the vessel. In the static
QCAP model (see Fig. 6(a)), they stay until the vessel de-
parts, while the dynamic QCAP model allows to move one
QC to another hold or vessel before the vessel departs (see
Fig. 6(b)).

By taking into consideration the holds (h(Vi)) of each
vessel, our model makes better use of the resources (QCs
and berth) as shown in Fig. 7. In this figure, a schedule of 5
vessels is shown. Each dashed rectangle represents a vessel
with its id number and each bold rectangle represents the
time that one QC is working on a hold.

Figure 7(a) shows the static QCAP model. Thus, when
one QC is assigned to one vessel i, this QC cannot be moved
to another vessel j until vessel i leaves the container termi-
nal. Figure 7(b) shows the dynamic QCAP model and intro-
duces the concept of holds. Once a QC finishes a task that is
related to one hold in the vessel i, it could keep working on
another hold of the same vessel or move to another vessel j .
Thus, the dynamic model obtains the following: a departure
time of the last vessel (TLD) that is earlier than the static
model (from 12 to 9 time units); a waiting time (Tw) that is
lower than the static one (from 26 to 13 time units). Thus,
we can see that the berth usage ratio is increased by 20 %.
In other words, with dynamic QCAP model more QCs are
used per time unit than with static QCAP, and the total time
that the QCs are tied to one vessel (Tqc) is also reduced.

4 Mooring one vessel

Once the problem has been defined, the whole process to
moor one vessel is presented. The MoorVessel function (Al-
gorithm 1) moors one vessel Vi as early as possible, starting
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Fig. 7 Plans obtained with and
without the holds

Fig. 8 Execution order of the
presented algorithms

at its arrival time (a(Vi)). This function checks whether Vi

can moor at time t or when a QC has completed its task
(steps 11 to 18). The data required for this function is the
vessel to allocate resources (Vi ) and the set of moored ves-
sels scheduled previously by the algorithm (Vm). There are
three steps in this mooring process (see Fig. 8):

1. To verify whether there are QCs available during the han-
dling time of Vi (Algorithm 2).

2. To make sure there is enough continuous length at the
berth to moor Vi .

3. To assign more QCs when it is possible (Algorithm 4).

The InsertVessel function (Algorithm 2) performs, if it is
possible, the steps needed to allocate one vessel at the given
time t . First, a quick check of the available quay length is
carried out in order to know if there would be enough space
to moor Vi (steps 2 to 5). Then, the maximum number of
QCs for Vi is calculated from its mooring time until its de-
parture (steps 6 to 34). This process starts assigning just

one QC and increases this number according to the available
QCs found during the vessel handling time (t, tf ). Available
QCs are obtained by counting the number of cranes used by
the other vessels (CranesWorking function) at their moor-
ing time and whenever one of their assigned QCs has com-
pleted its task. As we have mentioned above, in this paper,
we consider that each QC is assigned to just one hold; there-
fore initially, the holds of one vessel (h(Vi)) are distributed
among the different QCs by the HandlingTime function (Al-
gorithm 3). Finally, the berthing position is calculated by the
PositionBerth function, and, when it is possible, additional
QCs are assigned to Vi by the AddingQuayCranes function
(Algorithm 4).

The allocation of the holds of Vi to the different QCs
is done in two phases (Algorithm 3). Step 2 calculates the
time needed to complete all the movements of each hold.
Later, in steps 6–17, each hold is assigned to the given QCs
in descending order according to their handling times.
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Algorithm 1 MoorVessel function. Allocating exactly
one vessel in the berth
Input: Vi : vessel to moor; Vm: Vessels already moored;
Output: Vi : vessel with all the resources allocated;

1: if |Vm| = 0 then
2: // There is no other moored vessel
3: nQC := max(1,min(maxQC, � l(v)

safeQC�));
4: HandlingTime(Vi, nQC);
5: m(Vi) := a(Vi);
6: d(Vi) := m(Vi)+ max1≤j≤q(Vi )(stj (Vi)+htj (Vi));
7: q(Vi) := nQC;
8: p(Vi) := 0;
9: else

10: // There are other vessels. Moor at the earliest pos-
sible time

11: T ← {a(Vi)} ∪ {(stk(j) + htk(j)) | j ∈ Vm,1 ≤ k ≤
q(j) ∧ stk(j) + htk(j) > a(Vi)};

12: Sort(T ); // Sort in ascending order
13: for all tk ∈ T do
14: inst :=InsertVessel(Vi, tk + VVQC,Vm);
15: if inst then
16: break
17: end if
18: end for
19: end if
20: return Vi ;

After determining this first number of QCs, we must de-
termine if there is enough continuous length and assign a
berthing position. At this moment, the length of the safety
distance between two contiguous vessels is taken into ac-
count (safeLength). Every space between each two ves-
sels is examined and among all the possible positions, the
one chosen will be the closest to the ends of the berth. This
strategy is followed because if vessels are moored at these
positions, the incoming vessels will have more contiguous
available length each time that a vessel departs.

Then, if the vessel Vi has QCs and the length available
to get moored at time t , more QCs are assigned in order to
reduce the vessel service time. This process is carried out
by the AddingCranes function (Algorithm 4) and is based
on obtaining the period of time between (m(Vi), d(Vi)) in
which there is at least one available QC without reaching
the limit of QCs (maxQC) assigned to Vi . Once a period
(tj , tk) has been found, the AssignQCtoHold function (Al-
gorithm 5) searches among the holds assigned to QCs to de-
termine which hold H carried out by the QC k begins later
and can be completed in the given interval (start, end). The
selected hold H could be moved to the list of tasks of an al-
ready assigned QC to Vi (steps 19 to 27), or a new QC could
be assigned to Vi to work on this selected hold H (steps 28
to 47). In either case, if any QC becomes idle because it has

Algorithm 2 InsertVessel function. Allocating one
vessel in the berth at time t
Input: Vi : Vessel to allocate; t : Actual time; Vm: Vessels already

moored;
Output: A boolean indicating whether Vi could moor or not;

1: // Check the length available at the quay
2: Lavail ← L − (

∑
vj ∈Vm

l(vj ) | m(vj ) ≤ t ∧ d(vj ) > t);
3: if Lavail ≤ l(v) then
4: return False;
5: end if

6: cranes := −1; cranesm := −1;
7: repeat
8: nc := max(1, cranes);
9: HandlingTime(Vi , nc); // Handling time given the nc

QCs
10: tf := t + max(stj (Vi) + htj (Vi)), 1 ≤ j ≤ q(Vi);

11: // Vessels which coincide with Vi

12: W ← {v ∈ Vm | d(v) > t ∧ m(v) < tf };

13: // Find the maximum number of QCs available to be used
in the interval (t, tf )

14: cranesm := nc

15: cranes := max(1,min(maxQC, � l(Vi )
safeQC �));

16: QCu := ∑
∀v∈W CranesWorking(v, t);

17: cranes := min(cranes,QC − QCu);
18: for all i ∈ W do
19: if m(i) ≥ t then
20: QCu := ∑

∀v∈W CranesWorking(v,m(i));
21: cranes := min(cranes,QC − QCu);
22: end if
23: for j ← 1 to q(i) do
24: tq := stj (v) + htj (v);
25: if tq ≥ m(Vi) ∧ tq < d(Vi) then
26: QCu := ∑

∀v∈W CranesWorking(v, tq );
27: cranes := min(cranes,QC − QCu);
28: end if
29: end for
30: end for
31: if cranes ≤ 0 then
32: return False;
33: end if
34: until cranesm ≤ cranes; // Repeat until the number of avail-

able QCs does not change

35: // Assign the number of QCs and the mooring and departure
times

36: q(Vi) := cranesm;
37: m(Vi) := t; d(Vi) := tf ;

38: // Look for a berthing position for the vessel
39: insert := PositionBerth(Vi ,W);
40: if insert then
41: // Once Vi is scheduled, try to assign it more QCs
42: AddingCranes(Vi ,Vin);
43: end if
44: return insert ;
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Algorithm 3 HandlingTime function. Distribute the
holds among the available QCs
Input: Vi : Vessel to allocate; nQC: number of QCs;
Output: Vi with the holds allocated to the QCs;

1: // Calculate the handling time required of each hold

2: T ← { cj (Vi )

movsQC | 1 ≤ j ≤ h(Vi)};
3: Sort(T ); // Sort the values of T in descending order
4: q(Vi) := nQC;

5: // Allocate the holds with more containers to each QC
6: for j ← 1 to nQC do
7: stj (Vi) := m(Vi);
8: htj (Vi) := �Tj �;
9: hj (Vi) ← {�Tj�};

10: end for

11: // Do a greedy allocation for the rest of holds
12: for j ← nQC + 1 to h(Vi) do
13: // choose the QC which ends earlier
14: qm := argmin(stj (Vi) + htj (Vi), 1 ≤ j ≤ nQC);
15: hqm(Vi) ← hqm(Vi) ∪ {Tj };
16: htqm(Vi) := htqm(Vi) + �Tj � + HHQC;
17: end for

18: Sort QCs in descending order according to their finish
times

19: return Vi ;

no assigned holds (steps 23 or 32), it performs the tasks of
the last QC assigned to Vi , which then becomes available for
the other vessels.

Finally, if the vessel Vi cannot be moored at time t , the
whole process described above is repeated taking into con-
sideration another time (tk) to moor Vi (Algorithm 1). Each
time tk represents the moment in time that a QC finishes
working on the hold of another vessel.

5 A metaheuristic method for BAP+QCAP

For the BAP+QCAP problem addressed in this paper, we
developed different methods, which allow us to compare
their results. First, different rules R have been developed
following different criteria. Algorithm 6 shows the schema
to schedule all the incoming vessels according to a specific
rule R. Following the order given by the rule R, all vessels
are chosen one by one to be moored. Each scheduled vessel
is added to the set of moored vessels Vm. Generally, a vessel
can be allocated at time t when there is no vessel moored in
the berth or there is available contiguous quay length as well
as enough free QCs to be assigned.

Algorithm 4 AddingCranes function. Insert another QC
to Vi

Input: Vi : Vessel to insert QCs; Vm: Vessels already
moored;

Output: Vi : Vessel with QCs reallocated.

1: // Obtain the period of time (tj , tk) that at least there
is 1 available QC

2: repeat
3: changes:= 0;
4: // Set of vessels W which are moored at the same

time as Vi

5: W ← {v ∈ Vm | d(v) > a(Vi) ∧ m(v) < d(Vi)};

6: // T is the set of mooring and ending times of each
QC of W

7: T ← {m(v) | v ∈ W ∧ m(v) ≥ m(Vi)};
8: T ← T ∪{stj (v)+htj (v) | v ∈ W, 1 ≤ j ≤ q(v) ∧

(stj (v)+htj (v)) ≥ m(Vi) ∧ (stj (v)+htj (v)) < d(Vi)}

9: // Sort the set of time units T in ascending order
10: sort(T );
11: for all tj ∈ T do
12: if CranesWorking(Vi , tj ) < maxQC then
13: for all tk ∈ T | tk > tj do
14: Obtain the number of available QCs

(Qa) in the interval (tj , tk)

15: if Qa > 0 then
16: changes := changes +

AssignQCtoHold(Vi, Tj , tk);
17: else
18: // Continue with the next time unit tj
19: break;
20: end if
21: end for
22: end if
23: end for
24: until changes = 0; // This loop is repeated while there

is any change
25: return Vi ;

The rules R implemented for its application in Algo-
rithm 6 are:

– FCFS: Vessels moor according to their arrival order, thus
∀i,m(Vi) ≤ m(Vi+1).

– FCMP (First Come Maximum Priority): Similar to FCFS
where the next vessel is chosen according to their arrival
order but, in this case, there is no restriction with the time
the vessels can moor.

– MWWT (Maximum Weighted Waiting Time): Each vessel
is ranked according to their weighted waiting time. The
vessel with the greatest value is moored first.
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Algorithm 5 AssignQCtoHold function. Choose one
hold to be assigned to a new QC
Input: Vi : vessel to moor; start : starting time; end : ending time;
Output: QC added (1) or not (0)

1: // Search a hold whose handling task is lower or equal to end − start ;
2: // last (hj (Vi )) points to the last hold assigned to this QC

3: Sort Cranes by their finish time in descending order

4: // Handling time of the hold
5: H := max(last (hj (Vi ))),1 ≤ j ≤ q(Vi ) ∧ last (hj (Vi )) < (end − start)

6: // QC k which works on this hold
7: k := argmax(last (hj (Vi ))),1 ≤ j ≤ q(Vi ) ∧ last (hj (Vi )) < (end − start)

8: // QC m which finishes at start time
9: m := j | 1 ≤ j ≤ q(Vi ) ∧ stj (Vi ) = start ;

10: if H = ∅ then
11: // There is a hold H that fits in the given interval
12: if (start + H) ≥ d(Vi ) ∨ (start + H) ≥ (stk(Vi ) + htk(Vi )) then
13: // Move the H to another QC would not improve the actual schedule
14: return 0;
15: end if

16: // Delete the hold from the list of tasks of QC k

17: hk(Vi ) ← hk(Vi ) − {H };
18: htk(Vi ) := htk(Vi ) − H − HHQC ;

19: if m = ∅∧ k = m then
20: // There is a QC m finishing its tasks at start . Add task H to QC m

21: htm(Vi ) := htm(Vi ) + H + HHQC ;
22: hm(Vi ) ← hm(Vi ) ∪ {H };

23: if |hk(Vi )| = 0 then
24: // As QC k becomes idle
25: Reallocate the tasks of the last QC of Vi to the QC k

26: q(Vi ) := q(Vi ) − 1;
27: end if
28: else
29: // There is no QC that finishes at start , so a new QC will be assigned

to Vi

30: if |hk(Vi )| > 0 then
31: // Check whether the tasks can be joined in the same QC
32: for j ← k + 1 to q(Vi ) do
33: if stk(Vi ) + htk(Vi ) = stj (Vi ) then
34: htk(Vi ) := htk(Vi ) + htj (Vi ) + HHQC ;
35: hk(Vi ) ← hk(Vi ) ∪ hj (Vi );

36: // As QC j becomes idle
37: Reallocate the tasks of the last QC of Vi to the QC j

38: q(Vi ) := q(Vi ) − 1;
39: end if
40: end for
41: // Assign the new QC to vessel Vi and increase the number of QCs
42: q(Vi ) := q(Vi ) + 1;
43: k := q(Vi );
44: end if
45: stk(Vi ) := start + VVQC; htk(Vi ) := H ;
46: hk(Vi ) ← {H };
47: end if

48: // Obtain the new departure time of Vi according to the QCs assigned
49: d(Vi ) ← max∀j∈q(Vi )

(stj (Vi ) + htj (Vi ));

50: Sort cranes by their finish time in descending order;
51: end if
52: return 1

– EWMT (Earliest Weighted Mooring Time): Among the
vessels that can moor earlier, the operator chooses the ves-
sel with the highest priority.

Algorithm 6 Vessels Allocation according to rule R

Input: Vin: set of ordered incoming vessels; R: rule ap-
plied;

Output: Vm: set of vessels with all the resources allocated;

1: Vlast := ∅;
2: Vm ← ∅;
3: while Vin = ∅ do
4: // Next vessel according to the rule R

5: v := nextByRule(R);
6: t := a(v);
7: // For FCFS rule, the earliest mooring time possible

is the mooring time of the previous vessel
8: if R = FCFS then
9: t := max(m(Vlast ), a(v));

10: end if

11: // Schedule the chosen vessel at the earliest possible
time

12: inst := InsertVessel(v, t,Vm);
13: if ! inst then
14: T := {stk(vj ) + htk(vj ) | vj ∈ Vm,1 ≤ k ≤

q(vj ) ∧ stk(vj ) + htk(vj ) > t};
15: while tk ∈ T ∧ ! inst do
16: inst := InsertVessel(v, tk + VVQC,Vm);
17: end while
18: end if

19: // Store the last scheduled vessel
20: Vlast := v;
21: // Update the moored and the unscheduled vessels
22: Vm ← Vm ∪ {v}; Vin ← Vin − {v};
23: end while
24: return Vm;

In this study, these rules are compared with our new
method for the Berth Allocation and Quay Crane Assign-
ment Problem: a metaheuristic GRASP approach. This is a
randomly-biased multi-start method to obtain optimized so-
lutions of hard combinatorial problems in a very efficient
way. This method consists of two phases (Procedure 7) and
these two phases are performed consecutively until a termi-
nation condition is met. This termination condition is given
in one of these two forms: (1) a number of iterations; or
(2) a time limit. The best solution obtained in those itera-
tions is returned as the solution for the instance.

The first phase focuses on building a solution by means
of adding one element at a time. In order to choose the next
element for the solution, the elements that are not moored
yet are evaluated using a greedy function that indicates how
a candidate contributes to the final solution. Then, a ran-
dom degree (δ) determines the number of candidates that
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Procedure 7 GRASP framework
Input: Max_iterations or Time Limit;

1: Read input()
2: while No Termination condition is satisfied do
3: // Construction phase
4: S ←∅

5: Evaluate the incremental costs of the candidate ele-
ments

6: while S is not a complete solution do
7: Build the restricted candidate list (RCL)
8: Select an element s from the RCL randomly
9: S ← S ∪ {s}

10: Reevaluate the incremental costs
11: end while

12: // Local Search phase
13: S ← LocalSearch(S)

14: Keep track of the best solution S found in BestSolu-
tion.

15: Increase the number of iterations
16: end while
17: return BestSolution

could be eligible for this random choice election. If δ = 1,
all the elements are eligible, and therefore this choice is
completely random. If δ = 0, then it results in a completely
greedy search. The second phase of the GRASP metaheuris-
tic carries out a local search algorithm in order to improve
each constructed solution in the previous phase. This local
search algorithm works in an iterative manner by succes-
sively replacing the current solution by a better solution in
the neighborhood of the current solution. It terminates when
no better solution is found in the neighborhood [8].

The GRASP-based procedure developed for the BAP+
QCAP problem is detailed in Algorithm 8. This algorithm
receives as parameters: the set of incoming vessels Vin wait-
ing for mooring at the berth, the random degree (δ), the num-
ber of neighbors to explore in the local search algorithm
(K) and the maximum number of iterations (Imax ). These
parameters will be discussed in Sect. 6. First, all the wait-
ing vessels Vin are considered as candidates C. In step 11,
each one of the candidate vessels are moored within the cur-
rent state (being assigned the mooring and departure times
(m(Vi),d(Vi)), the number of QCs (q(Vi)), and the berthing
position (p(Vi)) ); and they are evaluated according to the
greedy function fc. Given a candidate vessel ve, the greedy
function assigned to ve is the sum of the weighted service
time of each vessel vo that is still waiting (steps 13 to 16).

According to the greedy function fc and the random de-
gree indicated by δ, a Restricted Candidate List (RCL) is
created (step 21). Then, one vessel v is chosen randomly

Algorithm 8 Grasp metaheuristic adapted to BAP+QCAP
Input: δ: random factor; Vin: incoming Vessels; K : number

of neighbors; Imax : maximum number of iterations;
Output: Vm: set of vessels with all the resources allocated;

1: iters ← 0;
2: Vm ← ∅;
3: while No Termination condition is satisfied (Imax ) do
4: // Initialize the actual schedule and the candidates
5: Vs ← {};
6: C ← Vin;
7: while C = ∅ do
8: // Evaluate the incremental costs of each candi-

date
9: for all ve ∈ C do

10: fc(ve) := 0;
11: MoorVessel(ve,Vs);
12: V ′

s ← Vin ∪ {ve};
13: for all vo ∈ C | vo = ve ∧ a(vo) ≤ a(ve) do
14: MoorVessel(vo,V

′
s );

15: fc(ve) := fc(ve) + ((d(vo) − a(vo)) ×
pr(vo));

16: end for
17: end for

18: // Build the Restricted Candidate List
19: cinf := min{fc(e) | e ∈ C};
20: csup := max{fc(e) | e ∈ C};
21: RCL ← {e ∈ C | fc(e) ≤ cinf + δ × (csup −

cinf )};

22: // Choose a vessel randomly
23: v := Random(RCL);
24: MoorVessel(v,Vs);

25: // Insert v in the partial schedule
26: Vs ← Vs ∪ {v}; C ← C − {v};
27: end while

28: // Local search phase
29: Vs ← LocalSearch(Vs , K);

30: Keep track of the best schedule found Vs in Vm

31: iters ← iters +1;
32: end while
33: return Vm;

among the elements from the RCL to be moored and can no
longer be modified (step 23). Once v is determined, this is
added to the set of vessels Vs and eliminated from the candi-
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Algorithm 9 LocalSearch function. Local Search based on
Hill Climbing for BAP+QCAP
Input: S: Schedule (set of vessels) built by the construction

phase; K : number of neighbors to generate;
Output: S∗: Best schedule found from the schedule S;

1: S∗ ← S; // S∗ is the current schedule. Set of vessels
with all resources allocated

2: repeat
3: improves := false
4: // Generate K neighbors from the current schedule
5: S′ ←∅ // Best neighbour found
6: for k ← 1 to K do
7: Sn ←∅ // Generate a new schedule Sn

8: // Considering the mooring times of the vessels
in S∗ as dispatching rule, generate a new schedule Sn

9: Sort the vessels in S∗ by their mooring times
10: Choose randomly two vessels i, j

11: for v ∈ S∗ do
12: // Interchange i and j within the order given

by schedule S∗
13: if v = i then
14: MoorVessel(j, Sn)
15: else if v = j then
16: MoorVessel(i, Sn)
17: else
18: MoorVessel(v,Sn)
19: end if
20: end for
21: Keep track of the best neighbor schedule found

in S′
22: end for

23: if S′ is better than S∗ then
24: S∗ ← S′
25: improves := true
26: end if
27: until ! improves
28: return S∗;

date list C (step 26). This loop is repeated until C is empty,
which means that all the vessels have been moored.

The solutions given by the construction phase of the
GRASP metaheuristic always obtain valid solutions: The
construction phase works as a dispatching rule by choos-
ing each time a vessel from the RCL and inserting it into the
partial schedule (set of vessels already scheduled, Vs ). The
Algorithms of the Sect. 4 check that all the constraints are
met when a vessel is scheduled such as, among others, the
safety distance between every pair of vessels or the num-
ber of QCs assigned to it. Repeating this operation for each
incoming vessel obtains a feasible and valid schedule.

The second phase of the GRASP metaheuristic is shown
in Algorithm 9. In order to define the neighborhood structure
of the local search algorithm, a dispatching rule based on
the order of the vessels according to their mooring times is
applied. Thereby, a neighbor of a current schedule is created
by means of interchanging (randomly chosen) two vessels in
the dispatching rule (steps 9 to 20). This local search, based
on the hill climbing technique, starts with the set of vessels
Vs with all the resources allocated (step 1) as the current
schedule S∗. K schedules from the neighborhood of the cur-
rent schedule S∗ are generated (step 6). If the best obtained
neighbor schedule S′ outperforms the current schedule S∗
(step 23), according to the objective function Tw , then the
current schedule S∗ is replaced by S′. This loop is repeated
until there is no neighbor schedule better than the current
schedule (steps 2 to 27).

According to the GRASP metaheuristic framework, this
search is repeated according to the number of iterations or to
the time limit specified by the user. The best solution found
according to the objective function Tw (Vm) is returned as
the solution for the given instance of the problem.

6 Evaluation

Several experiments have been performed with two different
corpus: Dens and Spar. Spar means that the arrival time be-
tween two vessels is sparsely distributed, and Dens means
that the arrival time between two vessels is densely dis-
tributed. Each corpus contains 100 instances generated ran-
domly, each one composed of a queue from 5 to 20 vessels.
The terminal operators gave us two inter-arrival distributions
(exponential with parameters λDens = 1

2 and λSpar = 1
5 , and

poisson with λDens = 1.5 and λSpar = 3 distributions) for
each corpus in order to generate the arrivals for the incoming
vessels. The number of required movements and length of
vessels are randomly generated between 100 and 1000 con-
tainers, and between 100 and 500 meters, respectively. In all
cases, the berth length (L) is fixed to 700 meters; the number
of Quay Cranes is 7 (corresponding to a determined MSC
berth line) and the maximum number of QCs per vessel is
5 (maxQC); the safety distance between QCs (safeQC) is
35 meters and the number of movements that QCs carry out
is 25 (movsQC) per time unit. The time needed for the QCs
to move to another hold is 5 time units (HHQC), and 15 time
units to another vessel (VVQC). These values were estimated
by the terminal operators. Without loss of generality, all the
experiments were conducted assuming γ = 1.

As we mentioned above, our goal is to minimize the total
weighted waiting time elapsed to serve the set of n incoming
vessels. A personal computer equipped with a Intel Core 2
Q9950 2.83 GHz with 4 GB RAM was used in all the exper-
iments.
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Focusing on the static QCAP model, Fig. 9 shows the ob-
jective function (Tw) and the computation times obtained by
the GRASP metaheuristic by varying the parameter K of the
local search. This experiment was carried out for the Dens
corpus with an exponential inter-arrival distribution of ar-
rivals. Using just the constructive phase of the GRASP meta-
heuristic (K = 0), the best value achieved was 1322.7 with
δ = 0.2 (see Fig. 9(a)). In general, the greater the K value,
the better Tw values since a deeper search in the neighbor-
hood is carried out. For instance, the Tw obtained by δ = 0.2
decreased to 1127 when K = 14 neighbors are generated in
each step of the local search. However, we can see that for
K > 12, we did not achieve a significance improvement in
the objective function. Furthermore, it is important to note
that the greater the K value for the local search, the greater
the computation time. Given the δ = 0.2, the computation
time increased from 8.23 ms up to 15.97 ms per iteration.
Therefore, a value K = 12 was set for the local search phase
of the GRASP metaheuristic for all the following experi-
ments.

In Table 2, the dispatching rules detailed in Sect. 5 are
evaluated. Each row represents the average Tw obtained by
a rule on each corpus using the static QCAP model. The
EWMT rule turned out to be the one that achieves the best
results in three out of the four corpus studied. Thus, this rule
will be used as a baseline for our GRASP metaheuristic al-
gorithm.

The GRASP-based metaheuristic developed was com-
pared with the EWMT rule using the two models presented:
static and dynamic QCAP. Figure 10 shows the average val-
ues for the objective function (Tw) to allocate 10 vessels
with an exponential inter-arrival distribution over the two
corpus. As expected, the dynamic model obtained better so-
lutions than the static one. For instance, for the Dens corpus
(see Fig. 10(a)), for δ = 0.2, the value of Tw in the static
QCAP model was 315.82 and decreased to 260.96 in the dy-
namic QCAP model. Moreover, it can be observed that the
solutions given by the GRASP method always outperformed
the EWMT solution in the two models, specially with δ val-
ues close to 1.0 for both the Dens and Spar corpus.

Figure 11 shows the average Tw values obtained by the
EWMT rule and the GRASP metaheuristic in the dynamic

Table 2 Average Tw values for the rules and GRASP in the static
QCAP model (20 vessels)

Exp-Dens Exp-Spar Poisson-Dens Poisson-Spar

FCFS 2222.26 484.45 2668.92 1116.9

FCMP 1973.21 443.26 2414.39 922.52

MWWT 2047.52 477.82 2473.57 1042.53

EWMT 1939.64 370.41 2427.8 841.79

GRASP 1414.75 273.06 1762.22 606.25

Fig. 9 Local search depending
on the k value (Dens corpus
with exponential inter-arrival
distribution)

Fig. 10 Tw for 10 vessels
(Exponential)
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QCAP model. This experiment was carried out with in-
stances of 20 incoming vessels with an exponential inter-
arrival distribution of the Dens corpus using a different num-
ber of iterations for the GRASP method. It can be observed
that as the number of iterations increased, the quality of our
GRASP method also increased. For instance, for δ = 0.1,
Tw was 1135.4 with 100 iterations, while Tw decreased to
1110.21 with 400 iterations.

In Fig. 12, the same evaluation was carried out for a
queue of 20 vessels with the exponential and poisson inter-
arrival distributions, respectively. The same tendency as in
Fig. 10 can be observed, but, in this case, δ ∈ [0.1 − 0.3]
got the lowest values for both inter-arrival time distribu-
tions in both corpus (Dens and Spar). Moreover, the GRASP
metaheuristic improved the average results given by the
EWMT rule for each corpus. Taking into account the dy-
namic QCAP model, the results were improved by about
22 %–25 % with respect to the dynamic EWMT rule; and, in
the static QCAP model, they were improved by about 26 %–
27 % with respect to the static EWMT. These figures also
show how the dynamic QCAP model always outperformed
the static one. For instance, considering the poisson inter-
arrival distribution and δ = 0.1 (see Fig. 12(d)), the average
value of Tw for the dynamic and the static QCAP model
were 606.25 and 388.24, respectively.

Table 3 shows the evolution of the rules with the static
QCAP model (solutions that would be provided by terminal
operators) against GRASP with the dynamic QCAP model
varying the number of incoming vessels from 5 vessels up

Fig. 11 Tw depending on the number of iterations in GRASP

to 20 vessels with an exponential inter-arrival distribution
both for the Dens and Spar corpus. For each number of in-
coming vessels, the GRASP metaheuristic outperformed the
average results given by the rules. For instance, given the
Spar corpus and 15 vessels, the best rule obtained 249.41
whereas GRASP achieved 136.75. It is important to note
that GRASP decreases the objective function stronger with
the Dens corpus (see Fig. 13), since given the characteris-
tics of the Spar corpus, the optimal solutions are close to the
arrival order of the vessels.

Figure 14 shows the average computation times per iter-
ation of the GRASP metaheuristic for the two models: static
and dynamic QCAP. This experiment was performed for the
exponential inter-arrival distribution both for the Spar (see
Fig.14(b)) and Dens (see Fig. 14(a)) corpus. As the optimal
solutions in the Spar corpus are close to the arrival order
of the vessels, the average computation times for the Spar
corpus are lower than the Dens corpus. Furthermore, the av-
erage time per iteration depends on the δ factor chosen since
the size of the RCL is related to this parameter. Thereby,
taking into account the dynamic QCAP model, this average
time per iteration varied from 10.5 ms (δ = 0) up to 30 ms
(δ = 1) for the Spar corpus; and, it varied from 23.2 ms
(δ = 0) up to 48.5 ms (δ = 1) for the Dens corpus.

As mentioned in Sect. 3, the performance of container
terminals is also evaluated according to the berth usage (Bu)
(see Table 4). Table 4(a) shows the relationship between the
berth usage (Bu) and the weighted waiting time (Tw) for a
queue of 20 incoming vessels from the Dens corpus with an
exponential inter-arrival distribution. In this case, only the
dynamic model is considered since it obtained the best re-
sults in the previous experiments. Note that the lower Tw

is, the greater the berth usage is. A value of 71.43 % was
achieved for δ = 0.2. Furthermore, having evaluated the dy-
namic and static QCAP models (see Table 4(b)), the dy-
namic QCAP model always achieved a better berth usage
of the quay, approx. 1.34 % in average.

Another key factor studied is the QC throughput (Tqc).
Table 5 shows that when holds are taken into account in the
model (dynamic QCAP), Tqc is considerably improved for
both Dens and Spar corpus. In other words, QCs spend less
time to perform the same number of movements, e.g. with

Table 3 Average Tw values for the rules and GRASP (Exponential)

(a) Dense inter-arrival times (b) Sparse inter-arrival times

5 10 15 20 5 10 15 20

FCFS 93.3 488.86 1190.86 2222.26 51.04 176.13 312.36 484.45

FCMP 85.66 448.55 1066.46 1973.21 49.65 167.29 296.87 443.26

MWWT 92.28 477.81 1117.59 2047.52 54.62 183.29 319.48 477.82

EWMT 85.67 443.51 1039.34 1939.64 43.34 142.54 249.41 370.41

GRASP 58.92 258.65 597.45 1110.21 29.1 84.69 136.75 198.67
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Fig. 12 Weighted waiting time
for 20 vessels in sparse and
dense corpus with exponential
and poisson inter-arrival
distribution

Fig. 13 Average Tw values for
the rules and GRASP
(Exponential)

Fig. 14 Average computation
times for exponential
inter-arrival distribution
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Fig. 15 Tw for the real data
given by port operators

Table 4 Bu as a key factor in the container terminal

Factor δ 0 0.2 0.4 0.6 0.8 1

(a) Relationship between Bu and Tw (dynamic QCAP model)

Bu % 0.7136 0.7143 0.7064 0.7065 0.7042 0.7069

Tw 1116.97 1112.41 1127.21 1129.11 1134.88 1133.04

(b) Differences in Bu between Dynamic and Static QCAP models

Dynamic Bu % 0.7136 0.7143 0.7064 0.7065 0.7042 0.7069

Static Bu % 0.7009 0.7026 0.7047 0.6941 0.6962 0.6965

Table 5 Average time that QCs are busy

(a) Dense inter-arrival times (b) Sparse inter-arrival times

|V | Static QCAP Dynamic QCAP |V | Static QCAP Dynamic QCAP

5 122.06 101.05 5 127.59 104.38

10 240.36 202.02 10 241.36 198.41

15 359.98 303.08 15 361.01 296.6

20 482.27 406.68 20 473.45 388.56

20 vessels in Table 5(a), the Tqc was 482.27 in the static
QCAP model, whereas in the dynamic model was 406.68.
Therefore, the dynamic QCAP model allows better use of
the QCs, since they can be used in other vessels immedi-
ately.

Finally, we remark that the GRASP metaheuristic search
has also been applied to real data given by port operators
from MSC where each instance consists of 15 incoming ves-
sels. Figure 15 shows the average Tw values. For these ex-
periments, the rule employed was MWWT since it obtained
the best average results, and our GRASP method was able
to reduce those Tw values in both models by approximately
53 %. Comparing both models, the dynamic QCAP model
reduced the Tw values by approximately 15.6 % over the
static model given the same δ factor (δ = 0.4).

7 Conclusions

We present a new process for allocating berth space for a
number of vessels that uses the well-known GRASP meta-
heuristic. The developed method also adds the Quay Crane
Assignment Problem into the model, taking into account
the holds of each incoming vessel. The holds of the vessels
are introduced in the dynamic QCAP model. The proposed
GRASP metaheuristic has been compared to usual schedul-
ing methods employed in container terminals (FCFS, FCMP,
MWWT, EWMT). It can be observed how this metaheuris-
tic reduces the waiting time and increases both the berth uti-
lization and the throughput of QCs. These benefits are even
greater when the dynamic QCAP model is employed since
QCs are assigned in a more efficient way.

Due to the continuous increase of vessels traffic, our pro-
posed metaheuristic could be employed since the difference
between the GRASP-based method and the usual dispatch-
ing rules is becoming more and more significant. Therefore,
allocation methods currently used in container terminals can
be improved to a great extent by integrating metaheuristic
approaches from areas of artificial intelligence.

BAP+QCAP solutions are executed in dynamic real-
world environments where incidences can occur. Thus, an
initial schedule might become invalid due to some inci-
dences such as breakdowns in the QC engines, delays in
the arrival of the vessels or deviations from the input data
given by the shipping companies. Two main approaches are
usually applied to manage these incidences: proactive and
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reactive [18]. The aim of a proactive approach is to obtain
robust schedules that remain valid against incidences. A re-
active approach gives rise to the process of re-scheduling.
These issues are interesting and open questions in real ap-
plications.
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