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Abstract Rock-type classification is a challenging and dif-
ficult job due to the heterogeneous properties of rocks. In
this paper, an image-based rock-type analysis and classifica-
tion method is proposed. The study was conducted at a lime-
stone mine in western India using stratified random sam-
pling from a case study mine. The analysis of collected sam-
ple images was performed in laboratory. Color, morphology,
and textural features were extracted from the captured image
and a total of 189 features were recorded. The multi-class
support vector machine (SVM) algorithm was then applied
for rock-type classification. The hyper-parameters and the
number of input features of the SVM model were selected
by genetic algorithm. The results revealed that the SVM
model performed best when 40 features were selected out
of the 189 extracted features. The results demonstrated that
the overall accuracy of the proposed technique for rock type
classification is 96.2 %. A comparative study shows that the
proposed SVM model performed better than a competing
neural network model in this case study mine.

Keywords Image classification · Support vector machine ·
Feature selection · Genetic algorithm

1 Introduction

A geological rock formation typically consists of several
rock types. A mining deposit is essentially composed of a
main mineral(s) and several other minerals along with their
associated rocks. The characterization of various rock-types
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and their identifications at different stages of mining oper-
ations is essential for effective design of a mine [1]. There
are several instances when the knowledge of the rock-type is
useful to mining engineers and geologists for the successful
exploitation of a mineral deposit [2]. For example, to under-
stand the local geology, hydro-geology and other geolog-
ical settings, the knowledge of rock-type is essential. The
physical-mechanical properties, granularities, bond strength
and textural properties of ore drastically vary from one rock-
type to another rock-type. Accurate rock-type classification
assists in establishing the previously listed properties of
rock, which in turn guides decision making regarding the
selection of excavating mining equipment, blast design, and
associated fragmented rock transportation [3, 4]. The rock-
type information is also highly important in grade control.
As the grade of an ore material depends upon the constituent
rock-type, information about the rock-type provides certain
useful inputs during the grade control and grade monitoring
of material [5].

Given the importance of rock-type information at dif-
ferent points of mining operations, the potential benefit of
proper rock-type classification is easily established. How-
ever, information about rock-types is not always available
due to a lack of an adequate data gathering system. Usu-
ally, rock-type information is only gathered during the ex-
ploration stage and is limited to a few core samples taken
from strategic locations. Rock-type information is then gen-
erated for a mineral deposit in the form of a lithological map
using interpolation techniques [6]. However, with the ad-
vancement of computer vision technology, rock-type infor-
mation can be generated by capturing the images of rocks.
Even with these advancements, classification of natural rock
is a challenging task, as rocks are rarely homogenous. It is
often observed that rock images are non-homogeneous in
their shape, texture and color. In spite of this inherent prob-
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lem, with the use of advanced digital image processing tech-
niques, complex rock images can be analyzed and rock-type
classification can be correctly performed.

Although the study of rock images for rock-type classifi-
cation is limited, some notable findings have been presented
by researchers [7–9]. Several studies were reported in lit-
erature for rock image processing in the areas of rock size
distribution, fragment analysis, and ore texture analysis. For
example, Lepisto et al. [10] and Hunter et al. [11] reviewed
the rock fragmentation analysis techniques using computer
vision tools with an emphasis on the analysis of blast muck-
piles. An image-classification algorithm was presented [12]
to estimate the characteristics of rock fragments (size dis-
tribution and shape), but results were heavily dependent on
image quality. Salinas et al. [13] also analyzed rock frag-
mentation using digital image processing techniques. Most
of these investigations on the ore textural analysis using im-
age processing were focused on the estimation of average
particle size and distinguished ore types in industrial ore
feed systems [14, 15]. However, Lin et al. [16] worked to
develop an online particle size analyzer.

Most of the vision-based techniques are limited by the
need to extract a large numbers of image features. The ex-
traction of a large numbers of features is a computationally
demanding task. Apart from that, the presence of redun-
dant features may sometimes skew model performance [17].
Moreover, as the number of features grows, the number of
training samples required for model development grows ex-
ponentially [18]. Therefore, reducing dimensionalities of the
image features is required for a valid model development.
Chatterjee et al. [19, 20] applied principal component analy-
sis (PCA) on extracted features to reduce the dimensionality
for quality parameter modeling. The main disadvantage of
PCA-based modeling is that it creates new features through
linear combination of the original features. Model develop-
ment time can be reduced by a PCA approach; however, all
features must be extracted to get accurate PCA scores for an
unknown rock-type image. Another alternative can be to ap-
ply the branch and bound [21, 22] algorithm to identify im-
portant features among the set of all available features; how-
ever a branch and bound approach requires huge computa-
tional time. Genetic algorithms (GA), a heuristic approach,
have great advantages for efficient feature selection which
provides close to an optimum feature subset within reason-
able amounts of time [23].

In this paper, a vision-based rock type classification
model is developed using a support vector machine algo-
rithm. The GA method is applied for image feature selection
as well as hyper-parameter estimation of the SVM model.

The paper is organized as follows. Section 2 presents a
brief overview of the methods adopted in this paper, while a
case study with a limestone deposit is presented in Sect. 3.
Section 4 draws conclusions and summarizes the results.

2 Methods

The main steps involved in the proposed algorithm are im-
age acquisition and segmentation, feature selection, and
model development. These steps are described in the fol-
lowing sub-sections.

2.1 Image acquisition

The quality of an image depends solely on its illumina-
tion and the atmospheric condition in which the image is
captured. Thus, the illumination and atmospheric condition
should be the same throughout the experiment. The exper-
imental setup for the present study consists of a wooden
box, illumination system, a digital camera and personal
computer. Lighting type, location and color quality play
an important role in bringing out a clear image of the ob-
ject. Uniform diffuse lighting was used throughout the ex-
periment. Four fluorescent tubes (150 mm diameter, 23 W
circular tubes, Philips, India) were placed inside the ex-
perimental box, equidistant from the center of the box’s
base with approximately a 45 degree deviation from the
horizontal. The box was made of wood having dimension
25 cm × 30 cm × 30 cm. The top of the box was a cylindri-
cally arched bowl shape of approximately 40 cm diameter.
The four tubes were fitted at the four sides of the bowl in
such a fashion that produces minimal shadow. The box was
painted inside with white magnesium oxide to provide uni-
form and diffused illumination and to reduce glare and spec-
ular reflection. The box top had an opening for placing the
camera for capturing images. A UPS (Uninterrupted Power
Supply) was used to maintain a stabilized power supply to
the fluorescent tube for producing illumination of nearly
constant luminance in order of 3500–4000 lux. A lux-meter
was used to check the illumination inside the chamber be-
fore capturing the image. A schematic diagram of an image
acquisition setup is presented in Fig. 1.

2.2 Image segmentation

After image acquisition, image segmentation is performed
to generate a binary image in which each discrete region
represents an individual rock sample. The image features are
extracted from individual segmented rocks.

The image segmentation technique used in this paper is
the watershed technique [24, 25] with pre-processing of the
gray image [26–28]. The pre-processing steps consist of im-
age thresholding operation [26], image complement opera-
tion [27], and image distance transformation [28].

The thresholding operation was performed to obtain a bi-
nary image [26]. Thresholding is the process of converting
a gray scale image into binary images to distinguish the ob-
ject from the background. Manual thresholding is done via
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Fig. 1 Schematic diagram of
image acquisition experimental
setup [10, 19]

trial and error by selecting a threshold value, T , using the
histogram of the original image. The thresholded image is
then compared with the original image and the process is re-
peated until the entire object is differentiated from the back-
ground. In this paper, the Otsu’s method [29] was used. To
examine the formulation of this histogram based method,
one starts by treating the normalising histogram as a discrete
probability mass function:

pr(rq) = nq

n
q = 0,1,2, . . . ,L − 1 (1)

where n is the total number of pixels in the image, nq is the
number of pixels that have intensity level rq , and L is the
total number of possible intensity values.

Now suppose the threshold, k, is chosen such that C0 is
the set of pixels with levels [0,1, . . . , k − 1] and C1 is the
set of pixels with levels [k, k +1, . . . ,L−1]. Otsu’s method
chooses the threshold value k that maximizes the between-
class variance.

Figure 2 shows a gray scale image with its correspond-
ing binary image. The global threshold value was calculated
using the Otsu’s method. The global threshold value was
used to convert the gray scale image to a binary image. This
threshold value is a normalized intensity value that lies in the
range [0,1]. In this example, the threshold value calculated
by the Otsu’s method is 0.451.

After thresholding, the image then undergoes a comple-
ment operation [27]. Distance transformation is a tool used
in conjunction with the watershed transformation. Distance
transformation of a binary image is the distance from every
pixel to the nearest nonzero valued pixel [28]. This is de-
rived from the Euclidean distance map of the binary image,
in which each pixel that forms part of a sample rock is given
a value inversely proportional to its distance from the nearest
non-rock pixel. The resulting gray scale image may be envis-
aged as a topographic surface in which rocks are represented
by depressions. The ‘watersheds’ between these depressions
were used to segment the binary image. Each depression was
gradually ‘flooded’ until ‘water’ from one depression over-
flows into its neighbor. The line along which this occurs is
then marked as a watershed and the flooding and marking
continues until the image is entirely submerged. The wa-
tersheds thus defined are then used to segment the binary

(a)

(b)

Fig. 2 (a) Gray image and (b) its thresholded image using Ostu’s
method

image [24, 25]. The steps involved in image segmentation
process are presented in Fig. 3. To learn more about image
segmentation, readers are requested to consult with [30, 31].

2.3 Object identification and feature extraction

The objects in the segmented image are identified using a re-
gion labeling algorithm [32]. The features are extracted from
each identified rock in an image. The feature extraction pro-
cess extracts color, morphology and textural features from
individual rock samples. The list of the extracted features is
presented in Table 1.

The color features extracted were from the seven core
components (r, g, b, H, S, I and gray). The type of fea-
tures included histogram-based features like measure of lo-
cation (mean, median, and mode), measure of spread (vari-
ance, standard deviation, range, mean absolute deviation, in-
ter quartile range), measure of shape (skewness and kurtosis)
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Fig. 3 Methodology for image
segmentation

Table 1 Feature extracted from segmented rock sample

Type of feature Number of feature

Colour feature 112

Measure of location 21

Measure of spread 35

Measure of shape 14

Gray level moment 42

Morphological feature 28

Area 1

Perimeter 1

Major and minor axis length 2

Convex area and FAngle 2

Minimum and maximum radius 2

Derived feature 14

Binary moment 6

Textural feature 49

Statistical feature 4

Co-occurrence matrix 30

Run length matrix 15

and moment (first six moments of histogram) for all seven
components [33]. From each component, 16 features were
extracted. Therefore, a total number of 112 color features
was extracted from all seven components.

The appearance of an object is described by morpho-
logical features. The morphological features include area,
perimeter, major and minor axis length, convex area, min-
imum and maximum radius, and F-angle [25]. The area of
an object can be defined as the number of pixels contained

within its region. The perimeter of an object is defined as its
boundary length, where boundary length is the sum of dis-
tances between successive boundary pairs of pixels of an ob-
ject. Boundary pixels can be identified using 4-neighbour or
8-neighbour connectivity methods. In the 4-neighbour con-
nectivity method the gray level of each pixel relative to its
four neighbours is examined. A pixel X(i, j) is considered a
boundary pixel if X(i, j + 1) or X(i, j − 1) and X(i + 1, j)

or X(i − 1, j) is a background pixel (gray level 0). In the
8-neighbour connectivity method, in addition to the 4 neigh-
bours, the four corner pixels are considered. The perimeter
length of objects is determined using the Euclidean distance
principle. In the case of the 8-connected method, if the ad-
jacent boundary pixels occur in the horizontal or vertical
position, a perimeter length of 1 is added. The perimeter
length of 1.414 and 1.207 are added if the neighbouring pix-
els occur in the diagonal or non-diagonal positions, respec-
tively. Two different shaped objects, for example a circle and
square, can have the same number of perimeter pixels. How-
ever, perimeter lengths can be used to distinguish these two
shapes. The major axis is the length of an object measured
through its centroid. The minor axis is the longest length
of the object through the centroid that is perpendicular to
the major axis. Convex area is the area of the convex hull
polygon. Convex hull or convex polygon is calculated from
pixel center. This is the smallest convex set containing the
object. F-angle is the angle (in degrees) of the major axis
with the horizontal. A total of 8 direct measured features
were obtained from an image object. A total number of 14
morphological features are derived from measured features:

Thickness ratio = Perimeter2

Area

Aspect ratio = Major axis length

Minor axis length
Circularity = 4 ∗ π ∗ Area/Perimeter2

Roundness = 4 ∗ Area/
(
π ∗ major axis length2)

Area Equivalent Diameter =
√(

(4π) ∗ Area
)

Perimeter Equivalent Diameter = Area/π

Equivalent Ellipse Area

= (π ∗ major axis length ∗ minor axis length)/4

Compactness =
√(

(4π) ∗ Area
)
/major axis length

Solidity = Area/Convex area

Concavity = Convex area − Area

Convexity = Convex hull/Perimeter

Shape = Perimeter2/Area

RFactor = Convex hull/(major axis length ∗ π)

Sphericity = Minimum radius/Maximum radius
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To learn more about those derived features, readers are re-
ferred to [34, 35]. Apart from these basic and derived fea-
tures, moments [33], the statistical representation of a bi-
nary object, are also calculated from the segmented image.
Six binary moment invariant features were extracted for this
study [33]. Therefore, a total number of 28 morphological
features were extracted.

The types of textural features extracted in this study
includes statistical features, co-occurrence matrix features
and run length matrix features. Four statistical features, i.e.
smoothness, uniformity, entropy, and maximum probabil-
ity, [36] are considered as statistical features in this paper.
The development of a co-occurrence matrix is an impor-
tant step to extract the co-occurrence features. For this pur-
pose, the lag distance in the co-occurrence matrix has to be
optimally chosen. The optimal parameter lag distance (d)

of a co-occurrence matrix depends on the resolution of the
texture. Zucker and Terzopoulos [37] developed a method
to determine this optimal distance. However, this optimum
refers to a distinct texture. In the best case, it can be gener-
alized to the entire texture class. In rock type classification,
however, several classes (rock types) are involved. Hence,
an optimal distance for all classes cannot be determined.
Consequently, the textures were studied according to sev-
eral distances. The experiments were performed with d =
{1,5,10,15, and 20}. The energy, entropy, maximum prob-
ability, contrast, correlation, and homogeneity [38] were ex-
tracted from co-occurrence matrices developed in all 5 lag
distance (d). Therefore, a total of 30 co-occurrence features
were extracted. In addition to the co-occurrence matrix, the
run length matrix was also calculated from the gray scale
image of the segmented rock. Nine features of run length
statistics proposed by Galloway [39] were extracted. Chu
et al. [40] proposed two new run length features to ex-
tract gray level information in the matrix. Dasarathy and
Holder [41] described another four feature extraction func-
tions following the idea of a joint statistical measure of gray
level and run length. A total number of 15 run length fea-
tures were extracted in this study. A total number of 49 tex-
tural features (4 statistical features, 30 co-occurrence fea-
tures, and 15 run length features) were extracted for each in-
dividual rock sample. Thus, each segmented rock was rep-
resented by a vector of 189 features (112 colour features,
28 morphological features, and 49 textural features).

2.4 Support vector machine model for rock type
classification

2.4.1 Binary support vector machines

SVM (support vector machine) is a popular technique for
data classification [42–44]. The SVM is applied for separat-
ing two classes by defining the bounding planes such that
the margin between both planes is maximized.

To define SVM for the rock type classification problem
presented in this paper, the training data were first prepared.
Suppose X is a n × m matrix, where n is the number of seg-
mented rock images and m the number of extracted features.
In this specific problem, the value of m is 189, since 189 fea-
tures are extracted from each segmented rock image. Denote
xi as a column vector representing the ith row of X, i.e., xi

representing all 189 features for a specific segmented im-
age i. Also consider that the classification is performed for
assigning a specific rock sample i to either rock type ‘A’ or
rock type ‘not A’ and y is an n × 1 vector with value either
+1 or −1 such that

yi =
{+1 if xi sample is rock type ‘A’

−1 if xi sample is not rock type ‘A’

The aim of the rock type classification algorithm is to de-
velop a SVM model using the image feature data X and
its corresponding rock type y. The SVM [40] demonstrated
that the mapping can be done by constructing a hyper-plane
〈w.x〉 + b = 0, where w ∈ Rm represents the normal vector
associated with the hyper-plane and b is the bias. The de-
veloped hyper-plane maximally separates positive (+1) and
negative training classes (−1). The margin corresponds to
the distance from the separating hyper-planes to the clos-
est samples of each class. The margin is inversely propor-
tional to ‖w‖. Therefore, by minimising the Euclidian norm
of vector w, the maximal separating hyper-plane can be con-
structed.

The problem of binary classification can be written as in
quadratic programming formulation:

min
1

2
‖w‖2 + C

∑

i

ξi

Subject to:
yi(w · xi + b) ≥ 1 − ξi, ∀xi

ξi ≥ 0, i = 1,2, . . . , n

(2)

where C is a trade-off variable that controls the relative im-
portance between training error and classifier complexity
and ξi is a slack variable that permits dealing with non-
linearly separable data. The weight vector w can be ob-
tained by solving the dual problem of Eq. (2) by applying
Lagrangian algorithm with w represented as:

w =
nsv∑

i=1

αiyixi (3)

where αi are Lagrange multipliers, nsv is the number of non-
zero α values called as a support vector. The value of b is
obtained by replacing the w value with

∑nsv

i=1 αiyixi in the
constraint function in Eq. (2). The hyper-plane, which will
be used for classification of rock type of an unknown rock
sample k with feature vector z, can then be represented as
f = ((

∑nsv

i=1 αiyixiz)+b). It is noted that the size of z is the
same 1 × 189. Now, if the value of function f is ≥0, then
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the rock type of sample k is assigned to ‘A’ and if value of
function f is <0 then the rock type of sample k is assigned
to ‘not A’.

In the hyper-plane presented, the data is considered to
be linearly separable. However, when data are not lin-
early separable, the non-linear mapping function can be
used to map the data in high dimensional space where
data can be linearly separable. Instead of mapping each
data to the high dimensional space, a kernel function
can be used. There are number of kernel functions avail-
able in literature [42, 43]. In this paper, Gaussian kernels
are used: K(x,xi) = exp(−‖x − xi‖2/σ 2), where σ is
the bandwidth of the kernel function. The hyper-plane in
high dimensional space can then be represented as f =
(
∑nsv

i=1 αiyiK(z, xi) + b).

2.4.2 Multi-class support vector machines

Since the rock type classifications presented in this paper
have multiple classes, the multi-class support vector model
is used. It is clear from the previous section that the stan-
dard SVM is designed only for two-class problems. A stan-
dard way to solve multi-class SVM problems is to consider
them as a collection of binary sub-problems and then com-
bine their solutions. Two approaches are most commonly
employed: the one-versus-all (OVA) and the one-versus-one
(OVO) [45]. In this paper an OVA approach is used. If the
numbers of rock types are J , then the OVA method con-
structs J number of SVM models. The j th SVM is devel-
oped with all m number of segmented rock images. If a seg-
mented rock image i belongs to rock type j , then the value
of yi is assigned to +1 and if the rock sample i is not be-
longs to rock type j , then the value of yi is assigned to −1.
After developing J number of SVM models, they are com-
bined to use for multi-class classification. For predicting the
rock type of an unknown rock, all 189 image features are
extracted from the image of the unknown rock and J num-
ber of SVM models are run to get the output of function f .
The final rock type of the unknown image is the class that
corresponds to the SVM with the highest output. For exam-
ple, if there are 3 rock types (A, B , and C) and the SVM
models (3 models) output for an unknown rock image using
function f are 0.2, 0.6, and 0.3, respectively, then the rock
type of that particular image is B .

2.5 Genetic algorithms for feature and hyper-parameters
selection

To classify rock-types from extracted image features, the
support vector machine is used to train the model using
available data. It can be seen from Sect. 2.3 that 189 fea-
tures were extracted from each image and that dealing with
a large number of features is computationally demanding.

Therefore, some important features have to be selected from
the set of all available features for SVM modeling. It is
demonstrated in literature that careful selection of features
can improve the performance of the classification algo-
rithm [46, 47]. It is also observed from Sect. 2.4 that two
parameters C and σ have to be suitably selected for good
SVM modeling. To select image features and SVM parame-
ters, the genetic algorithm (GA) is applied in this paper.

A GA is an optimization technique inspired by the pro-
cess of evolution [48]. A GA uses a population of random
solutions known as chromosomes to solve a problem. Each
chromosome corresponds to an encoded possible solution to
the problem. A reproduction-based mechanism is applied to
the population to generate a new population. The population
progresses through several generations until a suitable solu-
tion is reached or a predefined generation limit is reached.
The initial population is evaluated and fitness values are cal-
culated for each solution. The fitness value of a solution is a
probability of the survival of that solution in the next gener-
ation. The GA implemented in this paper has seven different
features.

2.5.1 Representation

The chromosomes represented in this paper have two parts.
The first part encodes the set of image features. The length
of the first part (L1) is 189, which is the total number of
extracted features from an image. A 1 at the ith position
of the chromosome indicates the ith feature is selected in
GA-based feature selection algorithm and 0 at the ith posi-
tion indicates that the ith feature has not been selected. The
fitness of an individual chromosome is determined by eval-
uating the SVM using a training data set whose patterns are
represented using only the selected subset of image features.
If an individual chromosome has n bits turned on (value 1),
the corresponding SVM has n input nodes. The original cal-
culated value of features as obtained from Sect. 2.3 of n se-
lected features will be taken as input for SVM model devel-
opment.

The second part encodes the values of the SVM param-
eters C and σ . Figure 4 represents a chromosomal repre-
sentation of a single solution for the feature selection and
SVM parameter selection. Suppose n number of features
are selected from 189 number of extracted features, where
n < 189, then only n bit values will be 1 and rest of the
(189 − n) bit values will be zero.

The value of C and σ are represented by three bits each.
Therefore, the length of the second part of the chromosome
(L2) is 6. Three bits for the parameter C only can code the
numbers 0 to 7. If this representation is shifted by −3 and
interpreted as powers of ten, then one gets a coding for the
possible C values: 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000.
The parameter σ of the Gaussian kernel is found by shift-
ing the resulting number by −6 and raising the number that
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Fig. 4 Schematic
representation of a chromosome
for this study

results as power of two. Thus, one gets the possible values
2−6,2−5,2−4, . . . ,2 for the parameter σ . It is noted that C

and σ can take any real values, however, to search a wide
range of values within a reasonable amount of time, these
values are considered.

2.5.2 Initialization

Before initializing the chromosome representation for L1,
the number of features to be included in the model should be
decided. For example, if 20 features are to be selected from
the available 189 features, the 20 random places in the L1
vector will be assigned a value of 1 and the remaining 169
number of places will be assigned a value of 0. The second
part (L2) of the chromosome was uniformly initialized. The
number of chromosomes in the population (population size,
P ) is selected as 50 in this paper.

2.5.3 Selection

A probabilistic selection is used based on the individual
chromosomes’ fitness such that the fitted individuals have
a higher chance of being selected. In this paper, the normal-
ized geometric ranking scheme pi = q ′(1 − q)r is applied,
where pi represents the probability of the ith individual be-
ing selected, q is the probability of selecting the best indi-
vidual, r is the rank of the individual.

2.5.4 Crossover

The crossover operation is performed in each generation
to generate a better solution from available solutions. This
is performed by interchanging genetic material of chromo-
somes in order to create individuals that can benefit from
their parents’ fitness. In this paper, a uniform crossover with
probability rate 0.1 has been used.

2.5.5 Mutation

Mutation is the genetic operator responsible for maintaining
diversity in the population. Mutation operates by randomly
“flipping” bits of the chromosome, based on some proba-
bility. The mutation probability used in this paper is 1/p,
where p is the length of each of the two parts of the chro-
mosomes.

2.5.6 Random immigrant

Random immigrant introduces some diverse solutions in the
population which minimizes the risk of premature conver-
gence [49]. Some individuals having low fitness value are
deleted from the population and replaced by the same num-
ber of recently initialized random individuals. The number
of individuals deleted and the number of new individuals
initialized in each generation is 5 in this paper.

2.5.7 Fitness

To develop a good SVM model for classification with fea-
ture selection, one should concentrate on subsets of features
that minimize an estimate of generalization error of the clas-
sifier. The fitness function should be chosen in such a way
that it minimises the error of misclassification of unforeseen
data. A validation data set is used where the fitness function
is measured.

The Sensitivity and Specificity are measures for individ-
ual rock types. The sensitivity measures the proportion of
rock type A being correctly classified as rock type A and the
Specificity measures the proportion of the rock type Non-A
being classified as rock type Non-A. As an example, let the
total validation data for SVM classification testing be N and
the number of rock type A and Rock type Non-A in the test
data be denoted by NO and NW respectively. If truly clas-
sified, A and Non-A are denoted by TO and TW, and false
classified A and Non-A are denoted by FO and FW, then the
sensitivity and the specificity are presented by the following
form:

SensitivityA = TO

TO + FW

SpecificityA = TW

TW + FO

(4)

The values of the specificity and the sensitivity are com-
plementary. The purpose of any model is to maximize both
these values. However, it has been experimentally and the-
oretically established that an increase in one value leads to
the decreasing of the other [50]. We can take care of this
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problem by introducing two indices for measuring the clas-
sification accuracy. These are presented by:

PA = TO + TW

N

RIA = |Sensitivity − Specificity|
|Sensitivity + Specificity|

(5)

where P measures the percentage of samples correctly clas-
sified and N is total number of segmented rock images. The
term (P ) measures the overall accuracy of the SVM classi-
fication system irrespective of the rock type A and Non-A.
However, it is often the case that P can be maximized by
increasing the value of the more dominant of the two values.
This shortcoming can be improved by using the relationship
index (RI). In RI, low value of the numerator and the high
value of the denominator are most desirable because these
help to maximize both the sensitivity and the specificity.
Therefore, the fitness function used in this paper consists of
these two terms (P and RI) in the form of a weighted sum
for all classes:

fitness = 1

CL

CL∑

i=1

(
w1Pi + w2(1 − RIi )

)
(6)

where CL is number of classes, w1 and w2 are weights for
P and RI, and w1 + w2 = 1. Generally, equal weights are
assigned to w1 and w2. In each iteration, the selection is
made based on the fitness function value of the validation
data set.

3 Case study

3.1 Description of mine and data collection

The study was carried out in a limestone mine in India. The
area covered by the mine is more than 6 sq. km. Most of the
area is covered by soil, except for outcrops of limestone. The
mine has nine different lithotypes, namely Pink limestone
(PPL), Greenish gray limestone (GGL), Dark gray lime-
stone (DGL), Light gray limestone (LGL), Weathered lime-
stone (WTH), Upper gray limestone (UGL), Shale, Clay,
and Overburden soil [51]. Most of the high grade limestone
is associated with Pink, Greenish and Upper gray limestone.

Typically, a blasted material of rock sample is heteroge-
neous with respect to fragment size. Depending on the blast
design, the largest sizes could be thrown to the furthest from
the blast or they could slump down directly next to the blast.
There may be some kind of gravitational segregation, where
the fines are covering the larger blocks or alternatively the
fines may slip in behind the larger blocks, for example in
quarries exposed to wind and rain. If the assumption is made
that the exposed surface of the blasted material is represen-
tative, sampling can simply be a matter of photographing

the surface. Sampling could also be done during the mate-
rial handling process, in the haulage trucks, in buckets of
loader, or on conveyor belts. In this study, all the image ac-
quisition was carried out in the laboratory with a simulated
environment.

The representative samples were collected from the
blasted muck of the case study mine while maintaining the
proper sampling strategy. The stratified random sampling
method was adopted for this study. In this scheme, the sam-
ples were collected from different strata which were classi-
fied according to the rock types present in the deposit. The
rock samples from each stratum were collected randomly.
It was also decided to capture an equal number of samples
from each stratum. As the mine under investigation was in
its initial stage of production, all the lithological units were
not exposed at the time of sampling. Therefore, the sam-
ples were gathered from 6 rock types (UGL, Clay, DGL,
PPL, GGL, WTH) exposed to the working faces. Altogether
120 samples, twenty from each lithology, were collected
from the case study mine. The samples weighed approxi-
mately 5 kgs and the size range varied from 2 to 8 cm.

3.2 Image acquisition and segmentation

For this study, a digital camera (CX-7300, KODAK; Japan)
was used. The camera has an aspect ratio of 4:3. The im-
ages collected of the samples were taken in the laboratory
set up as described in Sect. 2.1. Ten successive images for
each sample were taken by changing the placement and the
orientation of the rock samples inside the experimental box.
In total, 1200 images were generated collectively from the
rock samples. The images taken by the digital camera were
then transferred to the personal computer. The size of the
imported jpeg images ranged from 520 to 550 KB. The im-
ages have a spatial resolution of 0.15 mm/pixel in both hor-
izontal and vertical directions. The images acquired were
2080 × 1544 pixels in size. Some of the images which were
taken during the experiment are shown in Fig. 5.

The generated images were then segmented using the
segmentation techniques described in Sect. 2.2. Figure 6
shows the resultant images at each segmentation stage from
an example image. Figure 6(a) is an example gray scale im-
age and Fig. 6(b) is the corresponding binary image gen-
erated after fixing the thresholding value via Otsu’s tech-
nique [29]. Image complement operations (Fig. 6(c)) were
performed on the threshold image before distance transfor-
mation because watershed transformations detect the low
intensity part in an image. The distance transformation
(Fig. 6(d)) of a binary image is the distance from every
pixel to the nearest non-zero valued pixel. After the dis-
tance transformation, watershed transformation (Fig. 6(e))
was performed in negative of the distance transformation
matrix. It was seen from the resulting image that the large
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Fig. 5 Images of different rock types of limestone minerals

size samples are nicely segmented; however the segmenta-
tion of small size samples are not satisfactory. In this work
we have only dealt with those rocks which have more than
250 pixels. Therefore, most of the smaller-sized rock sample
images are not considered for our study.

The segmented images were then processed for identi-
fying and labeling the individual rock present in the seg-
mented parts using regional labeling algorithm. After select-
ing 250 pixels as the threshold value, only rock more than
250 pixels are identified and labelled for further analysis.
Altogether, 5267 distinct rock objects were identified from
1200 images. The features were then extracted from each of
the individual rock objects. A total number of 189 features
were extracted from each segmented rock.

3.3 Rock type classification using support vector machine

The extracted features from segmented rocks and their cor-
responding classes are then used for developing the sup-
port vector machine model for classification. The OVA
multi-class classification was performed as described in
Sect. 2.4.2. Before performing SVM modeling, feature nor-
malization and data subdivision were performed.

Before SVM training, the inputs and targets were nor-
malized so that they always fall within a specified range. In
this paper, inputs were normalized with mean and standard
deviation of the data. It normalizes the inputs so that they
will have zero mean and unit standard deviation. The output
parameters of the model will be either +1 or −1 based on
presence or absence of a particular rock class.

It was mentioned in Sect. 2.5.7 that the fitness function is
calculated based on the performance of the SVM model with
the validation data set. The use of validation data helps to
improve the generalisability of the model. Moreover, a sep-
arate data set is required where the developed model will be

tested. To obtain the validation and test data set, the available
data is divided into three subsets. The first subset is the train-
ing set, which is used for SVM training. The second subset
is the validation data set. The fitness values of the validation
data set after iteration in GA learning are used for selec-
tion process. The test data set is used for testing the devel-
oped algorithm. For a reasonable model development, these
three data sets should have similar statistical properties. In
order to analyze the statistical similarity of the three data
sets, an ANOVA test was performed. Out of the 5267 avail-
able data points, 2635 (50 %) datum were used for training,
1316 (25 %) datum were used for validation, and the remain-
ing 1316 (25 %) datum were used for testing purposes. The
ANOVA F test result showed that they belong to the same
population.

For image feature selection and hyper-parameter estima-
tion for the SVM model, genetic algorithms randomly gen-
erate an initial population of features from 189 available
features. The cross over rate, mutation rate, and the gen-
eration gap are kept constant throughout the experiment at
0.9, 0.005, and 0.95, respectively. The one point cross over
is applied in this paper. The evolution process is stopped
when the best fitness remains unchanged for 50 generations.
The best features are selected after a complete run of GA
and SVM for a given number of features. For choosing the
optimum number of features, the same algorithm was exe-
cuted by incrementally changing the numbers of randomly
selected features until there is significant improvement in the
classification accuracy. However, no improvement in the fit-
ness value (classification accuracy) of the validation data set
was observed after inclusion of 50 randomly selected fea-
tures; therefore, the algorithm stopped beyond feature num-
ber 50 to save computational time. It is noted that random se-
lection of features incrementally using GA is a computation-
ally expensive job; however, it improves the performance of
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(a)

(b)

(c)

(d)

(e)

Fig. 6 Images of different stage involved in segmentation technique
(a) Gray image (b) Threshold image (c) Complement image (d) Dis-
tance transformation (e) Watershed segmentation

Fig. 7 Fitness value of different number of selected features

the classification results. Therefore, a trade-off analysis be-
tween computational time and accuracy is a pre-requisite to
applying before applying this algorithm in the case prob-
lem; however, this is beyond the scope of the paper. Figure 7
presents the fitness value of the validation data set for differ-
ent numbers of selected features. It is observed from the fig-
ure that the fitness value of the validation data increases up
to a certain number of selected image features. The results
revealed that with 40 selected features, the maximum fitness
value is achieved, the fitness value either remains constant or
decreases. Out of 40 selected features, it was observed that
20 color features, 6 morphological features and 14 textural
features were selected. It becomes clear from this analysis
that the fusion of color, textural and morphological features
gives better results than only one type of feature. This result
supports that the employment of features from all three do-
mains give better results than features from a single source.

3.4 Model performance

The developed SVM model was then run using the testing
data set. Out of 1316 testing data points, UGL, and clay,
have 220 data points each and DGL, PPL, GGL, and WTH
have 219 each. Table 2 shows the confusion matrix of tested
results. The SVM could classify 99 % UGL, 98.6 % clay,
97 % DGL, 94.5 % PPL, 89.5 % GGL and 98.6 % WTH
in correct classes. The confusion matrix shows that for the
UGL lithology, the misclassification error of 1 % is almost
the same as Clay. For UGL, only one sample is misclassified
as DGL and one sample is misclassified as GGL. In case
of clay, 1 % was misclassified as the WTH. On the other
hand, 2 % of DGL was misclassified as the GGL and 1 %
was misclassified as the WTH. It was also observed from
the results that maximum misclassification occurred with the
GGL lithology where 9 % was misclassified as the DGL and
1.5 % was misclassified as the PPL. From the confusion ma-
trices, it was noticed that many GGL samples are misclassi-
fied to DGL and vice versa, which is reasonable considering
their visual similarity in photographs. Four samples of PPL
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Table 2 Confusion matrix of rock-type classification

UGL Clay DGL PPL GGL WTH

UGL 218 0 1 0 1 0

Clay 0 217 0 0 0 3

DGL 0 0 212 0 6 1

PPL 0 0 8 207 4 0

GGL 0 0 19 4 196 0

WTH 0 2 0 0 1 216

Table 3 Percentage of error in
classification Rock-type Percentage error

UGL 1

Clay 1.4

DGL 3.0

PPL 5.5

GGL 10.5

WTH 1.4

Table 4 Specificity and sensitivity of all rock types for test data set

UGL Clay DGL PPL GGL WTH

Sensitivity 0.99 0.986 0.968 0.945 0.895 0.986

Specificity 1 0.998 0.974 0.996 0.989 0.996

are misclassified to GGL and vice versa. To know the in-
sight of the misclassification of those 8 samples, detailed in-
vestigations of the selected input features were carried out.
A paired sample t-test was performed for all selected fea-
tures of those two groups of samples. Out of 40 selected
features, only 3 features show that the mean of these two
groups are significantly different at 95 % confidence level.
A non-significant difference of 37 features within these 8
samples may be the reason of their misclassification. A total
number of 1266 test data points were correctly classified in
their respective classes out of 1316 data. Therefore, overall
accuracy of the developed SVM model is 96.2 %. The results
of percentage of misclassification of individual lithology are
also presented in Table 3.

To verify, the classification accuracy, sensitivity and
specificity are calculated. Table 4 shows the value of these
two parameters for all six rock types. It is noted that speci-
ficity and sensitivity are calculated based on binary clas-
sification. To calculate these parameters for a multi-class
problem, the binary transformation must be performed. For
example, in case of UGL, two classes were considered: UGL
and non-UGL. It can be seen from the confusion matrix that
out of 220 UGL samples, 218 are truly classified as UGL
and 2 are classified as non-UGL (1 DGL, 1 GGL), and out of
1086 non-UGL samples, all are truly classified as non-UGL.

None of the non-UGL is misclassified as UGL. Therefore,
the value of the sensitivity is 0.99 (218/220) and the speci-
ficity is 1 (1086/1086). It is clearly observed from Table 4
that performance of classification is best for UGL and worst
for GGL.

4 Comparative study

The performance of the Support Vector Machines and a
Neural Network solution were compared for successful clas-
sification of the six rock types. An Artificial Neural Network
(ANN), which was a feed forward ANN, consisted of one in-
put layer fed with the set of input variables, one hidden layer
and one output layer of one neuron [52–54]. The output
layer has six neurons; the maximum activated neuron gives
the winner class. The tan-sigmoid and log-sigmoid are used
as activation functions in the input and output layer respec-
tively, while the ANN can be trained using a method such
as back-propagation [46]. The neural network used one hid-
den layer with a variable number of neurons, ranging from 2
to 50 and was trained using back-propagation with adaptive
learning rate and momentum. The same training, validation
and testing data were used for the neural network modelling
as used in support vector machine modelling. The optimum
number of hidden neurons was selected based on the valida-
tion data error.

The SVM and ANN classifiers were trained using 189
and 40 features. The numbers of hidden neurons for 189 fea-
tures and 40 features are 22 and 14, respectively. In Table 5,
the sensitivity and specificity are presented for all four mod-
els. From Table 5 it can be inferred that the ANN model,
when using a reduced feature set, does not perform as well
as the SVM model using the same features. This can be ex-
pected since the features were selected using an SVM but
it serves a reference purpose to compare performance on a
common feature set. It is also observed from the table that
the value of sensitivity and specificity are increased in both
SVM and ANN when selected features are used for model
development. Therefore, it can be concluded that the proper
subset selection not only reduces the computational time but
also improves the performance of the results. It was also ob-
served from the table that the performance of the SVM and
ANN models are almost identical when all features were
considered for model development. This may be due to the
presence of unwanted features, which influences the perfor-
mance of both the models.

To compare the proposed results with different dimen-
sional reduction algorithm, a comparative study is per-
formed with GA-based feature selection of the ANN model
(GA-NN) and dimensional reduction using principal com-
ponent analysis (PCA) of the ANN model (PCA-NN) ap-
plied in [4]. The same GA-based feature selection algorithm
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Table 5 Specificity and
sensitivity of all rock types for
four different models on test
data set

UGL Clay DGL PPL GGL WTH

Sensitivity SVM-40 0.990 0.986 0.968 0.945 0.895 0.986

SVM-189 0.910 0.935 0.922 0.896 0.862 0.925

ANN-40 0.930 0.961 0.96 0.938 0.869 0.950

ANN-189 0.899 0.911 0.908 0.860 0.860 0.917

Specificity SVM-40 1 0.998 0.974 0.996 0.989 0.996

SVM-189 0.927 0.965 0.932 0.954 0.944 0.897

ANN-40 0.980 0.976 0.952 0.968 0.951 0.928

ANN-189 0.92 0.96 0.93 0.949 0.940 0.887

Table 6 Specificity and sensitivity of all rock types for test data set
using GA-NN and PCA-NN [5] models

UGL Clay DGL PPL GGL WTH

Sensitivity GA-NN 0.960 0.965 0.966 0.941 0.871 0.960

PCA-NN 0.952 0.951 0.959 0.939 0.88 0.949

Specificity GA-NN 0.988 0.980 0.955 0.976 0.968 0.962

PCA-NN 0.978 0.980 0.948 0.963 0.952 0.959

was applied to feature selection of the ANN model. To ap-
ply GA for feature selection of the ANN model, the second
part of the chromosome encodes the value of hidden neuron
number instead of parameters C and σ . Therefore, unlike
SVM models, only a single bit is used for representing the
hidden node size. The optimum number of features and opti-
mum hidden node number are 45 and 13, respectively. To re-
duce dimension of neural network inputs, PCA was applied
and 40 first principal components (PCs) are selected which
cumulatively captured 85 % of the total data variance. The
specificity and the sensitivity of both GA-NN and PCA-NN
models are presented in Table 6. The results revealed that
both of the ANN models performed better than the ANN-40
model. The reason that the GA-NN performed better than
the ANN-40 is that the GA-based feature selection algo-
rithm is selecting an optimum combination of features for
ANN model which helps to improve the performance of the
ANN model. Similarly, PCA-NN reduces the dimension by
projecting the data linearly and capturing most of the data
variance by few PCs; thus improving the classification accu-
racy compared to the ANN-40 model. However, results also
revealed that the performance of SVM-40 model is com-
paratively better than both GA-NN and PCA-NN models.
This may be due to the learning mechanism of these two al-
gorithms. It is noted that the SVM solves the problem by
quadratic optimization that provides an optimum solution
if parameters C and σ are selected properly; however, the
ANN solves the problem by gradient descent type non-linear
optimization algorithm, which has probability to trap at local
minima point even if run with an optimum hidden node size.

5 Summary and conclusions

A vision-based rock type classification model using support
vector machine is presented by selecting important image
features. The images were captured, segmented, and features
were extracted from the segmented images. The hybrid seg-
mentation technique is performed by automatic threshold-
ing and watershed segmentation techniques. For conducting
this study, samples were collected from a limestone mine.
A total number of 189 features were extracted, including 49
textural, 112 color, and 28 morphological features from seg-
mented image.

The effectiveness of the above image-based rock type
classification was tested using a testing data set. The re-
sults revealed that the rock type classification error using
proposed technique is on an average confined within 3.8 %.
The misclassification results showed that the UGL, Clay and
WTH produced minimum error of misclassification (1 %,
1.4 %, and 1.4 % respectively); whereas, the GGL produced
the maximum error of misclassification (10.5 %). This study
result indicated the effectiveness of rock image process-
ing technique in rock type classification of the limestone.
A comparative study with neural network model reveals that
the developed SVM model performed better than the ANN
model.

The feature selection approach showed that it is possi-
ble to reduce computation time significantly without affect-
ing overall accuracy. As feature characterization and clas-
sification techniques advance, proposed overall strategy is
expected to provide better results.

The main limitation of this study is that it was conducted
at a laboratory scale after collecting data from mine. No field
study was conducted for real life mining applications. How-
ever, it is assumed that if the same type of image acquisition
set up could be developed for actual field implementation,
the algorithm will provide equally good results. Moreover,
the proposed model is a case-specific model, which is tested
by collecting samples from the limestone mine. Therefore,
the developed model cannot be directly applied to other
types of mineral deposit. However, the methodology is still
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valid for other mineral deposits as well. Before applying the
model to other deposit, the SVM and GA-based method has
to be re-run to select the optimum number of features of the
case specific applications.
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