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Abstract This paper presents a semantic architecture for
solving multimodal interaction. Our architecture is based on
multi agent systems where agents are purely semantic using
ontologies and inference system. Multi levels concepts and
behavioural models are taken into account to bring a fast
high level reasoning on a big amount of percepts and low
level actions. We apply this architecture to make a system
aware of different situations in a network like tracking ob-
ject behaviours of the environment. As a proof of concept,
we apply our architecture to an assistant robot helping blind
or disabled people to cross a road in a virtual reality envi-
ronment.

Keywords Knowledge representation language -
Description logic - Ontologies - Multi-agent systems -
Semantic memory - Multimodal interaction

1 Introduction

This is just the beginning of indoor and outdoor robotics
assistance. However with actual computational power, am-
bient intelligence and ubiquitous connectivity, robot abilities
begin to be reliable enough to be applicable to these kinds of
human system applications. Many problems occur due to the
amount of information being processed. Lots of events must
be taken into account. Multimodal Interaction [1] systems
try to solve these problems using two processes applied on
events: multimodal fusion and multimodal fission [2]. The
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first composes higher level events from percepts. The latter
takes composite events and splits them in low level actions
control to act in the environment.

We developed a multimodal architecture for human-
system interaction in the human environment. One main
point of the architecture is the ability to understand what
is happening in the environment in a situational context. We
use a multi agent system (MAS) to build our architecture.
We added to each agent a semantic memory composed of
two ontologies: a domain ontology of concepts and an on-
tology of event models to store narrative and informative de-
scriptions of facts. Another important point of our architec-
ture is that it is fully compliant with Foundation for Intelli-
gent Physically Agent (FIPA) from IEEE Computer Society
and W3C consortium standards. Therefore all our services
and agents are designed as networking webservices. It gives
our architecture the ability to connect to ubiquitous and am-
bient sensors and actuators. Web services were designed by
the W3C consortium with the goal of standardizing software
services in a distributed and interoperable way on the World
Wide Web. They are connected to the provider agents or con-
sumer agents who need knowledge using the Simple Object
Access Protocol (SOAP [3]) for Service Oriented Archi-
tecture (SOA) in the XML format. In our approach, Agent
memory and communication messages require knowledge
representation language (KRL). This language is defined by
n-ary predicates. Each event is then represented by a predi-
cate followed by a slot of several role-argument pairs. Each
event is related to concepts which deeply link concepts on-
tology to events ontology. All events are stored in the agents’
memory. According to the operation required by the fusion
agents, they will query their memory for several previous
events and create a composite event of a higher level of ab-
straction which will then be sent to other agents. The under-
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standing will permit fission agents to send orders to services
driving the actuators.

The objective of this paper is to present our architecture
and show it is suitable to human-system interaction prob-
lems. For the system, multimodal awareness architecture
consists in tracking and using some signals coming from the
human environment and then to act accordingly and safely.
For each different situation, we assume that values of sen-
sors are valid in the simulation. The memory of agent stores
the required knowledge about objects and the possible ac-
tions of these objects. For example, a car is a concept filled
under mobile objects in the concept ontology and possible
movements of a car on a road are stored under the Move
or Behave predicates in the event models ontology. Depend-
ing of the abstraction level, Move predicate is used for short
moves and Behave for more complex or composite move-
ments.

In Sect. 2, we will present the related work. In Sect. 3, we
will show our semantic multimodal architecture. In Sect. 4,
we will study how to build a multimodal awareness sys-
tem. We assume that input sensors outputs are correctly pre-
processed by the services and are accompanied by a confi-
dence value for agents error management on detected signal
or failure on inputs. Finally, we will simulate our architec-
ture to help people to cross a straight urban road where cars
travel. In Sect. 5, we will conclude.

2 Related work

Lots of architectures have been designed in the aim of be-
ing embodied in a system, in a house, in the city or to sim-
ply bring an intelligent software component into a system.
To realize multimodal interaction, there exist multiple types
of architectures: dedicated HRI architectures like Situated
Modules [4], C5 [5] and EICA [6, 7], cognitive architec-
tures like updated ACT-R [8] or SOAR [9], and architec-
tures with rational agents also called BDI agents [10]. The
last 3 architectures listed previously have limited semantic
reasoning capabilities and are often limited to First Order
Logic (FOL). Excluding cognitive and rational agent archi-
tectures; there is to our knowledge no system capable of un-
derstanding the environment with a knowledge representa-
tion language as natural as can be the human language al-
though Situated Modules and EICA can provide a more nat-
ural embodiment because of their inherent responsivity.

The systems mentioned can use models to recognize sit-
uations but are often limited to dedicated tasks; this is not
the case for our architecture. Other systems [11] that use
multimodal fusion and fission functions exist but they aren’t
semantic, they don’t use any inference engine.

Gupta et al. present a promising method to observe
human-object interactions [12]. Their fusion system on im-
age and video uses spatial and functional compatibility for

recognition. Graphical and Bayesian models are used to
understand human scenes and events [13]. Object Classi-
fication is done by affecting stochastic values to relation-
ships between objects in the database and Action or Activ-
ity Recognition [14] is done by affecting stochastic values
to event models in the database; these values can be used
to choose an object or an action and are often modified
through learning. We will deeply improve these two oper-
ations by using a contextual ontology to store concepts, val-
ues for classification and predicates of models for actions.
Coradeschi and Loufti propose a review of Perceptual An-
choring, a transversal domain where it is necessary to asso-
ciate a symbol to signal sensor levels for the representation
of a physical object by using context and higher level se-
mantics information [15]. This is an important way to have
symbolic information but this information is related only to
intelligent sensor and not structured in the way to facilitate
reasoning and understanding in the interaction system. Re-
cent researches have been made to store low level data in
database structures. In our approach, data, events and high
level information like scenarios are stored in an ontology
structure.
The advantages of using ontologies are:

— The ability to share and reuse common understanding and
modelling of the exchanged information among people
and software agents, to enable the reuse of domain knowl-
edge (concepts and models), to make domain assumptions
explicit, to separate domain knowledge (ontology of con-
cepts) from the operational knowledge (ontology of mod-
els), and to analyze domain knowledge [16, 17];

— The use of natural language. Concepts in the ontology ex-
press real objects (physical or logical) and relationships
in the domain of application. These are most likely to be
nouns (objects) or verbs (relationships for concepts, pred-
icates for models) in sentences that describe the domain.

— Hierarchically filled concepts by semantic relationships
giving automatic expression of situational meanings.
These semantic ontologies have a better expression of the
relations interconnecting several classes of concepts. In-
stances are directly stored under the class following the
concepts list.

The ideal scenario of Guarino [18] has been further inves-
tigated in domain-specific modelling research where it is
generally accepted that an existing or newly developed on-
tology can act as a formal specifications of the domain of
the language. It can afterwards be transformed in a domain-
specific metamodel for the language. The ontologies used in
this context are domain and task ontologies which specify,
respectively, a conceptualization of a material domain (e.g.
a software quality ontology) and a generic task (e.g. a mea-
surement ontology) and which have themselves been created
by specializing concepts of a meta ontology. Domain ontolo-
gies can play an important role in the quality assurance and
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evaluation of models where quality is the degree to which a
model respects the invariant conditions of a domain, as ax-
iomatized in an ontology of concepts. This domain-specific
quality is assured if schemas instantiate models which in-
clude the domain-specific constraints or rules.

The use of KRL with the ontology structure gives a pow-
erful mechanism for fast reasoning and understanding of the
environment. This permits solving issues such as large quan-
tity of incoming events to manage from multiple sources,
environment modelling or environment understanding.

More recently, MultiML [19] (not OWL compatible) and
EMMA [20, 21] (OWL compatible) are the most advanced
XML languages for Multimodal fusion and fission incor-
porating multiple modalities, contexts, locations and time
but these languages don’t deal with the interaction meaning
however they bring a bridge to semantics interpretation, they
want to represent modalities and recognize scenarios using
their own XML tags. In addition, Giuliani and Knoll also
present related work [19] like MURML [22], MMIL [11],
Cogest [23] and MIND [24] languages or systems built for
conversational agents without standard ontologies. These
XML-based languages are limited to first order logic rea-
soners.

Predicates logic and Description logic bring a part of the
solution to the lake of representation (events and concepts)
but they are also limited to the FOL to ensure completeness.
In reality, higher order logic is closer to the reality, unfortu-
nately it cannot be fully proven in general but may be proven
in the simplified context. That’s why, we used KRL to use
predicates in higher level logic and multimodal logic at dif-
ferent levels of abstractions. The objective is to reduce the
reasoning time and memory space necessary to solve a prob-
lem. Our approach wants to provide an independent environ-
ment representative language compatible and close to natu-
ral language, and W3C standards like EMMA, it will allow
the communication with web services controlling hardware
parts. The meaning appears from the linked concepts using
predicates to represent knowledge with context and narra-
tives [25, 26] but without complex human common sense.
In order to build our interaction architecture, we are looking
for a design and realization of some cognitive or semantic
components to achieve goals of multimodal interaction in
the human environment [18, 27].

We focus on intelligent architecture by integrating se-
mantic agents, semantic services as structural components,
ontology as knowledge bases [28, 29], inference systems
and KRL as communication protocols.

3 Multimodal architecture
3.1 Architecture

We have presented an architecture, based on semantic agents
for multimodal interaction, capable of understanding its en-
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Fig.1 Multimodal interaction architecture

vironment in several of our previous papers [30, 31]. In this
paper, we have proposed a state of the art of the multiple
technologies and standards that we have used. The envi-
ronment is a set of systems where our architecture can be
seen as a distributed system managing the interaction in a
network in this environment. Figure 1 presents the fusion
and fission operations realized by agents connected to in-
put/output services that are used for perception and action
(Fig. 1). The control is not centralized. Each agent has its
own inference engine to reason on its own memory. Agents
and services are parts of the environment which contains
hardware parts and software parts. Some are embedded in
robots; others are in a building or in servers. The hardware
part contains sensors, actuators and the communication net-
work. The software part however only contains networked
web services. We can distinguish two types of web ser-
vices: Semantic agents that take care of the cognitive ca-
pabilities of the system and the input/output services that
control the hardware parts and communicate with the other
agents (Fig. 2). Web services choice has been made for the
interoperability of communication and execution. The input
services send agents some events whose low level data has
already been processed and most of the time they are ac-
companied by a confidence rate. The output services receive
from agents and manage incoming orders upon reception or
according to their planning.

We have also pointed out the operations that semantic
agents are capable of realizing:

— modelling and memorisation (i.e. storage of events in a
model ontology which is itself linked to a concept ontol-
0gy),

— comprehension and reasoning for the extraction of new
events with the support of an inference engine from query
models or rule models, and

— communication with other agents or services [32].

To homogenize everything, the models, the facts, and in
general, all the events that transit on the network are de-
scribed in an Environment Knowledge Representation Lan-
guage (EKRL) based on frames and not limited to FOL. We
have also presented the roles of fusion and fission that those
agents can take in the case of multimodal interactions.
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Fusion is the process of composition of low-level ab-
stractions (coming from input services or other agents) into
an event of a higher level of abstraction (sent to other fu-
sion agents). Fission is the process of decomposition of high
level abstraction events (coming from other fusion or fission
agents) into events of a lower abstraction level (sent to other
fission agents) or in orders (specific events sent to output ser-
vices). The fusion agents of the higher level of abstraction
therefore have in memory all the information on observed
contexts or situations in the environment. All of the event
models in the semantic agents memories will permit:

— the storage of facts perceived (by the input services) and
recognized;

— the understanding of these facts (thanks to semantic rela-
tionships);

— the fusion or fission of new events by reasoning with rule
models on stored facts; and

— the reaction by sending orders to output services.

We have also standardized our components. The infer-
ence engine and communication algorithms of our semantic
agents never change but the model ontology and the knowl-
edge acquired with experience can evolve and be reused. In
this paper, we will show how the inference engine can do
the fusion or fission processes. We present our approach to
apply a more generic and adaptable architecture able to man-
age awareness in parallel to other system tasks with a great
understanding and disambiguation of the environment. We
will be using models dedicated to the application that we
developed.
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Fig. 3 1/0 service

3.2 Semantic agents and services

Semantic agents and services are parts of our assistant sys-
tem.

3.2.1 Services

Services are standard web services communicating with
agents in EKRL events (Fig. 3). They may drive hardware
parts or propose software functions. There are input services
which can be connected to the environment with sensors to
read data or send the results of software functions. And there
are output services which can be connected to the environ-
ment with hardware actuators to execute orders or receive
inputs to software functions.

3.2.2 Agents

Agents cannot act but just reason on EKRL events. They
contain a knowledge base (we also called cognitive mem-
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ory) composed of an ontology of concepts and an ontology
of event models, an inference engine and a communication
module (Fig. 4).

The inference engine is able to process the matching op-
eration to answer a query and the aggregation function to
process rule models. Most of the time, they receive new
facts in their queue, they store the facts if they recognize
them (i.e. a fact matches a known model). If they don’t
recognize them, they are simply ignored meaning that the
agent is not concerned by this type of information. Once the
new fact is added to the knowledge base, the inference en-
gine processes an aggregation with rule models related to
the model of the new fact. If rule models are fired, then
new events are produced and sent to other agents or ser-
vices (message is an order). We detail this process in the
next section. Events, Scenarios and execution schemes of
agents are stored in the knowledge base. All inserted facts
coming from the network are linked to concepts and models.
Event models instances (i.e. facts) are stored under classes
of event models hierarchically. They compose the knowl-
edge and meaning of what’s happening in the environment
(Fig. 5).

3.2.3 Inference engine

Knowledge representation language Our KRL is a seman-
tic formal language L that can describe events in a narrative
way very close to natural language. EKRL is fully used to
build event messages and store facts directly in the models
classes of the models ontology of the agent memory. The
formal system is composed of the formal language based on
variable arity relations in logic of predicates. It permits to
realize semantic inference in order to extract the situational
meaning from ontologies and match the instances of the on-
tologies. A predicate P is a semantic n-ary relationship be-
tween Roles R and Arguments A, and represents a simple
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<RootPredicate>:<PredicateName> (name)
Natural language: ‘<Predicate Description>' (optional)
<Rolel> <Arguments1>
<Role2> <Arguments2>
<Role3> <Arguments3>

Fig. 6 Event model description

Exist: Available Service
SUBJECT: composition
SENDER: services
DATE: date time
LOCATION: location

Fig.7 “Exist:Available Service” event model

event or a composed event. It is denoted by the following
formula: P((R{Ay)...(R,A)).

Where R are roles in the event (SUBJECT, OBJECT,
SENDER, DATE, LOCATION, and so on) and arguments
A are the possible values or instances of concepts in the
stored facts. Figure 6 presents the writing of an EKRL
event and Fig. 7 an example of an event model used for
service composition. These models will be filled with a
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combination of concepts to make an event instance (i.e. a
fact) at several abstraction levels of behavioural descrip-
tion.

Matching Function This function performs matching op-
erations between predicates and roles (Algorithm 1). Store-
RA() and ReadRA() are SQL Insert and Select operations
respectively in the Role-Arguments table filtered by ID ar-
guments given to these two functions. Modifier is a role for
modifying the sense of an event. Depending on modifiers,
the matching result can vary. If the sense of the fact is neg-
ative, the event’s sense is inverted so matching must take
account of this too.

The function prototype is [EventsPredicateID] <—Match-
ing(RootPredicate, Predicate, [Roles], [Arguments]).

RootPredicateID«— GetNodeID(RootPredicate)
PredicateID«—GetNodelD (Predicate)
[RolesID] « GetNodelD ([Roles])
[ArgsID] « GetNodelD ([Arguments])
[EventsID]«—ReadRA(RootPredicatelD, PredicateID,[RolesID])
For Each EventID in [EventsPredicatesID]
[[EventRolesID],[EventArgsID]] «<ReadRA(EventID)
For Each ArgID in [ArgsID]
EventArgID«EventsArgsID[rank(ArgID)]
If not MatchArguments(ArgID,EventArgID) Then Next EventID
Next ArgID
If ApplyModifier(EventRolesID) != ApplyModifier(RoleID) Then
Next EventID
[EventsPredicateID]«— [EventsPredicateIDEventID]
Next EventID
Return [EventsPredicateID]

Algorithm 1. Events matching

MatchArguments function This function performs match-
ing operations between two arguments of a role (Algo-
rithm 2). ReadConcept(QueryArgID) is an SQL Select op-
eration in the nodes table, where the node type is con-
cept classes or instances and where these nodes are under
the given node using the subsumption relationship of the
links table. The SQL request gives all the subtree nodes
sorted. The “date”, “location”, “context”, “content” and
“value” role arguments will be compared using specific
meta operators like “>"7, “<”, “<=", “>=", “AND”, “OR”
to check the given event models. This explains why the
CompareEvents() function returns a boolean. In fact, any
event calculations are made using this function. Modifiers
is a role of predicate to change the meaning of the sen-
tence (fact) and thus the applied logic (temporal, spatial,
modal with necessity and obligation modalities, and so
on). This function compares all arguments and applies a
modifier to the final Boolean result. The function proto-
type is [MatchingResult]<MatchArguments(QueryArgID,
EventArgID).

If QueryArgID=EventArgID Then Return True
[ArgsID]=ReadConcept(QueryArgID)
For all Argld in ArgsID

If Argld=EventArgID then Return True

Else Return CompareEvents(Argld, EventArgID)
Next
Return False

Algorithm 2. Argument matching

Aggregation function The main code can be called at each
time new facts are stored or at different time (interval spe-
cific to the agent triggered by a timer set by the designer).
The given events, roles and arguments are compared to the
rule models stored in the agent’s memory. Rule Models set
is equivalent to the program of the agent. They contain a
precondition to be checked and if the rule model is fired
(precondition is true) then all roles and arguments of facts
in memory will be aggregated with the rule models (Al-
gorithm 3). To be fast, the inference engine looks only at
the facts of event models used in the rule model, this is
an important optimization. If rule models match past and
incoming facts (the precondition) then new events are pro-
duced (the postconditions). These events are obtained from
the class of rule models. The arguments in the roles of all
corresponding facts are aggregated to fill the roles of the rule
models by using the matching algorithms previously given.

For all rule models r,
For the £ model events ek in r.precondition
[ek,FactsID,k]«—Matching(ey.rootpredicate,ey.predicate)
Next
[TrueFactsID]«Evaluate(r.precondition, ek, k, ReadRA(FactsID))
For all tfid in TrueFactsID
[NewEvents]—InsertArgs(r,tfid)
Next
Next
Return [NewEvents]

Algorithm 3. Aggregation

For example, there is a very simple rule model “Be-
have:CrossTheRoad” (Fig. 8) which is composed of k = 2
facts named fI and f2 (Table 1). The precondition is in the
Object role of the model (Fig. 9). Depending on used roles
in the precondition and postcondition, the matching will use
temporal logic (working on dates), spatial logic (working on
locations) and in general in multi modal logics correspond-
ing to any roles of the model. The inference engine will also
use the confidence value to validate the rule model to be
aggregated. The composite confidence will be the mean of
confidence values of different input events. Default confi-
dence of an input event is 1 (1 for 100 % and O to 0 %). If
this aggregated confidence value >0.5 then composite event
is produced by aggregation with formulae of rule model. If
the precondition is true, i.e. the arguments of facts match the
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Table 1 Facts matching “Behave:CrossTheRoad” rule model

Fact Event names Roles Arguments

fl Move:Stand  user, content, datel,

date2, location

“james”, “speed = 0 m/s”
0s, 1.7 s, sidewalk

”

“james”, “speed = 0 m/s”
1.7 s, 3.5 s, street

2 Move:Walk  user, content, datel,

date2

Behave:CrossTheRoad
Object:precondition

User: f1.User

Source: f2.position
Recipient: opposite sidewalk
Content: f1.value

Datel: inf(fi.datel), for all f;
Date2: sup(fi.date2), for all f;
Location: f1.location

Fig. 8 “Behave: CrossTheRoad” rule model

precondition «Coord(fl.date2=f2.datel f1 name="Stand”,
f2.name="Walk” f1.location="sidewalk” f2.location="street ")

(a)

Exist:ContradictoryEvents

Object:Coord(fl. name=12.name,f1.value<>,f2.value,
fl.datel=f2.datel fl.date2=f2.date2)

Datel: f1.datel

Date2: f1.date2

(b)

Fig. 9 (a) “Behave: CrossTheRoad” precondition. (b) “Behave:
CrossTheRoad” rule model

arguments of the Object role, and then the inference engine
will produce and send the “Behave: CrossTheRoad” fact.
This fact is the aggregation of the arguments of the facts
fI to f2 in the other roles of the model.

If two percepts or facts f1 and f2 contradict each other, the
matching function still works without distinction because of
the two following reasons: First, percepts or facts will be
taken one after the other because of the presence of an in-
put queue of each agent; And second, they will be also pro-
cessed and filtered by the precondition embedded into the
model of composite event (rule model).

The evaluation (Algorithm 3) of some contradictory val-
ues of some arguments in the precondition of a rule model
can be false. Then the resulting composite event will be erro-
neous too and propagated to the system. Precondition must
be checked by designer. To avoid any problem of this kind,
these contradictory events can be filtered by a fusion agent
with the addition of the “Exist:ContradictoryEvents” rule
model event (Fig. 9). Two cases can be created: the events
are propagated to other agents with a confidence of 50 % or
can be simply ignored but it is a choice of a designer de-
pending on the security of the realized application.
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3.3 Performance analysis

Reception and Emission of events are done by the communi-
cation module which is physically connected to the TCP/IP
network.

To avoid potential bottlenecks, we have checked net-
work performance (our architecture can manage about
100 events/second). As received and produced events are
kept in memory of the agent, we have also checked the stor-
age. A Temporal validation of events built by inference en-
gine has been tested with CPNTools to formally analyze
Coloured Petri Nets [33].

3.3.1 Network load

The networking load indicates the maximum number of
messages per second that can be transmitted between two
computers (Fig. 10).

3.3.2 Inference time

Inference time is a measurement of the maximum number of
inferences performed per second. It depends on the number
of data read from the database. We build a data set to insert
the concepts and models into the ontologies of our agents
(Figs. 11 and 12). Considering there is no queuing event, we
send a query on facts to the agent.

Our query takes very little time, especially with the i7
processor, so we measure the required time for the agent to
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Table 2 Pedestrians must wait on the sidewalk

Light Nocar Carstopped Car not stopped

color present  Speed null Speed decreases  Speed increase
Green  Wait Wait Wait Wait

Orange Wait Wait Wait Wait

Red Walk Walk Wait Wait

Table 3 Pedestrians are crossing

Light Nocar Carstopped Car not stopped
color present  Speed null ~ Speed decreases Speed increase
Any color Walk Walk Run if possible  Run if possible

Constraint Result
Events Completeness 100%
Event arrivals order 100%
Temporal aspect 100%
Consistency 100%

Fig. 13 Validation results

execute nbe inferences, where nbe is the maximum number
of events that can be returned by the database.

3.3.3 Temporal validation

With CPNTools, we validate event completeness, event ar-
rivals order, temporal constraints (included in the event
model) and the consistency (Fig. 13).

We may explain these results by the fact that unknown
events are ignored and the validation can’t continue. If the
event arrivals order is not respected, the engine doesn’t wait
and restarts again to the first event. The temporal validation
allows validating the event arrivals order and the start time
and end time of the models are respected. Consistency is re-
spected because of the presence of the concept and model in
our ontologies, and because no generated events is altered
by the network transmission or by a limitation of the recep-
tion queue in this program. If it is not the case, the event is
ignored and the matching process must keep on. Inconsis-
tency doesn’t mean there is no repetition of the same output
event. We managed this problem with an automatic deacti-
vation parameters attached to the fact in the ontology. Our
inference engine is validated for all scenarios because, if the
rule model changes, only the comparators of the schema
changes. Only the arguments of the roles of the incoming
events will be matched with the rule model precondition.

4 Pedestrian crossing

In this section, we present how our semantic architecture of
agents can help the pedestrian to cross a road.

4.1 Context

Assistant robot helps people to cross a road by checking the
colour of the traffic light, presence of car on the road, posi-
tion and speed of that car. The objective of our application
is to keep a valid user aware of the situation or to protect
disabled, blind or old people by making them avoid cross-
ing in situations of danger. We will focus on people cross-
ing the roads and to avoid being a victim of traffic. We use
our multimodal architecture to solve this type of problem by
applying it to only one crossroad. Obviously, some more ac-
tions could be performed, like the robot could assist disabled
persons, control the pedestrian signal or car signal (keeping
it “red” until arrival to the other side), make an emergency
call in case someone wants to inform authorities about an
accident.

Tables 1 and 2 present possible situations and required
actions in order to protect pedestrians. Table 1 shows the
case where pedestrians are waiting on the sidewalk and Ta-
ble 3 shows the case where pedestrians are going across the
road. For each situation evaluation of danger (matching of
events), robot acts by speaking to humans for example.

4.2 Global architecture

The architecture is composed of

— asimulator in Microsoft Robotics Studio of the city street
and cars circulating on that street;

— the Microsoft Kinect sensor linked through the network
to a PC containing the service to manage the sensor;

— Semantic agents that can be embedded in a robot or a
computer connected to the network;

and the Nao robot also linked to the network is capable of
moving and talking. We don’t use its camera to detect ges-
ture because of the low computational power of its main
board (Fig. 14). System architecture contains 3 layers: Hard-
ware, Software Services and Software Agents. Hardware
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Fig. 14 Application Network
architecture
Road
Services
Traffic Light

Robotics Studio

Simulated world

layer consists of sensors and actuators in the robot or from
a network of the system. Our Nao robot’s body has 1 head
with four mikes and two video cameras, 1 neck, 2 legs, 2
arms and 2 hands for a total of 25 DOF. It can listen, speak,
walk and connect to a TCP-IP network. We added in the en-
vironment a MS Kinect to recognize human gestures and
movements on the sidewalk. Software layer is a suitable
composition of fusion and fission agents (internal or external
mind) and embodied services as defined in the previous sec-
tions. Agents will manage input and output events to finally
manage awareness and hardware controllers.

Car and Red Light are simulated web services into a MS
Robotics Studio simulation and projected on a wall in a
virtual reality room (Fig. 15). They send event about their
own actions (car moves, car stops, light color changes),
car speed (0 to 50 km/h) and color of light (green, orange,
red) on Fig. 16. The user may walk in front of the simula-
tion, Kinect service gets human gestures (skeleton) and send
EKRL events to agents (Fig. 17).

4.3 Simulation preparation

This simulation is done in a virtual reality room with the
simulation projected on a wall. Humans (one or two people)
and Nao robot are real. A Kinect sends high level events of
human gestures and postures to agents. When the humans
are close to the wall of video-projection (less than 2 meters
from the wall), we consider them on the pedestrian crossing
else we consider them on the sidewalk (more than 2 meters
from the wall). Cars and Red Light parts are web services
that send events about themselves to agents. The car goes
around the block with different speeds so that the arrival
is random. Sometimes it stops at the red light, sometimes
not, making it unpredictable. When car’s position is further
than 50 meters from the crossroad, we consider it is a situ-
ation where no car is present. Hardware and software parts
of the system are controlled by services connected to agents
and waiting for orders. In case of possible injury, robot will
speak or play a sound to warn users by triggering an output
event. Table 4 summarizes and presents the relationships be-
tween Hardware, Services and Event models used by agents
to understand the situation in this application. We are now
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Fig. 16 Car and red light services view in simulation

Fig. 17 Kinect “Move:Walk” event detection

able to run our experimentations. We tried all situations of
Tables 1 and 2 in the real world.
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Table 4 Hardware, services and event models relationships

Hardware Service

Event model

Video Camera Sensor Human Gesture Recognition (Kinect)

Speakers Audio Output, Vocal Synthesis (Nao)
Mike Sensors Vocal Recognition, Sound Direction (Nao)
Neck Actuator Move Head (Nao)

Arms Arms Gestures (Nao)

Legs Walk (Nao)

Traffic Light Signal Color (Pedestrian Signal)

Car Move Speed (Car)

UDDI.OWL-S Server

UDDI (input/output service), WSExecute (output)

Exist:Human, Move: Walk

Behave:Play, Behave:Speak

Exist:Entities, Move:Entities, Behave:HumanTalk, Exist:SoundLevel
Behave:Avareness, Behave:Look

Move:MoveArm

Move:Walk

Exist:SignalColor

Move:MoveObject

Exist:AvailableServices, Exist: AvailableAgents,
Behave:ExecuteService

Fig. 18 Fusion agents

Entities Level : Behavioral Level:

dedicated to robot awareness Sensors Network Basic Events  Composite Events Composite Events
Input Services Agents Agents Agents
"Human prefs Low Level High Level
e — Exists Car
Path Planning I Exists Signal
. Cars State
GMT Time Signal Color
GPS Location/ l;laps Failure Detection
= T Car Path
Sﬁlll‘lﬂ Level AN Car Behavior
‘Sound Location k- Signal change
—_— Human Behavior
‘Vocal Recognition - '
mT—— Car Position
Human Gesture Car Speed
s Car Direction
Object Speed . Head Position
A Plicepdis 1 Human stand,
O_bﬁ Direction : walk,run
"Hall Effect Sensors |
Legend: —
Service Event message Agent Memory

4.4 Architecture of agents

In this section, we develop two specialized semantic agents
dedicated to our interaction problem.

4.4.1 Fusion agents

A fusion agent is a semantic agent that has the role of ex-
tracting a specific meaning from several events. The match-
ing operation of the inference engine will use event mod-
els to extract the required meaning of a higher level of ab-
straction. Figure 18 shows a complete composition of in-
put services and fusion agents to produce semantic events
at different levels of abstraction from sensors input. Con-
textual events produced by fusion agents will be stored in
memory under model events like “Exist:ExistsCar”, “Ex-
ist:ExistSignal”, “Exist:CarsState”, “Exist:SignalColor”,
“Exist:FailureDetection”, “Behave:CarPath”, “Behave:Car-

Exist: Signal Color

OBIJECT: Pedestrian Signal4
VALUE: Green Color=1
ACCURACY: 100%

DATE: 10/05/2010 10:05

LOCATION: COORD(Hoche Street,5™ Avenue)

Fig. 19 Composite event “Exist:Signal Color”

Behaviour”, “Behave:HumanBehaviour”, “Move:CarPos-
ition”, “Move:CarDirection”, and so on.

Object State agent, in charge of object detection, com-
poses the following event from sensors events. Still Object
fusion agent will receive and store this event concerning the
signal. These events will be composed by next agents to start
evaluating events concerning cars and signal. Figures 19, 20
and 21 are composite events made by fusion agents from
events coming from Robotics studio simulation services and
Kinect “Human Gesture” service.
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Move: MoveObject

OBIJECT: FourFourCarl

VALUE: Speed=20 km/h (deceleration)
ACCURACY: 95%

DATE: 10/05/2010 10:05

LOCATION: Hoche Street

Fig. 20 Composite event “Move:Object”

Move:Walk
OBJECT: Human
SENDER: MobileObjectFA
DATE: 10/05/2010 10:05
LOCATION: Hoche Street, crossroad4

Fig. 21 Composite event “Move:Walk” made by fusion agents

i Software Hardware
Fission Agents Output Services Actuators
1SetGMT Time || SetSound Volume
uSetMike Volume
Settings &
Agent BLAN SetCamera Foous
- Eﬁiiiiiliilll - Speech recognition
e b “.Speak/ Play Sound |
unication
Agent - Emergency Call
- Send SMS/Mail
.Optimal Path Search |
Control = Y ’ %
Agent B Jamplit o Te TR "

Fig. 22 Fission agents dedicated to robot awareness

4.4.2 Fission agents

A fission agent is a semantic agent that has the role of man-
aging information to select and control actuator services.
Fission agent will produce events sent to other agents and
services to store current state and execute work in time.
Figure 22 shows a composition of fission agents to act on
hardware layer. Depending on input events, the objective is
to prevent user to cross a road when danger is present. To
achieve this goal, a set of actuators is available.

Figure 23 presents an example of output orders sent from
Control Agent to a robot control service (LeftArmMotor)
to move the left arm up to the 45° position. Figure 24 is
an example of order to speak sent to the VocalSynthesisl
service embedded in a robot or elsewhere (speaker set in a
wall or on the red light).
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Move:MoveArm
OBJECT: NaoRobot1
VALUE: 45°
SOURCE: ControlAgentl
RECIPIENT: LeftArmMotor
DATE: 25/04/2010 11:05:56

Fig. 23 “Move:MoveArm” event instance

Behave:Speak
SOURCE: Coord(GreenColor,CarStop)
CONTENT: “You can walk”
SENDER: Communication Agent
RECIPIENT: VocalSynthesis1
DATE: 25/04/2010 11:05:56

Fig. 24 “Behave:Speak” event instance

Behave: SomeoneFallsDown
OBJECT: James
SENDER: FallingDetectorMobileService
VALUE: 10 m/s
ACCURACY: 56%
DATE: 10/06/2011 10:05
LOCATION: COORD(Hoche Street,5" Avenue)

Fig. 25 “Behave: SomeoneFallsDown” fact

4.5 Application extensions

In the previous section, despite the number of sensors, actu-
ators and agents, the application appears intentionally sim-
ple in order to be explicit. But the interest of this architec-
ture, except the use of knowledge representation language
close to natural language, can be easily improved by adding
more components (services and agents) and knowledge in
the memory of agents bearing more scalability, management
of a large set of events and then consistency. So in this sec-
tion, we propose a more complex application taking into ac-
count of more events with possible noisy facts (unknown
and false data). We then consider integrating more sensors
in the network, one for the weather (new “Exist:Weather”
event and “Exist:WetRoad” rule model) and the others are
mobile phone with a 3-axis gyroscope combined with the
accelerometer sensor (6-axis measurement) carried by users
to detect a possible falling on the pedestrian crossing using
a new “Behave:SomeoneFallsdown” event model (Figs. 25,
26 and 27). [34] presents an example of application of ac-
celerometer used for activity recognition.

The robot is one part of the network and is connected to
any other information, even about what is happening to the
3 other pedestrian crossings. This gives the architecture the
ability to manage all the crossings and even the traffic of
the street and why not the citywide, if for example a police
car or the presidential convoy needs to go through at high
speed. Output services can control the lights using the new
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Exist: Weather
SUBJECT: Weather
SENDER: CityMeteoService
VALUE: Rainy (3 mm)
ACCURACY: 41%
DATE: 10/06/2011 10:05
LOCATION: COORD(Hoche Street)

Fig. 26 “Behave: SomeoneFallsDown” fact

Exist:WetRoad
SOURCE: Coord(Exist: Weather,Behave:Behave:Sprinkle)
PRECONDITON: Altern(Weather =Rainy,Sprinkle =on)
VALUE: Event.value
ACCURACY: Event.accuracy
DATE: Event.date
LOCATION: Event.location

Fig. 27 “Exist:WetRoad” rule model

Behave:ChangeLightColor
SOURCE: Coord(GreenColor,CarStop)
CONTENT: “You can walk”
SENDER: Communication Agent
RECIPIENT: VocalSynthesis1
DATE: 25/04/2010 11:05:56

Fig. 28 “Behave:LightChangeColor” event instance

“Behave:ChangeLightColor” to avoid injuries, or if the road
is wet (rainy weather), by delaying the red light if the light
should be green and a person is falling or has fallen (Fig. 28).

In this experimentation, we store lots of events and pre-
pare them to check the three following situations: the num-
ber of events is normal (less than 1000 events/s), overloaded
if we send more events to agents, and noisy when the events
have an accuracy lower than 50 %. The agents are stressed
and they have to store all the events in memory for us to
check consistency and robustness.

4.6 Results

Most of the knowledge about cars, signal and behavioural
scenario were stored in the memory of agents. Evaluation of
the situation consists to query this memory. Agents evaluate
the meaning of the situation with its past recorded events.
Different situations summarized in Tables 2 and 3 have been
simulated with 100 tries. We have also tested the cases with
several cars.

In the case “Pedestrians are waiting on the sidewalk” of
Table 1, results are 100 % successful. Other results for the
case ‘“Pedestrians are crossing” with one car and with sev-
eral cars are presented in Tables 5 and 6. And as it was ex-
pected, cars speed determines the dangerousness especially
when pedestrians are on the walkway. In this clean environ-
ment (no sunlight, no other objects moving) and after a short

Table 5 Pedestrians are crossing with one car

Light Nocar Carstopped Car not stopped
color present  Speednull  Speed decreases Speed increase
Any color 100 % 100 % 99 % 98 %

Table 6 Pedestrians are crossing with several cars

No car First car stopped Car not stopped
present Speed null

Light
color

Speed decreases Speed increase

Any color 100 % 100 % 86 % 79 %

Number of 8000 " =9=Events number (no trigger)
eventsin 9000 7
memory of 4000 - <B-Events number (trigger)
agent 2000 =tr=Error (no trigger)

0 - LN B B S

==Error (trigger)

0 5 10 15 20

Fig. 29 Events in memory

time of Microsoft Kinect calibration, with sometimes some
erroneous gesture recognition events, results are:

— at slow speeds 100 % of the cases are successful;

— at fast speeds with one car, we have 98 % of cases are
successful;

— at high speed and several cars, 79 % of cases are success-
ful.

These problems are due to the short distance between two
cars that may occur like in true life when people drive when
the orange light is on or don’t see people crossing. If people
are not on the pedestrian crossing, it is always possible to
avoid danger but once on the pedestrian crossing, in most
of the cases, it is impossible to avoid the accident. To the
event that vocally allows pedestrians to go cross the road,
we added an event model that checks if more than one car
is coming and if the first car stops at the red light. With this
new event, we have a success rate of 100 % in any case.

The next results concern the complication (Sect. 4.5) of
the architecture and the next experimentation.

We focused our analysis on ignored events compared to
well-composed events in order to check generated meaning.
After validation of event models, we check the good corre-
lation between expected output and inputs. We also check
the robustness of the inference engine with noisy events and
by increasing the number of events in time (maximum load).
Results are presented in Fig. 29 and Table 7. Consistency de-
creases when too many events occur. Performance of agents
decreases due to their processing speed but robustness is al-
ways good because, in this human situation, events are very
redundant so there is no impact on outputs.
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Table 7 Consistency in memory

Events Consistency Robustness
Normal 100 % 100 %
<1000 events/s

Overload 71 % 100 %
>1000 events/s 29 % ignored

Noisy 50 % 100 %

50 % unknown events 50 % events ignored

Noisy 42 % 96 %

50 % false data in known 17 % events not in time

events so ignored

Agents are able to ignore events when they are not match-
ing predicate name, time, location and other roles in event.
Robustness remains good in cases of noisy data without tak-
ing into account uncertainty measures coming from sensors
and hence corrupted data. Consistency is weak because false
data in events impact correct events at 8 %.

5 Conclusion and future work

We have presented our architecture with multi levels of ab-
straction based on semantic agents suitable for interaction
in the human environments like home and city. Our archi-
tecture brings a software part of the solution and manages
multiples input and output modalities for interaction. A fast
evaluation of possible scenarios is done by understanding
and taking into account all past events and behaviours. It
may be easily adapted to several different tasks and contexts
by adding appropriate concepts and models in the memory.
We have proved it works well for human assistance in vir-
tual reality simulation (in a dedicated room or at home) but,
in real world, we will certainly need more reliable services:
better video camera managing sunlight, real-time commu-
nicative devices embedded in cars and in red lights. Future
work will be the auto-reconfiguration of the architecture de-
pending on other situational contexts and user preferences
profiles.
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