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Abstract Hough transform (HT) has been the most com-
mon method for circle detection that delivers robustness
but adversely demands considerable computational efforts
and large memory requirements. As an alternative to HT-
based techniques, the problem of shape recognition has also
been handled through optimization methods. In particular,
extracting multiple circle primitives falls into the category
of multi-modal optimization as each circle represents an
optimum which must be detected within the feasible so-
lution space. However, since all optimization-based circle
detectors focus on finding only a single optimal solution,
they need to be applied several times in order to extract all
the primitives which results on time-consuming algorithms.
This paper presents an algorithm for automatic detection of
multiple circular shapes that considers the overall process
as a multi-modal optimization problem. In the detection,
the approach employs an evolutionary algorithm based on
the way in which the animals behave collectively. In such
an algorithm, searcher agents emulate a group of animals
which interact to each other using simple biological rules.
These rules are modeled as evolutionary operators. Such op-
erators are applied to each agent considering that the com-
plete group maintains a memory which stores the optimal
solutions seen so-far by applying a competition principle.
The detector uses a combination of three non-collinear edge
points as parameters to determine circle candidates (possi-
ble solutions). A matching function determines if such circle
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candidates are actually present in the image. Guided by the
values of such matching functions, the set of encoded candi-
date circles are evolved through the evolutionary algorithm
so that the best candidate (global optimum) can be fitted into
an actual circle within the edge-only image. Subsequently,
an analysis of the incorporated memory is executed in or-
der to identify potential local optima which represent other
circles. Experimental results over several complex synthetic
and natural images have validated the efficiency of the pro-
posed technique regarding accuracy, speed and robustness.

Keywords Circle detection · Bio-inspired methods ·
Evolutionary algorithms · Optimization

1 Introduction

The problem of detecting circular features holds paramount
importance for image analysis in industrial applications such
as automatic inspection of manufactured products and com-
ponents, aided vectorization of drawings, target detection,
etc. [1]. In the last decade, the detection accuracy and com-
putation performance are two main concerned issues and
many circle detection methods have been developed.

The circle detection in digital images is commonly solved
through the Circular Hough Transform (CHT) [2]. A typ-
ical Hough-based approach employs an edge detector and
some edge information to infer locations and radii values.
Peak detection is then performed by averaging, filtering and
histogramming within the transform space. Unfortunately,
such an approach requires a large storage space as the 3-D
cells include parameters (x, y, r) that augment the compu-
tational complexity and yield a low processing speed. The
accuracy of parameters for the extracted circles is poor, par-
ticularly under noisy conditions [2]. In the particular case
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of a digital image holding a significant width and height,
and some densely populated edge pixels, the required pro-
cessing time for Circular Hough Transform makes it pro-
hibitive to be deployed in several applications. In order to
overcome such a problem, some other researchers have pro-
posed new approaches following Hough transform princi-
ples, yielding the probabilistic Hough transform [3], the
randomized Hough transform (RHT) [4], the fuzzy Hough
transform [5] and some other methods discussed by Becker
in [6]. All these approaches significantly reduce the compu-
tational effort and memory requirements in comparison to
the original CHT. However, they notoriously fail while deal-
ing with images contaminated with noise (despite very low
levels) or with circles which are not well defined (occluded
or overlapped) [7].

As an alternative to Hough Transform-based techniques,
the problem of shape recognition has also been handled
through optimization methods [8, 9]. In general, they have
demonstrated to deliver better results than those based on
the HT considering accuracy, speed and robustness [10].
Such approaches have produced several robust circle de-
tectors using different optimization algorithms such as Ge-
netic algorithms (GA) [10], Harmony Search (HSA) [11],
Electromagnetism-Like (EMO) [12], Differential Evolution
(DE) [13] and Bacterial Foraging Optimization (BFOA)
[14]. Since such evolutionary algorithms are global opti-
mizers, they detect only the global optimum of an objec-
tive function that is defined over a given search space [15].
Considering such fact, all these optimization-based detec-
tors work in the original edge image until the convergence
for the first circle recognition is achieved (global optimum).
Such shape is then eliminated from the edge-only image and
the optimization method is executed again over the modified
image. The procedure is repeated until the maximum num-
ber of circles is attained (all important optima are found).
Under such circumstances, these approaches produce circle
detectors which demand considerable time resources in or-
der to accomplish their goal.

In contrast to global optimization, the multi-modal op-
timization approach [16] delivers the detection of multiple
global and local optima of a given objective function. Ex-
tracting multiple circle primitives falls into the category of
multi-modal optimization, where each circle represents an
optimum which must be detected within a feasible solu-
tion space. The quality for such optima is characterized by
the properties of their geometric primitives. Big and well
drawn circles normally represent points in the search space
with high fitness values (possible global maximum) whereas
small and dashed circles describe points with fitness values
which account for local maxima. Likewise, circles holding
similar geometric properties, such as radius, size, etc., tend
to represent locations with similar fitness values.

Therefore, a multi-modal method must be applied in or-
der to appropriately solve the problem of multi-shape detec-
tion. Several multi-modal optimization algorithms are based
on a large variety of different techniques that have been pro-
posed in the literature. Among them, ‘niches and species’
and a fitness sharing method [17] have been introduced
to overcome the weakness of traditional evolutionary algo-
rithms for multimodal optimization. In this work, a new op-
timization algorithm based on the collective animal behavior
to solve multimodal problems is applied to multi-circle de-
tection.

Several studies, which have been inspired by animal be-
havior phenomena, have been applied to develop optimiza-
tion techniques such as the Particle swarm optimization
(PSO) that models the social behavior of bird flocking or
fish schooling [18]. In a PSO process, a swarm of particles
(or agents), each of which represents a potential solution to
an optimization problem, sweeps through the search space.
Each particle registers its position within the search space
and the best solution achieved so far. This is best particle’s
value and the PSO process also keeps track of the global
best solution achieved so far by the swarm and its corre-
spondent particle index. Therefore, during their evolution,
the position of each agent in the next iteration is modified
yielding an attraction movement towards the best position of
the swarm and the best particle’s position [19, 20]. In recent
years, there have been several attempts to apply the PSO to
multi-modal function optimization problems [21, 22]. How-
ever, the performance of such approaches presents several
flaws when it is compared to other multi-modal metaheuris-
tic counterparts [23].

Recently, the concept of individual-organization [24, 25]
has been widely used to understand collective behavior of
animals. The central principle of individual-organization
is that simple repeated interactions between individuals
can produce complex behavioral patterns at group level
[24, 26, 27]. Such inspiration comes from behavioral pat-
terns seen in several animal groups, such as ant pheromone
trail networks, aggregation of cockroaches and the migration
of fish schools, which can be accurately described in terms
of individuals following simple sets of rules [28]. Some ex-
amples of these rules [27, 29] include keeping current posi-
tion (or location) for best individuals, local attraction or re-
pulsion, random movements and competition for the space
inside of a determined distance. On the other hand, new
studies have also shown the existence of collective mem-
ory in animal groups [30–32]. The presence of such mem-
ory establishes that the previous history, of group structure,
influences the collective behavior exhibited in future stages.
Therefore, according to these new developments, it is possi-
ble to model complex collective behaviors by using simple
individual rules and configuring a general memory.

This paper presents an algorithm for automatic detection
of multiple circular shapes that considers the overall process
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as a multi-modal optimization problem. In the detection, the
approach employs an evolutionary algorithm based on the
way animals behave collectively. In such algorithm, searcher
agents emulate a group of animals that interact to each other
by simple biological rules which are modeled as evolution
operators. Such operators are applied to each agent consid-
ering that the complete group has a memory which stores
the optimal solutions seen so-far by applying a competition
principle. In contrast to PSO, the proposed scheme modifies
some evolution operators for allowing not only attracting,
but also repelling movements among particles. Likewise, in-
stead of simply choosing the best position as reference, our
algorithm uses a set of neighboring elements that are con-
tained in a incorporated memory. Such improvements in-
crease the algorithm’s capacity to explore and to exploit the
set of solutions which are operated during the evolving pro-
cess.

The proposed detector uses a combination of three non-
collinear edge points as parameters to determine circle can-
didates (possible solutions). A matching function deter-
mines if such circle candidates are actually present in the
image. Guided by the values of such matching functions,
the set of encoded candidate circles are evolved through the
evolutionary algorithm so that the best candidate can be fit-
ted into the actual circle within the image. Then, an analysis
of the incorporated memory is executed in order to identify
potential local optima, i.e., other circles. Experimental re-
sults over several complex synthetic and natural images have
validated the efficiency of the proposed technique regarding
accuracy, speed and robustness.

The paper is organized as follows: Sect. 2 provides in-
formation regarding the evolutionary algorithm based on
the way animals behave collectively (CAB). Section 3 de-
picts the implementation of the proposed circle detector. The
complete multiple circle detection procedure is presented by
Sect. 4. Experimental results for the proposed approach are
stated in Sect. 5 and some relevant conclusions are discussed
in Sect. 6.

2 Collective Animal Behavior algorithm (CAB)

The CAB algorithm assumes the existence of a set of op-
erations that resembles the interaction rules that model the
collective animal behavior. In the approach, each solution
within the search space represents an animal position. The
“fitness value” refers to the animal dominance with respect
to the group. The complete process mimics the collective
animal behavior.

The approach in this paper implements memory for stor-
ing best solutions (animal positions) mimicking the afore-
mentioned biologic process. Such memory is divided into
two different elements, one for maintaining the best loca-
tions at each generation (Mg) and the other for storing the

best historical positions during the complete evolutionary
process (Mh).

2.1 Description of the CAB algorithm

Following other metaheuristic approaches, the CAB algo-
rithm is an iterative process that starts by initializing the
population randomly (generated random solutions or animal
positions). Then, the following four operations are applied
until a termination criterion is met (i.e. the iteration num-
ber NI):

1. Keep the position of the best individuals.
2. Move from or to nearby neighbors (local attraction and

repulsion).
3. Move randomly.
4. Compete for the space within a determined distance (up-

date the memory).

2.1.1 Initializing the population

The algorithm begins by initializing a set A of Np animal
positions (A = {a1,a2, . . . ,aNp }). Each animal position ai

is a D-dimensional vector containing parameter values to
be optimized. Such values are randomly and uniformly dis-
tributed between the pre-specified lower initial parameter
bound alow

j and the upper initial parameter bound a
high
j .

aj,i = alow
j + rand(0,1) · (ahigh

j − alow
j

);
j = 1,2, . . . ,D; i = 1,2, . . . ,Np. (1)

with j and i being the parameter and individual indexes re-
spectively. Hence, aj,i is the j th parameter of the ith indi-
vidual.

All the initial positions A are sorted according to the
fitness function (dominance) to form a new individual set
X = {x1,x2, . . . ,xNp }, so that we can choose the best B po-
sitions and store them in the memory Mg and Mh. The fact
that both memories share the same information is only al-
lowed at this initial stage.

2.1.2 Keep the position of the best individuals

Analogous to the biological metaphor, this behavioral rule,
typical from animal groups, is implemented as an evolution-
ary operation in our approach. In this operation, the first B

elements ({a1,a2, . . . ,aB}), of the new animal position set
A, are generated. Such positions are computed by the values
contained inside the historical memory Mh, considering a
slight random perturbation around them. This operation can
be modeled as follows:

al = ml
h + v (2)
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where l ∈ {1,2, . . . ,B} while ml
h represents the l-element of

the historical memory Mh.v is a random vector with a small
enough length.

2.1.3 Move from or to nearby neighbors

From the biological inspiration, animals experiment a ran-
dom local attraction or repulsion according to an internal
motivation. Therefore, we have implemented new evolution-
ary operators that mimic such biological pattern. For this op-
eration, a uniform random number rm is generated within the
range [0,1]. If rm is less than a threshold H , a determined
individual position is moved (attracted or repelled) consider-
ing the nearest best historical position within the group (i.e.
the nearest position in Mh); otherwise, it goes to the nearest
best location within the group for the current generation (i.e.
the nearest position in Mg). Therefore such operation can be
modeled as follows:

ai =
{

xi ± r · (mnearest
h − xi ) with probability H

xi ± r · (mnearest
g − xi ) with probability (1 − H)

(3)

where i ∈ {B + 1,B + 2, . . . ,Np}, mnearest
h and mnearest

g rep-
resent the nearest elements of Mh and Mg to xi , while r is
a random number between [−1,1]. Therefore, if r > 0, the
individual position xi is attracted to the position mnearest

h or
mnearest

g , otherwise such movement is considered as a repul-
sion.

2.1.4 Move randomly

Following the biological model, under some probability P ,
one animal randomly changes its position. Such behavioral
rule is implemented considering the next expression:

ai =
{

r with probability P

xi with probability (1 − P)
(4)

with i ∈ {B + 1,B + 2, . . . ,Np} and r a random vector
defined in the search space. This operator is similar to re-
initialize the particle in a random position, as it is done
by Eq. (1).

2.1.5 Compete for the space within of a determined
distance (update the memory)

Once the operations to keep the position of the best individu-
als, such as moving from or to nearby neighbors and moving
randomly, have all been applied to the all Np animal posi-
tions, it is necessary to update the memory Mh.

In order to update the memory Mh, the concept of domi-
nance is used. Animals that interact within a group maintain
a minimum distance among them. Such distance ρ depends

Fig. 1 Dominance concept as it is presented when two animals con-
front each other inside of a ρ distance

on how aggressive the animal behaves [33, 34]. Hence,
when two animals confront each other inside such distance,
the most dominant individual prevails while the other with-
draws. Figure 1 depicts the process.

In the proposed algorithm, the historical memory Mh is
updated considering the following procedure:

1. The elements of Mh and Mg are merged into MU (MU =
Mh ∪ Mg).

2. Each element mi
U of the memory MU is compared

pair-wise to remaining memory elements ({m1
U ,m2

U ,

. . . ,m2B−1
U }). If the distance between both elements is

less than ρ, the element getting a better performance in
the fitness function prevails meanwhile the other is re-
moved.

3. From the resulting elements of MU (from step 2), it is
selected the B best value to build the new Mh.

The use of the dominance principle in CAB allows con-
sidering as memory elements those solutions that hold the
best fitness value within the region which has been defined
by the ρ distance. Such concept improves the exploration
ability by incorporating information regarding previously
found potential solutions during the algorithm’s evolution.
In general, the value of ρ depends on the size of the search
space. A big value of ρ improves the exploration ability
of the algorithm despite it yielding a lower convergence
rate.

In order to calculate the ρ value, an empirical model has
been developed after considering several conducted experi-
ments. Such model is defined by following equation:

ρ =
∏D

j=1(a
high
j − alow

j )

10 · D (5)

where alow
j and a

high
j represent the pre-specified lower and

upper bound of the j -parameter respectively, in an D-
dimensional space.
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2.1.6 Computational procedure

The computational procedure for the proposed algorithm
can be summarized as follows:

Step 1: Set the parameters Np , B , H , P and NI.
Step 2: Generate randomly the position set A = {a1,a2, . . . ,

aNp } using Eq. (1).
Step 3: Sort A according to the objective function (domi-

nance) to build X = {x1,x2, . . . ,xNp }.
Step 4: Choose the first B positions of X and store them

into the memory Mg .
Step 5: Update Mh according to Sect. 2.1.5 (during the first

iteration: Mh = Mg).
Step 6: Generate the first B positions of the new solution

set A ({a1,a2, . . . ,aB}). Such positions correspond
to the elements of Mh making a slight random per-
turbation around them.

al = ml
h + v; being v a random vector of a small

enough length

Step 7: Generate the rest of the A elements using the attrac-
tion, repulsion and random movements.

for i = B + 1: Np

if (r1 < P) then
attraction and repulsion movement

{if (r2 < H) then
ai = xi ± r · (mnearest

h − xi

)

else if
ai = xi ± r · (mnearest

g − xi

)

}
else if
random movement

{
ai = r
}

end for
where r1, r2 ∈ rand(0,1) and r ∈ [−1,1]

Step 8: If NI is completed, the process is finished; otherwise
go back to step 3.
The best value in Mh represents the global solution
for the optimization problem.

2.1.7 Capacities of CAB and differences with PSO

Evolutionary algorithms (EA) have been widely employed
for solving complex optimization problems. These methods
are found to be more powerful than conventional methods
based on formal logics or mathematical programming [35].
Exploitation and exploration are two main features of the
EA [36]. The exploitation phase searches around the current
best solutions and selects the best candidates or solutions.

The exploration phase ensures that the algorithm seeks the
search space more efficiently in order to analyze potential
unexplored areas.

The EA do not have limitations in using different sources
of inspiration (e.g. music-inspired [11] or physic-inspired
charged system search [12]). However, nature is a principal
inspiration for proposing new metaheuristic approaches and
the nature-inspired algorithms have been widely used in de-
veloping systems and solving problems [37]. Biologically-
inspired algorithms are one of the main categories of the
nature-inspired metaheuristic algorithms. The efficiency of
the bio-inspired algorithms is due to their significant ability
to imitate the best features in nature. More specifically, these
algorithms are based on the selection of the most suitable el-
ements in biological systems which have evolved by natural
selection.

Particle swarm optimization (PSO) is undoubtedly one
of the most employed EA methods that use biologically-
inspired concepts in the optimization procedure. Unfortu-
nately, like others stochastic algorithms, PSO also suffers
from the premature convergence [38], particularly in multi-
modal problems. Premature convergence, in PSO, is pro-
duced by the strong influence of the best particle in the evo-
lution process. Such particle is used by the PSO movement
equations as a main individual in order to attract other par-
ticles. Under such conditions, the exploitation phase is priv-
ileged by allowing the evaluation of new search positions
around the best individual. However, the exploration pro-
cess is seriously damaged, avoiding searching in unexplored
areas.

As an alternative to PSO, the proposed scheme modifies
some evolution operators for allowing not only attracting
but also repelling movements among particles. Likewise, in-
stead of considering the best position as reference, our algo-
rithm uses a set of neighboring elements that are contained
in an incorporated memory. Such improvements, allow in-
creasing the algorithm’s capacity to explore and to exploit
the set of solutions which are operated during the evolving
process.

In the proposed approach, in order to improve the balance
between exploitation and exploration, we have introduced
three new concepts. The first one is the “attracting and re-
pelling movement”, which outlines that one particle cannot
be only attracted, but also repelled. The application of this
concept to the evolution operators (Eq. (3)) increases the ca-
pacity of the proposed algorithm to satisfactorily explore the
search space. Since the process of attraction or repulsion of
each particle is randomly determined, the possibility of pre-
maturely convergence is very low, even for cases that hold
an exaggerated number of local minima (excessive number
of multimodal functions).

The second concept is the use of the main individual. In
the approach, the main individual that is considered as pivot
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in the equations (in order to generate attracting and repulsive
movements), is not the best (as in PSO), but one element
(mnearest

h or mnearest
g ) of a set which is contained in memo-

ries that store the best individual seen so-far. Such pivot is
the nearest element in memory with regard to the individual
whose position is necessary to evolve. Under such condi-
tions, the points considered to prompt the movement of a
new individual are multiple. Such fact allows to maintain a
balance between exploring new positions and exploiting the
best positions seen so-far.

Finally, the third concept is the use of an incorporated
memory which stores the best individuals seen so-far. As it
has been discussed in Sect. 2.1.5, each candidate individ-
ual to be stored in the memory must compete with elements
already contained in the memory in order to demonstrate
that such new point is relevant. For the competition, the dis-
tance between each individual and the elements in the mem-
ory is used to decide pair-wise which individuals are actu-
ally considered. Then, the individual with the better fitness
value prevails whereas its pair is discarded. The incorpora-
tion of such concept allows simultaneously registering and
refining the best-individual set seen-so-far. This fact guaran-
tees a high precision for final solutions of the multi-modal
landscape through an extensive exploitation of the solution
set.

2.1.8 Numerical example

In order to demonstrate the algorithm’s capacity to face
multi-modal problems, a numerical example has been set by
applying the proposed method to optimize a simple function
which is defined as follows:

f (x1, x2) = e−((x1−4)2−(x2−4)2) + e−((x1+4)2−(x2−4)2)

+ 2 · e−((x1)
2+(x2)

2) + 2 · e−((x1)
2−(x2+4)2) (6)

Considering the interval of −5 ≤ x1, x2 ≤ 5, the function
possesses two global maxima of value 2 at (x1, x2) = (0,0)

and (0,−4). Likewise, it holds two local minima of value
1 at (−4,4) and (4,4). Figure 2a shows the 3D plot of this
function. The parameters for the CAB algorithm are set as:
Np = 10, B = 4, H = 0.8, P = 0.1, ρ = 3 and NI = 30.

Like all evolutionary approaches, CAB is a population-
based optimizer that attacks the starting point problem
by sampling the objective function at multiple, randomly
chosen, initial points. Therefore, after setting parameter
bounds that define the problem domain, 10 (Np) individu-
als (i1, i2, . . . , i10) are generated using Eq. (1). Following an
evaluation of each individual through the objective function
(Eq. (6)), all are sorted decreasingly in order to build vector
X = (x1,x2, . . . ,x10). Figure 2b depicts the initial individ-
ual distribution in the search space. Then, both memories
Mg (m1

g, . . . ,m4
g) and Mh (m1

h, . . . ,m4
h) are filled with the

first four (B) elements present in X. Such memory elements
are represented by solid points in Fig. 2c.

The new 10 individuals (a1,a2, . . . ,a10) are evolved
at each iteration following three different steps: 1. Keep
the position of best individuals. 2. Move from or nearby
neighbors and 3. Move randomly. The first new four el-
ements (a1,a2,a3,a4) are generated considering the first
step (Keeping the position of best individuals). Following
such step, new individual positions are calculated as per-
turbed versions of all the elements which are contained in
the Mh memory (that represent the best individuals known
so far). Such perturbation is done by using al = ml

h + v
(l ∈ 1, . . . ,4). Figure 2d shows a comparative view between
the memory element positions and the perturbed values of
(a1,a2,a3,a4).

The remaining 6 new positions (a5, . . . ,a10) are individ-
ually computed according to step 2 and 3. For such opera-
tion, a uniform random number r1 is generated within the
range [0, 1]. If r1 is less than 1 − P , the new position aj

(j ∈ 5, . . . ,10) is generated through step 2; otherwise, aj

is obtained from a random re-initialization (step 3) between
search bounds.

In order to calculate a new position aj at step 2, a de-
cision must be made on whether it should be generated by
using the elements of Mh or Mg . For such decision, a uni-
form random number r2 is generated within the range [0,1].
If r2 is less than H , the new position aj is generated by using
xj ± r · (mnearest

h − xj ); otherwise, aj is obtained by consid-
ering xj ± r · (mnearest

g − xj ). Where mnearest
h and mnearest

g

represent the closest elements to xj in memory Mh and Mg

respectively. In the first iteration, since there is not available
information from previous steps, both memories Mh and Mg

share the same information which is only allowed at this ini-
tial stage. Figure 2e shows graphically the whole procedure
employed by step 2 in order to calculate the new individual
position a8 whereas Fig. 2f presents the positions of all new
individuals (a1,a2, . . . ,a10).

Finally, after all new positions (a1,a2, . . . ,a10) have
been calculated, memories Mh and Mg must be updated.
In order to update Mh, new calculated positions (a1,a2,

. . . ,a10) are arranged according to their fitness values by
building vector X = (x1,x2, . . . ,x10). Then, the elements of
Mh are replaced by the first four elements in X (the best in-
dividuals of its generation). In order to calculate the new el-
ements of Mh, current elements of Mh (the present values)
and Mg (the updated values) are merged into MU . Then,
by using the dominance concept (explained in Sect. 2.1.5)
over MU , the best four values are selected to replace the ele-
ments in Mg . Figure 2g and 2h show the updating procedure
for both memories. Applying the dominance (see Fig. 2g),
since the distances a = dist(m3

h,m4
g), b = dist(m2

h,m3
g) and

c = dist(m1
h,m1

g) are less than ρ = 3, elements with better
fitness evaluation will build the new memory Mh. Figure 2h
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Fig. 2 CAB numerical example: (a) 3D plot of the function used as
example. (b) Initial individual distribution. (c) Initial configuration of
memories Mg and Mh. (d) The computation of the first four individ-
uals (a1,a2,a3,a4). (e) It shows the procedure employed by step 2
in order to calculate the new individual position a8. (f) Positions of

all new individuals (a1,a2, . . . ,a10). (g) Application of the dominance
concept over elements of Mg and Mh. (h) Final memory configurations
of Mg and Mh after the first iteration. (i) Final memory configuration
of Mh after 30 iterations

depicts final memory configurations. The circles and solid
circles points represent the elements of Mg and Mh respec-
tively whereas the bold squares perform as elements shared
by both memories. Therefore, if the complete procedure is
repeated over 30 iterations, the memory Mh will contain the
4 global and local maxima as elements. Figure 2i depicts the
final configuration after 30 iterations.

3 Circle detection using CAB

In this section, the proposed CAB algorithm is employed
for solving the circle detection issue. The detection process

is considered similar to a multimodal optimization problem
where optimal and suboptimal solutions represent the cir-
cular shapes actually present in the image. All global and
local minima of J must be found in a single run consid-
ering an objective function J : X → R that expresses the
coincidence between a candidate solution and an actual cir-
cle which is contained in the image. Under such circum-
stances, a local minimum xl ∈ X of the objective function
J : X → R is a solution with J (xl ) ≤ f (x) for all x neigh-
boring xl . Under such assumption, if xl ∈ R

N , then ∀xl

∃ρ > 0 : J (xl ) ≤ J (x) ∀x ∈ X, |x − xl | ≤ ρ, where ρ de-
notes the dominance distance between two solutions. Sim-
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ilarly, a global minimum x̂g ∈ X of the objective function
f : X → R is a solution where f (xg) ≤ f (x) ∀x ∈ X.

3.1 Data preprocessing

In order to detect circle shapes, candidate images must
be preprocessed first by the well-known Canny algorithm
which yields a single-pixel edge-only image. Then, the
(xi, yi ) coordinates for each edge pixel pi are stored inside
the edge vector P = {p1,p2, . . . , pNp }, with Np being the
total number of edge pixels.

3.2 Individual representation

Each circle C uses three edge points as individuals in the op-
timization algorithm. In order to construct such individuals,
three indexes pi,pj and pk , are selected from vector P , con-
sidering the circle’s contour that connects them. Therefore,
the circle C = {pi,pj ,pk} that crosses over such points may
be considered as a potential solution for the detection prob-
lem. Considering the configuration of the edge points shown
by Fig. 3, the circle center (x0, y0) and the radius r of C can
be computed as follows:

(x − x0)
2 + (y − y0)

2 = r2 (7)

considering

A =
[

x2
j + y2

j − (x2
i + y2

i ) 2 · (yj − yi)

x2
k + y2

k − (x2
i + y2

i ) 2 · (yk − yi)

]

B =
[

2 · (xj − xi) x2
j + y2

j − (x2
i + y2

i )

2 · (xk − xi) x2
k + y2

k − (x2
i + y2

i )

]

,

(8)

Fig. 3 Circle candidate (individual) built from the combination of
points pi , pj and pk

x0 = det(A)

4((xj − xi)(yk − yi) − (xk − xi)(yj − yi))
,

y0 = det(B)

4((xj − xi)(yk − yi) − (xk − xi)(yj − yi))
,

(9)

and

r =
√

(x0 − xd)2 + (y0 − yd)2, (10)

being det(.) the determinant and d ∈ {i, j, k}. Figure 2 illus-
trates the parameters defined by Eqs. (7) to (10).

3.3 Objective function

In order to calculate the error produced by a candidate
solution C, a set of test points is calculated as a virtual
shape which, in turn, must be validated, i.e. if it really
exists in the edge image. The test set is represented by
S = {s1, s2, . . . , sNs }, where Ns is the number of points over
which the existence of an edge point, corresponding to C,
should be validated.

The test point set S is normally generated for most of
the approaches [10, 14] by the uniform sampling of the
shape boundary. That is, a determined number of test points
are generated around the circumference of the candidate
circle. Each point si is a 2D-point where its coordinates
(xi, yi) are computed using: xi = x0 + r · cos(2πi/Ns) and
yi = y0 + r · sin(2πi/Ns). However, such way of calculat-
ing the virtual shape yields several errors. One error case
appears when the calculated points S, which correspond to a
determined candidate, are compared to an actual dashed cir-
cle in the edge image. Under such circumstances, it is pos-
sible that any point of S does not find a corresponding edge
pixel in the image, although the circle is actually subscribed.
Figure 4 displays this issue, with Fig. 4a showing the origi-
nal pointed image and Fig. 4b representing the set S which
has been obtained from the points i, j and k. Figure 4c de-
picts the comparison between the original circle and the data
set S. It is evident that both circles present few coincidences
yielding a difficult circle detection task.

The most critical error that is produced by the uniform
sampling approach is the lack of precision. Such problem is
induced by the fact that the number of test points Ns , which
are used in the comparison, is fixed. As the number of test
points is the same for all circle sizes, the precision in the
comparison varies depending on the circle’s size, being less
precise as the circles grow larger.

In order to overcome such problems, in our approach,
the set S is generated by the Midpoint Circle Algorithm
(MCA) [39]. The MCA is a searching method which seeks
the required points for drawing a circle digitally. Unlike the
uniform sampling approach, MCA calculates the necessary
number of test points Ns to totally draw the complete circle,
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Fig. 4 Detection problem due
to sampling strategy. (a) shows
the original pointed image.
(b) represents the set S obtained
from the points i, j and k.
(c) depicts the comparison
between the original circle and
the data set S

Fig. 5 (a) Symmetry of a circle: calculation of a circle point (x, y) in one octant yields the circle points shown for other seven octants. (b) Midpoint
between candidate pixels at sampling position xk along a circular path

where Ns varies depending of the circle size. In MCA, any
point (x, y) on the boundary of the circle with radius r must
satisfy the equation fCircle(x, y) = x2 + y2 − r2. However,
MCA avoids computing square-root calculations by com-
paring the pixel separation distances. The method used for
direct distance comparison is to test the halfway position
between two pixels (sub-pixel distance) to determine if this
midpoint is inside or outside the circle boundary. If the point
is in the interior of the circle, the circle function is negative.
Thus, if the point is outside the circle, the circle function is
positive. Therefore, the error involved in locating pixel posi-
tions using the midpoint test is limited to one-half the pixel
separation (sub-pixel precision). To summarize, the relative
position of any point (x, y) can be determined by checking
the sign of the circle function:

fCircle(x, y)

⎧
⎪⎨

⎪⎩

< 0 if (x, y) is inside the circle boundary

= 0 if (x, y) is on the circle boundary

> 0 if (x, y) is outside the circle boundary

(11)

The circle-function test in Eq. (10) is applied to mid-
positions between pixels nearby the circle path at each sam-
pling step. Figure 5a shows the midpoint between the two
candidate pixels at sampling position xk .

In MCA the computation time is reduced by considering
the symmetry of circles. Circle sections in adjacent octants
within one quadrant are symmetric with respect to the 45◦
line dividing the two octants. These symmetry conditions
are illustrated in Fig. 5b, where a point at position (x, y) on
a one-eighth circle sector is mapped into the seven circle
points in the other octants of the xy plane. Taking advantage
of the circle symmetry, it is possible to generate all pixel po-
sitions around a circle by calculating only the points within
the sector from x = 0 to x = y. Thus, in this paper, the MCA
is used to calculate the required S points that represent the
circle candidate C. The algorithm can be considered as the
quickest providing a sub-pixel precision [40]. However, in
order to protect the MCA operation, it is important to as-
sure that points lying outside the image plane must not be
considered in S.
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Fig. 6 Evaluation of candidate solutions C: the image in (a) shows the
original image while (b) presents the virtual shape generated including
points pi , pj and pk . The image in (c) shows coincidences between

both images marked by blue or red pixels while the virtual shape is
also depicted in green (Color figure online)

The objective function J (C) represents the matching er-
ror produced between the pixels S of the circle candidate C

(food source) and the pixels that actually exist in the edge
image, yielding:

J (C) = 1 −
∑Ns

v=1 E(xv, yv)

Ns

(12)

where E(xi, yi) is a function that verifies the pixel exis-
tence in (xv, yv), with (xv, yv) ∈ S and Ns being the num-
ber of pixels lying on the perimeter corresponding to C cur-
rently under testing. Hence, function E(xv, yv) is defined
as:

E(xv, yv) =
{

1 if the pixel (xv, yv) is an edge point

0 otherwise
(13)

A value near to zero of J (C) implies a better response from
the “circularity” operator. Figure 6 shows the procedure to
evaluate a candidate solution C with its representation as a
virtual shape S. In Fig. 6b, the virtual shape is compared to
the original image, point by point, in order to find coinci-
dences between virtual and edge points. The virtual shape
is built from points pi , pj and pk shown by Fig. 6a. The
virtual shape S gathers 56 points (Ns = 56) with only 18 of
such points existing in both images (shown as blue points
plus red points in Fig. 6c) yielding:

∑Ns

v=1 E(xv, yv) = 18
and therefore J (C) ≈ 0.67.

4 The multiple circle detection procedure

In order to detect multiple circles, most detectors simply ap-
ply a one-minimum optimization algorithm, which is able to
detect only one circle at a time, repeating the same process
several times as previously detected primitives are removed

from the image. Such algorithms iterate until there are no
more candidates left in the image.

On the other hand, the method used in this paper is able to
detect single or multiples circles through only one optimiza-
tion step. The multi-detection procedure can be summarized
as follows: guided by the values of a matching function, the
whole group of encoded candidate circles is evolved through
the set of evolutionary operators. The best circle candidate
(global optimum) is considered to be the first detected cir-
cle over the edge-only image. An analysis of the historical
memory Mh is thus executed in order to identify other local
optima (other circles).

In order to find other possible circles contained in the im-
age, the historical memory Mh is carefully examined. The
approach aims to explore all elements, one at a time, assess-
ing which of them represents an actual circle in the image.
Since several elements can represent the same circle (i.e. cir-
cles slightly shifted or holding small deviations), a distinc-
tiveness factor DA,B is required to measure the mismatch
between two given circles (A and B). Such distinctiveness
factor is defined as follows:

DA,B = |xA − xB | + |yA − yB | + |rA − rB | (14)

being (xA, yA) and rA, the central coordinates and radius
of the circle CA respectively, while (xB, yB) and rB rep-
resent the corresponding parameters of the circle CB . One
threshold value EsT H

is also calculated to decide whether
two circles must be considered different or not. Th is com-
puted as:

Th = rmax − rmin

d
(15)

where [rmin, rmax] is the feasible radii’s range and d is a sen-
sitivity parameter. By using a high d value, two very sim-
ilar circles would be considered different while a smaller
value for d would consider them as similar shapes. In this
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work, after several experiments, the d value has been set
to 2.

Thus, since the historical memory Mh {CM
1 ,CM

2 ,

. . . ,CM
B } groups the elements in descending order accord-

ing to their fitness values, the first element CM
1 , whose fit-

ness value represents the best value J (CM
1 ), is assigned to

the first circle. Then, the distinctiveness factor (DCM
1 ,CM

2
)

over the next element CM
2 is evaluated with respect to the

prior CM
1 . If DCM

1 ,CM
2

> Th, then CM
2 is considered as a

new circle otherwise the next element CM
3 is selected. This

process is repeated until the fitness value J (CM
i ) reaches

a minimum threshold JT H . According to such threshold,
other values above JT H represent individuals (circles) that
are considered as significant while other values lying below
such boundary are considered as false circles and hence they
are not contained in the image. After several experiments the
value of JT H is set to (J (CM

1 )/10).
The fitness value of each detected circle is character-

ized by its geometric properties. Big and well-drawn circles
normally represent points in the search space with higher
fitness values whereas small and dashed circles describe
points with lower fitness values. Likewise, circles with sim-
ilar geometric properties, such as radius, size, etc., tend to
represent locations holding similar fitness values. Consid-
ering that the historical memory Mh groups the elements
in descending order according to their fitness values, the
proposed procedure allows the cancelling of those circles
which belong to the same circle and hold a similar fitness
value.

4.1 Implementation of CAB strategy for circle detection

The implementation of the proposed algorithm can be sum-
marized in the following steps:

Step 1: Adjust the algorithm parameters Np , B , H , P , NI
and d .

Step 2: Randomly generate a set of Np candidate circles
(position of each animal) C = {C1,C2, . . . ,CNp }
set using Eq. (1).

Step 3: Sort C according to the objective function (domi-
nance) to build X = {x1,x2, . . . ,xNp }.

Step 4: Choose the first B positions of X and store them
into the memory Mg .

Step 5: Update Mh according to Sect. 2.1.5. (during the
first iteration: Mh = Mg).

Step 6: Generate the first B positions of the new solu-
tion set C ({C1,C2, . . . ,CB}). Such positions cor-
respond to the elements of Mh making a slight ran-
dom perturbation around them.

Cl = ml
h + v; being v a random vector of a small

enough length.

Step 7: Generate the rest of the C elements using the at-
traction, repulsion and random movements.

for i = B + 1 : Np

if (r1 < P) then
attraction and repulsion movement

{if (r2 < H) then
Ci = xi ± r · (mnearest

h − xi

)

else if
Ci = xi ± r · (mnearest

g − xi

)

}
else if
random movement

{
Ci = r
}

end for where r1, r2, r ∈ rand(0,1)

Step 8: If NI is not completed, the process go back to
step 3. Otherwise, the best values in Mh{CM

1 ,CM
2 ,

. . . ,CM
B } represents the best solutions (the best

found circles).
Step 9: The element with the highest fitness value J (CM

1 )

is identified as the first circle C1.
Step 10: The distinctiveness factor DCM

m ,CM
m−1

of circle CM
m

(element m) with the next highest probability is
evaluated with respect to CM

m−1. If DCM
m ,CM

m−1
> Th,

then it is considered CM
m as a new circle otherwise

the next action is evaluated.
Step 11: The step 10 is repeated until the element’s fitness

value reaches (J (CM
1 )/10).

The number of candidate circles Np is set considering a bal-
ance between the number of local minima to be detected
and the computational complexity. In general terms, a large
value of Np suggests the detection of a great amount of cir-
cles at the cost of excessive computer time. After exhaustive
experimentation, it has been found that a value of Np = 30
represents the best trade-off between computational over-
head and accuracy and therefore such value is used through-
out the study.

5 Experimental results

Experimental tests have been developed in order to evalu-
ate the performance of the circle detector. The experiments
address the following tasks:

(1) Circle localization,
(2) Shape discrimination,



112 E. Cuevas, M. González

(3) Circular approximation: occluded circles and arc detec-
tion.

Table 1 presents the parameters for the CAB algorithm at
this work. They have been kept for all test images after being
experimentally defined.

5.1 Circle localization

5.1.1 Synthetic images

The experimental setup includes the use of several synthetic
images of 400 × 300 pixels. All images contain a different
amount of circular shapes and some have also been contam-
inated by added noise as to increase the complexity of the
localization task. The algorithm is executed over 50 times
(in order to assure consistency) for each test image, success-
fully identifying and marking all required circles in the im-
age. The detection has proved to be robust to translation and
scaling still offering a reasonably low execution time. Fig-
ure 7 shows the outcome after applying the algorithm to two
images from the experimental set.

Table 1 CAB detector parameters

Np H P B NI

30 0.5 0.1 12 200

5.1.2 Natural images

This experiment tests the circle detection on several real im-
ages of 640 × 480 pixels. All images contain a different
number of circular shapes; images were captured with a dig-
ital camera in an 8-bit format. Each image is pre-processed
by the algorithm of Canny edge detection, after having been
processed image is introduced to the CAB algorithm for the
detection of circles. Figure 8 shows the results after applying
the algorithm CAB.

5.2 Shape discrimination tests

In this section we will observe the ability of the algorithm
to detect circular patterns through different forms present in
the image. Figure 9 shows four shapes in the image of 500×
300 pixels with added noise makes the detection of circles.
Figure 10 repeats the experiment over real-life images.

5.3 Circular approximation: occluded circles and arc
detection

The CAB detector algorithm is able to detect occluded or
imperfect circles as well as partially defined shapes such
as arc segments. The relevance of such functionality comes
from the fact that imperfect circles are commonly found in
typical computer vision applications. Since circle detection
has been considered as an optimization problem, the CAB

Fig. 7 Circle localization over
synthetic images. The image
(a) shows the original image
while (b) presents the detected
circles as an overlay. The image
in (c) shows a second image
with salt & pepper noise and
(d) shows detected circles as a
red overlay (Color figure online)
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Fig. 8 Circle detection
algorithm over natural images:
the image in (a) shows the
original image while
(b) presents the detected circles
as a red overlay (Color figure
online)

Fig. 9 Shape discrimination over synthetic images: (a) shows the original image contaminated by salt & pepper noise while (b) presents the
detected circle as an overlay

Fig. 10 Shape discrimination in
real-life images: (a) shows the
original image and (b) presents
the detected circle as an overlay

algorithm allows finding circles that may approach a given
shape according to fitness values for each candidate. Fig-
ure 11a shows some examples of circular approximation.
Likewise, the proposed algorithm is able to find circle pa-
rameters that better approach an arc or an occluded circle.
Figure 11b and 11c show some examples of this functional-
ity. A small value for J (C), i.e., near zero, refers to a circle
while a slightly bigger value accounts for an arc or an oc-
cluded circular shape. Such a fact does not represent any
trouble as circles can be shown following the obtained J (C)

values.

5.4 Performance comparison

In order to analyse the performance of the proposed ap-
proach, it is compared to other circle detectors presented in
the literature. The experiments are organized by consider-
ing two different comparisons: comparisons to other evolu-
tionary methods and one comparison to a Hough transform-
based detector. In each set of experiments a different set of
test images has been chosen in order to enhance the overall
analysis.
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Fig. 11 CAB Approximating
circular shapes and arc
detections

5.5 Comparison to other evolutionary methods

In these experiments, it is analyzed the performance of
the proposed algorithm against other similar evolutionary
approaches such as the GA-based algorithm [10] and the
BFAO detector [14].

The GA-based algorithm follows the proposal of Ayala-
Ramirez et al. [10], which considers the population size as
70, the crossover probability as 0.55, the mutation proba-
bility as 0.10 and the number of elite individuals as 2. The
roulette wheel selection and the 1-point crossover opera-
tor are both applied. The parameter setup and the fitness
function follow the configuration suggested in [10]. The
BFAO algorithm follows the implementation from [14] con-
sidering the experimental parameters as: S = 50, Nc = 350,
Ns = 4, Ned = 1, Ped = 0.25, dattract = 0.1, wattract = 0.2,

wrepellant = 10hrepellant = 0.1, λ = 400 and ψ = 6. Such
values are found to be the best configuration set accord-
ing to [14]. Both, the GA-based algorithm and the BAFO
method use the same objective function that is defined by
Eq. (12).

Images rarely contain perfectly-shaped circles. There-
fore, with the purpose of testing accuracy for a single-circle,
the detection is challenged by a ground-truth circle which
is determined from the original edge map. The parameters
(xtrue, ytrue, rtrue) representing the testing circle are com-
puted using the Eqs. (6)–(9) for three circumference points
over the manually-drawn circle. Considering the centre and
the radius of the detected circle are defined as (xD,yD) and
rD , the Error Score (Es) can be accordingly calculated as:

Es = η · (|xtrue − xD| + |ytrue − yD|) + μ · |rtrue − rD| (16)
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Fig. 12 Synthetic images and their detected circles for: GA-based algorithm, the BFOA method and the proposed CAB algorithm

The central point difference (|xtrue −xD|+|ytrue −yD|) rep-
resents the centre shift for the detected circle as it is com-
pared to a benchmark circle. The radio mismatch (|rtrue −
rD|) accounts for the difference between their radii. η and μ

two weighting parameters which are to be applied separately
to the central point difference and to the radio mismatch for
the final error Es. At this time, they are chosen as η = 0.05
and μ = 0.1. Such particular choice ensures that the radii

difference would be strongly weighted in comparison to the
difference of central circular positions between the manu-
ally detected and the machine-detected circles. Here we as-
sume that if Es is found to be less than 1, then the algo-
rithm gets a success, otherwise, we say that it has failed to
detect the edge-circle. Note that for η = 0.05 and μ = 0.1;
Es < 1 means the maximum difference of radius tolerated
is 10 while the maximum mismatch in the location of the
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Fig. 13 Real-life images and their detected circles for: GA-based algorithm, the BFOA method and the proposed CAB algorithm

center can be 20 (in number of pixels). In order to appropri-
ately compare the detection results, the Detection Rate (DR)
is introduced as a performance index. DR is defined as the
percentage of reaching detection success after a certain num-
ber of trials. For “success” it does mean that the compared
algorithm is able to detect all circles contained in the image,
under the restriction that each circle must hold the condi-
tion Es < 1. Therefore, if at least one circle does not fulfil
the condition of Es < 1, the complete detection procedure is
considered a failure.

In order to use an error metric for multiple-circle detec-
tion, the averaged Es produced from each circle in the image
is considered. Such criterion, defined as the Multiple Error
(ME), is calculated as follows:

ME =
(

1

NC

)
·

NC∑

R=1

EsR (17)

where NC represents the number of circles within the image
according to a human expert.
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Table 2 The averaged execution-time, detection rate and the averaged multiple error for the GA-based algorithm, the BFOA method and the
proposed CAB algorithm, considering six test images (shown by Figs. 8 and 9)

Image Averaged execution time ± Standard deviation (s) Success rate (DR) (%) Averaged ME ± Standard deviation

GA BFOA CAB GA BFOA CAB GA BFOA CAB

Synthetic images

(a) 2.23 ± (0.41) 1.71 ± (0.51) 0.21 ± (0.22) 88 99 100 0.41 ± (0.044) 0.33 ± (0.052) 0.22 ± (0.033)

(b) 3.15 ± (0.39) 2.80 ± (0.65) 0.36 ± (0.24) 79 92 99 0.51 ± (0.038) 0.37 ± (0.032) 0.26 ± (0.041)

(c) 4.21 ± (0.11) 3.18 ± (0.36) 0.20 ± (0.19) 74 88 100 0.48 ± (0.029) 0.41 ± (0.051) 0.15 ± (0.036)

Natural Images

(a) 5.11 ± (0.43) 3.45 ± (0.52) 1.10 ± (0.24) 90 96 100 0.45 ± (0.051) 0.41 ± (0.029) 0.25 ± (0.037)

(b) 6.33 ± (0.34) 4.11 ± (0.14) 1.61 ± (0.17) 83 89 100 0.81 ± (0.042) 0.77 ± (0.051) 0.37 ± (0.055)

(c) 7.62 ± (0.97) 5.36 ± (0.17) 1.95 ± (0.41) 84 92 99 0.92 ± (0.075) 0.88 ± (0.081) 0.41 ± (0.066)

Figure 12 shows three synthetic images and the result-
ing images after applying the GA-based algorithm [8], the
BFOA method [12] and the proposed approach. Figure 13
presents experimental results considering three natural im-
ages. The performance is analyzed by considering 35 dif-
ferent executions for each algorithm. Table 2 shows the av-
eraged execution time, the detection rate in percentage and
the averaged multiple error (ME), considering six test im-
ages (shown by Figs. 12 and 13). The best entries are bold-
cased in Table 2. Close inspection reveals that the proposed
method is able to achieve the highest success rate keeping
the smallest error, still requiring less computational time for
the most cases.

In order to statistically analyze the results in Table 2,
a non-parametric significance proof known as the Wilcox-
on’s rank test [41–43] for 35 independent samples has been
conducted. Such proof allows assessing result differences
among two related methods. The analysis is performed con-
sidering a 5 % significance level over multiple error (ME)
data. Table 3 reports the p-values produced by Wilcoxon’s
test for a pair-wise comparison of the multiple error (ME),
considering two groups gathered as CAB vs. GA and CAB
vs. BFOA. As a null hypothesis, it is assumed that there
is no difference between the values of the two algorithms.
The alternative hypothesis considers an existent difference
between the values of both approaches. All p-values re-
ported in the Table 3 are less than 0.05 (5 % significance
level) which is a strong evidence against the null hypothe-
sis, indicating that the best CAB mean values for the perfor-
mance are statistically significant which has not occurred by
chance.

5.6 Comparison to Hough transform-based detectors

Images are often deteriorated by noise due to various
sources of interference and other phenomena that affect the

Table 3 p-values produced by Wilcoxon’s test comparing CAB to GA
and BFOA over the averaged ME from Table 2

Image p-Value

CAB vs. GA CAB vs. BFOA

Synthetic images

(a) 1.8061e-004 1.8288e-004

(b) 1.7454e-004 1.9011e-004

(c) 1.7981e-004 1.8922e-004

Natural Images

(a) 1.7788e-004 1.8698e-004

(b) 1.6989e-004 1.9124e-004

(c) 1.7012e-004 1.9081e-004

measurement in imaging and data acquisition systems. Clas-
sical methods face great difficulties in detecting parametric
shapes within images containing noise and distortions [8].
In this section, our approach is compared to other Hough
transform-based detectors such as the RHT in terms of ro-
bustness and efficiency. The RHT algorithm in the exper-
iments has been implemented following the configuration
described in [4].

Figure 14 shows the relative performance of CAB in
comparison to the RHT algorithm. All images contain dif-
ferent noise conditions in order to hinder the detection task.
The performance analysis is achieved by considering 35 dif-
ferent executions for each algorithm over the three images.
The results, exhibited in Fig. 14, present the median-run so-
lution (when the runs were ranked according to their final
ME value) obtained throughout the 35 runs. Table 4 reports
the corresponding averaged execution time, detection rate
(in %), and average multiple error (using (10)) for CAB and
RHT algorithms over the set of images (the best results are
bold-cased). According to such results, the RHT algorithm
presents a success rate of 100 % when the images are noise-
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Fig. 14 Relative performance of the CAB compared with the RHT

Table 4 Average time, detection rate and averaged error for CAB and HT, considering three test images

Image Average time ± Standard deviation (s) Success rate (DR) (%) Average ME ± Standard deviation

RHT CAB RHT CAB RHT CAB

(A) 7.82 ± (0.34) 0.30 ± (0.10) 100 100 0.19 ± (0.041) 0.11 ± (0.017)

(B) 8.65 ± (0.48) 0.22 ± (0.13) 64 100 0.47 ± (0.037) 0.13 ± (0.019)

(C) 10.65 ± (0.48) 0.25 ± (0.12) 11 100 1.21 ± (0.033) 0.15 ± (0.014)

free. However, just as the noise increases, the success rate
drastically decreases to 11 %. Different to RHT, the CAB
algorithm maintains the same detection performance for all
experiments. Such behavior indicates that the RHT method
is failure-prone depending on the noise level whereas the
CAB algorithm is more robust for detecting circles despite
noisy conditions. On the other hand, the CAB algorithm
presents a better efficiency, since it shows the best perfor-

mance indexes in terms of the elapsed time (average time)
and the precision (multiple error).

6 Conclusions

This paper has presented an algorithm for the automatic de-
tection of multiple circular shapes from complicated and
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noisy images without considering the conventional Hough
transform principles. The detection process is considered to
be similar to a multi-modal optimization problem. In con-
trast to other heuristic methods that employ an iterative pro-
cedure, the proposed CAB method is able to detect single or
multiple circles over a digital image by running only one
optimization cycle. The CAB algorithm searches the en-
tire edge-map for circular shapes by using a combination
of three non-collinear edge points as candidate circles (ani-
mal positions) in the edge-only image. A matching function
(objective function) is used to measure the existence of a
candidate circle over the edge-map. Guided by the values of
such matching function, the set of encoded candidate circles
is evolved using the CAB algorithm so that the best candi-
date can be fitted into an actual circle. After the optimization
has been completed, an analysis of the embedded memory
is executed in order to find the significant local minima (re-
maining circles). The overall approach generates a fast sub-
pixel detector which can effectively identify multiple circles
in real images despite some circular objects exhibit a signif-
icant occluded portion.

Classical Hough transform methods for circle detection
use three edge points to cast a vote for the potential circu-
lar shape in the parameter space. However, they would re-
quire a huge amount of memory and longer computational
times to obtain a sub-pixel resolution. Moreover, HT-based
methods rarely find a precise parameter set for a circle in
the image [44]. In our approach, the detected circles hold a
sub-pixel accuracy inherited directly from the circle equa-
tion and the MCA method.

In order to test the circle detection performance, both
speed and accuracy have been compared. Score functions
are defined by Eqs. (15) and (16) in order to measure accu-
racy and effectively evaluate the mismatch between manu-
ally detected and machine-detected circles. We have demon-
strated that the CAB method outperforms both the GA
(as described in [8]) and the BFOA (as described in [12])
within a statistically significant framework (Wilcoxon test).
In contrast to the CAB method, the RHT algorithm [4]
shows a decrease in performance under noisy conditions.
Yet the CAB algorithm holds its performance under the
same circumstances. Finally, Table 2 indicates that the CAB
method can yield better results on complicated and noisy im-
ages compared with the GA and the BFOA methods. How-
ever, the aim of this study is not to beat all circle detection
methods proposed earlier, but to show that the CAB algo-
rithm can effectively serve as an attractive method to suc-
cessfully extract multiple circular shapes.
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