
Appl Intell (2014) 40:256–272
DOI 10.1007/s10489-013-0458-0

An optimization algorithm inspired by the States of Matter
that improves the balance between exploration and exploitation

Erik Cuevas · Alonso Echavarría · Marte
A. Ramírez-Ortegón

Published online: 14 July 2013
© Springer Science+Business Media New York 2013

Abstract The ability of an Evolutionary Algorithm (EA)
to find a global optimal solution depends on its capacity to
find a good rate between exploitation of found-so-far ele-
ments and exploration of the search space. Inspired by nat-
ural phenomena, researchers have developed many success-
ful evolutionary algorithms which, at original versions, de-
fine operators that mimic the way nature solves complex
problems, with no actual consideration of the exploration-
exploitation balance. In this paper, a novel nature-inspired
algorithm called the States of Matter Search (SMS) is in-
troduced. The SMS algorithm is based on the simulation of
the states of matter phenomenon. In SMS, individuals em-
ulate molecules which interact to each other by using evo-
lutionary operations which are based on the physical prin-
ciples of the thermal-energy motion mechanism. The al-
gorithm is devised by considering each state of matter at
one different exploration–exploitation ratio. The evolution-
ary process is divided into three phases which emulate the
three states of matter: gas, liquid and solid. In each state,
molecules (individuals) exhibit different movement capaci-
ties. Beginning from the gas state (pure exploration), the al-
gorithm modifies the intensities of exploration and exploita-
tion until the solid state (pure exploitation) is reached. As
a result, the approach can substantially improve the balance
between exploration–exploitation, yet preserving the good
search capabilities of an evolutionary approach. To illustrate
the proficiency and robustness of the proposed algorithm,

E. Cuevas (�) · A. Echavarría
Departamento de Electrónica, Universidad de Guadalajara,
CUCEI, Av. Revolución 1500, Guadalajara, Jal, México
e-mail: erik.cuevas@cucei.udg.mx

M.A. Ramírez-Ortegón
Institut für Nachrichtentechnik, Technische Universität
Braunschweig, Schleinitzstrae 22, 38106 Braunschweig, Germany

it is compared to other well-known evolutionary methods
including novel variants that incorporate diversity preser-
vation schemes. The comparison examines several stan-
dard benchmark functions which are commonly considered
within the EA field. Experimental results show that the pro-
posed method achieves a good performance in comparison
to its counterparts as a consequence of its better exploration–
exploitation balance.

Keywords Evolutionary algorithms · Global optimization ·
Nature-inspired algorithms

1 Introduction

Global optimization [1] has delivered applications for many
areas of science, engineering, economics and others, where
mathematical modeling is used [2]. In general, the goal is
to find a global optimum for an objective function which is
defined over a given search space. Global optimization al-
gorithms are usually broadly divided into deterministic and
stochastic methods [3]. Since deterministic methods only
provide a theoretical guarantee of locating a local minimum
of the objective function, they often face great difficulties
in solving global optimization problems [4]. On the other
hand, evolutionary algorithms are usually faster in locating
a global optimum [5]. Moreover, stochastic methods adapt
easily to black-box formulations and extremely ill-behaved
functions, whereas deterministic methods usually rest on at
least some theoretical assumptions about the problem for-
mulation and its analytical properties (such as Lipschitz con-
tinuity) [6].

Evolutionary algorithms, which are considered as mem-
bers of the stochastic group, have been developed by a com-
bination of rules and randomness that mimics several natu-

mailto:erik.cuevas@cucei.udg.mx

An optimization algorithm inspired by the States of Matter that improves the balance 257

ral phenomena. Such phenomena include evolutionary pro-
cesses such as the Evolutionary Algorithm (EA) proposed
by Fogel et al. [7], De Jong [8], and Koza [9], the Ge-
netic Algorithm (GA) proposed by Holland [10] and Gold-
berg [11], the Artificial Immune System proposed by De
Castro et al. [12] and the Differential Evolution Algorithm
(DE) proposed by Price and Storn [13]. Some other meth-
ods which are based on physical processes include the Sim-
ulated Annealing proposed by Kirkpatrick et al. [14], the
Electromagnetism-like Algorithm proposed by İlker et al.
[15] and the Gravitational Search Algorithm proposed by
Rashedi et al. [16]. Also, there are other methods based on
the animal-behavior phenomena such as the Particle Swarm
Optimization (PSO) algorithm proposed by Kennedy and
Eberhart [17] and the Ant Colony Optimization (ACO) al-
gorithm proposed by Dorigo et al. [18].

Every EA needs to address the issue of exploration-
exploitation of the search space. Exploration is the process
of visiting entirely new points of a search space whilst ex-
ploitation is the process of refining those points within the
neighborhood of previously visited locations, in order to im-
prove their solution quality. Pure exploration degrades the
precision of the evolutionary process but increases its capac-
ity to find new potential solutions. On the other hand, pure
exploitation allows refining existent solutions but adversely
driving the process to local optimal solutions. Therefore, the
ability of an EA to find a global optimal solution depends on
its capacity to find a good balance between the exploitation
of found-so-far elements and the exploration of the search
space [19]. So far, the exploration–exploitation dilemma has
been an unsolved issue within the framework of EA.

Although PSO, DE and GSA are considered the most
popular algorithms for many optimization applications, they
fail in finding a balance between exploration and exploita-
tion [20]; in multimodal functions, they do not explore the
whole region effectively and often suffers premature conver-
gence or loss of diversity. In order to deal with this problem,
several proposals have been suggested in the literature [21–
46]. In most of the approaches, exploration and exploita-
tion is modified by the proper settings of control parame-
ters that have an influence on the algorithm’s search capa-
bilities [47]. One common strategy is that EAs should start
with exploration and then gradually change into exploitation
[48]. Such a policy can be easily described with determin-
istic approaches where the operator that controls the indi-
vidual diversity decreases along with the evolution. This is
generally correct, but such a policy tends to face difficul-
ties when solving certain problems with multimodal func-
tions that hold many optima, since a premature takeover of
exploitation over exploration occurs. Some approaches that
use this strategy can be found in [21–29]. Other works [30–
34] use the population size as reference to change the bal-
ance between exploration and exploitation. A larger popula-

tion size implies a wider exploration while a smaller popula-
tion demands a shorter search. Although this technique de-
livers an easier way to keep diversity, it often represents an
unsatisfactory solution. An improper handling of large pop-
ulations might converge to only one point, despite introduc-
ing more function evaluations. Recently, new operators have
been added to several traditional evolutionary algorithms in
order to improve their original exploration-exploitation ca-
pability. Such operators diversify particles whenever they
concentrate on a local optimum. Some methods that employ
this technique are discussed in [35–46].

Either of these approaches is necessary but not sufficient
to tackle the problem of the exploration–exploitation bal-
ance. Modifying the control parameters during the evolu-
tion process without the incorporation of new operators to
improve the population diversity makes the algorithm de-
fenseless against premature convergence and may result in
poor exploratory characteristics of the algorithm [48]. On
the other hand, incorporating new operators without modi-
fying the control parameters leads to an increase in compu-
tational cost and weakens the exploitation process of can-
didate regions [39]. Therefore, it does seem reasonable to
incorporate both of these approaches into a single algorithm.

In this paper, a novel nature-inspired algorithm, known
as the States of Matter Search (SMS) is proposed for solv-
ing global optimization problems. The SMS algorithm is
based on the simulation of the states of matter phenomenon.
In SMS, individuals emulate molecules which interact to
each other by using evolutionary operations based on the
physical principles of the thermal-energy motion mecha-
nism. Such operations allow the increase of the population
diversity and avoid the concentration of particles within a
local minimum. The proposed approach combines the use
of the defined operators with a control strategy that modi-
fies the parameter setting of each operation during the evo-
lution process. In contrast to other approaches that enhance
traditional EA algorithms by incorporating some procedures
for balancing the exploration–exploitation rate, the proposed
algorithm naturally delivers such property as a result of
mimicking the states of matter phenomenon. The algorithm
is devised by considering each state of matter at one dif-
ferent exploration–exploitation ratio. Thus, the evolution-
ary process is divided into three stages which emulate the
three states of matter: gas, liquid and solid. At each state,
molecules (individuals) exhibit different behaviors. Begin-
ning from the gas state (pure exploration), the algorithm
modifies the intensities of exploration and exploitation un-
til the solid state (pure exploitation) is reached. As a result,
the approach can substantially improve the balance between
exploration–exploitation, yet preserving the good search ca-
pabilities of an evolutionary approach. To illustrate the profi-
ciency and robustness of the proposed algorithm, it has been
compared to other well-known evolutionary methods includ-
ing recent variants that incorporate diversity preservation

258 E. Cuevas et al.

Fig. 1 Different states of
matter: (a) gas, (b) liquid, and
(c) solid

schemes. The comparison examines several standard bench-
mark functions which are usually employed within the EA
field. Experimental results show that the proposed method
achieves good performance over its counterparts as a conse-
quence of its better exploration–exploitation capability.

This paper is organized as follows. Section 2 introduces
basic characteristics of the three states of matter. In Sect. 3,
the novel SMS algorithm and its characteristics are both de-
scribed. Section 4 presents experimental results and a com-
parative study. Finally, in Sect. 5, some conclusions are dis-
cussed.

2 States of matter

The matter can take different phases which are commonly
known as states. Traditionally, three states of matter are
known: solid, liquid, and gas. The differences among such
states are based on forces which are exerted among particles
composing a material [49].

In the gas phase, molecules present enough kinetic en-
ergy so that the effect of intermolecular forces is small (or
zero for an ideal gas), while the typical distance between
neighboring molecules is greater than the molecular size.
A gas has no definite shape or volume, but occupies the en-
tire container in which it is confined. Figure 1a shows the
movements exerted by particles in a gas state. The move-
ment experimented by the molecules represent the maxi-
mum permissible displacement ρ1 among particles [50]. In
a liquid state, intermolecular forces are more restrictive than
those in the gas state. The molecules have enough energy to
move relatively to each other still keeping a mobile struc-
ture. Therefore, the shape of a liquid is not definite but
is determined by its container. Figure 1b presents a parti-
cle movement ρ2 within a liquid state. Such movement is
smaller than those considered by the gas state but larger than
the solid state [51]. In the solid state, particles (or molecules)
are packed together closely with forces among particles be-
ing strong enough so that the particles cannot move freely
but only vibrate. As a result, a solid has a stable, definite
shape and a definite volume. Solids can only change their

shape by force, as when they are broken or cut. Figure 1c
shows a molecule configuration in a solid state. Under such
conditions, particles are able to vibrate (being perturbed)
considering a minimal ρ3 distance [50].

In this paper, a novel nature-inspired algorithm known as
the States of Matter Search (SMS) is proposed for solving
global optimization problems. The SMS algorithm is based
on the simulation of the states of matter phenomenon that
considers individuals as molecules which interact to each
other by using evolutionary operations based on the physi-
cal principles of the thermal-energy motion mechanism. The
algorithm is devised by considering each state of matter at
one different exploration–exploitation ratio. Thus, the evo-
lutionary process is divided into three stages which emulate
the three states of matter: gas, liquid and solid. In each state,
individuals exhibit different behaviors.

3 States of matter search (SMS)

3.1 Definition of operators

In the approach, individuals are considered as molecules
whose positions on a multidimensional space are modified
as the algorithm evolves. The movement of such molecules
is motivated by the analogy to the motion of thermal-energy.

The velocity and direction of each molecule’s move-
ment are determined by considering the collision, the at-
traction forces and the random phenomena experimented by
the molecule set [52]. In our approach, such behaviors have
been implemented by defining several operators such as the
direction vector, the collision and the random positions op-
erators, all of which emulate the behavior of actual physics
laws.

The direction vector operator assigns a direction to each
molecule in order to lead the particle movement as the evo-
lution process takes place. On the other side, the collision
operator mimics those collisions that are experimented by
molecules as they interact to each other. A collision is con-
sidered when the distance between two molecules is shorter
than a determined proximity distance. The collision opera-
tor is thus implemented by interchanging directions of the

An optimization algorithm inspired by the States of Matter that improves the balance 259

involved molecules. In order to simulate the random behav-
ior of molecules, the proposed algorithm generates random
positions following a probabilistic criterion that considers
random locations within a feasible search space.

The next section presents all operators that are used in the
algorithm. Although such operators are the same for all the
states of matter, they are employed over a different configu-
ration set depending on the particular state under considera-
tion.

3.1.1 Direction vector

The direction vector operator mimics the way in which
molecules change their positions as the evolution process
develops. For each n-dimensional molecule pi from the pop-
ulation P, it is assigned an n-dimensional direction vector di

which stores the vector that controls the particle movement.
Initially, all the direction vectors (D = {d1,d2, . . . ,dNp })
are randomly chosen within the range of [−1,1].

As the system evolves, molecules experiment several at-
traction forces. In order to simulate such forces, the pro-
posed algorithm implements the attraction phenomenon by
moving each molecule towards the best so-far particle.
Therefore, the new direction vector for each molecule is it-
eratively computed considering the following model:

dk+1
i = dk

i ·
(

1 − k

gen

)
· 0.5 + ai (1)

where ai represents the attraction unitary vector calculated as
ai = (pbest − pi)/‖pbest − pi‖, being pbest the best individ-
ual seen so-far, while pi is the molecule i of population P.
k represents the iteration number whereas gen involves the
total iteration number that constitutes the complete evolu-
tion process.

Under this operation, each particle is moved towards a
new direction which combines the past direction, which was
initially computed, with the attraction vector over the best
individual seen so-far. It is important to point out that the
relative importance of the past direction decreases as the
evolving process advances. This particular type of interac-
tion avoids the quick concentration of information among
particles and encourages each particle to search around a
local candidate region in its neighborhood, rather than in-
teracting to a particle lying at distant region of the domain.
The use of this scheme has two advantages: first, it prevents
the particles from moving toward the global best position in
early stages of algorithm and thus makes the algorithm less
susceptible to premature convergence; second, it encourages
particles to explore their own neighborhood thoroughly, just
before they converge towards a global best position. There-
fore, it provides the algorithm with local search ability en-
hancing the exploitative behavior.

In order to calculate the new molecule position, it is nec-
essary to compute the velocity vi of each molecule by using:

vi = di · vinit (2)

being vinit the initial velocity magnitude which is calculated
as follows:

vinit =
∑n

j=1(b
high
j − blow

j)

n
· β (3)

where blow
j and b

high
j are the low j parameter bound and the

upper j parameter bound respectively, whereas β ∈ [0,1].
Then, the new position for each molecule is updated by:

pk+1
i,j = pk

i,j + vi,j · rand(0,1) · ρ · (bhigh
j − blow

j

)
(4)

where 0.5 ≤ ρ ≤ 1.

3.1.2 Collision

The collision operator mimics the collisions experimented
by molecules while they interact to each other. Collisions
are calculated if the distance between two molecules is
shorter than a determined proximity value. Therefore, if
‖pi − pq‖ < r , a collision between molecules i and q is
assumed; otherwise, there is no collision, considering i, q ∈
{1, . . . ,Np} such that i �= q . If a collision occurs, the di-
rection vector for each particle is modified by interchanging
their respective direction vectors as follows:

di = dq and dq = di (5)

The collision radius is calculated by:

r =
∑n

j=1(b
high
j − blow

j)

n
· α (6)

where α ∈ [0,1].
Under this operator, a spatial region enclosed within the

radius r is assigned to each particle. In case the particle
regions collide with each other, the collision operator acts
upon particles by forcing them out of the region. The radio
r and the collision operator provide the ability to control di-
versity throughout the search process. In other words, the
rate of increase or decrease of diversity is predetermined for
each stage. Unlike other diversity-guided algorithms, it is
not necessary to inject diversity into the population when
particles gather around a local optimum because the diver-
sity will be preserved during the overall search process. The
collision incorporation therefore enhances the exploratory
behavior in the proposed approach.

260 E. Cuevas et al.

3.1.3 Random positions

In order to simulate the random behavior of molecules, the
proposed algorithm generates random positions following a
probabilistic criterion within a feasible search space.

For this operation, a uniform random number rm is gen-
erated within the range [0,1]. If rm is smaller than a thresh-
old H , a random molecule’s position is generated; other-
wise, the element remains with no change. Therefore, such
an operation can be modeled as follows:

pk+1
i,j =

⎧⎪⎨
⎪⎩

blow
j + rand(0,1) · (bhigh

j − blow
j)

with probability H

pk+1
i,j with probability (1 − H)

(7)

where i ∈ {1, . . . ,Np} and j ∈ {1, . . . , n}.

3.1.4 Best Element Updating

Despite the fact that this updating operator does not belong
to the State of Matter metaphor, it is used to simply store
the best so-far solution. In order to update the best molecule
pbest seen so-far, the best found individual from the cur-
rent k population pbest,k is compared to the best individ-
ual pbest,k−1 of the last generation. If pbest,k is better than
pbest,k−1 according to its fitness value, pbest is updated with
pbest,k , otherwise pbest remains with no change. Therefore,
pbest stores the best historical individual found so-far.

3.2 SMS algorithm

The overall SMS algorithm is composed of three stages cor-
responding to the three States of Matter: the gas, the liquid
and the solid state. Each stage has its own behavior. In the
first stage (gas state), exploration is intensified whereas in
the second one (liquid state) a mild transition between ex-
ploration and exploitation is executed. Finally, in the third
phase (solid state), solutions are refined by emphasizing the
exploitation process.

3.2.1 General procedure

At each stage, the same operations are implemented. How-
ever, depending on which state is referred, they are em-
ployed considering a different parameter configuration. The
general procedure in each state is shown as pseudo-code in
Algorithm 1. Such procedure is composed of five steps and
maps the current population Pk to a new population Pk+1.
The algorithm receives as input the current population Pk

and the configuration parameters ρ,β , α, and H , whereby it
yields the new population Pk+1.

Algorithm 1 General procedure executed by all the states of
matter
Step 1: Find the best element of the population P

pbest ∈ {P}|f (
pbest

) = max
{
f (p1), f (p2), . . . , f (pNp)

}

Step 2: Calculate vinit and r

vinit =
∑n

j=1(b
high
j − blow

j)

n
· β

r =
∑n

j=1(b
high
j − blow

j)

n
· α

Step 3: Compute the new molecules by using the Direction
vector operator 3.1.1
for (i = 1; i < Np + 1; i++)

ai = (
pbest − pi

) / ∥∥pbest − pi

∥∥
for (j = 1; j < n + 1; j + +)

dk+1
i,j = dk

i,j ·
(

1 − k

gen

)
· 0.5 + ai,j

vi,j = dk+1
i,j · vinit

pk+1
i,j = pk

i,j + vi,j · rand(0,1) · ρ · (bhigh
j − blow

j

)

end for
end for
Step 4: Solve collisions by using the Collision operator 3.1.2
for (i = 1; i < Np + 1; i++)

for (j = 1; j < Np + 1; j++)
if ((‖pi − pj‖ < r) and (i �= j))

t = di

di = dj

dj = t

end if
end for

end for
Step 5: Generate new random positions by using the Ran-
dom positions operator 3.1.3
for (i = 1; i < Np + 1; i + +)

if (rm < H) then; where rm ∈ rand(0,1)

for (j = 1; j < n + 1; j + +)

pk+1
i,j = blow

j + rand(0,1) · (bhigh
j − blow

j

)

end for
end if

end for

An optimization algorithm inspired by the States of Matter that improves the balance 261

Fig. 2 Evolution process in the proposed approach

Fig. 3 Data flow in the complete SMS algorithm

3.2.2 The complete algorithm

The complete algorithm is divided into four different parts.
The first corresponds to the initialization stage, whereas the
last three represent the States of Matter. All the optimization
process, which consists of a gen number of iterations, is or-
ganized into three different asymmetric phases, employing
50 % of all iterations for the gas state (exploration), 40 % for
the liquid state (exploration–exploitation) and 10 % for the
solid state (exploitation). The overall process is graphically
described by Fig. 2. At each state, the same general proce-
dure (see Algorithm 1) is iteratively used considering the
particular configuration predefined for each State of Matter.
Figure 3 shows the data flow for the complete SMS algo-
rithm.

Initialization The algorithm begins by initializing a set P
of Np molecules (P = {p1,p2, . . . ,pNp }). Each molecule

position pi is an n-dimensional vector containing the param-
eter values to be optimized. Such values are randomly and
uniformly distributed between the pre-specified lower initial
parameter bound blow

j and the upper initial parameter bound

b
high
j , just as it is described by the following expressions:

p0
i,j = blow

j + rand(0,1) · (bhigh
j − blow

j

)
,

j = 1,2, . . . , n; i = 1,2, . . . ,Np, (8)

where j and i are the parameter and molecule index, respec-
tively, whereas zero indicates the initial population. Hence,
p

j
i is the j -th parameter of the i-th molecule.

Gas state In the gas state, molecules experiment severe
displacements and collisions. Such state is characterized
by random movements produced by non-modeled molecule
phenomena [52]. Therefore, the ρ value from the direction

262 E. Cuevas et al.

vector operator is set to a value close to one so that the
molecules can travel longer distances. Similarly, the H value
representing the random positions operator is also config-
ured to a value around one, in order to allow the random
generation for other molecule positions. The gas state is the
first phase and lasts for the 50 % of all iterations which com-
pose the complete optimization process. The computational
procedure for the gas state can be summarized as follows:

Step 1: Set the parameters ρ ∈ [0.8,1], β = 0.8, α = 0.8
and H = 0.9 being consistent with the gas state.

Step 2: Apply the general procedure which is illustrated in
Algorithm 1.

Step 3: If 50 % of the total iteration number is completed
(1 ≤ k ≤ 0.5 ·gen), then the process continues to the
liquid state procedure; otherwise go back to step 2.

Liquid state Although molecules currently at the liquid
state exhibit restricted motion in comparison to the gas
state, they still show a higher flexibility with respect to the
solid state. Furthermore, the generation of random positions
which are produced by non-modeled molecule phenomena
is scarce [53]. For this reason, the ρ value from the direction
vector operator is bounded to a value between 0.3 and 0.6.
Similarly, the random position operator H is configured to a
value close to zero in order to allow the random generation
of fewer molecule positions. In the liquid state, collisions
are also less common than in the gas state, so the collision
radius, that is controlled by α, is set to a smaller value in
comparison to the gas state. The liquid state is the second
phase and lasts the 40 % of all iterations which compose
the complete optimization process. The computational pro-
cedure for the liquid state can be summarized as follows:

Step 4: Set the parameters ρ ∈ [0.3,0.6], β = 0.4, α = 0.2
and H = 0.2 being consistent with the liquid state.

Step 5: Apply the general procedure that is defined in Al-
gorithm 1.

Step 6: If 90 % (50 % from the gas state and 40 % from the
liquid state) of the total iteration number is com-
pleted (0.5 · gen < k ≤ 0.9 · gen), then the process
continues to the solid state procedure; otherwise go
back to step 5.

Solid state In the solid state, forces among particles are
stronger so that particles cannot move freely but only vi-
brate. As a result, effects such as collision and generation of
random positions are not considered [52]. Therefore, the ρ

value of the direction vector operator is set to a value close
to zero indicating that the molecules can only vibrate around
their original positions. The solid state is the third phase and
lasts for the 10 % of all iterations which compose the com-
plete optimization process. The computational procedure for
the solid state can be summarized as follows:

Step 7: Set the parameters ρ ∈ [0.0,0.1] and β = 0.1, α = 0
and H = 0 being consistent with the solid state.

Step 8: Apply the general procedure that is defined in Al-
gorithm 1.

Step 9: If 100 % of the total iteration number is completed
(0.9 · gen < k ≤ gen), the process is finished; other-
wise go back to step 8.

It is important to clarify that the use of this particular
configuration (α = 0 and H = 0) disables the collision and
generation of random positions operators, which have been
illustrated in the general procedure.

4 Experimental results

A comprehensive set of 24 functions, collected from Refs.
[54–61], has been used to test the performance of the pro-
posed approach. Tables 8–11 in Appendix A present the
benchmark functions used in our experimental study. Such
functions are classified into four different categories: Uni-
modal test functions (Table 8), multimodal test functions
(Table 9), multimodal test functions with fixed dimensions
(Table 10) and functions proposed for the GECCO contest
(Table 11). In such tables, n indicates the dimension of the
function, fopt is the optimum value of the function and S is
the subset of Rn. The function optimum position (xopt) for
f1, f2, f4, f6, f7, f10, f11 and f14 is at xopt = [0]n, for f3,
f8 and f9 is at xopt = [1]n, for f5 is at xopt = [420.96]n,
for f18 is at xopt = [0]n, for f12 is at xopt = [0.0003075]n
and for f13 is at xopt = [−3.32]n. In case of functions con-
tained in Table 11, the xopt and fopt values have been set to
default values which have been obtained from the Matlab©

implementation for GECCO competitions, as it is provided
in [59]. A detailed description of optimum locations is given
in Appendix A.

4.1 Performance comparison to other meta-heuristic
algorithms

We have applied the SMS algorithm to 24 functions whose
results have been compared to those produced by the Grav-
itational Search Algorithm (GSA) [16], the Particle Swarm
Optimization (PSO) method [17] and the Differential Evo-
lution (DE) algorithm [13]. These are considered the most
popular algorithms in many optimization applications. In or-
der to enhance the performance analysis, the PSO algorithm
with a territorial diversity-preserving scheme (TPSO) [39]
has also been added into the comparisons. TPSO is con-
sidered a recent PSO variant that incorporates a diversity
preservation scheme in order to improve the balance be-
tween exploration and exploitation. In all comparisons, the
population has been set to 50. The maximum iteration num-
ber for functions in Tables 8, 9 and 11 has been set to 1000

An optimization algorithm inspired by the States of Matter that improves the balance 263

Table 1 Minimization result of
benchmark functions of Table 8
with n = 30. Maximum number
of iterations = 1000

SMS GSA PSO DE TPSO

f1 AB 4.68457E-16 1.3296E-05 0.873813333 0.186584241 0.100341256

MB 4.50542E-16 7.46803E-06 4.48139E-12 0.189737658 0.101347821

SD 1.23694E-16 1.45053E-05 4.705628811 0.039609704 0.002421043

f2 AB 0.033116745 0.173618066 12.83021186 54.85755486 0.103622066

MB 1.02069E-08 0.159932758 12.48059177 54.59915941 0.122230612

SD 0.089017369 0.122230612 3.633980625 4.506836836 0.006498124

f3 AB 19.64056183 32.83253962 33399.69716 46898.34558 21.75247912

MB 26.87914282 27.65055745 565.0810149 43772.19502 28.45741892

SD 11.8115879 19.11361524 43099.34439 15697.6366 14.56258711

f4 AB 8.882513655 9.083435186 15.05362961 12.83391861 13.98432748

MB 9.016816582 9.150769929 13.91301428 12.89762202 14.01237836

SD 0.442124359 0.499181789 4.790792877 0.542197802 1.023476914

and for functions in Table 10 the iterations have been set
to 500. Such stop criterion has been selected to maintain
compatibility to similar works reported in the literature [4,
16].

The parameter setting for each algorithm in the compari-
son is described as follows:

1. GSA [16]: The parameters are set to Go = 100 and α =
20; the total number of iterations is set to 1000 for func-
tions f1 to f11 and 500 for functions f12 to f14. The total
number of individuals is set to 50. Such values are the
best parameter set for this algorithm according to [16].

2. PSO [17]: The parameters are set to c1 = 2 and c2 = 2;
besides, the weight factor decreases linearly from 0.9 to
0.2.

3. DE [13]: The DE/Rand/1 scheme is employed. The
crossover probability is set to CR = 0.9 and the weight
factor is set to F = 0.8.

4. TPSO [39]: The parameter α has been set to 0.5. This
value is found to be the best configuration according to
[39]. The algorithm has been tuned according to the set
of values which have been originally proposed by its own
reference.

The experimental comparison between metaheuristic al-
gorithms, with respect to SMS, has been developed accord-
ing to the function-type classification as follows:

1. Unimodal test functions (Table 8).
2. Multimodal test functions (Table 9).
3. Multimodal test functions with fixed dimension (Ta-

ble 10).
4. Test functions from the GECCO contest (Table 11).

4.1.1 Unimodal test functions

This experiment is performed over the functions presented
in Table 8. The test compares the SMS to other algorithms

Table 2 p-values produced by Wilcoxon’s test comparing SMS vs.
PSO, SMS vs. GSA, SMS vs. DE and SMS vs. TPSO over the “average
best-so-far” (AB) values from Table 3

SMS vs

PSO GSA DE TPSO

f1 3.94 × 10−5 7.39 × 10−4 1.04 × 10−6 4.12 × 10−4

f2 5.62 × 10−5 4.92 × 10−4 2.21 × 10−6 3.78 × 10−4

f3 6.42 × 10−8 7.11 × 10−7 1.02 × 10−4 1.57 × 10−4

f4 1.91 × 10−8 7.39 × 10−4 1.27 × 10−6 4.22 × 10−4

such as GSA, PSO, DE and TPSO. The results for 30 runs
are reported in Table 1 considering the following perfor-
mance indexes: the Average Best-so-far (AB) solution, the
Median Best-so-far (MB) and the Standard Deviation (SD)
of best-so-far solution. The best outcome for each function
is boldfaced. According to this table, SMS delivers better
results than GSA, PSO, DE and TPSO for all functions. In
particular, the test remarks the largest difference in perfor-
mance, which is directly related to a better trade-off between
exploration and exploitation. Just as it is illustrated by Fig. 4,
SMS, DE and GSA have similar convergence rates at finding
the optimal minimal, yet are faster than PSO and TPSO.

A non-parametric statistical significance proof known as
the Wilcoxon’s rank sum test for independent samples [62,
63] has been conducted over the “average best-so-far” (AB)
data of Table 1, with an 5 % significance level. Table 2
reports the p-values produced by Wilcoxon’s test for the
pair-wise comparison of the “average best so-far” of four
groups. Such groups are formed by SMS vs. GSA, SMS
vs. PSO, SMS vs. DE and SMS vs. TPSO. As a null hy-
pothesis, it is assumed that there is no significant difference
between mean values of the two algorithms. The alterna-
tive hypothesis considers a significant difference between
the “average best-so-far” values of both approaches. All p-
values reported in Table 2 are less than 0.05 (5 % signif-

264 E. Cuevas et al.

Fig. 4 Convergence rate comparison of GSA, PSO, DE, SMS and TPSO for minimization of (a) f1 and (b) f3 considering n = 30

Table 3 Minimization result of
benchmark functions in Table 9
with n = 30. Maximum number
of iterations = 1000

SMS GSA PSO DE TPSO

f5 AB 1756.862345 9750.440145 4329.650468 4963.600685 1893.673916

MB 0.070624076 9838.388135 4233.282929 5000.245932 50.23617893

SD 1949.048601 405.1365297 699.7276454 202.2888921 341.2367823

f6 AB 10.95067665 15.18970458 130.5959941 194.6220253 18.56962853

MB 0.007142491 13.9294268 129.4942809 196.1369499 1.234589423

SD 14.38387472 4.508037915 27.87011038 9.659933059 7.764931264

f7 AB 0.000299553 0.000575111 0.19630233 0.98547042 0.002348619

MB 8.67349E-05 0 0.011090373 0.991214493 0.000482084

SD 0.000623992 0.0021752 0.702516846 0.031985616 0.000196428

f8 AB 1.35139E-05 2.792846799 1450.666769 304.6986718 1.753493426

MB 7.14593E-06 2.723230534 0.675050254 51.86661185 1.002364819

SD 2.0728E-05 1.324814757 1708.798785 554.2231579 0.856294537

f9 AB 0.002080591 14.49783478 136.6888694 67251.29956 5.284029512

MB 0.000675275 9.358377669 7.00288E-05 37143.43153 0.934751939

SD 0.003150999 18.02351657 7360.920758 63187.52749 1.023483601

f10 AB 0.003412411 40.59204902 365.7806149 822.087914 9.636393364

MB 0.003164797 39.73690704 359.104488 829.1521586 0.362322274

SD 0.001997493 11.46284891 148.9342039 81.93476435 2.194638533

f11 AB 0.199873346 1.121397135 0.857971914 3.703467688 0.452738336

MB 0.199873346 1.114194975 0.499967033 3.729096071 0.124948295

SD 0.073029674 0.271747312 1.736399225 0.278860779 0.247510642

icance level) which is strong evidence against the null hy-
pothesis. Therefore, such evidence indicates that SMS re-
sults are statistically significant and that it has not occurred
by coincidence (i.e. due to common noise contained in the
process).

Multimodal test functions Multimodal functions represent
a good optimization challenge as they possess many local
minima (Table 9). In the case of multimodal functions, final

results are very important since they reflect the algorithm’s
ability to escape from poor local optima and are able to lo-
cate a near-global optimum. Experiments using f5 to f11 are
quite relevant as the number of local minima for such func-
tions increases exponentially as their dimensions increase.
The dimension of such functions is set to 30. The results
are averaged over 30 runs, reporting the performance index
for each function in Table 3 as follows: the Average Best-
so-far (AB) solution, the Median Best-so-far (MB) and the

An optimization algorithm inspired by the States of Matter that improves the balance 265

Fig. 5 Convergence rate comparison of PSO, GSA, DE, SMS and TPSO for minimization of (a) f5 and (b) f11 considering n = 30

Fig. 6 Convergence rate comparison of PSO, GSA, DE, SMS and TPSO for minimization of (a) f12 and (b) f13

Table 4 p-values produced by Wilcoxon’s test comparing SMS vs.
GSA, SMS vs. PSO, SMS vs. DE and SMS vs. TPSO over the “average
best-so-far” (AB) values from Table 3

SMS vs

GSA PSO DE TPSO

f5 0.087 8.38 × 10−4 4.61 × 10−4 0.058

f6 0.062 1.92 × 10−9 9.97 × 10−8 0.012

f7 0.055 4.21 × 10−5 3.34 × 10−4 0.061

f8 7.74 × 10−9 3.68 × 10−7 8.12 × 10−5 1.07 × 10−5

f9 1.12 × 10−8 8.80 × 10−9 4.02 × 10−8 9.21 × 10−5

f10 4.72 × 10−9 3.92 × 10−5 2.20 × 10−4 7.41 × 10−5

f11 4.72 × 10−9 3.92 × 10−5 2.20 × 10−4 4.05 × 10−5

Standard Deviation (SD) best-so-far (the best result for each
function is highlighted). Likewise, p-values of the Wilcoxon
signed-rank test of 30 independent runs are listed in Table 4.

In the case of functions f8, f9, f10 and f11, SMS yields
much better solutions than other methods. However, for
functions f5, f6 and f7, SMS produces similar results to
GSA and TPSO. The Wilcoxon rank test results, which are
presented in Table 4, demonstrate that SMS performed bet-
ter than GSA, PSO, DE and TPSO considering four func-
tions f8–f11, whereas, from a statistical viewpoint, there is
no difference between results from SMS, GSA and TPSO
for f5, f6 and f7. The progress of the “average best-so-
far” solution over 30 runs for functions f5 and f11 is shown
by Fig. 5.

Multimodal test functions with fixed dimensions In the
following experiments, the SMS algorithm is compared to
GSA, PSO, DE and TPSO over a set of multidimensional
functions with fixed dimensions, which are widely used in
the meta-heuristic literature. The functions used for the ex-
periments are f12, f13 and f14 which are presented in Ta-

266 E. Cuevas et al.

Table 5 Minimization results
of benchmark functions in
Table 10 with n = 30.
Maximum number of
iterations = 500

SMS GSA PSO DE TPSO

f12 AB 0.004361206 0.051274735 0.020521847 0.006247895 0.008147895

MB 0.004419241 0.051059414 0.020803912 0.004361206 0.003454528

SD 0.004078875 0.016617355 0.021677285 8.7338E-15 6.37516E-15

f13 AB −3.862782148 −3.207627571 −3.122812884 −3.200286885 −3.311538343

MB −3.862782148 −3.222983851 −3.198877457 −3.200286885 −3.615938695

SD 2.40793E-15 0.032397257 0.357126056 2.22045E-15 0.128463953

f14 AB 0 0.00060678 1.07786E-11 4.45378E-31 0.036347329

MB 3.82624E-12 0.000606077 0 4.93038E-32 0.002324632

SD 2.93547E-11 0.000179458 0 1.0696E-30 0.032374213

Table 6 Minimization results
of benchmark functions in
Table 11 with n = 30.
Maximum number of
iterations = 1000

SMS GSA PSO DE TPSO

f15 AB −25.91760733 57.15411412 134.3191481 183.6659439 −18.63859195

MB −29.92042882 57.38647154 133.1673936 186.723035 −21.73646913

SD 23.85960437 14.20175945 68.4414947 38.0678428 12.54569285

f16 AB −57.89720018 −57.89605386 −40.5715691 −52.92227417 −50.437455071

MB −57.89733814 −57.89616319 −40.00561762 −53.25902658 −52.564574931

SD 0.00077726 0.000841082 4.812411459 1.769678878 1.3446395342

f17 AB 184.7448285 186.1082051 7540.2406 186.6192165 190.43463434

MB 184.7424982 186.0937327 4831.581816 186.6285041 188.43649638

SD 0.180957032 0.149285212 7101.466992 0.208918841 2.4340683134

f18 AB −449.9936552 2015.050538 18201.78495 −435.2972206 −410.37493561

MB −449.994798 1741.613119 18532.32174 −436.0279997 −429.46295713

SD 0.005537064 1389.619208 6325.379751 2.880379023 1.4538493855

f19 AB 1213.421542 22038.7467 30055.82961 43551.34835 1452.4364384

MB −181.0028277 21908.86945 26882.92621 42286.55626 1401.7493617

SD 4050.267293 1770.050492 18048.55578 7505.414378 532.36343411

f20 AB 26975.80614 66771.65533 44221.12187 58821.82993 29453.323822

MB 24061.19301 65172.39992 44733.97226 60484.33588 28635.439023

SD 10128.06919 12351.81976 16401.44428 9191.787618 4653.1269549

f21 AB 6526.690523 23440.26883 23297.93668 26279.82607 7412.5361303

MB 5716.886785 23427.99207 22854.63384 26645.28551 7012.4634613

SD 2670.569217 2778.292017 5157.063617 2726.609286 745.37485621

f22 AB 965.8899213 181742714.4 7385919478 284396.8728 1051.4348595

MB 653.8161313 196616193.9 5789573763 287049.5324 1003.3448944

SD 751.3821374 79542617.71 5799950322 66484.87261 894.43484589

f23 AB 18617.61336 30808.74384 444370.5566 429178.9416 20654.323956

MB 10932.4606 28009.57647 425696.8169 418480.2092 19434.343851

SD 18224.4141 17834.72979 145508.9625 59342.54534 473.45938567

f24 AB 910.002925 997.4123375 1026.555016 917.4176502 1017.3484548

MB 910.0020976 999.1456735 1025.559417 917.3421337 993.34434754

SD 0.004747964 19.08754967 57.01221298 0.456440816 45.343496836

An optimization algorithm inspired by the States of Matter that improves the balance 267

Fig. 7 Convergence rate comparison of PSO, GSA, DE, SMS and TPSO for minimization of (a) f17 and (b) f24

ble 10. The results in Table 5 show that SMS, GSA, PSO, DE
and TPSO have similar values in their performance. The evi-
dence shows how meta-heuristic algorithms maintain a sim-
ilar average performance when they face low-dimensional
functions [54]. Figure 6 presents the convergence rate for
the GSA, PSO, DE, SMS and TPSO algorithms considering
functions f12 to f13.

Test functions from the GECCO contest The experimental
set in Table 11 includes several representative functions that
are used in the GECCO contest. Using such functions, the
SMS algorithm is compared to GSA, PSO, DE and TPSO.
The results have been averaged over 30 runs, reporting the
performance indexes for each algorithm in Table 6. Like-
wise, p-values of the Wilcoxon signed-rank test of 30 inde-
pendent executions are listed in Table 7. According to re-
sults of Table 6, it is evident that SMS yields much better
solutions than other methods. The Wilcoxon test results in
Table 7 provide information to statistically demonstrate that
SMS has performed better than PSO, GSA, DE and TPSO.
Figure 7 presents the convergence rate for the GSA, PSO,
DE, SMS and TPSO algorithms, considering functions f17

to f24.

5 Conclusions

In this paper, a novel nature-inspired algorithm called as
the States of Matter Search (SMS) has been introduced.
The SMS algorithm is based on the simulation of the
State of Matter phenomenon. In SMS, individuals emulate
molecules which interact to each other by using evolution-
ary operations that are based on physical principles of the
thermal-energy motion mechanism. The algorithm is de-
vised by considering each state of matter at one different

Table 7 p-values produced by Wilcoxon’s test that compare SMS vs.
GSA, SMS vs. PSO, SMS vs. DE and SMS vs. TPSO, for the “average
best-so-far” (AB) values from Table 6

SMS vs

GSA PSO DE TPSO

f15 1.7344E-06 1.7344E-06 1.7344E-06 5.2334E-05

f16 9.7110E-05 1.7344E-06 1.7344E-06 3.1181E-05

f17 1.12654E-05 1.7344E-06 1.7344E-06 6.2292E-05

f18 1.7344E-06 1.7344E-06 1.7344E-06 1.8938E-05

f19 1.92092E-06 1.7344E-06 1.7344E-06 9.2757E-05

f20 1.7344E-06 9.7110E-05 2.1264E-06 8.3559E-05

f21 1.7344E-06 1.7344E-06 1.7344E-06 7.6302E-05

f22 1.7344E-06 1.7344E-06 1.7344E-06 6.4821E-05

f23 0.014795424 1.7344E-06 1.7344E-06 8.8351E-05

f24 1.7344E-06 1.7344E-06 1.7344E-06 9.9453E-05

exploration–exploitation ratio. The evolutionary process is
divided into three phases which emulate the three states of
matter: gas, liquid and solid. At each state, molecules (in-
dividuals) exhibit different movement capacities. Beginning
from the gas state (pure exploration), the algorithm modifies
the intensities of exploration and exploitation until the solid
state (pure exploitation) is reached. As a result, the approach
can substantially improve the balance between exploration–
exploitation, yet preserving the good search capabilities of
an EA approach.

SMS has been experimentally tested considering a suite
of 24 benchmark functions. The performance of SMS has
also been compared to the following evolutionary algo-
rithms: the Particle Swarm Optimization method (PSO) [17],
the Gravitational Search Algorithm (GSA) [16], the Differ-
ential Evolution (DE) algorithm [13] and the PSO algorithm
with a territorial diversity-preserving scheme (TPSO) [39].
Results have confirmed a high performance of the proposed

268 E. Cuevas et al.

method in terms of the solution quality for solving most of
the benchmark functions.

The SMS’s remarkable performance is associated with
two different reasons: (i) the defined operators allow a bet-
ter particle distribution in the search space, increasing the
algorithm’s ability to find the global optima; and (ii) the
division of the evolution process at different stages, pro-
vides different rates between exploration and exploitation
during the evolution process. At the beginning, pure explo-
ration is favored at the gas state, then a mild transition be-
tween exploration and exploitation features during the liquid
state. Finally, pure exploitation is performed during the solid
state.

Acknowledgements The proposed algorithm is part of the optimiza-
tion system used by a biped robot supported under the grant CONA-
CYT CB 181053.

Appendix A: List of benchmark functions

Table 8 Unimodal test functions

Test function S fopt n

f1(x) = ∑n
i=1 x2

i [−100,100]n 0 30

f2(x) = max{|xi |,1 ≤ i ≤ n} [−100,100]n 0 30

f3(x) = ∑n−1
i=1 [100(xi+1 − x2

i)2 + (xi − 1)2] [−30,30]n 0 30

f4(x) = ∑n
i=1 ix4

i + rand(0,1) [−1.28,1.28]n 0 30

Table 9 Multimodal test functions

Test function S fopt n

f5(x) = 418.9829n + ∑n
i=1(−xi sin(

√|xi |)) [−500,500]n 0 30

f6(x) = ∑50
i=1(x

2
i − 10 cos(2πxi) + 10) [−5.12,5.12]n 0 30

f7(x) = 1
4000

∑n
i=1 x2

i − ∏n
i=1 cos(xi√

i
) + 1 [−600,600]n 0 30

f8(x) = π
n
{10 sin(πy1)+∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)]+ (yn − 1)2}+∑n
i=1 u(xi ,10,100,4)

yi = 1 + (xi+1)
4 , u(xi , a, k,m) =

⎧⎪⎨
⎪⎩

k(xi − a)m xi > a

0 −a ≤ xi ≤ a

k(−xi − a)m xi < a

[−50,50]n 0 30

f9(x) = 0.1{sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]}

+ ∑n
i=1 u(xi ,5,100,4) where u(xi , a, k,m) is the same as f8

[−50,50]n 0 30

f10(x) = ∑n
i=1 x2

i + (
∑n

i=1 0.5ixi)
2 + (

∑n
i=1 0.5ixi)

4 [−10,10]n 0 30

f11(x) = 1 − cos(2π‖x‖) + 0.1‖x‖ where ‖x‖ =
√∑n

i=1 x2
j [−100,100]n 0 30

Table 10 Multimodal test functions with fixed dimensions

Test function S fopt n

f12(x) = ∑11
i=1[ai − xi (b

2
i +bix2)

b2
i +bix3+x4

]2

a = [0.1957,0.1947,0.1735,0.1600,0.0844,0.0627,0.456,0.0342,0.0323,0.0235,0.0246]
b = [0.25,0.5,1,2,4,6,8,10,12,14,16]

[−5,5]n 0.00030 4

f13(x) = ∑4
i=1 ci exp(−∑3

j=1 Aij (xj − Pij)
2), A =

⎡
⎢⎢⎢⎢⎢⎣

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 17 10 17 8

17 8 0.05 10 0.1 14

⎤
⎥⎥⎥⎥⎥⎦

c = [1,1.2,3,3.2], P =

⎡
⎢⎢⎢⎢⎢⎣

0.131 0.169 0.556 0.012 0.828 0.588

0.232 0.413 0.830 0.373 0.100 0.999

0.234 0.141 0.352 0.288 0.304 0.665

0.404 0.882 0.873 0.574 0.109 0.038

⎤
⎥⎥⎥⎥⎥⎦

[0,1]n −3.32 6

f14(x) = (1.5 − x1(1 − x2))
2 + (2.25 − x1(1 − x2))

2 + (2.625 − x1(1 − x2))
2 [−4.5,4.5]n 0 2

An optimization algorithm inspired by the States of Matter that improves the balance 269

Table 11 Set of representative GECCO functions

Test function S n GECCO
classification

f15(x) = 106 · z2
1 + ∑n

i=2 zi + fopt

z = Tosz(x − xopt)

Tosz : R
n → R

n, for any positive integer n, it maps element-wise

a = Tosz(h),a = {a1, a2, . . . , an}, h = {h1, h2, . . . , hn}
ai = sign(hi) exp(K + 0.049(sin(c1K) + sin(c2K))),

where

K =
{

log(hi) if hi �= 0

0 otherwise
, sign(hi) =

⎧⎪⎨
⎪⎩

−1 if hi < 0

0 if hi = 0

1 if hi > 0

,

c1 =
{

10 if hi > 0

5.5 otherwise
and c2 =

{
7.9 if hi > 0

3.1 otherwise

[−5,5]n 30 GECCO2010
Discus function
f11(x)

f16(x) =
√∑n

i=1 |zi |2+4 i−1
n−1 + fopt

z = x − xopt

[−5,5]n 30 GECCO2010
Different Powers
function f14(x)

f17(x) = − 1
n

∑n
i=1 zi sin(

√|zi |) + 4.189828872724339 + 100fpen(
z

100) + fopt

x̂ = 2 × 1+− ⊗ x

ẑ1 = x̂1, ẑi+1 = x̂i+1 + 0.25(x̂i − x
opt
i) for i = 1, . . . , n − 1

z = 100(Λ10(ẑ − xopt) + xopt)

fpen : R
n → R

a = fpen(h), h = {h1, h2, . . . , hn}
a = 100

∑n
i=1 max(0, |hi | − 5)2

1+− is an n-dimensional vector with elements of −1 or 1 computed considering equal
probability

[−5,5]n 30 GECCO2010
Schwefel function
f20(x)

f18(x) = ∑n
i=1 z2

i − 450

z = x − xopt

[−100,100]n 30 GECCO2005
Shifted Sphere
Function f1(x)

f19(x) = ∑n
i=1(

∑i
j=1 zj)

2 − 450

z = x − xopt

[−100,100]n 30 GECCO2005
Shifted Schwefel’s
Problem f2(x)

f20(x) = (
∑n

i=1(
∑i

j=1 zj)
2) · (1 + 0.4|N(0,1)|) − 450

z = x − xopt

[−100,100]n 30 GECCO2005
Shifted Schwefel’s
Problem 1.2 with
Noise in Fitness
f4(x)

f21(x) = max{|Ax − bi |} − 310

A is an n × n matrix, ai,j are integer random numbers in the range [−500,500], det(A) �= 0

bi = Ai · o
Ai is the i-th row of A whereas o is an n × 1 vector whose elements are random numbers in
the range [−100,100]

[−100,100]n 30 GECCO2005
Schwefel’s Problem
2.6 with Global
Optimum on
Bounds f5(x)

f22(x) = ∑n
i=1(100(z2

i − zi+1)
2 + (zi − 1)2) + 390

z = x − xopt

[−100,100]n 30 GECCO2005
Shifted
Rosenbrock’s
Function f6(x)

f23(x) = ∑n
i=1(Ai − Bi(x))2 − 460

Ai = ∑n
j=1(ai,j sinαj + bi,j cosαj), Bi(x) = ∑n

i=1(ai,j sinxj + bi,j cosxj)

For i = 1, . . . , n, ai,j and bi,j are integer random numbers in the range [−100,100]
α = [α1, α2, . . . , αn], αj are random numbers in the range [−π,π]

[−π,π]n 30 GECCO2005
Schwefel’s Problem
2.13 f12(x)

270 E. Cuevas et al.

Table 11 (Continued)

Test function S n GECCO
classification

f24(x) = ∑10
i=1 F̂i (x − xopt

i)/λi

F1−2(x) = Ackley’s function

Fi(x) = −20 exp(−0.2
√

1
D

∑n
i=1 x2

i) − exp(1
D

∑n
i=1 cos(2πxi)) + 20

F3−4(x) = Rastringin’s function

Fi(x) = ∑n
i=1(x

2
i − 10 cos(2πxi) + 10)

F5−6(x) = Sphere function

Fi(x) = ∑n
i=1 x2

i

F7−8(x) = Weierstrass function

Fi(x) = ∑n
i=1(

∑k max
k=0 [ak cos(2πbk(xi + 0.5))]) − n

∑k max
k=0 [ak cos(2πbk(xi · 0.5))]

F9−10(x) = Griewank’s function

Fi(x) = ∑n
i=1

x2
i

4000 − ∏n
i=1 cos(xi√

i
) + 1

F̂i (z) = Fi(z)/F max
i . F max

i is the maximum value of the particular function i.

λ = [10
32 , 5

32 ,2,1, 10
100 , 5

100 ,20,10, 10
60 , 5

60]

[−5,5]n 30 GECCO2005
Rotated Version of
Hybrid Composition
Function f16(x)

The xopt andfopt values have been set to default values which have been obtained from the Matlab©implementation for GECCO competitions, as
it is provided in [51].

References

1. Han M-F, Liao S-H, Chang J-Y, Lin C-T (2012) Dynamic
group-based differential evolution using a self-adaptive
strategy for global optimization problems. Appl Intell.
doi:10.1007/s10489-012-0393-5

2. Pardalos Panos M, Romeijn Edwin H, Tuy H (2000) Recent devel-
opments and trends in global optimization. J Comput Appl Math
124:209–228

3. Floudas C, Akrotirianakis I, Caratzoulas S, Meyer C, Kallrath J
(2005) Global optimization in the 21st century: advances and chal-
lenges. Comput Chem Eng 29(6):1185–1202

4. Ying J, Ke-Cun Z, Shao-Jian Q (2007) A deterministic global op-
timization algorithm. Appl Math Comput 185(1):382–387

5. Georgieva A, Jordanov I (2009) Global optimization based on
novel heuristics, low-discrepancy sequences and genetic algo-
rithms. Eur J Oper Res 196:413–422

6. Lera D, Sergeyev Ya (2010) Lipschitz and Hölder global optimiza-
tion using space-filling curves. Appl Numer Math 60(1–2):115–
129

7. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence
through simulated evolution. Wiley, Chichester

8. De Jong K (1975) Analysis of the behavior of a class of genetic
adaptive systems. Ph.D. Thesis, University of Michigan, Ann Ar-
bor, MI

9. Koza JR (1990) Genetic programming: a paradigm for genetically
breeding populations of computer programs to solve problems.
Rep. No. STAN-CS-90-1314, Stanford University, CA

10. Holland JH (1975) Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor

11. Goldberg DE (1989) Genetic algorithms in search, optimization
and machine learning. Addison Wesley, Boston

12. de Castro LN, Von Zuben FJ (1999) Artificial immune sys-
tems: Part I—basic theory and applications. Technical report TR-
DCA 01/99

13. Storn R, Price K (1995) Differential evolution—a simple and ef-
ficient adaptive scheme for global optimisation over continuous
spaces. Tech. Rep. TR-95–012, ICSI, Berkeley, CA

14. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simu-
lated annealing. Science 220(4598):671–680

15. İlker B, Birbil S, Shu-Cherng F (2003) An electromagnetism-like
mechanism for global optimization. J Glob Optim 25:263–282

16. Rashedia E, Nezamabadi-pour H, Saryazdi S (2011) Filter mod-
eling using gravitational search algorithm. Eng Appl Artif Intell
24(1):117–122

17. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceedings of the 1995 IEEE international conference on neural
networks, December 1995, vol 4, pp 1942–1948

18. Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a
search strategy. Technical Report No. 91-016, Politecnico di Mi-
lano

19. Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing ex-
ploration and exploitation with adaptive variation for evolutionary
multi-objective optimization. Eur J Oper Res 197:701–713

20. Chen G, Low CP, Yang Z (2009) Preserving and exploiting genetic
diversity in evolutionary programming algorithms. IEEE Trans
Evol Comput 13(3):661–673

21. Liu S-H, Mernik M, Bryant B (2009) To explore or to exploit: an
entropy-driven approach for evolutionary algorithms. Int J Knowl-
Based Intell Eng Syst 13(3):185–206

22. Alba E, Dorronsoro B (2005) The exploration/exploitation trade-
off in dynamic cellular genetic algorithms. IEEE Trans Evol Com-
put 9(3):126–142

23. Fister I, Mernik M, Filipič B (2010) A hybrid self-adaptive evolu-
tionary algorithm for marker optimization in the clothing industry.
Appl Soft Comput 10(2):409–422

24. Gong W, Cai Z, Jiang L (2008) Enhancing the performance of
differential evolution using orthogonal design method. Appl Math
Comput 206(1):56–69

25. Joan-Arinyo R, Luzon MV, Yeguas E (2011) Parameter tuning
of pbil and chc evolutionary algorithms applied to solve the root
identification problem. Appl Soft Comput 11(1):754–767

26. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Dif-
ferential evolution algorithm with ensemble of parameters and
mutation strategies. Appl Soft Comput 11(2):1679–1696

27. Sadegh M, Reza M, Palhang M (2012) LADPSO: using fuzzy
logic to conduct PSO algorithm. Appl Intell 37(2):290–304

http://dx.doi.org/10.1007/s10489-012-0393-5

An optimization algorithm inspired by the States of Matter that improves the balance 271

28. Yadav P, Kumar R, Panda SK, Chang CS (2012) An intelli-
gent tuned harmony search algorithm for optimization. Inf Sci
196(1):47–72

29. Khajehzadeh M, Raihan Taha M, El-Shafie A, Eslami M (2012)
A modified gravitational search algorithm for slope stability anal-
ysis. Eng Appl Artif Intell 25(8):1589–1597

30. Koumousis V, Katsaras CP (2006) A saw-tooth genetic algorithm
combining the effects of variable population size and reinitializa-
tion to enhance performance. IEEE Trans Evol Comput 10(1):19–
28

31. Han M-F, Liao S-H, Chang J-Y, Lin C-T (2012) Dynamic
group-based differential evolution using a self-adaptive strat-
egy for global optimization problems. Appl Intell. doi:10.1007/
s10489-012-0393-5

32. Brest J, Maučec, MS (2008) Population size reduction for the dif-
ferential evolution algorithm. Appl Intell 29(3):228–247

33. Li Y, Zeng X (2010) Multi-population co-genetic algorithm with
double chain-like agents structure for parallel global numerical
optimization. Appl Intell 32(3):292–310

34. Paenke I, Jin Y, Branke J (2009) Balancing population- and
individual-level adaptation in changing environments. Adapt Be-
hav 17(2):153–174

35. Araujo L, Merelo JJ (2011) Diversity through multiculturality: as-
sessing migrant choice policies in an island model. IEEE Trans
Evol Comput 15(4):456–468

36. Gao H, Xu W (2011) Particle swarm algorithm with hybrid muta-
tion strategy. Appl Soft Comput 11(8):5129–5142

37. Jia D, Zheng G, Khan MK (2011) An effective memetic differ-
ential evolution algorithm based on chaotic local search. Inf Sci
181(15):3175–3187

38. Lozano M, Herrera F, Cano JR (2008) Replacement strategies to
preserve useful diversity in steady-state genetic algorithms. Inf Sci
178(23):4421–4433

39. Ostadmohammadi B, Mirzabeygi P, Panahi M (2013) An im-
proved PSO algorithm with a territorial diversity-preserving
scheme and enhanced exploration–exploitation balance. Swarm
Evol Comput 11:1–15

40. Yang G-P, Liu S-Y, Zhang J-K, Feng Q-X (2012) Con-
trol and synchronization of chaotic systems by an im-
proved biogeography-based optimization algorithm. Appl Intell.
doi:10.1007/s10489-012-0398-0

41. Hasanzadeh M, Meybodi MR, Ebadzadeh MM (2012)
Adaptive cooperative particle swarm optimizer. Appl Intell.
doi:10.1007/s10489-012-0420-6

42. Aribarg T, Supratid S, Lursinsap C (2012) Optimizing the mod-
ified fuzzy ant-miner for efficient medical diagnosis. Appl Intell
37(3):357–376

43. Fernandes CM, Laredo JLJ, Rosa AC, Merelo JJ (2012) The
sandpile mutation Genetic Algorithm: an investigation on the
working mechanisms of a diversity-oriented and self-organized
mutation operator for non-stationary functions. Appl Intell.
doi:10.1007/s10489-012-0413-5

44. Gwak J, Sim KM (2013) A novel method for coevolving PS-
optimizing negotiation strategies using improved diversity con-
trolling EDAs. Appl Intell 38(3):384–417

45. Cheshmehgaz HR, Ishak Desa M, Wibowo A (2013) Effective lo-
cal evolutionary searches distributed on an island model solving
bi-objective optimization problems. Appl Intell 38(3):331–356

46. Cuevas E, González M (2012) Multi-circle detection on im-
ages inspired by collective animal behaviour. Appl Intell.
doi:10.1007/s10489-012-0396-2

47. Adra SF, Fleming PJ (2011) Diversity management in evolu-
tionary many-objective optimization. IEEE Trans Evol Comput
15(2):183–195

48. Črepineš M, Liu SH, Mernik M (2011) Exploration and exploita-
tion in evolutionary algorithms: a survey. ACM Comput Surv
1(1):1–33

49. Ceruti MG, Rubin, SH (2007) Infodynamics: Analogical analysis
of states of matter and information. Inf Sci 177:969–987

50. Chowdhury D, Stauffer D (2000) Principles of equilibrium statis-
tical mechanics. Wiley-VCH, New York

51. Betts DS, Turner RE (1992) Introductory statistical mechanics, 1st
edn. Addison Wesley, Reading

52. Cengel YA, Boles MA (2005) Thermodynamics: an engineering
approach, 5th edn. McGraw-Hill, New York

53. Bueche F, Hecht E (2011) Schaum’s outline of college physics,
11th edn. McGraw-Hill, New York

54. Piotrowski AP, Napiorkowski JJ, Kiczko A (2012) Differential
evolution algorithm with separated groups for multi-dimensional
optimization problems. Eur J Oper Res 216(1):33–46

55. Cocco Mariani V, Justi Luvizotto LG, Alessandro Guerra F, dos
Santos Coelho L (2011) A hybrid shuffled complex evolution ap-
proach based on differential evolution for unconstrained optimiza-
tion. Appl Math Comput 217(12):5822–5829

56. Yao X, Liu Y, Lin G (1999) Evolutionary programming made
faster. IEEE Trans Evol Comput 3(2):82–102

57. Moré JJ, Garbow BS, Hillstrom KE (1981) Testing unconstrained
optimization software. ACM Trans Math Softw 7(1):17–41

58. Tsoulos IG (2008) Modifications of real code genetic algorithm
for global optimization. Appl Math Comput 203(2):598–607

59. Black-Box Optimization Benchmarking (BBOB) 2010, 2nd
GECCO Workshop for Real-Parameter Optimization. http://coco.
gforge.inria.fr/doku.php?id=bbob-2010

60. Abdel-Rahman Hedar, Ali AF (2012) Tabu search with multi-level
neighborhood structures for high dimensional problems. Appl In-
tell 37(2):189–206

61. Vafashoar R, Meybodi MR, Momeni Azandaryani AH (2012)
CLA-DE: a hybrid model based on cellular learning automata for
numerical optimization. Appl Intell 36(3):735–748

62. Garcia S, Molina D, Lozano M, Herrera F (2008) A study
on the use of non-parametric tests for analyzing the evolu-
tionary algorithms’ behaviour: a case study on the CEC’2005
special session on real parameter optimization. J Heuristics.
doi:10.1007/s10732-008-9080-4

63. Shilane D, Martikainen J, Dudoit S, Ovaska S (2008) A general
framework for statistical performance comparison of evolutionary
computation algorithms. Inf Sci 178:2870–2879

Erik Cuevas received the B.S. de-
gree with distinction in Electron-
ics and Communications Engineer-
ing from the University of Guadala-
jara, Mexico in 1995, the M.Sc. de-
gree in Industrial Electronics from
ITESO, Mexico in 2000, and the
Ph.D. degree from Freie Univer-
sität Berlin, Germany in 2005. From
2001 he was awarded a scholarship
from the German Service for Aca-
demic Interchange (DAAD) as full-
time researcher. Since 2007 he has
been with University of Guadala-
jara, where he is currently a fulltime

Professor in the Department of Electronics. From 2008, he is a member
of the Mexican National Research System (SNI). His current research
interests include computer vision and artificial intelligence.

http://dx.doi.org/10.1007/s10489-012-0393-5
http://dx.doi.org/10.1007/s10489-012-0393-5
http://dx.doi.org/10.1007/s10489-012-0398-0
http://dx.doi.org/10.1007/s10489-012-0420-6
http://dx.doi.org/10.1007/s10489-012-0413-5
http://dx.doi.org/10.1007/s10489-012-0396-2
http://coco.gforge.inria.fr/doku.php?id=bbob-2010
http://coco.gforge.inria.fr/doku.php?id=bbob-2010
http://dx.doi.org/10.1007/s10732-008-9080-4

272 E. Cuevas et al.

Alonso Echavarría received the
B.S. degree in Mechanical Engi-
neering from the Instituto Tecno-
logico de Culiacan, Mexico in 2009.
He is currently finishing his mas-
ter degree in Electronics and Com-
puter Science from Universidad de
Guadalajara, Mexico. His current
research interests include artificial
intelligence, computer vision and
evolutionary algorithms.

	An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation
	Abstract
	Introduction
	States of matter
	States of matter search (SMS)
	Definition of operators
	Direction vector
	Collision
	Random positions
	Best Element Updating

	SMS algorithm
	General procedure
	The complete algorithm
	Initialization
	Gas state
	Liquid state
	Solid state

	Experimental results
	Performance comparison to other meta-heuristic algorithms
	Unimodal test functions
	Multimodal test functions
	Multimodal test functions with fixed dimensions
	Test functions from the GECCO contest

	Conclusions
	Acknowledgements
	Appendix A: List of benchmark functions
	References

