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Abstract This paper describes a logic-based formalism for
qualitative spatial reasoning with cast shadows (Perceptual
Qualitative Relations on Shadows, or PQRS) and presents
results of a mobile robot qualitative self-localisation exper-
iment using this formalism. Shadow detection was accom-
plished by mapping the images from the robot’s monocular
colour camera into a HSV colour space and then thresh-
olding on the V dimension. We present results of self-
localisation using two methods for obtaining the thresh-
old automatically: in one method the images are segmented
according to their grey-scale histograms, in the other, the
threshold is set according to a prediction about the robot’s
location, based upon a qualitative spatial reasoning theory
about shadows. This theory-driven threshold search and the
qualitative self-localisation procedure are the main contribu-
tions of the present research. To the best of our knowledge
this is the first work that uses qualitative spatial representa-
tions both to perform robot self-localisation and to calibrate
a robot’s interpretation of its perceptual input.
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1 Introduction

Cast shadows as cues for depth perception have been used
to enhance depictions of natural scenes since the Renais-
sance [12]. Recent research within psychology suggests that
the human perceptual system gives preferential treatment to
information from shadows when inferring motion in depth
and perceiving 3D scene layout. These studies suggest that
information coming from shadows can override such basic
notions as conservation of object size [8, 25, 27]. Casati [5]
points out that cast shadows also contain information that
is not used during passive perception, for instance, informa-
tion about the presence and location of the light source and
the caster; the intensity of the source; the caster’s shape; the
screen texture; and the distance between the caster and the
screen.

Whilst psychologists have demonstrated the centrality of
shadows to our own perception of depth, size and motion,
much work in computer vision and robotics starts from the
premise that shadows are sources of noise rather than infor-
mation. The present work falls within the small but growing
area of research which aims to treat shadows not as sources
of noise, but as sources of information. This requires not
only a model of the kinds of information that shadows can
purvey, but also a robust and accurate shadow detection sys-
tem. Researchers within both computer vision and robotics
have been working in this area—many engaged in shadow
suppression in videos from fixed cameras, but some engaged
in the more challenging task of shadow identification, local-
isation and use [14].

The contribution of this paper is the investigation of a
qualitative self-localisation method using information from
cast shadows and the development of theory-driven thresh-
old search for shadow-caster segmentation. We discuss the
experimental evaluation of these methods using two tech-
niques for automatically obtaining the threshold to segment
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images from a robot’s camera. In the first technique, the im-
ages are segmented according to their grey-scale histogram.
In the second, the threshold is searched according to a pre-
diction about the robot’s location, given a shadow-based
qualitative map.

This paper is organised as follows. Section 2 outlines
related research from within both computer vision and
robotics. Section 3 describes the theory upon which this
work is based: Perceptual Qualitative Relations about Shad-
ows (PQRS), which formalises the problem of reasoning
about shadows within a qualitative spatial reasoning con-
text. The adaptive thresholding methods considered in this
work are presented in Sect. 4, and experimental results are
described in Sect. 5. A discussion of open issues is presented
in Sect. 6, and Sect. 7 concludes this paper.

Throughout this paper, constants are written in upper-
case letters and variables in lower case, unless explicitly
stated otherwise.

2 Related research

When considering the task of segmenting moving objects
from a static background, shadows are a frequent source of
false positives [11, 28] and therefore shadow suppression is
a major research area. In this context, shadow detection in
computer vision almost always involves some model of the
colour of the screen (or, in computer vision terminology:
background) and detection is performed using a model of
shadows characterising them as ‘roughly the same colour as
the background, but darker’. Perhaps the simplest shadow
detection method proposed is that of [42], in which a grey-
scale image is thresholded and the darker pixels are labelled
shadow; however this approach fails on complex images
and in situations where lighting changes due to either en-
vironmental effects or egomotion. Prati in [32] provides an
overview and a taxonomy of early shadow-detection tech-
niques, dividing them into model-based and non-model-
based; however, this categorisation does not apply well to
more recent works, many of which can be thought of as en-
semble methods [28, 31].

Cucchiara et al. in [11] use detected moving objects and
a background model as their starting point. The pixel val-
ues of moving objects are converted to the HSV (Hue, Sat-
uration and Value) colour space, and then these objects are
investigated to determine whether they are real moving ob-
jects or merely shadow pixels. This is accomplished by con-
sidering observed and background values of all three HSV
components, considering the difference between foreground
and background values for H and S, and the ratio of the two
V values. This captures the intuitive observations that shad-
ows are about the same hue as the same part of the scene
unshadowed, slightly more saturated, and darker. A simi-
lar approach based upon the observation of colour changes

in cast shadows is presented in [36]. Stauder et al. in [40]
use assumptions about the background (it will dominate the
scene), the nature of shadows and luminance (shadows are
darker and tend to have uniform shading) and the presence
of moving and static edges. Other methods for shadow filter-
ing use a model of the shadow’s caster, either assuming it is
rectangular (like a car) as in [45], or upright (from a moving
person for instance) as in [20, 35]. These assumptions im-
prove filtering considerably, but break down when shadows
from arbitrary objects are considered.

There are a few systems within computer vision that use
cast shadows as sources of information rather than noise.
The work reported in [4] uses known 3D locations and their
cast shadows to perform camera calibration and light loca-
tion (using known casters and screen to tell about the light
source); Caspi and Werman in [6] use the moving shad-
ows cast by known vertical objects (e.g., flagpoles, or the
side of buildings) to determine the 3D shape of objects on
the ground (using the shadow to tell about the shape of the
screen). Balan et al. [1] use shadows as a source of infor-
mation for detailed human pose recognition: they show that
using a single shadow from a fixed light source can provide
a similar disambiguation effect as using additional cameras.

In robotics, the story is similar. Fitzpatrick and Torres-
Jara in [16], inspired by work suggesting that humans use
the shadows of their own limbs when judging limb location
[7], track the position of a robotic arm and its shadow cast on
a table to derive an estimate of the time of contact between
the arm and the table. Shadows are detected in this work
using a combination of two methods: in the first method, a
background model of the workspace is built without the arm
and then used to determine light changes when the arm is
within the camera view. The second method compares sub-
sequent frames in order to detect moving regions of light
change. The authors motivate their work pointing out that
depth from shadows and stereopsis may work as comple-
mentary cues for robot perception, while the latter is lim-
ited to surfaces rich in textures, the former works well for
smooth (or even reflective) surfaces. Cheah et al. [9] present
a novel controller for a robot manipulator, providing a so-
lution to the problem of trajectory control in the presence
of kinematic and dynamic uncertainty. In order to evaluate
their results, an industrial robot arm was controlled using the
visual observation of the trajectory of its own shadow. Lee
et al. [23] use cast shadows inside pipes to detect landmarks:
by fitting bright lights to the front of their pipe inspection
robot, they can determine when a pipe bends by detecting
cast shadows.

Information from shadows is also considered in un-
manned autonomous planetary exploration. Tompkins et al.
[41] describe an autonomous path planning system that takes
into account various conditions of the robot’s state, includ-
ing particularities of the terrain and lighting. In this context,



Reasoning about shadows in a mobile robot environment 555

the information about shadows cast by terrain irregularities
allows the rover to plan a trajectory that maximises the trade-
off between the exposure of the solar cells to sun light and
the limited resources in planetary missions. Kunii and Go-
toh [22] propose a Shadow Range Finder system that uses
the shadow cast by a robot arm on the surface of a terrain in
order to obtain depth information around target objects, thus
providing low-cost, energy-saving sensors for the analysis
of the terrain surrounding rock samples of interest.

More recently, we developed an initial representation of
cast shadows in terms of a spatial formalism based on occlu-
sion relations (presented in [37]). This representation, called
Perceptual Qualitative Relations about Shadows (PQRS), is
used in a qualitative self-localisation procedure for a mobile
robot in an office-like environment. The present paper builds
upon this idea and, therefore, a more complete and accurate
description of the PQRS formalism is presented in the next
section.

The idea of qualitative self-localisation first appeared in
[24] whereby a tessellation of a mobile robot’s environment
is obtained from the set of lines connecting pairs of point-
wise landmarks. The space bounded by these lines define
regions, which can then be treated as vertices of a topo-
logical map. The spatial representation behind this idea was
further developed in [17, 39, 44]. In particular, [17] consid-
ers extended convex (instead of point-wise) objects as land-
marks and the decomposition of space is based on the no-
tions of occlusion and visibility, which has much in common
to the PQRS formalism investigated in this paper. However,
in contrast to [17], the present work shows empirical results
from the application of these ideas.

A more complete survey of research on shadown percep-
tion (in psychology, artificial intelligence and computer vi-
sion) is presented in [14].

3 Perceptual qualitative relations about shadows
(PQRS)

Perceptual Qualitative Relations about Shadows (PQRS)
[37] is a theory inspired by the idea that shadows provide
the observer with the viewpoint of the light source, as shad-
ows are projections of casters from the light source’s loca-
tion. Equivalently, we can say that every point in the shadow
region is totally occluded by the caster from the viewpoint
of the light source.1 This idea is developed by represent-
ing relations of occlusion and shadows within the scope of

1This holds if we assume a point light source; in the real world with
shadows from larger sources, we can make a distinction between the
shadow body (or Umbra) which is totally occluded, and the Penumbra,
which is partially occluded by the caster from the viewpoint of the light
source. For the current work, with robots, small light sources, and noisy
sensors, we can assume a point light source without losing generality.

the Qualitative Spatial Reasoning (QSR) field of research,
which is part of the Artificial Intelligence sub-area known
as Knowledge Representation and Reasoning [13]. The goal
of QSR is to provide appropriate formalisms for represent-
ing and reasoning about spatial entities, such as part-whole
relations, connectivity, orientation, line segments, size and
distance, and so on [2, 3, 10, 19, 46]. In practice, QSR
formalisms are based on a number of constraints that re-
flect the structure of space, which are represented as a set
of qualitative (i.e., non-numerical) relations. With these re-
lations, QSR methods also facilitate the representation of
high-level domain knowledge, adding a more abstract (con-
ceptual) level to the systems in which they are applied,
including robotics and vision systems [15]. Therefore, re-
search on qualitative spatial reasoning for robotics does not
preclude the use of more traditional quantitative methods,
but complements them.

PQRS assumes the existence of a major, static, light
source denoted by L, situated above the observer (in agree-
ment with recent research on the psychophysics of percep-
tion [26]). It is also assumed that the scenes are observed
from a viewpoint v, and that shadows are cast on a single
screen Scr , assumed to be much larger than the shadow and
not necessarily planar.

The foundation of PQRS is the QSR theory named the
Region Occlusion Calculus (ROC) [34], which is itself built
upon one of the best known QSR approaches: the Region
Connection Calculus (RCC) [33]. RCC is a first-order ax-
iomatisation of spatial relations based on a reflexive, sym-
metric and non-transitive dyadic primitive relation of con-
nectivity (C/2) between two regions. Informally, assuming
two regions x and y, the relation C(x, y), read as “x is con-
nected with y”, is true if and only if the closures of x and y

have at least one point in common.
Assuming the C/2 relation, and two spatial regions x and

y, some mereotopological relations between two spatial re-
gions can be defined, such as:

– disconnected from (DC): DC(x, y) ≡ ¬C(x, y);
– part of (P ): P(x, y) ≡ ∀z(C(z, x) → C(z, y));
– equal to (EQ): EQ(x,y) ≡ P(x, y) ∧ P(y, x);
– overlaps (O): O(x,y) ≡ ∃z(P (z, x) ∧ P(z, y));
– partially overlaps (PO): PO(x, y) ≡ O(x,y) ∧

¬P(x, y) ∧ ¬P(y, x);
– proper part of (PP): PP(x, y) ≡ P(x, y) ∧ ¬P(y, x);
– externally connected (EC): EC(x, y) ≡ C(x, y) ∧

¬O(x,y);
– tangential proper part (TPP): TPP(x, y) ≡ PP(x, y) ∧

∃z(EC(z, x) ∧ EC(z, y));
– non-tangential proper part (NTPP): NTPP(x, y) ≡

PP(x, y) ∧ ¬∃z(EC(z, x) ∧ EC(z, y)).

RCC also includes the inverse relations of P , PP, TPP
and NTPP, which are represented by a capital ‘I ’ appended
to the relative relation: PI, PPI, TPPI and NTPPI.
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Fig. 1 The RCC8 relations and
their conceptual neighbourhood
diagram

Fig. 2 The 20 ROC relations

The set constituted by the relations DC, EQ, PO, EC,
TPP, NTPP, TPPI, and NTPPI is the jointly exhaustive and
pairwise disjoint set usually referred to as RCC8, these rela-
tions are depicted in Fig. 1 [33].

The continuous transitions between the RCC8 relations
are shown as a conceptual neighbourhood diagram (CND)
in Fig. 1. Conceptual neighbourhood diagrams are standard
techniques in spatial reasoning [18]. Briefly, a CND is a
graph representing in its vertices relations on some specific
objects, and in its edges, the continuous transitions between
these relations. The concept of continuous transitions, in this
context, means that in between adjacent vertices of the graph
(i.e. two edge-connected relations), there is no other possi-
ble relation which these regions could assume.

Using RCC8 relations, along with the primitive rela-
tion TotallyOccludes(x, y, v) (which stands for “x totally
occludes y with respect to the viewpoint v”), the Region
Occlusion Calculus (ROC) represents the various possi-
bilities of interposition relations between two arbitrarily-
shaped objects. In particular, it is possible to define oc-
clusion relations for non occlusion (NonOccludes/3), par-
tial occlusion (PartiallyOccludes/3) and mutual occlusion

(MutuallyOccludes/3). In fact, Randell et al. [34] define 20
such relations (shown in Fig. 2).

Informally, in ROC, occlusion relations represent the rel-
ative 3D position between pairs of objects with respect to
an observer, whereas RCC represents the relative relations
between the 2D projections of these objects from an ob-
server’s viewpoint. In order to make it clearer, Fig. 2 shows
a graphical representation of the ROC relations between two
objects: a white box and a dashed box. For instance, the
relation NonOccludesDC is represented by the two boxes
completely separated (i.e. non-occluding and disconnected);
the relation PartiallOccludesTPP is depicted with the small
dashed box occluding the white box, while the 2D projec-
tion of the dashed box is a tangential proper part of the 2D
projection of the white box.

More formally, Region Occlusion Calculus makes a
distinction between the occupancy regions of bodies and
their images (or projections) from the viewpoint of an ob-
server. This distinction is made by assuming two func-
tions: the function region(x), which maps a body x to its
3D occupancy region, and the function image(x, v) that
maps a body x to the body’s 2D projection, as seen from



Reasoning about shadows in a mobile robot environment 557

viewpoint v. It is worth pointing out that the viewpoint
in ROC is modelled as a pinhole camera whose parame-
ters, however, are not important for the qualitative theory.
For instance, given two bodies X and Y and a viewpoint
V , the statement PartiallyOccludesTPP(X,Y,V ) is de-
fined as PartiallyOccludes(X,Y,V ) and TPP(image(X,V ),

image(Y,V )).
It is worth pointing out also that the “I” in the relations

TotallyOccludesTPPI(o, s, v) and TotallyOccludesNTPPI(o,

s, v) represents the inverse of TPP and PP, respectively; so,
for instance, TotallyOccludesTPPI(o, s, v), means that the
caster o totally occludes its shadow s, but image(s) is the
tangential proper part of image(o) (i.e., TPPI(image(o, v),

image(s, v))).
Using these definitions, ROC is constrained by a num-

ber of axioms, of which we only cite two ((A1) and (A2)),
since only these are relevant for proving the PQRS theorems
proposed below.

Formula (A1) is the ROC axiom that states that “if x to-
tally occludes y from a viewpoint v, x totally occludes any
part of y from the viewpoint v”:

(A1) ∀x y z v
[[

TotallyOccludes(x, y, v)∧
P

(
region(z), region(y)

)] →
TotallyOccludes(x, z, v)

]
.

Formula (A2) below states that “if x totally occludes y

from v, no part of y totally occludes any part of x from the
viewpoint v”:

(A2) ∀x y z v
[
TotallyOccludes(x, y, v) →
∀z u

[[
P

(
region(z), region(x)

)∧
P

(
region(u), region(y)

)] →
¬TotallyOccludes(u, z, v)

]]

In order to simplify notation we use the following abbre-
viation [34]:

Occludes(x, y, v) ≡
∃z ∃u P

(
region(z), region(x)

)∧
P

(
region(u), region(y)

)∧
TotallyOccludes(z, u, v)

Considering the ROC relations between a caster o and its
shadow s, from a viewpoint v (and the fact that a shadow
never occludes its caster, as proved in theorem (T1) below)
only the following ROC relations have models in PQRS:

– NonOccludesDC(o, s, v);
– NonOccludesEC(o, s, v);
– PartiallyOccludesPO(o, s, v);

– PartiallyOccludesTPP(o, s, v);
– PartiallyOccludesNTPP(o, s, v);
– TotallyOccludesTPPI(o, s, v);
– TotallyOccludesEQ(o, s, v), and
– TotallyOccludesNTPPI(o, s, v).

Apart from the ROC relations inherited by PQRS, this
theory also assumes the primitive Shadow(s, o,Scr,L) that
represents that a shadow s is cast by a caster o, from the
light source L, on the screen Scr. The axiom constraining
the Shadow/4 relation is represented by Formula (A3) be-
low.

(A3) Shadow(s, o,Scr,L) ↔¬∃o′(o 	= o′)∧
Occludes

(
o′, o,L

)∧
PO

(
region(s), region(Scr)

)∧
TotallyOccludes(o, s,L).

Axiom(A3) states that the shadow of a caster o is the region
in a screen Scr that is totally occluded by o from the light
source viewpoint L (if there is no other object o′ occluding o

from L).
With this formalism it is possible to prove a number of

theorems about commonsense facts. For instance, it follows
directly from Axioms (A2) and (A3) that no shadow oc-
cludes its own caster,2 as denoted by Theorem (T 1) below.

(T 1) Shadow(s, o,Scr,L) → ¬TotallyOccludes(s, o,L).

It is also a consequence of Axiom (A3) and the ROC
axioms that no shadow casts a shadow itself (cf. Theo-
rem (T 2)):

(T 2) Shadow(s, o,Scr,L) → ¬Shadow
(
s′, s,Scr,L

)
.

Proof Let’s assume, reasoning by contraposition, that both
(a) Shadow(s, o,Scr,L) and (b) Shadow(s′, s,Scr,L) are
true, for any object o and shadows s′ and s. From (b) and ax-
iom (A3) we have that TotallyOccludes(s, s′,L), similarly
from (a) and (A3), we have that TotallyOccludes(o, s,L).
From the transitivity of TotallyOccludes/3, we have:
TotallyOccludes(o, s′,L). Therefore, from (A3) we con-
clude that Shadow(s′, s,Scr,L) is false, since the condition

¬∃o′(o 	= o′) ∧ Occludes
(
o′, o,L

)

does not hold. Therefore, the initial hypothesis leads to a
contradiction, thus its negation holds, proving the thesis. �

We can also prove that if two shadows of distinct objects
partially overlap, then the objects will be in a relation of

2Note that we are only dealing with cast shadows, and not self-
shadows.
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Fig. 3 Distinct regions implied by the observation of a shadow and
its caster, where O is the caster, S its shadow, L is the light source,
and the constants Region1, Region2, Region3, Region4 and Region5
represent the regions for the relative localisation wrt shadow and ob-
ject (for brevity, only the top half of the figure is labelled, the bottom
half is symmetrical). It is worth noting that, in this figure, Region2 and
Region4 have zero-width boundaries

occlusion with respect to the light source, as expressed in
Theorem (T 3).

(T 3) Shadow(s, o,Scr,L)∧Shadow
(
s′, o′,Scr,L

)

∧ O
(
region

(
s′), region(s)

)

→ Occludes
(
o, o′,L

)∨
Occludes

(
o′, o,L

)
.

Proof From Shadow(s, o,Scr,L) and axiom (A3) we have
(a) TotallyOccludes(o, s,L), and similarly from Shadow(s′,
o′,Scr,L) we have (b) TotallyOccludes(o′, s′,L). From
O(region(s′), region(s)) and the definition of O/2 we have
(c) ∃zP (z, s) ∧ P(z, s′).

From (A1), (a) and (b) it is true that o totally occludes
any part of s (and analogously to o′ and s′), thus from (c) it is
true that: ∃zP (z, s) ∧ P(z, s′) ∧ TotallyOccludes(o, z,L) ∧
TotallyOccludes(o′, z,L).

By construction, o and o′ are disconnected, therefore the
previous formula implies that either occludes(o, o′,L) or
occludes(o′, o,L). �

Theorem (T 3) is an example of an inference that pre-
supposes a relational theory, i.e., it is a result that cannot
be achieved with the traditional numerical methods used in
robotics.

3.1 Relative location within PQRS

The formalism given above can be used to reason about
shadows from arbitrary viewpoints: by relating shadows to
occlusion we can determine five distinct regions defined by
the lines of sight between the light source, the caster and

its shadow as represented in Fig. 3. We use these distinct
regions for robot self-localisation, requiring that we make
two practical adjustments. Region2 and Region4 in Fig. 3
are in fact boundaries separating Region1 and Region3, and
between Region3 and Region5 respectively. Therefore, it is
virtually impossible for a robot to locate itself on them. In
a real robot environment with noisy sensors, Region2 and
Region4 are extended, assuming an interval of uncertainty
around these boundaries. Also, in a mobile robot environ-
ment, where shadows are usually connected to their casters,
only the part of the shadow farthest from the caster (which
we shall call top for convenience) is considered when con-
structing the diagram. In order to formally state the distinc-
tion between whole shadows and their top parts, we intro-
duce a function top(s) that maps a shadow (s) to its top part
(as represented in Fig. 4). This is analogous to the region
and image functions used in ROC, as mentioned above:

top : Shadow → Shadow

In practice, however, obtaining the top part of the shadow
is very hard (particularly considering situations where the
shadow can be occluded by its caster from a viewpoint). In
our implementation we solve this problem by analysing the
ROC relations between the top part of the object with re-
spect to the object’s shadow, since the top of the shadow is
generated by the top part of its caster.

Using the top part of a cast shadow and the extended ver-
sion of Region2 and Region4, the diagram depicted in Fig. 3
becomes that represented in Fig. 5. As it is more suitable to
robot self-localisation, only the latter will be used through-
out this paper.

Considering the diagram in Fig. 5, any viewpoint v lo-
cated on Region1 will observe the (top of) shadow s and
the object o as NonOccludesDC(o, top(s), v); similarly, if
v observes o and top(s) from Region3 it should see that
PartiallyOccludesPO(o, top(s), v) and from Region5 that
TotallyOccludesNTPPI(o, top(s), v). In Region4, v would
observe TotallyOccludesTPPI(o, top(s), v). In Region2, v

perceives object and shadow as NonOccludesEC(o, top(s),

v). These facts are included in PQRS by Axioms (A4) to
(A8) below, where the predicate located(r, v, o, s) repre-
sents that an observer v is located at a region r according
to the object o and its shadow s.

(A4) located(Region1, v, o, s) ←
Shadow(s, o,Scr,L)∧
NonOccludesDC

(
o, top(s), v

) ∧ v 	= o;
(A5) located(Region2, v, o, s) ←

Shadow(s, o,Scr,L)∧
NonOccludesEC

(
o, top(s), v

) ∧ v 	= o;
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Fig. 4 (a) Diagram
representing the top part of a
shadow; (b) snapshot of the top
part of a shadow, as seen from
the robot’s camera

Fig. 5 Regions implied by the observation of a shadow and its caster
(represented by the constants Region1, Region2, Region3, Region4 and
Region5), where L is the light source, O is the object (caster), S is its
shadow. Only the top part of the shadow is used in the definition of the
regions in this diagram

(A6) located(Region3, v, o, s) ←
Shadow(s, o,Scr,L)∧
PartiallyOccludesPO

(
o, top(s), v

) ∧ v 	= o;
(A7) located(Region4, v, o, s) ←

Shadow(s, o,Scr,L)∧
TotallyOccludesTPPI

(
o, top(s), v

) ∧ v 	= o;
(A8) located(Region5, v, o, s) ←

Shadow(s, o,Scr,L)∧
TotallyOccludesNTPPI

(
o, top(s), v

) ∧ v 	= o.

In the algorithms for qualitative self-localisation pre-
sented in Sect. 4.1 below, it is convenient to introduce the
relation neighbour(x, y); neighbour/2 represents the neigh-
bouring regions with respect to the robot’s location, as rep-
resented in Formula (A9) below, for an object o, a viewpoint
v and a shadow s.

(A9) neighbour(x, y) ↔ (
located(x, v, o, s) ∧ EC(x, y)

)

In Formula (A10) we define a predicate predict_future_
loc(y, v, o, s) that represents a prediction for the robot’s fu-
ture location y, to a neighbouring region of the robot’s cur-
rent location x, if a moving action occurs. The moving ac-
tion move/1 is assumed as primitive in the present formal-
ism. In practice, it is directly related to the robot’s actuators.

(A10) located(x, v, o, s) ∧ move(v) ∧ neighbour(x, y) ↔
predict_future_loc(x, v, o, s)∨
predict_future_loc(y, v, o, s)

Using ROC it is also possible to relate shadows with the
relative distance of objects from a viewpoint. Region Occlu-
sion Calculus relates occlusion with relative distance using
the relation nearness (N(x,y, z)), read as “x is nearer to y

than x is to z”, that was first defined in [43]. Nearness is
incorporated into ROC by the following axiom [34]:

(A11) ∀x y v
[
PartiallyOccludes(x, y, v) → N(v,x, y)

]

representing that “if a body x partially occludes a body y

with respect to some viewpoint v then x is nearer to v than
y is to v”.

Within PQRS this implies the commonsense fact that
N(L,o, s) (for a light source L, an object o and its shadow
s) and consequently that N(L,o,Scr): “the light source is
nearer the caster than it is to its shadow”. This fact, allied
with the qualitative self-localisation (according to Fig. 5),
facilitates inferences about relative depth from monocular
views in some cases.

It is worth pointing out that Axiom (A11) does not hold in
cases of mutual occlusion (such as those presented in Fig. 2),
but only under partial occlusion. In fact, if mutual occlusion
occurs, the premise of Axiom (A11) is false, since the set of
ROC relations is joint exhaustive and pairwise disjoint.

4 Robot environment, self-localisation and adaptive
thresholding methods

The idea for qualitative robot self-localisation using cast
shadows, presented in the previous section, was imple-
mented on our Pioneer PeopleBot mobile robot using its
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Fig. 6 Images depicting
environment, sample input (with
ambiguous shadow-base
relations) and segmented
object/shadow

Algorithm 1 PERCEPTION-ACTION(th, Scene, v)
1: segment Scene using the threshold th to obtain a

caster O and the top of its shadow top(S)

2: if NonOccludesDC(O, top(S), v) then
3: robot is on Region1
4: else if NonOccludesEC(O, top(S), v) then
5: robot is on Region2
6: else if PartiallyOccludesPO(O, top(S), v) then
7: robot is on Region3
8: else if TotallyOccludesTPPI(O, top(S), v) then
9: robot is on Region4

10: else if TotallyOccludesNTPPI(O, top(S), v) then
11: robot is on Region5
12: else
13: FAIL
14: end if

monocular colour camera to obtain snapshots of objects and
their shadows in an office-like environment, containing a
major (but not necessarily single) light source, as shown in
Fig. 6(a). Shadow detection was accomplished by first map-
ping the images captured by the camera into a HSV colour
space. These images were then segmented by thresholding
on the V dimension, whereby high values (light objects)
were filtered out and low values (dark objects) are casters.
Shadows were located within a value range in between light
and dark objects. Morphological operators and the satura-
tion value were used to filter noise (such as reflections of
the light source on the object or background shadows). The
robot was set to navigate through the room and to analyse its
position with respect to object-shadow locations according
to the diagram shown in Fig. 5. An example of the snapshots
used in this work is shown in Fig. 6(c). Shadow correspon-
dence, which is the problem of matching each shadow to its
caster [25, 27], is solved in this work by assuming a simple
heuristic: the shadow that is connected to an object’s base
is the shadow of this object. When there are various shad-
ows connected to the object’s base, the caster is associated
with the shadow that is further away from the light source
(Fig. 6(b) shows an example of such situation).

Given a threshold th, a Scene and a viewpoint v, Algo-
rithm 1 summarises the basic method for self-localisation
described and built upon in this section.

In Algorithm 1 the ROC relations between a caster O

and its shadow S are evaluated according to a threshold on
the distance between the (top part of) the shadow’s bound-
ing box when Non Occlusion holds. If the shadow is in
some degree occluded by its caster, from the observer’s
viewpoint, the ROC relation is evaluated according to a
percentage of the shadow’s bounding box that can be ob-
served from behind the caster: PartiallyOccludesPO(O,

top(S), v) is interpreted when more than (or equal to)
10 % of the bounding box is observed, but not all of it;
TotallyOccludesTPPI(O, top(S), v) is assumed when less
than 10 % is still observed; and, when no part of the shadow
is seen from behind the caster, TotallyOccludesNTPPI(O,

top(S), v) is concluded.

4.1 Adaptive thresholds for foreground/background
segmentation

In this work we compare the use of three distinct methods
for thresholding images to find shadows. The first method
(forming the baseline) is a fixed threshold across all images,
selected by hand. The second is Otsu’s method [30], and the
third is a threshold search related to the robot’s predicted
location according to PQRS (which we call the knowledge-
based threshold).

Otsu’s method [30] is an adaptive thresholding method,
often used in computer vision, that finds the threshold (th)
which maximises the inter-class variance σ between two
groups of pixels. Formula (1) expresses σ in terms of the
threshold-dependent class probabilities (ω1(th) and ω2(th))
and class means (μ1(th) and μ2(th)) of groups 1 and 2.

σ 2(th) = ω1(th)ω2(th)
[
μ1(th) − μ2(th)

]2 (1)

The knowledge-based threshold method uses belief about
the robot’s previous location and information about the
robot’s motion in order to make a prediction about its cur-
rent location. This procedure is represented in Algorithm 2
(THRESHOLD-AND-POSITION) and it works as follows.
The robot starts in any of the object-shadow regions, as de-
picted in Fig. 5. From this position the robot executes a mo-
tion. Given the speed and direction of this motion, the robot
makes a prediction about where it is going to be with respect
to the map in Fig. 5. This prediction is given by odometry
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Algorithm 2 THRESHOLD-AND-POSITION(si , th0,
scene, v)

1: thmin = th0 − 5, thmax = th0 + 5
2: sj = PERCEPTION-ACTION(th0,Scene, v)
3: if (si == sj ) then
4: return (th0, sj )
5: else
6: (thaux, sj ) = VARY-THR(si , th0, thmin, thmax, scene)
7: if (thaux < thmax) then
8: return (thaux, sj )
9: else

10: (thaux, sj ) = VARY-THR(si+1, th0, thmin, thmax,

scene)
11: if (thaux < thmax) then
12: return (thaux, sj )
13: else
14: (thaux, sj ) = VARY-THR(si−1, th0, thmin, thmax,

scene)
15: if (thaux < thmax) then
16: return (thaux, sj )
17: else
18: return FAIL
19: end if
20: end if
21: end if
22: end if

Algorithm 3 VARY-THR(s, th0, thmin, thmax, scene)
1: step = 1;
2: thaux = thmin − step
3: while ((s 	= sj ) and (thaux < thmax)) do
4: thaux = thaux + step
5: sj = PERCEPTION-ACTION(thaux, scene, v)

6: end while
7: return (thaux, sj )

and is represented by Axiom (A10) in the formalism above.
We summarise the knowledge-based threshold search as fol-
lows:

– The robot starts in a known position, and performs a mov-
ing action. This puts it in a new position, which we can es-
timate (but not know precisely, due to actuator noise and
odometry drift).

– In its new position, the robot captures a snapshot of the
target object and uses it to decide on its location. This
is accomplished by calling the function PERCEPTION-
ACTION (Algorithm 1).

– If the location interpreted from the image matches that
predicted, then the robot moves on.

– If not, the function VARY-THR (Algorithm 3) is called
to vary the threshold until a match is found between its
predicted and interpreted positions.

– If there is no such match, VARY-THR is called twice
again to verify whether there is a threshold that allows
the robot to match its position with respect to one of the
neighbouring regions of the predicted location.

– The algorithm terminates with failure if it does not find
a suitable threshold that would place it on the predicted
region or on one region either side of the prediction.
Through this consideration of neighbouring regions, we
can better handle errors introduced by noisy odometry.

The pseudocode THRESHOLD-AND-POSITION (Al-
gorithm 2) has as input the prediction of the robot’s posi-
tion si after its motion, a threshold th and a scene snapshot
observed from the viewpoint v. This algorithm uses the vari-
ables th0, thmin, thmax and thaux for thresholds, where th0 is a
starting threshold, and thmin and thmax are the minimum and
maximum thresholds, respectively. The variables s0, si , sj

represent the robot’s position, and the variables si−1, si+1

represent regions that are neighbours of si . These regions
are possible outcomes of a single (non-deterministic) mo-
tion whose goal was si . As well as these symbols, the pseu-
docode VARY-THR (Algorithm 3) uses the constant step
that represents the step of threshold variation. This work as-
sumes the following values: step = 1, thmin = th0 − 5 and
thmax = th0 + 5.

The main function in the set of algorithms presented here
is Algorithm 2, THRESHOLD-AND-POSITION. This calls
Algorithm 1: PERCEPTION-ACTION and Algorithm 3:
VARY-THR, outputting the robot’s location (sj ) and the cur-
rent threshold. Thus the termination, complexity and cor-
rectness of Algorithm 2 depends on these attributes with re-
spect to the latter two functions.

Algorithm 1 is a branching if-then-else statement repre-
senting the various shadow-object regions with respect to
the diagram in Fig. 5, given a snapshot of the world. The al-
gorithm outputs a default value (FAIL) when no region can
be assigned. Thus, it always terminates and runs in constant
time. This algorithm is correct, since given an appropriate
threshold th, it will output the correct location of the robot
within the five qualitatively distinct regions shown in Fig. 5.
Algorithm 3 always terminates, since it only applies a lin-
ear search (with fixed step) on a finite set of thresholds.
In this work the set of thresholds is the interval of natural
numbers between thmin and thmax and it is traversed with
step 1. Thus, the maximum time complexity of Algorithm 3
is O(n), where n is the number of steps from thmin to thmax,
i.e., n = |thmin, thmax|/step. Algorithm 3 returns FAIL if Al-
gorithm 1 fails (i.e. in the cases when the target object is
not present in the scene, or a threshold cannot be found to
segment a shadow from its caster).
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Given the correctness of Algorithms 1 and 3, the correct-
ness of Algorithm 2 is obtained by considering two cases:
when the robot is located in the region it predicts and the
case when the robot’s prediction is wrong. Assuming per-
fect sensors this proof is straightforward since, in the ab-
sence of sensor noise, if the robot is in its predicted position,
the algorithm will find an appropriate threshold. This is ac-
complished by calling Algorithm 3 (line 6 of Algorithm 2)
that searches for all thresholds available with a small step
with respect to threshold variation. On the other hand, if the
robot’s prediction is wrong, the robot will either be in one of
the neighbouring regions to the predicted region, i.e. either
in si+1 or si−1 (as a result of its non-deterministic actuators),
or it will be lost. The algorithm covers these cases, since it
makes two further calls to Algorithm 3 (lines 10 and 14 of
Algorithm 2), or fails if it is the case that the robot is lost.
In the presence of sensor noise, however, the algorithm may
encounter random errors, so its correctness can only be ver-
ified experimentally, as presented in the next section.

The running time complexity of Algorithm 2 is directly
proportional to the complexity of Algorithm 3. Therefore,
its running time is O(n), where n = |thmin, thmax|/step as
mentioned above.

To the best of our knowledge this is the first work where
a low-level visual parameter such as a segmentation thresh-
old has been obtained as a result of the robot’s prediction
of its location according to a qualitative theory. In this way,
we use the PQRS theory not only for robot self-localisation
based upon shadow perception, but also for the refinement
of the shadow perception itself. The next section presents an
empirical evaluation of this technique.

5 Experiments

This section describes the results of the experiments on
robot localisation with respect to the map in Fig. 5. In these
experiments, the robot collected 587 snapshots around the
target object, which provides the frame of reference (e.g.
the black bucket in Fig. 6(c)). The target was not always
within view of the camera, which represents the main source
of noise in the experiments, amounting to 20 % of the entire
dataset. Therefore, in the best case scenario, i.e. in the un-
likely case that the algorithm never fails in its estimation of
robot location, we could not exceed 80 % correctness.

As we are interested in qualitative localisation, during the
experiments, the position of the object, the light source, the
sizes of the objects, shadows, the sizes of the qualitative re-
gions induced by shadow, and objects (according to Fig. 5)
were unknown. However, the velocity and direction of the
robot’s motion were given by the robot’s moving action.

In this section we present results for the following exper-
iments of robot’s self-localisation:

Table 1 Percentage of correct answers from using fixed thresholds,
Otsu’s method and the knowledge-based adaptive thresholding, where
“# images” is the number of snapshots taken at each region

Region # images fixed
threshold (%)

Otsu (%) knowledge
based (%)

Region1 225 28 21 66

Region2 171 26 4 34

Region3 138 64 21 80

Region4 36 47 25 44

Region5 17 47 76 59

Global 587 38 18 58

– a baseline experiment that uses fixed thresholds for image
analysis;

– experiments using Otsu’s method for adaptive threshold-
ing;

– experiments using the knowledge-based threshold meth-
od.

The results of the baseline experiment are represented in
the third column of Table 1, showing a global performance
of 38 % on localising the robot in every region. In this exper-
iment, the threshold was set manually during a calibration
phase with the robot in Region3. A high accuracy was ob-
tained in this region (around 60 % with respect to Region3).
Within other regions the results were lower than 50 %. The
poor performance outside of Region3 is because the fore-
ground/background segmentation is not optimal for images
obtained under other light conditions (i.e., the threshold se-
lected is sensitive to the relative position configurations be-
tween robot, caster and light produced by the agent’s mo-
tion). Calibrating the fixed threshold with the robot on other
regions has a similar effect.

The obvious approach for improving the poor results ob-
tained by fixed-thresholding is to move to a dynamic method
and adjust the thresholds for each snapshot taken. The tech-
nique we have used to perform this adjustment is the Otsu
method [30] (cf. Sect. 4.1). This should be able to automat-
ically find the threshold for segmenting objects of interest
(i.e. casters and their shadows) from background. The re-
sults obtained are represented on the fourth column of Ta-
ble 1.

The results obtained with a variable threshold method
(Otsu’s method), surprisingly, were much worse than those
obtained with a fixed threshold. For global localisation, the
method answered correctly on 18 % of the total 587 snap-
shots. The best performance of Otsu’s method was obtained
on region 5 (76 %). However, due to the small size of this
region with respect to the others, only 17 snapshots where
obtained from it. Thus, this result cannot be generalised.
The localisation accuracy on the other regions using Otsu’s
method was below 50 %. Investigation of the pixel value
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distributions indicated that the problem is that these distri-
butions are not in general bi-modal, which increases the dif-
ficulty of searching for an appropriate threshold from the
image histogram.

In our third set of results, the robot was set to vary the
threshold until the interpretation of the target object and its
shadow matches a robot’s prediction of its location (using
Algorithm 2, as explained in Sect. 4.1). The results obtained
are represented in the fifth column of Table 1 (“knowledge
based”), which shows that the system achieved an accuracy
of around 58 % overall. Thus the incorporation of top-down
knowledge about shadow appearance, and reasoning based
upon past location and agent motion can greatly assist in
the refinement of a simple shadow-detection algorithm, out-
performing a traditional algorithm for adaptive threshold-
ing.

6 Discussion and open issues

In this work we investigated robot self-localisation using
qualitatively distinct regions defined from a visual observa-
tion of cast shadows. These regions were defined on a formal
framework within a qualitative spatial reasoning standpoint,
which provides a principled approach to reasoning about
space.

Central to the problem of qualitative self-localisation us-
ing shadows is the segmentation of casters and shadows
from the background, which was accomplished here by
thresholding on value (V) on the HSV colour space. In the
present paper we proposed a new strategy for calibrating this
threshold, where the prediction about the robot’s location is
used to search for a match between the interpreted position
(as given from visual observation) and its predicted loca-
tion. In order to evaluate this method, we have presented
three sets of experiments in which different ways of defin-
ing the threshold were tried. In the first set of experiments
a hand-coded fixed threshold was used, in the second set
of experiments we used Otsu’s method [30] in order to find
the threshold values from the image histogram. The third
set of experiments presents the results of applying our pro-
posed method for matching the prediction with the observa-
tion.

The intuition behind the experiments with fixed thresh-
olds was to provide a lower-bound for the evaluation of
our idea, since (as we hypothesised) nothing could per-
form worse than a hand-coded threshold. Experiments with
Otsu’s method were then to set the standard, as this is a fre-
quently used method for adaptive thresholding. However, it
turned out that Otsu’s performance was in fact worse than
using the fixed threshold. This is due to the fact that the
first set of experiments used the best threshold that could be
found, after a number of trials where the value was changed

by hand. Otsu’s method, however, had to deal with arbitrary
images, where it had to maximise a value that is dependent
on an a priori hypothesis of bi-modal pixel distribution. This
was not the case in some of the snapshots taken by the robot:
a great number of them suffered from the effect of reflections
of the light source on the caster. Moreover, from some an-
gles, there was a negative gradient of luminosity just behind
the object.

The method for calibrating the threshold using the pre-
diction about the robot’s location performed better than the
other two, obtaining an accuracy of around 58 % with re-
spect to our dataset containing 587 snapshots of the robot’s
environment. Considering that the dataset used was com-
posed of 20 % of images where self-localisation was impos-
sible (since the target object was not present in these data
points), our algorithm had a performance of around 70 %
over the images where self-localisation was possible. In the
remaining 30 % of cases, the errors were due to the proxim-
ity of the robot to the borderlines separating the regions and
due to wrong predictions caused by errors in the robot ac-
tuators that led the robot beyond the predicted region or its
neighbours. In the cases of borderline proximity, the thresh-
old variation was affecting the observed regions between ob-
ject and shadow. Therefore, no appropriate threshold was
found that matches the predicted region (or one of its neigh-
bours). We are currently working on more robust shadow de-
tection algorithms that should improve on this results. The
cases of wrong predictions shall be tackled in future research
by including multiple object-based landmarks for qualitative
self-localisation.

The framework presented in this paper has not been
tested in a dynamic environment. In such cases, multiple
shadows from moving objects may cause a very negative
effect on self-localisation methods as presented in this pa-
per. We believe that this issue could be solved by extending
the ideas presented in this work by not only allowing the
system to predict the motion of the robot, but also the ac-
tions of other agents in the robot environment. Therefore,
the algorithm would be able to single out the target object
that it is using to locate itself. This is a matter for future
research.

Another open issue of this work is the qualitative lo-
calisation in situations where shadows from multiple ob-
jects can generate (potentially inconsistent) hypotheses. We
are currently investigating ways of doing this by incor-
porating the ideas proposed in [17, 38] into our frame-
work. Besides this, we believe that the work reported in
the present paper could be enhanced by incorporating the
idea of cognitive maps [29], as well as modern methods of
SLAM [21].

Although this work explores a qualitative theory about
space, the choice of qualitative methods does not pre-
clude the use of quantitative or statistical methods. Rather,
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we believe that qualitative methods in robotics should
complement more traditional numerical algorithms, pro-
viding an additional processing level in situations where
it is possible to extract and model qualitative informa-
tion.

7 Conclusion

This paper has demonstrated how the incorporation of
qualitative spatial representation and a priori knowledge
about shadow regions can be combined to enhance a sim-
ple shadow-detection algorithm based upon thresholding.
Future work will consider the incorporation of more so-
phisticated shadow detection algorithms and the exten-
sion of the current snapshot-based system to one which
incorporates continuous video from a dynamic environ-
ment.

We have raised a number of questions in this work, and
we consider these questions in themselves to be a useful con-
tribution. For example, how can shadows improve object lo-
calisation when contrasted with object-based methods? Un-
der what conditions can shadows be effectively exploited?
How can we combine predictive shadow-based localisation
with predictive localisation based upon object’s pose? These
are all questions which we hope to consider in more depth
in future work.
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