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Abstract Predicted air and dew point temperatures can be
valuable in decision making in many areas including pro-
tecting crops from damage, avoiding heat stress on animals
and humans, and in planning related to energy management.
Current web-based artificial neural network (ANN) mod-
els on the Automated Environment Monitoring Network
(AEMN) in Georgia predict hourly air and dew point tem-
perature for twelve prediction horizons, using 24 models.
The observed air temperature may approach the observed
dew point temperature, but never goes below it. Current web
based ANN models have prediction errors which, when the
air and dew point temperatures are close, may cause air tem-
perature to be predicted below the dew point temperature.
Herein this error is referred to as a prediction anomaly. The
goal of this research was to improve the prediction accu-
racy of existing air and dew point temperature ANN models
by combining the two weather variables into a single ANN
model for each prediction horizon. The objectives of this
study were to reduce the mean absolute error (MAE) of pre-
diction and to reduce the number of prediction anomalies.
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The combined models produced a reduction in the air tem-
perature MAE for ten of twelve prediction horizons with an
average reduction in MAE of 1.93 %. The combined mod-
els produced a reduction in the dew point temperature MAE
for only six of twelve prediction horizons with essentially
no average decrease in MAE. However, the combined mod-
els showed a marked reduction in prediction anomalies for
all twelve prediction horizons with an average reduction of
34.1 %. The reduction in prediction anomalies ranged from
4.6 % at the one-hour horizon to 60.5 % at the eleven-hour
horizon.
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1 Introduction

Dew point temperature is the temperature at which humid
air, under constant barometric pressure, will cause the wa-
ter vapor to condense into liquid water. The dew point is the
saturation temperature at which water vapor forms droplets
on a solid surface. Hence, observed dew point temperature
is always less than or equal to the air temperature. Air and
dew point temperature predictions could be used to prepare
for events such as frost, freeze and heat stress. Frost occurs
when water vapor in the air is deposited on a solid surface
as ice without turning into liquid water during the transi-
tion [24]. A freeze event occurs when the temperature drops
below the freezing point of water. Frost damage is caused
by the sharp ice crystals which form on the surface of the
leaves. The crystals damage the cuticle and epidermis of the
leaves, making the plant vulnerable to a further decrease in
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air temperature. Frost damage is mainly due to crystalliza-
tion of liquid inside the individual cells [24]. Freeze damage
occurs when the temperature remains below 0 ◦C and the
amount of damage depends on the length of the freeze event.
However, frost damage is usually noticeable due to visible
physical impact on the plants. Freeze damage mainly im-
pacts tender parts of the plants such as buds and shoots. This
damage may not be evident immediately [24]. Heat stress
occurs when the body of a human or animal becomes over-
heated and the body is unable to regulate the temperature
to cool down [7, 20]. Severe cases of heat stress can cause
heat stroke and could lead to death if proper and immedi-
ate treatment is not provided [10]. Occurrence of heat stress
could be estimated using dew point temperature [28].

Low temperature conditions reduce crop yields due to
frost damage to leaves and fruit, which could severely af-
fect fruit crops such as blueberries and peaches. The dura-
tion of the extreme temperatures also determines the sever-
ity of damage that could be caused by the event. Predict-
ing weather variables gives sufficient time to minimize the
loss of crops through the use of preventive measures such
as orchard heaters and irrigation [12]. Occurrence of frost
or freeze events during the growing season can be severely
damaging to the agricultural crops [2, 6, 21, 27, 35]. In
Spring of 2002, a large area of blueberry and peach crops
in South Georgia was destroyed due to unusually severe
and unexpected low temperature conditions. In early April
of 2007, 50 % of Georgia’s peach crop and 87 % of blue-
berry crop were lost due to frost [8, 34]. As a result of this
late frost event, the values of fruits and nuts were down by
$65 million for the year 2007 [3]. Crop managers can min-
imize these damages by using orchard heaters, irrigation or
wind machines if they are given a warning with sufficient
time. Accurate weather prediction thus plays a crucial role
in managing crops. The National Weather Service (NWS) is
the main provider of weather forecasts in the USA and cur-
rently issues three levels of frost and freeze warnings [23].
However, NWS collects weather data from urban areas and
does not collect weather data from many of the rural areas
where the weather conditions have direct impact on the agri-
cultural production. The University of Georgia Automated
Environmental Monitoring Network (AEMN) was created
for the purpose of collecting weather data in the regions that
are not covered by the NWS [13].

Dew point temperature can be used to estimate the
amount of moisture in the air, near-surface humidity, evap-
otranspiration, relative humidity, and frost. Each of these
can have an effect on crop production. Plants in arid regions
which do not receive frequent rainfall rely on the dew forma-
tion. The dew point temperature could also give an insight
into the long-term climatic changes [26].

Irrigation is a common method of frost protection, in
which a layer of ice forms on the flowers which insu-

lates peach and blue berry blossoms from damages due to
frost. To effectively apply these preventive measures, man-
agers need accurate predictions about weather events several
hours in advance. A prediction that fails to indicate the oc-
currence of a frost event could lead to extensive damages to
crops. Similarly, a false frost event prediction could cause
economic loss due to the cost of unnecessary frost damage
prevention procedures.

Prediction of air and dew point temperature relies on
prior observations of weather variables, such as air tem-
perature, relative humidity, rainfall, wind speed, solar ra-
diation, vapor pressure, vapor pressure deficit. The infras-
tructure needed to record the observations is provided by
the UGAAEMN, which takes observations every second and
calculates an average or total every 15 minutes [14, 16]. This
network of weather stations collects data and records essen-
tial information required to keep track of the weather condi-
tions, or perform analysis and prediction [15]. The Georgia
AEMN network currently has over 80 sites and the data for
all the sites are accumulated at a central server located at
Griffin, Georgia. Previous research has determined the vari-
ables needed for prediction of air temperature and dew point
temperature, amount of historical data needed for accurate
prediction and other such dependencies [30, 31]. The accu-
mulated data are used as inputs to currently deployed indi-
vidual ANN models to predict air and dew point temperature
for the next twelve hours at an hourly interval. The accumu-
lated data are parsed and the values of the weather variables
are extracted from the data which includes current and prior
values. This process is applied to both air and dew point tem-
perature models for each of the twelve horizons. The predic-
tions of air temperature and dew point temperature from the
24 models are updated every 15 minutes and made available
on the AEMN website www.georgiaweather.net [14].

The ANN models were initially designed to predict air
temperature between Winter and early Spring [19]. The in-
puts to the air temperature ANNs included five weather
variables: temperature, relative humidity, wind speed, so-
lar radiation and rainfall. The models were developed us-
ing data from the first 100 days of the year. The observa-
tions were also restricted to those in which the temperature
at the time of prediction was less than or equal to 20 ◦C.
In addition to the current values for each observation, prior
data for 24 hours spaced at one hour intervals were also in-
cluded. Hourly first difference terms for the current and prior
weather variables were also included. The models needed 24
hours of prior observations, time of day, seasonal terms as
input, and the models had 120 neurons in the hidden layer,
and they predicted air temperature for a particular horizon
[18]. The ANN models were improved by Smith et al. [32]
by adding the time of day and day of year as a part of the in-
put, after transforming them using fuzzy logic membership
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Fig. 1 Ward Style ANN
model [19]

functions, with a resulting decrease in MAE ranging from
6 % to 14 % for the twelve prediction horizons. However
their models were only designed to predict between Win-
ter and early Spring and had the same limitations of the
previous models. A model was developed for each of the
twelve prediction horizons. Air temperature ANN models
were developed to predict year-round by Smith et al. [31]
and implemented on the AEMN website. These ANN mod-
els were used to generate short term air temperature predic-
tions by the AEMN. The ANNs were based on Ward-style
network architecture [33] and were trained using the error
back-propagation (EBP) [11]. The input layer of the model
consisted of 258 neurons for inputs. The hidden layer of the
model consisted of 120 nodes equally distributed among the
three slabs with hyperbolic tangent, Gaussian and inverse
Gaussian as the activation functions, Fig. 1. The prediction
accuracy of the year-round models was comparable to the
previous Winter models, yet was developed to predict air
temperature throughout the year. They found that unantici-
pated cooling events were the most significant obstacle with
the year-round models. They varied several ANN parame-
ters, such as the activation function of outputs, number of
hours of prior data, additional values and rate of change for
observations at 15 min intervals and the data scaling ranges
for both input and output. However, no improvement in ac-
curacy was produced. Bagging and boosting only slightly
improved the accuracy, but at a high computational cost
[31].

Support Vector Machine (SVM) based regression mod-
els were also developed to predict air temperature and the
accuracy was compared with the existing ANNs [4]. For a
reduced training set with 300,000 patterns, the SVM models
were slightly more accurate than the ANN models. How-
ever, the ANN models predicted more accurately when the
number of training patterns was increased to 1.5 million.

ANN models for twelve hour prediction of dew point
temperature were developed by Shank et al. [30] and are in-
cluded on the AEMN website. Inputs to the dew point ANNs
included the same weather variables used in the existing air
temperature models, plus weather variables vapor pressure
and vapor pressure deficit, and their hourly rates of change.
The models were developed similarly to those developed by
Smith et al. [31]. Ensemble artificial neural network were
developed by Shank et al. [29] to improve the prediction
accuracy. Approximately four years of weather data were
available that included the additional weather variables [30].
The twelve ANN models to predict dew point were imple-
mented on the AEMN site similar to the air temperature
models.

A fuzzy expert system, Georgia Extreme-weather Neural-
network Informed Expert (GENIE), was developed to inter-
pret the predicted air temperature, predicted dew point tem-
perature and the observed wind speed in order to generate
frost and freeze warning levels [5]. The numeric warning
levels generate by GENIE provide higher granularity than
the textual warnings provided by the National Weather Ser-
vice (NWS). A web interface was developed for GENIE to
provide a convenient means of access to the warnings.

The air temperature and dew point temperature models
have prediction errors measured in terms of mean abso-
lute error (MAE). The MAE for the twelve air tempera-
ture models varies between 0.516 ◦C and 1.873 ◦C. Simi-
larly, the MAE for dew point temperature models varies be-
tween 0.508 ◦C and 2.081 ◦C. Under high relative humidity
conditions, the observed air temperature will approach the
observed dew point temperature, but never goes below it.
Under these conditions, the predicted air temperature will
frequently drop below the predicted dew point temperature,
herein referred to as a prediction anomaly. Further improve-
ment of the ANN models for air and dew point temperature
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Table 1 Locations used for training, selection and evaluation datasets

Model development
2002, 2003, 2004, 2005, 2007, 2009

Model evaluation
2006, 2008, 2010

Training set Selection set Evaluation set

ATLANTA ALMA ALAPAHA
BRUNSWICK ARABI ALPHARETTA
CALLAWAY BLEDSOE ARLINGTON
COVINGTON BOWEN ATTAPULGUS
DALLAS DEMPSEY BLUE RIDGE
DAWSON DIXIE BYROMVILLE
DEARING EATONTON CAIRO
DULUTH GEORGETOWN CALHOUN
HOMERVILLE GRIFFIN CAMILLA
OAKWOOD HOWARD CLARKS HILL
SHELLMAN JEFFERSONVILLE CORDELE
TIFTON LAFAYETTE DANIELSVILLE
TIGER PLAINS DOUGLAS
WOODBINE SPARTA ELLIJAY
– TENNILLE HHERCa

– – MOULTRIE
– – NAHUNTA
– – NEWTON
– – ODUM
– – OSSABAW
– – SASSER
– – SAVANNAH
– – VALDOSTA
– – VIDALIA

aHooks-Hanner Environmental Resource Center (HHERC)

involves not only reducing the MAE but also reducing the
number of prediction anomalies.

The architecture of the ANNs plays a key role in the pre-
diction capabilities of the ANNs. Previous research explored
the ANN parameters such as the nodes in the hidden layers,
varying the number of inputs, and larger datasets. Another
possible ANN architecture parameter is the number of out-
puts. Impact on each output according to the inputs for ANN
based models was examined by Gevrey et al. [9], and the
influence of outputs on learning in ANN models was ex-
amined by Narendra and Mukhopadhyay [22]. The current
implemented air and dew point temperature ANN models
have only one output. Additional outputs could be different
weather variable or other prediction horizons. A model that
predicts more than one weather variable is herein referred
to as the combined model. Such a model could predict air
and dew point temperature for a single or multiple predic-
tion horizons. Predicting multiple values in a single model
provides an opportunity for interaction among the outputs.

The goal of this research was to improve the prediction
accuracy of air temperature and dew point temperature ANN
models by developing combined models to predict both air
and dew point temperature for each prediction horizon. The
research objectives are as follows: (1) to determine if MAE

for predicted air temperature and predicted dew point tem-
perature are reduced for the combined model in compari-
son with the individual models, and (2) to determine if the
number of occurrences of the prediction anomaly can be re-
duced using the combined models. The hypothesis is that by
predicting air and dew point temperature for a single pre-
diction horizon in a single combined model, the prediction
MAE may be reduced and the number of prediction anoma-
lies may decrease. The air and dew point temperature are
related weather variables, thus predicting both in a single
model might aid in reducing the MAE and decreasing the
number of prediction anomalies. These anomalies do not oc-
cur in the observed data; thus, training the combined models
might decrease the number of prediction anomalies.

2 Methodology

2.1 Data sets

The AEMN measures weather variables each second and
then stores the averages or totals of the values every 15 min-
utes. Data from the initial sites were available from 1991.
However, the data selected for this research were from 2002
to 2010 because the dew point temperature observations
were initiated in 2002. Routines were developed to perform
error checking on the raw data to remove missing variables,
incomplete records, instrument malfunctions and erroneous
records. The data were partitioned into a model development
set and a model evaluation set. The two sets were chosen
so that they were mutually exclusive of years and locations,
as shown in Table 1. The model development set was fur-
ther partitioned into a training set and a selection set. The
training set was used to train the ANN models using re-
silient propagation [25] to adjust the ANN weights. The se-
lection set was presented to the ANNs in feed forward mode
only to choose the model with the lowest MAE. The cho-
sen model was treated as the final model for a given pre-
diction horizon. The training set and selection set were mu-
tually exclusive by locations. The model evaluation set was
presented to the ANNs in feed forward mode and the result-
ing MAE was used as a metric to compare with other mod-
els. This method of partitioning datasets and training was
used to avoid over-training the models. The training set con-
sisted of 297,974 patterns, the selection set had 306,972 pat-
terns and the evaluation set included 507,347 patterns. This
would be the strongest evaluation of the models, since the
final ANNs will be evaluated with data from sites and years
which were not used in model development. The approach
to partitioning the data was modified from the partitioning
used to develop the current web-based ANN temperature
models in order to include the additional sites and years.
The current web-based ANN air temperature models were
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Fig. 2 Fuzzy membership functions for the cyclic time of the day in-
put variable

developed with data from 1997 to 2005 and over 20 loca-
tions [31]. The current web-based ANN dew point temper-
ature models were developed with data from 2002 to 2005,
with over 20 locations [30]. Additional years from 2006 to
2010 and locations were included herein to provide for more
robust models.

The data partitions were subjected to constraints to en-
sure a fair distribution of patterns. The locations and years
involved in the partitioning were chosen to minimize the dif-
ference in the range and average air temperatures between
model development and evaluation. The years and locations
were distributed among the sets until the difference in the
range and average air temperatures among the three sets was
minimized. This was done to ensure that the model develop-
ment set and the model evaluation set were representative of
the population.

Input and output patterns were generated from each of
the datasets by transforming and scaling the data. The input
patterns consisted of current and 24-hours of prior hourly
values of air temperature, relative humidity, rainfall, wind
speed, solar radiation, vapor pressure, vapor pressure deficit
and their hourly rates of change. Each input pattern also
had the time-of-day and day-of-year cyclic values obtained
by using triangular fuzzy membership functions, and were
shown in [32] to cause considerable reduction to the MAE.
The membership functions to convert the time-of-day input
variable are shown in Fig. 2 and the membership functions
to convert the day-of-year input variable are shown in Fig. 3.
The pattern included observed air and dew point temperature
as targets for the twelve prediction horizons. All the values
in the pattern were scaled to the range [−0.9,0.9] since the
domain of operation of the activation functions used in the
ANNs was in the range [−1,1]. The range [−0.9,0.9] was
chosen since it captured the range of values for each of the
variables and transformed them to the domain of the acti-
vation functions. Inverse scaling was used to transform the
value of prediction from the domain of the activation func-
tion to the domain of the predicted variable. There were a to-
tal of 358 inputs and two output values per pattern. Based on

Fig. 3 Fuzzy membership functions to convert the day of year input
variable to seasons

prior research, the “air temperature only” model produced
the lowest MAE with 258 inputs and adding other weather
variables did not show any improvement [19, 31]. Similarly,
the dew point temperature model produced the lowest MAE
with 358 inputs [30]. Therefore, the previously determined
number of inputs was used herein for comparison. Patterns
were generated for each of the twelve prediction horizons
and the three data partitions.

2.2 Model development

All models were developed using the Ward-style network ar-
chitecture [33], consisting of a three layered neural network
with input, hidden and output layers, Fig. 1. The input layer
consisted of neurons with linear activation functions. The
hidden layer consisted of 120 neurons in three equally sized
slabs of 40 neurons. The neurons in the slabs had hyperbolic
tangent, Gaussian and inverse Gaussian activation functions.
The output layer neurons used the symmetric sigmoid acti-
vation function. Only the number of inputs or outputs varied
with the models.

Ten instances of each model were trained. Each instance
is an ANN whose initial weights were selected randomly.
Although all the model instances were presented with the
same set of patterns, the order was randomized. This pro-
vided the training algorithm a different starting point for
each instance. Thus the training process took a different path
while searching for the set of weights which could minimize
the prediction error and improve the accuracy of the model.
Selecting among multiple instances made it more likely that
the training algorithm will approach the optimal set of ANN
weights [31].

Resilient propagation (R-Prop) training algorithm was
used to train the models [25]. R-Prop tends to converge
faster and is more stable in comparison with the back-
propagation algorithm [1, 17]. R-Prop was used in its basic
configuration. It is similar to the back-propagation algorithm
except that the error update in R-Prop is dependent on a con-
stant value. This constant value exists for each synapse and
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Table 2 Comparison of the
individual ANN models for air
and dew point temperature with
combined models, evaluation
dataset

Horizons Air temperature MAE ◦C Dew point temperature MAE ◦C

Individual Combined % Reduction
in MAE

Individual Combined % Reduction
in MAE

1 0.889 0.846 4.84 0.818 0.842 −2.93
2 0.959 0.942 1.77 0.890 0.880 1.12
3 1.170 1.080 7.69 1.073 1.081 −0.75
4 1.262 1.256 0.48 1.261 1.264 −0.24
5 1.413 1.383 2.12 1.424 1.416 0.56
6 1.565 1.543 1.41 1.600 1.585 0.94
7 1.617 1.621 −0.25 1.711 1.720 −0.53
8 1.707 1.705 0.12 1.836 1.809 1.47
9 1.825 1.787 2.08 1.954 1.965 −0.56

10 1.848 1.830 0.97 2.052 2.030 1.07
11 1.916 1.918 −0.10 2.155 2.151 0.19
12 2.016 1.975 2.03 2.247 2.276 −1.29

Models 2/12 10/12 (Avg.) 1.93 6/12 6/12 (Avg.) −0.08

is updated by increasing or decreasing the constant based
on the sign of the error value. If the sign of the error value
changes frequently, then the magnitude of the constant value
is decreased. If the sign does not change, then the magni-
tude of the constant value is increased. The sign of the error
is used to determine the direction of change. Resilient prop-
agation does not depend on the derivative of the activation
function [25]. EnCog 3.0.0.0 (runtime v2.0.50727) package
was used to develop and train the models. The unit training
step or learning event begins with the model presented with
input values from the training dataset. The values are passed
forward through the model to obtain a prediction. The pre-
dicted values are compared with the measured values. The
difference in the observed and predicted values is the error
that will be used to adjust the weights as it is propagated
backwards from the output layer to input layer.

All models were trained using the training dataset, to
avoid under-training, until the change in error was less than
0.01 %. After training the models, the ten instances were
presented with the selection set in feed forward mode to ob-
tain the selection set MAEs. The instance with the lowest
selection set MAE was chosen. That completed the model
development part of the process. The selected models were
then presented with the evaluation set once in feed forward
mode to obtain the evaluation set MAE.

Individual ANNs to predict air temperature and dew point
temperature were developed using the partitioned data as
a base line for the prediction accuracy in terms of MAE.
These individual models correspond to the existing air tem-
perature and dew point temperature ANN models currently
implemented on the AEMN. However, they take advantage
of additional years and sites. The individual models have
only one output since they were designed to predict either
air temperature or dew point temperature. Each model was
developed to predict a single weather variable for a single
horizon. Hence, there were a total of 24 models, twelve for

air temperature and twelve for dew point temperature. The
individual air temperature model had 258 input neurons and
one output neuron based on Smith et al. [31]. The dew point
temperature model had 358 input neurons and one output
neuron, based on Shank et al. [30]. In this research, only the
combined model that predicts air and dew point temperature
for a single prediction horizon is considered. The combined
model had 358 input neurons and the two outputs predicted
air temperature and dew point temperature. The MAEs for
individual and combined models were calculated and com-
pared.

While obtaining the evaluation set MAEs for both indi-
vidual and combined models, the occurrence of prediction
anomalies was recorded. The predicted air temperature and
the predicted dew point temperature obtained from the in-
dividual models of corresponding prediction horizons were
compared. The number of instances where the predicted air
temperature was lower than the predicted dew point temper-
ature was calculated for each prediction horizon. Similarly,
the number of instances of the anomaly was computed for
the combined model. The number of instances of anomaly
for the individual and combined models was calculated and
compared. The day of the year was used to compare predic-
tion anomalies by seasons. The count of prediction anoma-
lies was grouped by seasons and prediction horizons to ana-
lyze the seasonal variation in the ANN models.

3 Results and discussion

The air temperature and dew point temperature MAE values
were obtained by presenting the evaluation dataset to the in-
dividual and combined ANNs in feed forward mode only as
shown in Table 2. For air temperature, ten of twelve com-
bined models produced an MAE lower than the individual
models. The combined model showed an average reduction
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Fig. 4 Comparison of air
temperature MAEs for
prediction horizons, individual
and combined models, model
evaluation set

Fig. 5 Comparison of dew
point temperature MAEs for
prediction horizons, individual
and combined models, model
evaluation dataset

in MAE for air temperature by 1.93 %. The two prediction
horizons in which the individual model provided a lower
MAE were the seven and eleven hour horizons. Figure 4
shows the generally observed trend of increasing MAEs for
longer horizons, with a slight decrease in MAEs for air tem-
perature prediction from the combined model. This suggests
that the combined model was able to predict the air temper-
ature with a lower MAE when predicting both air tempera-
ture and dew point temperature. From Table 2, six of twelve
combined models predicted the dew point temperature with
lower MAE than the individual dew point temperature mod-
els. The combined model produced a slight increase in MAE
and the average increase in MAE was 0.08 %. Both the in-
dividual and the combined models maintained the expected
trend of increasing MAE with longer horizons as shown in
Fig. 5. From Table 2, of the ten combined models with lower
MAE for air temperature, five also produced a lower MAE
for dew point temperature in comparison with individual
models.

Second approach to assess the accuracy of the ANNs was
performed by determining the number of prediction anoma-
lies found with individual and combined models, as shown
in Table 3. The models were presented with the evaluation
set in feed forward mode to count the number of predic-
tion anomalies. The evaluation set had 507,347 patterns, and
the number of prediction anomalies for the worst case was
6.55 % of the evaluation set patterns. Twelve of twelve com-
bined ANNs model showed a reduction in the number of
prediction anomalies over the individual models. The av-

Table 3 Number of prediction anomalies for individual and combined
model, model evaluation dataset

Horizons Individual Combined % Reduction

# % # %

1 33252 6.6 31723 6.3 4.6

2 21161 4.2 12857 2.5 39.24

3 14367 2.8 7331 1.4 48.97

4 18775 3.7 11142 2.2 40.66

5 17885 3.5 11394 2.2 36.29

6 16593 3.3 11989 2.4 27.75

7 19345 3.8 15054 3.0 22.18

8 15595 3.1 13292 2.6 14.77

9 11845 2.3 8281 1.6 30.09

10 12815 2.5 9061 1.8 29.29

11 21833 4.3 8619 1.7 60.52

12 12676 2.5 5723 1.1 54.85

Total 216142 146466 (Average) 34.10

Note: The prediction anomalies were obtained after presenting the
models with all 507,347 patterns from the evaluation set

erage reduction in prediction anomalies for the combined
model was 34.1 %, and the reduction ranged from 4.6 % at
the one-hour horizon to 60.5 % at the eleven-hour horizon.
Figure 6 shows a comparison between the number of predic-
tion anomalies found in individual and combined models for
each prediction horizon. The highest number of prediction
anomalies occurred at the one hour horizon for both individ-
ual and combined models. The combined models provided
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Fig. 6 Comparison of number
of prediction anomalies for
individual and combined
models, model evaluation
dataset

Fig. 7 Comparison of
anomalies by season, summed
over the twelve prediction
horizons, model evaluation
dataset

Table 4 Comparison of number
of anomalies in individual
(indv.) and combined (comb.)
models by seasons, model
evaluation dataset

Note: The prediction anomalies
were obtained after presenting
the models with all 507,347
patterns from the evaluation set

Horizons Winter Spring Summer Fall

Indv. Comb. Indv. Comb. Indv. Comb. Indv. Comb.

1 17570 21310 2610 1581 5565 4842 7507 3990
2 9168 7570 1002 575 5060 1433 5931 3279
3 6814 3985 1109 402 2037 1233 4407 1711
4 6267 4490 1296 133 5619 2911 5593 3608
5 7709 6068 554 899 5405 1347 4217 3080
6 6897 4797 1373 808 4231 2176 4092 4208
7 6975 5262 705 322 5239 4283 6426 5187
8 4795 3883 433 815 4103 4073 6264 4521
9 5571 2714 977 310 1971 1415 3326 3842

10 6345 3201 527 919 2009 1623 3934 3318
11 7106 2399 987 396 5037 1297 8703 4527
12 3704 2515 863 107 1138 333 6971 2768

Total 88921 68194 12436 7267 47414 26966 67371 44039
1/12 11/12 3/12 9/12 0/12 12/12 2/12 10/12

a slight reduction in the number of prediction anomalies for
the one-hour horizon. Other horizons showed a marked re-
duction in the number of prediction anomalies.

The models were further examined to compare the oc-
currence of prediction anomalies by season. The prediction
anomalies were classified into the following seasons: Win-
ter (Dec–Feb), Spring (Mar–May), Summer (Jun–Aug) and
Fall (Sep–Nov). Figure 7 compares the prediction anomalies
for individual and combined models for all twelve prediction
horizons, classified by seasons. The highest number of pre-
diction anomalies occurred in the Winter season, with reduc-

tion in prediction anomalies of 23.3 %. The lowest number
of prediction anomalies occurred in the Spring season, with
a reduction of 41.6 %. In Summer, the combined models
produced the highest reduction in the number of prediction
anomalies with a value of 43.1 %. In Fall, the number of
prediction anomalies was slightly higher than the number of
prediction anomalies produced during both Spring and Sum-
mer, and the combined models produced a reduction in the
number of anomalies by 34.6 %. The number of prediction
anomalies for the individual and combined ANNs by sea-
son and horizons is shown in Table 4. In Winter, eleven of
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Table 5 Distribution of
prediction anomalies by severity
of error, combined models,
model evaluation dataset

Note: The prediction anomalies
were obtained after presenting
the models with all 507,347
patterns from the evaluation set

twelve combined models reduced the number of prediction
anomalies in comparison with the individual models. Dur-
ing the Spring season only nine of twelve combined mod-
els showed reduction in the number of prediction anoma-
lies. Consistent reduction was produced in Summer where
twelve of twelve combined models showed reduction and in
Fall ten of twelve combined models showed reduction. The
total row shows the sum of the number of prediction anoma-
lies that occurred for all prediction horizons for each season
using the evaluation set.

The anomalies from the combined models were further
analyzed to determine the extent to which the air tempera-
ture prediction dropped below the predicted dew point tem-
perature or severity. The severity of the prediction anomaly
was classified using increments of 0.25 ◦C as shown in Ta-
ble 5. Green indicates few or no prediction anomalies. Yel-
low indicates that the number of prediction anomalies is in
the range greater than 95 and less than or equal to 2000. Red
or orange indicates that the number of prediction anomalies
is greater than 2000. Table 5 shows that a large portion of
the anomalies are between 0 ◦C and 1.5 ◦C. The combined
models produced a total of 146,466 prediction anomalies.

The number of prediction anomalies with severity greater
than 1 ◦C was 11395, or 0.2 % of the number of predic-
tions in the evaluation set for all prediction horizons. The
two-hour, four-hour and twelve-hour horizon models did not
generate any anomalies greater than 2.25 ◦C. The one-hour,
eight-hour and nine-hour horizon models did not generate
any anomalies greater than 3.25 ◦C. Only 105 of the 146,466
prediction anomalies, for the combined models across all
twelve prediction horizons, had severity greater than 3 ◦C.
Table 6 shows a similar analysis of the individual models.
Green indicates few or no prediction anomalies. Yellow indi-
cates that the number of prediction anomalies is in the range
greater than 95 and less than or equal to 2000. Red or orange
indicates that the number of prediction anomalies is greater
than 2000. The individual models showed higher prevalence
of prediction anomalies, produced a total of 216,142 pre-
diction anomalies. Approximately 10.7 %, or 23067 predic-
tion anomalies, of the total number of prediction anomalies
across all twelve prediction horizons had severity greater
than 1 ◦C. However, 310 of the 216,142 prediction anoma-
lies, for the combined models across all twelve prediction
horizons, had severity greater than 3 ◦C. The combined
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Table 6 Distribution of
prediction anomalies by severity
of error, individual models,
model evaluation dataset

Note: The prediction anomalies
were obtained after presenting
the models with all 507,347
patterns from the evaluation set

models showed an overall reduction of 32.2 % in the total
number of prediction anomalies across all twelve horizons.
The combined models produced similar MAEs as the indi-
vidual models and the combined models considerably re-
duced the prediction anomalies. Based on these two metrics,
the results suggests that combined models are more accurate
than individual models.

Figure 8 shows the scatter plot for the air temperature
predictions using the combined model for the prediction
horizons of one, three, six, nine and twelve. As expected,
the observed scatter about the 1:1 line increases and the
R2 value decreases as the prediction horizon increases. The
plot for the one hour horizon, Fig. 8a, shows a narrower
scatter, which indicates a large portion of the predicted air
temperatures are in close proximity to the observed value.
The regression line had a slope of 0.96, the intercept was

0.69 and the R2 was 0.98. At low observed temperatures
the model tends to over-predict and at high observed tem-
peratures the model tends to under-predict. This trend is ob-
served in other horizons as well. The scatter plot for three-
hour horizon model, shown in Fig. 8b, the regression line
had a slope of 0.97, the intercept was 0.63 and the R2
was 0.97. The scatter plot for the six-hour model had a
slightly greater distribution about the 1:1 line as compared
with the plot for the three-hour horizon model, as shown
in Fig. 8c. The regression line had a slope of 0.94, and the
intercept was 1.21, and the R2 was 0.95. The nine hour scat-
ter plot had observably greater distribution about the 1:1
line, as shown in Fig. 8d. The regression line had a slope
of 0.91, and the intercept was 1.6, and the R2 was 0.92. This
was expected as the MAEs of the six and nine models are
higher than that of the one-hour model. Lastly, the twelve
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Fig. 8 Predicted and observed air temperature, combined model, model evaluation dataset

hour scatter plot had markedly greater distribution about
the 1:1 line, as shown in Fig. 8e, and it was the highest
distribution among the other horizons. The regression line
had a slope of 0.9, and the intercept was 1.8, and the R2
was 0.91.

Dew point temperature predictions from the combined
model were used to generate the scatter plots shown in
Fig. 9, for the prediction horizons one, three, six, nine and
twelve. The low observed temperatures were over-predicted
and high observed temperatures were under-predicted. The
plots show a similar trend that was observed in air tem-
perature scatter plots. The one-hour horizon plots, Fig. 9a,
shows a narrow dense region but a much greater distribution
about the 1:1 for the low density region as compared with
the scatter plot of one-hour horizon air temperature model
shown in Fig. 8a. In the scatter plot for one-hour horizon
dew point temperature model, as shown in Fig. 9a, the re-
gression line had a slope of 0.97, the intercept was 0.4 and
the R2 was 0.98. In the scatter plot for three-hour horizon
model, as shown in Fig. 9b, the dense region was similar to
dew point temperature scatter plot for the one-hour horizon
model, but showed greater distribution about the 1:1 line for
the low density region. The regression line had a slope of

0.97, the intercept was 0.26 and the R2 was 0.97, for the
three-hour horizon model. Both the scatter plots of one and
three hour horizons for dew point temperature are narrow
compared to the six, nine and twelve hour horizons scatter
plots. The scatter plot for the six-hour model, as shown in
Fig. 9c, had greater distribution about the 1:1 line as com-
pared to that of the three-hour model. The regression line
had a slope of 0.94, the intercept was 0.64 and the R2 was
0.94. The scatter plots for the nine and six hour model were
similar in the distribution about the 1:1 line. However, the
nine-hour model, as shown in Fig. 9d, had slightly greater
distribution about the 1:1 line and the regression line had
a slope of 0.91, the intercept was 0.95 and the R2 was
0.91. Lastly, the scatter plot for the twelve-hour model, as
shown in Fig. 9e, had the highest distribution about the 1:1
line. The slope of 0.88 was the lowest and the intercept of
1.23, was the highest among the other horizons. The R2 for
the twelve-hour horizon model was 0.88, which was lowest
among the other horizons. The dew point temperature scat-
ter plots had greater distribution about the 1:1 line as com-
pared with the corresponding air temperature scatter plots,
possibly due to higher MAEs of the dew point temperature
models.
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Fig. 9 Predicted and observed dew point temperature, combined model, model evaluation dataset

4 Summary and conclusions

Combined air temperature and dew point temperature mod-
els were developed for the twelve prediction horizons.
The air temperature predictions from the combined model
showed reduction in MAE for ten of twelve prediction hori-
zons over the corresponding individual models, with a corre-
sponding average reduction in MAE of 1.9 %. The dew point
temperature predictions from the combined model showed
reduction in MAE for six of twelve prediction horizons over
the corresponding individual models. However, averaging
over the twelve prediction horizons showed that there was
essentially no difference in MAE for the dew point tempera-
ture predictions. The combined models showed a marked re-
duction in the number of prediction anomalies as compared
with the individual models. Also, experiments showed that
the anomalies occurred most often in Winter and least fre-
quently in the Spring season for individual and combined
models. The combined models reduced prediction anoma-
lies for each season, with reduction ranging from 23.3 % in
Winter to 43.1 % in Summer.

In this research, the ANN architecture used was based
on previous work by Smith et al. [31] and Shank et al.

[30]. In future research the ANN parameters such as ac-
tivation functions, number of nodes in the hidden layer,
and distribution of nodes between the slabs of the Ward-
style model could be explored for improvement in MAE
or reduction in the number of anomalies. Also, longer du-
ration of prior data, the inclusion of other weather vari-
ables, and different resolution of input data could be ex-
plored. Alternate architectures such as recurrent neural net-
works, hybrid neural networks, and alternative training algo-
rithms such as scaled conjugate gradient propagation, quick-
propagation, Manhattan-propagation, Lavenberg-Marquardt
algorithm and evolutionary training algorithms could be ap-
plied. The training data could be further examined so that the
patterns are distributed evenly for the various temperature
values. Future work could also be focused on combining the
models for various prediction horizons into a single model.
This could include combining a time series of one through
twelve prediction horizons for air temperature or dew point
temperature or both into a single model.
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