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Abstract In agent-mediated negotiation systems, the ma-
jority of the research focused on finding negotiation strate-
gies for optimizing price only. However, in negotiation sys-
tems with time constraints (e.g., resource negotiations for
Grid and Cloud computing), it is crucial to optimize either
or both price and negotiation speed based on preferences
of participants for improving efficiency and increasing uti-
lization. To this end, this work presents the design and im-
plementation of negotiation agents that can optimize both
price and negotiation speed (for the given preference set-
tings of these parameters) under a negotiation setting of
complete information. Then, to support negotiations with
incomplete information, this work deals with the problem
of finding effective negotiation strategies of agents by us-
ing coevolutionary learning, which results in optimal ne-
gotiation outcomes. In the coevolutionary learning method
used here, two types of estimation of distribution algorithms
(EDAs) such as conventional EDAs (S-EDAs) and novel im-
proved dynamic diversity controlling EDAs (ID2C-EDAs)
were adopted for comparative studies. A series of experi-
ments were conducted to evaluate the performance for co-
evolving effective negotiation strategies using the EDAs. In
the experiments, each agent adopts three representative pref-
erence criteria: (1) placing more emphasis on optimizing
more price, (2) placing equal emphasis on optimizing ex-
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act price and speed and (3) placing more emphasis on op-
timizing more speed. Experimental results demonstrate the
effectiveness of the coevolutionary learning adopting ID2C-
EDAs because it generally coevolved effective converged
negotiation strategies (close to the optimum) while the co-
evolutionary learning adopting S-EDAs often failed to coe-
volve such strategies within a reasonable number of genera-
tions.

Keywords Negotiation agents · Price and negotiation
speed optimization · Coevolutionary learning · Estimation
of distribution algorithms · Dynamic diversity control

1 Introduction

In distributed systems involving the interactions of au-
tonomous agents on behalf of their owners, negotiation ac-
tivities are essential for resolving differences and conflicting
goals [11] and to control and manage resources [30, 34, 38].
Automated negotiation among agents has been widely used
for supporting e-commerce and is also becoming increas-
ingly important for managing massive distributed computa-
tional systems such as Grid/Cloud computing systems be-
cause interactions between participating agents can occur in
many different contexts. Whereas there are many existing
negotiation agents for e-commerce (e.g., [4, 22]), Grid re-
source management (e.g., [2, 20, 30, 31, 34, 38]) and Cloud
resource management (e.g., [33, 35, 36]), (1) most of the
negotiation agents are designed to reach an agreement con-
sisting of coinciding proposals of participating agents and
(2) each agent’s decision to reach an agreement is focused
on optimizing the value of the proposal (typically price) only
without consideration of reaching a consensus more rapidly
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(i.e., the participating agents do not consider optimizing ne-
gotiation speed). However, there are some practical negoti-
ation applications with time constraints in which both the
issues of obtaining the cheapest possible resources and get-
ting them rapidly are essential (e.g., negotiations for Grid or
Cloud resources). In such applications, obtaining resources
more rapidly is one of the most desirable properties depend-
ing on negotiation participants preferences because any de-
lay incurred on waiting for negotiations as well as resources
can be perceived as an overhead. Even though there is a lot
of existing research (e.g. [14, 16, 27]) that focuses on devel-
oping multi-attribute negotiation mechanisms to deal with
different attributes (i.e., issues of negotiation such as price,
quality, quantity, delivery time, etc.) of participating negoti-
ation agents, there is little research that considers the dura-
tion of a negotiation (i.e., negotiation speed) as a factor af-
fecting performance for time-constrained negotiations [32].
Whereas (negotiation) success rate (i.e., the chance of suc-
cessfully finding a mutually acceptable agreement) is the
main consideration for negotiation agents that operate in do-
mains that do not have very stringent constraints on time, ne-
gotiation speed (as well as success rate) is an important con-
sideration for those that operate in domains with very strin-
gent constraints on time. This is because negotiation agents
that consider enhancing negotiation speed can make agree-
ments quickly (by sacrificing expected utility on issues of
negotiation) and therefore, it is also possible for the agents to
obtain higher success rates in negotiations under such time-
constrained domains. In this regard, designing negotiation
agents considering negotiation speed and finding efficient
(or optimal) negotiation strategies of such agents are the
main focuses of this work. Even though this work currently
deals with negotiation considering negotiation speed based
on a single issue (i.e., price), it can be extended to deal with
multi-attribute negotiation considering negotiation speed.

In this work, the agents focusing on optimizing price only
and optimizing both price and negotiation speed are denoted
as price optimizing (P-optimizing) and price and speed op-
timizing (PS-optimizing) ones, respectively. PS-optimizing
agents were first proposed and considered in [32]. To il-
lustrate the detailed negotiation applications with exam-
ples, consider the following negotiation scenarios in which:
(1) there are two types of self-interested PS-optimizing ne-
gotiation agents (that they will act so as to maximize their
own outcomes) called as a seller (or consumer) and buyer
(or provider) and (2) each seller and buyer has different
preference criteria for optimizing both price and negotiation
speed. The preference criteria of the seller can be classified
into the following two cases.

(1) The seller prefers to sell (or provide) a resource/service
at a higher price than the given (expected) agreement
price at the expense of having to wait longer than the

given (expected) agreement time. We denote such seller
is more P-optimizing (more-P-optimizing).

(2) The seller prefers to sell (or provide) a resource/service
more rapidly than the given (expected) agreement time
perhaps by providing its resource/service with a lower
price than the given (expected) agreement price at an
earlier negotiation round. We denote such seller is more
speed optimizing (more-S-optimizing).

Similarly, the preference criteria of the buyer can also be
classified into the following two cases.

(1) The buyer prefers to acquire cheaper resource/service
alternatives than the given (expected) agreement price at
the expense of having to wait longer than the given (ex-
pected) agreement time. We denote the buyer is more-
P-optimizing.

(2) The buyer prefers to acquire a resource/service more
rapidly than the given (expected) agreement time per-
haps by paying a higher price than the given (expected)
agreement price at an earlier negotiation round. We de-
note the buyer is more-S-optimizing.

To adequately address such negotiation problems, nego-
tiation agents called PS-optimizing agents should be de-
signed to: (1) determine the solution space SSPS-opt for PS-
optimizing negotiation consisting of (i) the solution space
SSNP for optimizing price (in which different possible pref-
erence criteria of price can be represented) and (ii) the
solution space SSNS for optimizing negotiation speed (in
which different possible preference criteria of negotiation
speed can be represented), (2) appropriately optimize both
price and negotiation speed in SSPS-opt for the given vari-
ous combinations of possible preference criteria (of agents),
and (3) make successful agreements in various negotiation
situations. To this end, the impetus of this work is to de-
vise mechanisms for finding effective PS-optimizing nego-
tiation strategies (of agents) which result in reasonable PS-
optimizing negotiation outcomes.

Based on the information about their opponents (i.e., the
other participating agents), negotiation (parameter) settings
can be generally classified into the two types: (1) a complete
information setting in which (participating) agents share
their private information to their opponents, and (2) an in-
complete information setting in which agents do not share
their private information to their opponents. We denote the
agent having the negotiation setting of a complete infor-
mation setting (respectively, an incomplete information set-
ting) as the agent with complete information (respectively,
the agent with incomplete information). Following the above
definitions, PS-optimizing agents are also divided into two
categories based on the negotiation settings that they adopt.
That is, a PS-optimizing agent under a complete informa-
tion setting knows its opponent’s private information while
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a PS-optimizing agent under an incomplete information set-
ting does not know its opponent’s private information. Fur-
ther details of negotiation models for P-optimizing negotia-
tion and the PS-optimizing negotiation will be described and
compared in Sect. 2.

The existing preliminary works in [32] and [9] have
attempted to find negotiation strategies for PS-optimizing
agents with incomplete information using coevolutionary
learning by adopting evolutionary algorithms (EAs). Nev-
ertheless, the results in [32] and [9] showed that: (1) there
are possibilities of coevolution failure using the fitness func-
tion defined in [32] due to the ambiguity in the utility space,
(2) the converged coevolution results cannot be achieved in
some cases using conventional EAs used in [32] and [9].
Furthermore, in [32] and [9], there was no theory explain-
ing and supporting the optimality of the achieved results.
To overcoming these drawbacks and to complement and en-
hance the existing PS-optimizing agents, this work will de-
sign: (1) PS-optimizing agents for performing effective PS-
optimizing negotiations under a complete information set-
ting (Sect. 4.1) and (2) mechanisms for finding effective
negotiation strategies of PS-optimizing agents with incom-
plete information (Sect. 4.2) by using coevolutionary learn-
ing (described in Sect. 3) adopting estimation of distribution
algorithms (EDAs).

A series of experiments (see Sect. 5) was carried out to:
(1) show the effectiveness of the coevolutionary learning
for finding effective negotiation strategies of PS-optimizing
agents with incomplete information and (2) compare the
performance of coevolutionary learning adopting S-EDAs
against adopting ID2C-EDAs. Empirical results in Sect. 5
show that ID2C-EDAs can coevolve effective converged ne-
gotiation strategies which are close to the optimum for both
PS-optimizing agents in most of the cases. While Sect. 6
compares this work with existing works, Sect. 7 concludes
this paper by summarizing a list of contributions and future
work.

2 Negotiation models

This work considers a bilateral negotiation model between
two self-interested agents with conflicting interests such that
the seller (S) that wishes to provide a good or service at the
highest possible price and the buyer (B) that purchase the
good or service at the cheapest possible price. We first in-
vestigate one of the most widely used P-optimizing negotia-
tion model for optimizing price only. Then, the P-optimizing
negotiation model will be extended to the PS-optimizing ne-
gotiation model that is capable of dealing with optimizing
both price and negotiation speed using preferences of price
and negotiation speed.

2.1 Price optimizing negotiation model

In the P-optimizing negotiation model, there are three key
elements of negotiation [15]: (1) the negotiation protocol,
(2) the negotiation strategies that the agents adopt during
the negotiation process, and (3) the utility functions for the
agents. The agents adopt Rubinstein’s alternating offers pro-
tocol [26] and negotiate by exchanging proposals with their
negotiation partners. The alternating offers protocol is sim-
ple but it is the most influential general negotiation pro-
tocol. Furthermore, it has been applied to many existing
works (e.g., see [6, 21, 41]). At each alternate round, an
agent makes and sends a proposal. Then, the other agent
evaluates the proposal and takes one of the following ac-
tions: (1) accepting the proposal, (2) rejecting the proposal,
or (3) making a counter proposal. Negotiation between the
two agents terminates with an agreement when an offer or a
counter-offer is accepted or with a conflict if no agreement
is reached when one of the two agents’ deadlines is reached.
An agreement is reached when one agent proposes a deal
that matches or exceeds what another agent asks for.

The agent x ∈ {B,S} generates a proposal at a negotia-
tion round t , 0 ≤ t ≤ τx , as follows:

P x
t = IPx + (−1)α

(
t

τx

)λx

|RPx − IPx |, (1)

where α = 1 for S and α = 0 for B . IPx is the initial price
of x that is the most favorable price for x, and RPx is the
reserve price that is the least favorable price for x; τx is the
deadline and λx , 0 ≤ λx ≤ ∞, is the time-dependent strat-
egy of x. During the negotiation process, starting from the
initial prices, successive proposals of S are monotonically
decreasing while successive proposals of B are monotoni-
cally increasing.

As shown in Fig. 1, for each agent x, the possible range
of price, [IPx,RPx], is denoted as the acceptability zone
for price of x, AccZNP

x , and the possible range of nego-
tiation time, [0, τx], is denoted as the acceptability zone
for negotiation time of x, AccZNT

x . The negotiation solu-
tion space (NSS) for the negotiation between B and S con-
sists of: (1) the agreement zone of price (AgZNP), or some-
times called the price-surplus, which is the overlapping re-
gion between AccZNP

B and AccZNP
S , and (2) the agreement

zone of negotiation time (AgZNT ) which is the overlapping
region between AccZNT

B and AccZNT
S . In Fig. 1, AgZNP is

[RPS,RPB ] and AgZNT is [0,min{τB, τS}].
Time-dependent negotiation strategies are adopted in

which the negotiation agents make successive proposals
depending on the remaining negotiation time. The conces-
sion behavior of x is determined by the values of the time-
dependent strategy and is classified as follows [28, 29, 37]:
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Fig. 1 Example of negotiation solution space between B and S

(1) Conciliatory (0 < λx < 1): x makes larger concessions
in earlier negotiation rounds and smaller concessions in
later negotiation rounds.

(2) Linear (λx = 1): x makes a constant rate of concession.
(3) Conservative (1 < λx < ∞): x makes smaller conces-

sions in earlier negotiation rounds and larger conces-
sions in later negotiation rounds.

Let D be the event in which x fails to reach an agreement.
The utility function of x is defined as Ux : [IPx,RPx]∪D →
[0,1] such that Ux(D) = 0 and for any P x

t ∈ [IPx,RPx],
Ux(P

x
t ) > Ux(D) in which Ux(P

x
t ) is given as follows:

Ux

(
P x

t

) = umin + (1 − umin)

(
RPx − P x

t

RPx − IPx

)
, (2)

where umin is the minimum utility that x receives for reach-
ing an agreement at RPx and the value of umin is set larger
than 0. umin is set to 0.001 in this work for the experi-
mental purpose. Then, at P x

t = RPx , Ux(RPx) = 0.001 >

Ux(D) = 0.

Definition 1 (P-optimizing Agent) For a given negotiation
setting, a P-optimizing agent is designed to optimize the
price only by maximizing the utility in (2).

A negotiation between P-optimizing agents is denoted as
the P-optimizing negotiation. Self-interested P-optimizing
agents B and S favor an agreement that maximizes their own
(price) utilities given in (2) at an agreement price.

In P-optimizing negotiations between B and S, find-
ing their optimal negotiation strategies plays an important
role in a sense that by adopting optimal negotiation strate-
gies, both achieve optimal negotiation outcomes (i.e., opti-
mal agreement prices). In determining optimal negotiation

strategies for P-optimizing negotiations with complete in-
formation settings, deadline effect is the most important fac-
tor. This is because if one P-optimizing agent has a longer
deadline than the other, the agent having a longer deadline
will dominate the whole negotiation. Since the strategy of
the agent having a longer deadline determines whether both
agents can reach an agreement before their deadlines, the
agent having a longer deadline has (significant) a bargaining
advantage in terms of time over the other agent.

For a P-optimizing negotiation under a complete infor-
mation setting, an agent knows the other agent’s private in-
formation such as RP and deadline. Therefore, the optimal
agreement price (P P -opt

c ) and agreement time (T P -opt
c ) for

the P-optimizing negotiation between B and S can be ana-
lyzed by the following theorems.

Theorem 1 [40, pp. 199–200] If the P-optimizing agent B

has longer deadline than the P-optimizing agent S, P
P -opt
c

is RPS and T
P -opt
c is τS .

Proof Since the minimal possible agreement price for B is
RPS and at which B obtains the maximal utility, P

P -opt
c is

made at RPS . Whatever strategy S adopts, S concedes to
RPS at τS following (1). Before reaching τS , the utility of S’s
proposals for B will be lower than the utility at τS . Further-
more, B fails to reach an agreement after τS . Hence, T

P -opt
c

is made at τS . �

Theorem 2 [40, pp. 199–200] If the P-optimizing agent S

has longer deadline than the P-optimizing agent B , P
P -opt
c

is RPB and T
P -opt
c is τB .

Proof Symmetrically, P
P -opt
c is made at RPB and T

P -opt
c is

made at τB because at which S obtains its maximal utility. �

Finally, using the obtained P
P -opt
c and T

P -opt
c from The-

orems 1 and 2, the optimal P-optimizing negotiation strat-
egy of B(λ

P -opt
B ) and the optimal P-optimizing negotiation

strategy of S(λ
P -opt
S ) are derived from (1) by substituting

P x
t in (1) by P

P -opt
c and t in (1) by T

P -opt
c , respectively, as

follows:

λ
P -opt
B = log

(
T

P -opt
c
τB

)

(
P

P -opt
c − IPB

RPB − IPB

)
, (3)

λ
P -opt
S = log

(
T

P -opt
c
τS

)

(
IPS − P

P -opt
c

IPS − RPS

)
. (4)

Theorems 1 and 2 are based on Theorems 1 and 2 in [40,
pp. 199–200].
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2.2 Price and speed optimizing negotiation model

The proposed PS-optimizing negotiation model also consid-
ers price as a negotiation issue similarly to the P-optimizing
negotiation model in Sect. 2.1. Therefore, the agents par-
ticipating in PS-optimizing negotiations exchange offers or
counter-offers that consist of price proposals only—but not
time proposals or both price and time proposals—during the
negotiation process. However, compared to the P-optimizing
negotiation model designed to take only price into consider-
ation in optimizing negotiation outcomes, the PS-optimizing
negotiation model is designed to take both price and nego-
tiation speed (in terms of the number of negotiation rounds)
into consideration in optimizing negotiation outcomes.

Definition 2 (PS-optimizing Agent) For a given negotiation
setting, a PS-optimizing agent is designed to optimize both
price and negotiation speed (by maximizing the total utility
consisting of both price and speed utilities) using its given
preferences of price and negotiation speed.

A negotiation between PS-optimizing agents is denoted
as the PS-optimizing negotiation.

The PS-optimizing negotiation model also has three key
elements similarly to the P-optimizing negotiation model.
The PS-optimizing agents also adopt Rubinstein’s alternat-
ing offers protocol and time-dependent negotiation strate-
gies as in P-optimizing agents. However, for each PS-
optimizing agent, there are two types of utility functions:
(1) one designed to measure the degree of satisfaction for
price and (2) the other designed to measure the degree of
satisfaction for negotiation speed. Depending on the strate-
gies that a PS-optimizing agent adopts, there can be a variety
of possible PS-optimizing negotiation outcomes. Hence, this
research will focus on designing PS-optimizing agents B

and S and finding their optimal PS-optimizing negotiation
strategies for achieving optimal PS-optimizing negotiation
outcomes for their given preferences of price and negotia-
tion speed.

In addition to the three key elements, the PS-optimizing
negotiation model has one more key element: the prefer-
ences of price and negotiation speed (for each PS-optimizing
agent). With regard to preferences of price and negotiation
speed of a PS-optimizing agent, different preference criteria
such as optimizing price and optimizing negotiation speed
are individually modeled as corresponding different weight-
ings of price and negotiation time, respectively; for a PS-
optimizing agent x, the preference for optimizing price is
denoted as wx

NP and the preference for optimizing negoti-
ation speed is denoted as wx

NS. Based on the user’s prefer-
ences for optimizing price and optimizing speed, wx

NP and
wx

NS are provided by the user with the constraint wx
NP +

wx
NS = 1.0 where wx

NP ≥ 0 and wx
NS ≥ 0. wx

NP + wx
NS is set

to 1.0 because the preference criteria of x are interdependent
and conflicting each other; as x prefers to achieve negotia-
tion outcomes that is more P-optimizing at the expense of
waiting longer, then x will put more emphasis on wx

NP and
less emphasis on wx

NS. Conversely, as x prefers to achieve its
negotiation outcome more rapidly at the expense of conced-
ing more in price, then x will put more emphasis on wx

NS and
less emphasis on wx

NP. Depending on different preference
criteria, agents can be summarized as the following three
representative groups [32]:

(1) (Totally) P-optimizing agents in which total emphasis
is given for optimizing price such as (wx

NP,wx
NS) =

(1.0,0.0).
(2) (Totally) S-optimizing agents in which total empha-

sis is given for optimizing negotiation speed such as
(wx

NP,wx
NS) = (0.0,1.0).

(3) PS-optimizing agents in which emphases are given
for optimizing both price and negotiation speed such
as (wx

NP,wx
NS) = {the weightings except (1.0,0.0) and

(0.0,1.0)}.
However, (Totally) S-optimizing agents are not considered
because such S-optimizing agents model the situation when
agents are totally optimizing negotiation speed without con-
sideration of optimizing price. This negotiation situation
will not be realistic in practice because such S-optimizing
agents generally reach an agreement without any negotia-
tion by just accepting its opponent’s first proposal. Hence,
the possible region of preferences of price and negotiation
speed is set as (wx

NP,wx
NS) = [(1.0,0.0), (0.0,1.0)).

In regard to various possible combinations of preference
criteria of PS-optimizing agents, there are three represen-
tative groups of PS-optimizing agents: (1) the agents plac-
ing the equal emphasis on optimizing price and negotiation
speed such as (wx

NP,wx
NS) = (0.5,0.5) are denoted as exact-

PS-optimizing agents, (2) if agents place more emphasis on
optimizing price than exact-PS-optimizing agents, then they
are denoted as more-P-optimizing agents, and (3) if agents
place more emphasis on optimizing negotiation speed than
exact-PS-optimizing agents, then they are denoted as more-
S-optimizing agents.

Comparing to P-optimizing agents, the PS-optimizing
agent x requires two types of utility functions: (1) a price
utility function for measuring the degree of satisfaction in
terms of price and (2) a speed utility for measuring the de-
gree of satisfaction in terms of negotiation speed. The price
utility function Ux

NP for the given input Px (for price) and
the speed utility function Ux

NS for the given input Tx (for
negotiation time) are defined as follows:

Ux
NP(Px) =

⎧⎪⎨
⎪⎩

uP
min + (1 − uP

min)(
RPx−Pc

RPx−IPx
),

if an agreement is reached at Pc,

0, otherwise,

(5)
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Ux
NS(Tx) =

⎧⎪⎨
⎪⎩

uS
min + (1 − uS

min)(1 − Tc

τx
),

if an agreement is reached at Tc,

0, otherwise,

(6)

where Ux
NP(Px) ∈ [0,1] and Ux

NS(Tx) ∈ [0,1]. uP
min is the

minimum utility that x receives a deal at its RP, and uS
min

is the minimum utility that x receives a deal at its deadline.
For the experimental purpose, the values of uP

min and uS
min is

set to 0.0001. Next, for achieving the composite utility of x

consisting of both Ux
NP and Ux

NS, the following total utility
function Ux

Total was used:

Ux
Total(Px,Tx) = wx

NP × Ux
NP(Px) + wx

NS × Ux
NS(Tx) (7)

where Px ∈ {0,Pc} and Tx ∈ {0, Tc}. If x does not reach
an agreement before its deadline, then Ux

Total = 0 because
Ux

NP = Ux
NS = 0. If x reaches an agreement at Px = Pc

and Tx = Tc, then Ux
Total(Pc, Tc) > 0 because Ux

NP > 0 and
Ux

NS > 0.
The remaining part is designing PS-optimizing agents

and finding their optimal negotiation strategies to achieve
optimal PS-optimizing negotiation outcomes under both
complete and incomplete information settings. In designing
PS-optimizing agents, the design goal is as follows:

Design goal The ultimate design goal of PS-optimizing
agents is to achieve optimal PS-optimizing negotiation
outcomes satisfying preferences of price and negotiation
speed under given negotiation settings. Even though a PS-
optimizing negotiation cannot achieve optimal negotiation
outcomes, the performance of the PS-optimizing negotia-
tion in optimizing the preferences should be superior to or
(at least) equal to that of the P-optimizing negotiation. The
latter case is denoted as the minimum performance require-
ment in this work.

The similarities and differences between P-optimizing
agents (Sect. 2.1) and PS-optimizing agents (Sect. 2.2) are
as follows. (1) Both negotiation models adopt Rubinstein’s
alternating offers protocol as the negotiation protocol. Fur-
thermore, agents in the two negotiation models exchange of-
fers or counter-offers that consist of price proposals—but
not time proposals or both price and time proposals—for
making a mutual agreement. (2) To evaluate price and ne-
gotiation time (of the proposals), a speed utility function as
well as a price utility function is required. Accordingly, the
total utility function consisting of both price and speed util-
ity functions, associated with preferences of price and ne-
gotiation speed, respectively, is adopted for PS-optimizing
agents. However, for P-optimizing agents, the sole utility
function equivalent to the price utility function in (2) is
used. (3) As the name denotes, the PS-optimizing negotia-
tion model requires an optimization procedure (denoted as
the PS-optimization) for optimizing both price and nego-
tiation speed while the (original) P-optimizing negotiation

model in itself have the optimization procedure (denoted as
the P-optimization) for optimizing price only. Hence, a PS-
optimizing negotiation mechanism that enables rational PS-
optimization is required to find effective negotiation strate-
gies of PS-optimizing agents.

In designing the PS-optimizing negotiation mechanism,
it is assumed that PS-optimizing agents do not change their
preferences of price and negotiation speed with the knowl-
edge of the opponent’s information. This means that the
PS-optimizing agents with their given preferences of price
and negotiation speed are cooperative for optimizing both
price and negotiation speed. This assumption makes sense
in that PS-optimizing negotiations will not operate well if
negotiating agents do not cooperate at all. For instance, if
one agent having a bargaining advantage in terms of time
tries to achieve higher speed utility without conceding any
price utility, there is no reason for its opponent to make
an earlier agreement by conceding its speed utility. Further-
more, PS-optimizing agents should be trustable in the sense
that they cooperate for optimizing negotiation speed with-
out changing its initial preferences of price and negotiation
speed during negotiation process. Another issue for design-
ing PS-optimizing agents is to determine: (1) the value(s) of
preferable agreement price in SSNP using wx

NP and (2) the
value(s) of preferable agreement time in SSNS using wx

NS.
Determining such a range of values within effective SSPS-opt

(consisting of SSNP and SSNS) is essential because there can
be different realizations of PS-optimizing negotiations de-
pending on the values. The specific details for designing PS-
optimizing agents to find optimal negotiation strategies will
be described in Sect. 4.

3 Overview of EDAs for coevolutionary learning

EDAs, sometimes called probabilistic model building ge-
netic algorithms (PMBGAs), have become one of the new
paradigms within genetic and evolutionary computation re-
search [17, 42]. Like other EAs based on ideas borrowed
from genetics and natural selection such as genetic algo-
rithms (GAs), evolutionary strategies (ESs) and evolutionary
programming (EP), EDAs also use selection to choose good
candidate solutions and successively evolve a population of
the selected solutions until some termination criteria are sat-
isfied. However, to evolve a population of promising solu-
tions, EDAs build probabilistic models of the selected solu-
tions and sample useful genetic information (i.e., good off-
spring) from the probabilistic models instead of using vari-
ation operators such as crossover and mutation. From the
perspective of the fitness landscape (that is the geographical
distribution consisting of peaks and valleys of fitness over
solution space), while EAs such as GAs, ESs and EP search
promising regions (i.e., solutions) of fitness landscape with
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Table 1 Symbols used for the
EDAs g The number of generations

Gmax The (predefined) maximum number of generations

cnt The number of evolution restarts

CNTmax The (predefined) maximum number of evolution restarts

Pg The population at generation g

Sg The subset of Pg selected using the selection operator

fXg (xg) The probability distribution estimated from Sg

Og The offspring generated by sampling fXg (xg)

nP The number of individuals consisting of Pg (i.e., the size of Pg)

nS The number of individuals consisting of Sg (i.e., the size of Sg)

nO The number of individuals consisting of Og (i.e., the size of Og)

f
g

best The fitness value of the best individual in Pg

f
g
avg The average fitness value of individuals in Pg

Var(Pg) The variance of solution values of individuals in Pg

Div(Pg) The population diversity of Pg

nband The number of bands for the (entire) solution space

Band_Size The size of a (fixed) band

FB_List The list of feasible bands

FI_List The list of feasible individuals

Gmax_infeasible_band The maximum number of generations required to determine infeasible bands

α The (minimum) threshold of fitness difference (used for similarity measure)

β The (minimum) threshold of solution difference (used for similarity measure)

δlow The threshold for the lowest possible Div(Pg) (used for controlling diversity)

δhigh The threshold for the highest possible Div(Pg) (used for controlling diversity)

δfit The (minimum) threshold of the absolute fitness difference between f
g

best and f
g
avg

(used in determining termination of EDAs)

δvar The (minimum) threshold of Var(Pg) (used in determining termination of EDAs)

both exploitation and exploration using genetic operators
(i.e., selection and variation operators), EDAs search the re-
gions by exploiting feasible probabilistic models and effi-
ciently traversing the solution space [1, 25].

This section demonstrates the application of EDAs to
solve the coevolutionary problem of finding optimal negoti-
ation strategies of PS-optimizing agents operating under an
incomplete information setting. First, S-EDA is presented.
Then, ID2C-EDA incorporating S-EDA with a novel diver-
sity controlling technique is presented. Table 1 shows sym-
bols used for the EDAs in this work.

3.1 Description of S-EDA

The S-EDA is based on the continuous (i.e., real-coded) uni-
variate marginal distribution algorithm (UMDAc) [17]. The
pseudocode of S-EDA is presented as follows.

Step 1. Initialization
Generate the initial population P0 with nP individuals at
random;
g ← 0; cnt ← 0.

Step 2. Selection

g + +;
Select a set of promising candidates Sg−1 with nS(< nP )

individuals from Pg−1.
Step 3. Building Model

Estimate the probability distribution fXg (xg) from Sg−1.
Step 4. Sampling Model

Generate offspring Og with nO individuals by sampling
fXg (xg).

Step 5. Replacement
Create a new population Pg by replacing some individ-
uals of Pg−1 with Og .

Step 6. Reinitializing Population and Restarting Evolu-
tion
If cnt < CNTmax and an inappropriate configuration is
detected,

initialize Pg at random;
g ← 0; cnt + +;
Go to Step 2.

Step 7. Termination
If the termination criteria are not satisfied,

go to Step 2.
Else return the best solution found so far.
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The main distinguishing features of S-EDA (compared
to other EAs adopting genetic operators) is building a prob-
abilistic model (Step 3) and sampling the model to gen-
erate new solutions, i.e., offspring (Step 4). A continuous
optimization problem with n variables is considered. The
corresponding n-dimensional random variable and one of
its possible instances at each generation g is denoted as
Xg = (X

g

1 ,X
g

2 , . . . ,X
g
n) and xg = (x

g

1 , x
g

2 , . . . , x
g
n ). Follow-

ing UMDAc, S-EDA assumes that marginal independence
among the variables. Hence, the joint probability distribu-
tion of Xg follows an n-dimensional normal distribution
which is factorized as a product of n independent univari-
ate marginal distributions as follows.

fXg

(
xg

) =
n∏

i=1

fX
g
i

(
x

g
i

)
.

Each variable of Xg follows a univariate normal distribution
with mean μ

g
i and the standard deviation σ

g
i as follows:

fX
g
i

(
x

g
i

) = 1√
2πσ

g
i

e
− (x

g
i

−μ
g
i
)2

2(σ
g
i

)2 , with i = 1,2, . . . , n.

μ
g
i and σ

g
i are estimated using maximum likelihood estima-

tion from Sg−1 as follows:

μ
g
i = 1

nS

nS∑
j=1

(
x

g−1
i

)
j

and

σ
g
i =

√√√√ 1

nS

nS∑
j=1

((
x

g−1
i

)
j
− μ

g
i

)2
,

where (x
g−1
i )j is the j -th individual in Sg−1.

Then, offspring Og are randomly generated by sampling
normal random variables from fXg (xg).

Another distinguishing feature of S-EDA (compared to
UMDAc, as well as other conventional EAs) is reinitializ-
ing population and restarting the evolution (Step 6). This
is to escape an inappropriate configuration of populations
(where S-EDA can no longer evolve a population contain-
ing promising solutions for future evolution process) though
simply restarting evolution process with randomly initial-
ized population. In the coevolutionary learning problem
(described in Sect. 4.2 in detail), there can be two types
of inappropriate population configurations: (1) Type-I er-
ror: Pg cannot converge to a certain value until Gmax is
reached (i.e., very slow convergence or non-convergence
is presented) and (2) Type-II error: This is due to prema-
ture convergence occurring at early generations (generally,

g ≤ Gmax_infeasible_band) caused by the domination of inap-
propriate individuals in Pg having fitness values of all 0s
or all 1s (that cannot occur in the coevolution problem de-
scribed in Sect. 4.2), which occurs from repeated inappro-
priate random pairing of individuals [25]. If an inappropri-
ate populations is detected, S-EDA initializes Pg and restarts
its evolution procedures. Step 6 is incorporated before test-
ing termination criteria in Step 7. The S-EDA stops its evo-
lution process and returns the best solution found so far
when either of the following conditions is satisfied (Step 7):
(1) g = Gmax and cnt = CNTmax, and (2) |f g

best −f
g

best| < δfit

and Var(Pg) < δvar .

3.2 Description of ID2C-EDA

In the authors’ previous works [8] and [10], the novel diver-
sity controlling GA and EDA called ID2C-GA and ID2C-
EDA were developed based on a real-coded GA (called S-
GA) and S-EDA, respectively. In [8], ID2C-GAs and ID2C-
EDAs were used for coevolutionary learning in which the
objective is to find optimal (P-optimizing) negotiation strate-
gies for interacting agents with incomplete information. Al-
though this work is similar to [8] and [10] in a sense that
both adopt EAs for (a similar type of) coevolutionary learn-
ing, they are mainly different in two ways: (1) [8] and [10]
only focused on finding negotiation strategies for optimiz-
ing price only but this work deals with the more difficult
problem of finding negotiation strategies that can optimize
both price and negotiation speed and (2) while the fitness
functions of [8] and [10] are directly related with the (price)
utility function, the fitness functions of this work has in-
direct relationship with the (price and speed) utility func-
tions. It is noted that it has been proved theoretically and
demonstrated empirically that the performances of GAs and
EDAs are found to be very close to each other although
they adopt quite different search strategies [17, 25]. Fur-
thermore, it is empirically observed in [10] that: (1) ID2C-
GAs and ID2C-EDAs outperform S-GAs and S-EDAs for
the coevolutionary learning because ID2C-GAs and ID2C-
EDAs have enough capability for overcoming premature
convergence and achieving non-biased coevolution results
for both populations and (2) ID2C-EDAs ensures better effi-
cacy and reliability in achieving good solutions than ID2C-
GAs if the search space is (very) large. For these reasons,
this work adopts ID2C-EDAs and S-EDAs for the coevolu-
tionary learning to carry out comparative studies on their
coevolution performance. ID2C-EDAs adopts a subspace-
based dynamic (i.e., adaptive) diversity controlling tech-
nique called modified (i.e., improved) diversification and re-
finement (mDR) and two local improvement methods such
as population repair (PR) and local neighborhood search
(LNS). The pseudocode of ID2C-EDA is presented as fol-
lows.
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Step 1. Initialization
Generate the initial population P0 with nP individuals at
random;
g ← 0; cnt ← 0.

Step 2. Selection
g + +;
Select a set of promising candidates Sg−1 with nS(< nP )

individuals from Pg−1.
Step 3. Building Model

Estimate the probability distribution fXg (xg) from Sg−1.
Step 4. Sampling Model

Generate offspring Og with nO individuals by sampling
fXg (xg).

Step 5. Replacement
Create a new population Pg by replacing some individ-
uals of Pg−1 with Og .

Step 6. Diversification and Refinement (DR)
Calculate Div(Pg);
If Div(Pg) < δlow and Div(Pg) > δhigh, conduct the fol-
lowing procedures of DR

A. Pre-ordering individuals in Pg in both fitness and so-
lution spaces;

B. Eliminating redundant individuals in Pg using the
similarity of individuals;

C. Calculating BOFi and update Ci (1 ≤ i ≤ nband);
D. Eliminating infeasible bands if

g > Gmax_infeasible_band;
E. Refining the population using diversified artificial in-

dividuals (DAIs)
(a) Generating DAIs using BOFs based on popula-

tion diversity;
(b) Injecting the generated DAIs into the population.

Else calculate BOFi and update Ci (1 ≤ i ≤ nband).
Step 7. Population Repair (PR)

Replace some infeasible individuals consisting of an in-
appropriate population configuration with new individu-
als randomly generated using the feasible individual list
(FI_List).

Step 8. Local Neighborhood Search (LNS)
Replace some less feasible individuals (having lower fit-
ness) by the neighborhoods generated from the locally
best solution in the population.

Step 9. Reinitializing Population and Restarting Evolu-
tion
If cnt < CNTmax and an inappropriate configuration is
detected,

initialize Pg at random;
g ← 0; cnt + +;
Go to Step 2.

Step 10. Termination
If the termination criteria are not satisfied,

go to Step 2.
Else return the best solution found so far.

mDR (Step 6) is the main part of ID2C-EDA and its ob-
jective is to achieve individuals (of a population) that are
both feasible and diversified through a dynamic diversity
control of the population. mDR utilizes robustness of bands
(ROBs) in which a band is defined as a distinct (small) frac-
tion of solution space and the solution space is mapped into
bands with each fixed size of Band_Size. A band i is de-
fined as the more robust one than another band j (i 
= j

and 1 ≤ i, j ≤ nband) if more individuals belonging to i

have survived for more generations than j . For measur-
ing ROBs of solution space at each generation g, each
band i: (1) counts band-occupying frequency (BOFi ) which
is the accumulated frequency of individuals belonging to
i until g is reached and (2) stores BOFi into the global
counter variable Ci . mDR operates selectively depending
on the population diversity of Pg,Div(Pg). mDR operates
if Div(Pg) is below the given lowest possible threshold δlow

(i.e., Div(Pg) < δlow) or is above the given highest possi-
ble threshold δhigh (i.e., Div(Pg) > δhigh). Otherwise (i.e.,
δlow ≤ Div(Pg) ≤ δhigh), mDR does not operate. In this way,
BOFi is calculated and Ci is updated, 1 ≤ i ≤ nband . mDR
has two main functionalities: (1) diversification ensures
achieving a sufficiently high population diversity (from A

and B in Step 6), and (2) refinement guarantees achieving
a refined population consisting of more promising (i.e., fea-
sible and diversified) solutions (from D and E in Step 6)
using ROB information (from C in Step 6). The details of
mDR are as follows:

A. Pre-ordering the population.
Before eliminating redundant individuals, ordering

individuals in Pg is carried out in both the fitness and
solution spaces. First, individuals in Pg are sorted ac-
cording to their fitness values in decreasing order. Next,
if there are some individuals with the same fitness values
(or less than the predefined threshold δfit), then the indi-
viduals are sorted according to their solution values in
decreasing order. Then, the ordered population P Ordered

g

is obtained.
B. Eliminating redundant individuals.

Domination of redundant (or duplicate) individuals
can lead to premature convergence. This is because re-
dundant individuals with a similar structure reduce pop-
ulation diversity; parents with a similar structure can
often reproduce offspring with the same (or very simi-
lar) structure in the next generation. To avoid such pre-
mature convergence, redundant individuals in P Ordered

g

are eliminated from P Ordered
g after testing the similar-

ity among individuals in both fitness and solution levels
as follows. If i-th and j -th individuals (1 ≤ i ≤ nP and
i + 1 ≤ j ≤ nP ) in P Ordered

g have very close fitness val-
ues (that is less than the given threshold α) and also very
close solution values (that is less than the given threshold
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β), the j -th individual is considered as the redundant in-
dividual and is eliminated from P Ordered

g . This similarity
test is carried out from i = 1 to nP − 1. Then, the pop-
ulation P Eliminated

g with high population diversity can be
achieved.

C. Calculating BOFs for all bands.
For each band i (1 ≤ i ≤ nband), BOFi is calculated

from P Eliminated
g and the corresponding Ci is updated.

By calculating BOFs from P Eliminated
g —not from Pg or

P Ordered
g in which both can have redundant individuals,

only the individuals ensuring the higher population di-
versity will contribute to calculating BOFs. Therefore,
reliable BOFs without redundant information are guar-
anteed.

D. Eliminating infeasible bands.
If Ci of the band i is not updated (i.e., there is no

individual belonging to i) during a certain number of
generations (Gmax_infeasible_band), i is considered as the
infeasible band and is removed from the feasible band
list (FB_List) containing all feasible bands. This proce-
dure operates if g > Gmax_infeasible_band because at least
Gmax_infeasible_band is required to collect infeasible band
information for carrying out such elimination.

E. Refining the population.
Since redundant individuals are eliminated (in the

B-th Step), diversified artificial individuals (DAIs) are
generated and injected into P Eliminated

g equal to the num-
ber of the eliminated individuals. For generating fea-
sible DAIs using achieved reliable BOF information,
bands belonging to FB_List and having high values of
BOFs (i.e., representing high robustness) are considered
as promising solution regions for future evolutionary
search. As evolution progresses, more effective BOFs
will be achieved because more reliable ROB information
will be gathered over all bands at later generations.
(a) Each promising DAI is generated randomly in the

selected band based on the two modes: (1) In ex-
ploration mode (Div(P Eliminated

g ) < δlow), the bands
with the lower BOFs have a higher probability to be
selected for generating DAIs and (2) In exploitation
mode (Div(P Eliminated

g ) > δhigh), the bands with the
higher BOFs have a higher probability to be selected
for generating DAIs.

(b) The generated DAIs are injected into P Eliminated
g .

Finally, P
Refined
g can be ensured that all individuals are

both feasible and diversified.
Although the reinitializing population and restarting evo-

lution (in Step 6 of S-EDA and Step 9 of ID2C-EDA) can be
a solution for both Type-I and the Type-II errors resulting in
domination of infeasible individuals, extremely large over-
heads (in terms of both computation and time) are inevitable
using the procedure. Therefore, PR and LNS are devised to
overcome such drawbacks.

PR (Step 7) is devised to prevent domination of infea-
sible individuals (having fitness values of all 0s or all 1s)
due to the Type-II error by replacing infeasible individuals
with feasible individuals. Using the feasible individual list
(FI_List) consisting of feasible individuals stored in the pre-
vious evolution step, PR replaces infeasible individuals with
randomly selected individuals from FI_List.

LNS (Step 8) is devised to solve non-convergence or very
slow convergence due to the Type-I error by compensating
degradation of the S-EDA’s search efficiency during coevo-
lution process. First, LNS generates effective solution candi-
dates from the neighboring bands of the band involving the
current local optimal solution. Then, LNS replaces a small
number of individuals (denoted as LNS_SIZE) having the
lowest fitness values with the generated solution candidates.
The replaced solution candidates can contribute to acceler-
ating convergence of the population.

Since PR and LNS replace some infeasible and less fea-
sible individuals with more promising solutions, they can be
considered as replacement techniques. Whereas the replace-
ment (in Step 5) is the technique that simply replaces some
individuals of Pg−1 with some individuals from Og to create
Pg , PR and LNS are adaptive techniques that replace some
infeasible and less feasible individuals in Pg (after Step 5)

or P
Refined
g (after Step 6) with feasible and more promising

solution candidates.

4 PS-optimizing agents using acceptability zones

In a complete information setting, any adoption of SSPS-opt

can be allowed because it is possible for a PS-optimizing
agent to calculate optimal PS-optimizing negotiation out-
comes and corresponding negotiation strategies using its op-
ponent’s known information. However, in practical situa-
tions, it may be difficult for agents to obtain complete in-
formation about their opponents because agents generally
do not expose their private information, strategies and pref-
erences due to strategic reasons. Nevertheless, one of the
greatest challenges in designing agents for PS-optimizing
negotiations is the mathematical formulations of optimal
PS-optimizing negotiation outcomes and negotiation strate-
gies under a complete information setting (Sect. 4.1). This
is because they can be directly used to verify the effec-
tiveness (or correctness) of the coevolved solutions un-
der an incomplete information setting (Sect. 4.2). Herein,
PS-optimization under an incomplete information setting
largely depends on the choice of SSPS-opt. Hence, for design-
ing PS-optimizing agents operating properly in both com-
plete and incomplete information settings, it is crucial to
choose effective SSPS-opt of both PS-optimizing agents.

In determining SSPS-opt, the two solution spaces SSNP

and SSNS are considered independently. That is, an agent x
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adopts AccZNP
x as SSNP for optimizing price and AccZNT

x

as SSNS for optimizing negotiation speed. Such SSPS-opt

adoption provides a significant advantage for executing
(population-based) PS-optimizing negotiations and find-
ing effective negotiation strategies for both PS-optimizing
agents B and S using a coevolutionary learning approach
under an incomplete information setting (Sect. 4.2). This
is because B and S do not require each other’s private ne-
gotiation parameters for establishing SSPS-opt before con-
ducting a PS-optimizing negotiation as AccZNP

x and AccZNT
x

of x are independently considered from those of its oppo-
nent in the PS-optimization process. To demonstrate the
effectiveness of such SSPS-opt , consider a counter-example
such that AgZNP and AgZNT are adopted as SSNP and SSNS,
respectively, for SSPS-opt. Then, before carrying out a PS-
optimizing negotiation, each agent needs to achieve its op-
ponent’s private information (such as RP and deadline) for
establishing SSPS-opt; however, estimating the opponent’s
accurate private information is a very difficult (and some-
times impossible) problem itself under an incomplete infor-
mation setting.

4.1 PS-optimizing agents with complete information

Given wx
NP and wx

NS, each PS-optimizing agent x with
complete information is designed to use: (1) AccZNP

x (i.e.,
[IPx,RPx]) for optimizing price using wx

NP and (2) AccZNT
x

(i.e., [0, τx]) for optimizing negotiation speed using wx
NS.

Although x still adopts the price utility Ux
NP in (5), the speed

utility Ux
NS in (6) needs to be further modified to reflect char-

acteristics of the preference of negotiation speed of x.
Using wx

NP and wx
NS, x decides the desired agreement

price (dPx
c ) in AccZNP

x and desired agreement time (dTx
c )

in AccZNT
x , respectively. First, x determines dPx

c satisfying
the preference criterion of price in AccZNP

x using wx
NP:

dPx
c = RPx + β · wx

NP · |RPx − IPx |
where β = 1 if x = B and β = −1 if x = S. (8)

x treats dPx
c as the most favorable possible agreement price

because at which x maximizes Ux
NP in (5) and hence, it

is the upper bound of Ux
NP satisfying its preference cri-

terion of price; (1) if x concedes less price utility than
Ux

NP(dPx
c ), the price utility of its opponent will be decreased,

and conversely, (2) if x concedes more price utility than
Ux

NP(dPx
c ),U

x
NP will be decreased. Second, x determines

dTx
c satisfying the preference criterion of negotiation speed

in AccZNT
x using wx

NS:

dTx
c = τx · (1 − wx

NS

)
. (9)

x treats the range of negotiation time in [0,dTx
c ] as the favor-

able possible agreement times because: (1) all the agreement

times shorter than dTx
c satisfy the preference criterion of ne-

gotiation speed and (2) when the negotiation begins, all the
negotiation times in [0,dTx

c ] can be mutually favorable pos-
sible agreement times satisfying the preference criterion of
negotiation speed for both x and its opponent. To incorpo-
rate Ux

NS in (6) with the favorable possible agreement times,
we define the new speed utility function Ux

NS-mapped(T
x
c ) for

an agreement time T x
c as follows:

Ux
NS-mapped

(
T x

c

) =
{

Ux
NS(dTx

c ), if T x
c ∈ [0,dTx

c ],
Ux

NS(T
x
c ), otherwise.

(10)

Then, the total utility function Ux
Total in (7) is modified as

follows:

Ux
Total-mapped(Px,Tx) = wx

NP × Ux
NP(Px)

+ wx
NS × Ux

NS-mapped

(
T x

c

)
. (11)

Compared to P-optimizing agents, each PS-optimizing
agent x: (1) makes concessions in the range of prices from
IPx up to the price less than dPx

c , which corresponds to (at
most) the amount of the price utility wx

NP(|IPx − dPx
c |), and

(2) aims to achieve a faster agreement time that is equal to or
less than dTx

c in the hope of achieving (at least) the amount
of speed utility Ux

NS(|τx − dTx
c |). In a P-optimizing negotia-

tion under a complete information setting, P P -opt
c and T

P -opt
c

can be specified by either of Theorems 1 and 2 (Sect. 2.1)
depending on a bargaining advantage in terms of time. For
a PS-optimizing negotiation under a complete information
setting, a similar analysis based on a bargaining advantage
in terms of time can be applied to determine the optimal
agreement price and negotiation time.

At first, we define possible AgZNP and AgZNT be-
tween the PS-optimizing agents B and S in NSS. The
possible AgZNP determined by dPB

c and dPS
c is given as

[min(dPB
c ,dPS

c ),max(dPB
c ,dPS

c )] and the possible AgZNT

determined by dTB
c and dTS

c is given as [0,min{dTB
c ,dTS

c }]
—which is the overlapping region of dTB

c and dTS
c . Then,

following Definition 2, PS-optimizing agents are designed to
optimize price and speed utilities in the possible AgZNP and
AgZNT , respectively, to maximize the total utility in (11).
Next, the optimal PS-optimizing negotiation outcomes con-
sisting of the optimal agreement price (P PS-opt

c ) and opti-
mal agreement time (T PS-opt

c ) will be determined based on
a bargaining advantage in terms of time and are defined as
follows.

Definition 3 If a PS-optimizing agent x has a bargaining
advantage in terms of time over its opponent, (1) P

PS-opt
c

is the price that maximizes Ux
NP in the possible AgZNP and

(2) T
PS-opt
c is the range of negotiation times satisfying both

agents’ preference criteria of negotiation speed in the possi-
ble AgZNT .



A novel method for coevolving PS-optimizing negotiation strategies 395

Fig. 2 Agreement behavior of PS-optimizing negotiation when suffi-
cient AgZNP is provided

Following Definition 3, P
PS-opt
c and T

PS-opt
c are obtained

from the following Theorems 3 and 4 depending on a bar-
gaining advantage in terms of time.

Theorem 3 If the PS-optimizing agent B has a longer
deadline than the PS-optimizing agent S, (1) P

PS-opt
c is

made at min(dPB
c ,dPS

c ) and (2) any agreement time in

[0,min(dTB
c ,dTS

c )] is T
PS-opt
c .

Proof Since B has a longer deadline than S,B has a bar-
gaining advantage over S in terms of time; hence, the
final agreement price and agreement time will be com-
pletely determined by B . From Definition 3, P

PS-opt
c is

min(dPB
c ,dPS

c ) at which UB
NP is maximized. Since AccZNT

B

is [0,dTB
c ] and AccZNT

S is [0,dTS
c ], T PS-opt

c is determined
as [0,min{dTB

c ,dTS
c }]—which is the overlapping region be-

tween AccZNT
B and AccZNT

S and at which both B and S sat-
isfy their preference criteria of negotiation speed. �

Theorem 4 If the PS-optimizing agent S has longer dead-
line than the PS-optimizing agent B , (1) P

PS-opt
c is made at

max(dPB
c ,dPS

c ) and (2) any agreement time in [0,min(dTB
c ,

dTS
c )] is T

PS-opt
c .

Proof Symmetrically, P
PS-opt
c is max(dPB

c ,dPS
c ) at which

US
NP is maximized; T

PS-opt
c is the overlapping region [0,

min{dTB
c ,dTS

c }] at which both B and S satisfy their pref-
erence criteria of negotiation speed. �

Figure 2 shows an example of the agreement behav-
ior between PS-optimizing agents B and S when B has a
longer deadline than S. The negotiation parameters for B

and S are as follows: (1) IPB = 5, RPB = 80, τB = 100

and (wB
NP,wB

NS) = (0.7,0.3) for B; (2) IPS = 95, RPS = 15,
τS = 50 and (wS

NP,wS
NS) = (0.5,0.5) for S. The NSS is

[15,80] for AgZNP and [0,50] for AgZNT . dPx
c and dTx

c

are determined by (8) and (9), respectively: (1) For the
given (wB

NP,wB
NS) = (0.7,0.3),dPB

c = 27.5 and dTB
c = 70

and (2) for the given (wS
NP,wS

NS) = (0.5,0.5),dPS
c = 55

and dTS
c = 25. Then, the possible AgZNP is determined as

[55, 70] and the possible AgZNT is determined as [0, 25]. Fi-
nally, P

PS-opt
c and T

PS-opt
c will be determined by Theorem 3

(because B has the bargaining advantage over S); hence,
P

PS-opt
c is 27.5 and T

PS-opt
c is [0, 25].

We have so far determined P
PS-opt
c and T

PS-opt
c using The-

orems 3 and 4 under the assumption that P
PS-opt
c and T

PS-opt
c

belong to NSS (e.g., Fig. 2). However, if P
PS-opt
c and T

PS-opt
c

is outside of NSS, any agreement cannot be made within
NSS; therefore, Theorems 3 and 4 can be no longer ap-
plied to determine P

PS-opt
c and T

PS-opt
c . In general, P

PS-opt
c

and T
PS-opt
c sometimes may be outside of NSS depending

on the input parameter values of the agent d having a bar-
gaining advantage in terms of time. This is because d deter-
mines P

PS-opt
c and T

PS-opt
c based on optimizing AccZNP

d and
AccZNT

d using wd
NP and wd

NS, respectively, without consider-
ing the agreement zones between d and its opponent (i.e.,
d does not consider AgZNP and AgZNT for carrying out the
PS-optimizing negotiation). P

PS-opt
c can be made outside of

AgZNP if: (1) d is B and dPB
c is less than RPS and (2) d is

S and dPS
c is larger than RPB (e.g., see Fig. 3). However, in

the case of T
PS-opt
c , it always belongs to AgZNT because dTB

c

and dTS
c are always less than or equal to τB and τS , respec-

tively. In summary, it is concluded that for x: (1) if sufficient
AgZNP is provided for carrying out a PS-optimizing negoti-
ation, P

PS-opt
c and T

PS-opt
c can be determined using either

Theorems 3 or 4; however, (2) if AgZNP is provided for car-
rying out a PS-optimizing negotiation, P

PS-opt
c and T

PS-opt
c

cannot be determined using Theorems 3 and 4.
Given that insufficient AgZNP is provided for carry-

ing out a PS-optimizing negotiation, the following defini-
tion is adopted for designing agreement behaviors of PS-
optimizing agents.

Definition 4 If insufficient AgZNP is provided for carry-
ing out a PS-optimizing negotiation, P

PS-opt
c and T

PS-opt
c are

made at the nearest point in NSS from dPd
c and dTd

c of the
agent d having a bargaining advantage in terms of time.

Definition 4 leads to Theorem 5 showing that the pro-
posed PS-optimizing agents satisfy (at least) the minimum
performance requirement for PS-optimizing agents (defined
in Sect. 2.2) even under the given condition that insufficient
AgZNP is provided.
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Fig. 3 Agreement behavior of PS-optimizing negotiation when insuf-
ficient AgZNP is provided

Theorem 5 If insufficient AgZNP is provided, PS-optimizing
negotiation outcomes equal to P-optimizing negotiation out-
comes for the given same negotiation settings.

Proof If B has a bargaining advantage in terms of time, the
nearest price from dPB

c in NSS is RPS (at which UB
NP is

maximized) and the nearest negotiation time is τS . Hence,
following Definition 4, P

PS-opt
c and T

PS-opt
c are made at RPS

and τS , respectively—which has the same result of the P-
optimizing negotiation given by Theorem 1. Similarly, if S

has a bargaining advantage in terms of time, the nearest price
from dPS

c in NSS is RPB (at which the price utility US
NP is

maximized) and the nearest negotiation time is τB . Hence,
following Definition 4, P

PS-opt
c and T

PS-opt
c are made at RPB

and τB , respectively—which has the same result of the P-
optimizing negotiation given by Theorem 2. �

Figure 3 shows an example of the agreement behaviors
between PS-optimizing agents B and S when (1) B has a
longer deadline than S and (2) insufficient AgZNP is pro-
vided. The negotiation parameters for B and S are as fol-
lows: (1) IPB = 15, RPB = 60, τB = 100 and (wB

NP,wB
NS) =

(0.7,0.3) for B; (2) IPS = 85, RPS = 40, τS = 50 and
(wS

NP,wS
NS) = (0.5,0.5) for S. The NSS is [40,60] for

AgZNP and [0,50] for AgZNT . dPx
c and dTx

c are determined
by (8) and (9), respectively; (1) For the given (wB

NP,wB
NS) =

(0.7,0.3), dPB
c = 28.5 and dTB

c = 70 and (2) for the given
(wS

NP,wS
NS) = (0.5,0.5), dPS

c = 62.5 and dTS
c = 25. Then,

the possible AgZNP is determined as [40,60] and the possi-
ble AgZNT is determined as [0,25]. Since B has a bargain-
ing advantage over S in terms of time, P

PS-opt
c is 28.5 and

T
PS-opt
c is [0,25] following Theorem 3. However, P

PS-opt
c

is not in AgZNP while T
PS-opt
c is in AgZNT ; the agreement

points of such PS-optimizing negotiation are not made in

NSS (i.e., PS-optimizing negotiation fails without making
an agreement). Therefore, from Theorem 5, P

PS-opt
c and

T
PS-opt
c are made at 28.5 and 25, respectively—which are

equal to P
P -opt
c and T

P -opt
c achieved from Theorem 1 (i.e.,

P
P -opt
c = 28.5 and T

P -opt
c = 25).

Finally, from the achieved P
PS-opt
c and T

PS-opt
c (using one

of Theorems 3 to 5), optimal negotiation strategies of PS-
optimizing agents B and S (to carry out the optimal PS-
optimizing negotiation) can be achieved. Specifically, the
optimal PS-optimizing negotiation strategies of B and S are
derived from (1) by substituting P x

t and t in (1) by P
PS-opt
c

and T
PS-opt
c , respectively, as follows:

λ
PS-opt
B ≤ log

(
T

PS-opt
c
τB

)

(
P

PS-opt
c − IPB

RPB − IPB

)
, (12)

λ
PS-opt
S ≤ log

(
T

PS-opt
c

τS
)

(
IPS − P

PS-opt
c

IPS − RPS

)
. (13)

4.2 PS-optimizing agents with incomplete information

Given wx
NP and wx

NS, each PS-optimizing agent x with in-
complete information also adopts: (1) AccZNP

x for optimiz-
ing price using wx

NP and (2) AccZNT
x for optimizing nego-

tiation speed using wx
NS. Since PS-optimizing agents with

incomplete information do not know their opponents’ pri-
vate information (such as RP, deadline and preferences for
price and negotiation time), their opponents’ desired agree-
ment points are unknown. Therefore, the agents cannot ap-
ply one of Theorems 3 to 5 directly for determining their
optimal negotiation outcomes. Owing to the lack of informa-
tion about their opponents’ private information, this research
adopts a coevolutionary learning approach to find effective
PS-optimizing negotiation strategies for both PS-optimizing
agents B and S. Coevolutionary learning approaches have
long been used to model competitive coevolution problems
(e.g., the iterated prisoner’s dilemma [3]).

Given that PS-optimizing agents B (with IPB , RPB , τB

and (wB
NP,wB

NS)) and S (with IPS , RPS , τS and (wS
NP,wS

NS)),
the following three key components are required for the co-
evolutionary learning:

(C1) Creating populations: Two heterogeneous populations
with size nP are created: POPB where individuals
consist of Bs and POPS where individuals consist of
Ss. Throughout the rest of this paper, we use: (1) the
term “individual” interchangeably with “agent” and
(2) the term “solution” interchangeably with “(PS-
optimizing) negotiation strategy” depending on the
context.

(C2) Initialization: Individuals of POPB and POPS are
initialized. All individuals in POPB are initialized
with IPB , RPB , τB and (wB

NP,wB
NS); however, the
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negotiation strategy of each individual in POPB is
randomly determined in the possible strategy range
[λlower, λupper] where λlower is the lower bound of
possible strategies and λupper is the upper bound
of possible strategies. In the same manner, all indi-
viduals in POPS are initialized with IPS , RPS , τS

and (wS
NP,wS

NS); however, the negotiation strategy of
each individual in POPS is randomly determined in
[λlower, λupper]. Hence, individuals are mainly charac-
terized by their negotiation strategies in its population.

(C3) Making interactions between populations: Coevolu-
tionary interactions between POPB and POPS are car-
ried out as follows:
a. Individuals in POPB and POPS are randomly cho-

sen and matched in a one-to-one manner.
b. Each matched pair of POPB and POPS conducts a

PS-optimizing negotiation without the knowledge
of private information of its opponent.

As a result of the coevolutionary interaction, individu-
als in POPB and POPS obtain negotiation outcomes.

The coevolutionary learning procedure using the same
type of EDAs for both POPB and POPS is as follows.
Two EDAs (i.e., either two S-EDAs or two ID2C-EDAs) are
adopted for coevolving POPB and POPS , respectively: one
EDA for POPB and the other EDA for POPS . Here, Step 1
of S-EDAs and ID2C-EDAs is substituted by the above C1
and C2 to create populations and initialize them. Through-
out its evolution procedure described in Sect. 3, each EDA
evolves solutions (of individuals) in its population. Each
EDA evaluates fitness of individuals from the negotiation
outcomes of individuals obtained from C3. Therefore, C3 is
executed in the fitness evaluation stage before applying se-
lection. In summary, the negotiation strategies of agents in
both POPB and POPS are coevolved from: (1) the coevo-
lutionary interaction between POPB and POPS in C3 and
(2) the evolution procedure for evolving solutions in each
population.

In the coevolutionary learning procedure, the main issues
for finding (or coevolving) effective PS-optimizing negotia-
tion strategies of B and S are: (1) adopting (or developing)
EAs suitable for the coevolution, and (2) given (wx

NP,wx
NS),

designing an appropriate fitness function that can achieve
good candidate solutions for a PS-optimizing negotiation.

First, for coevolving optimal PS-optimizing strategies
between B and S, special EAs called ID2C-EDAs were
adopted for both POPB and POPS due to its effectiveness
in coevolution learning [8, 10] while S-EDAs were used for
comparative studies of the coevolution performance. The co-
evolutionary learning approach adopting ID2C-EDAs allows
us to achieve an approximation to the optimal PS-optimizing
negotiation strategies achieved in the complete information
setting in Sect. 4.1.

We then need to consider how a PS-optimizing agent x

represents the preference of price using wx
NP in AccZNP

x and
the preference of negotiation speed using wx

NS in AccZNT
x

in an incomplete information setting. The same definitions
of dPx

c in (8) and dTx
c in (9) were adopted for x with in-

complete information adopts. Accordingly, x with incom-
plete information treats dPx

c as the most favorable agree-
ment price and dTx

c as one of the favorable agreement times.
Then, the fitness function maximizing its values at dPx

c and
dTx

c for the given (wx
NP,wx

NS) is required. We will briefly
examine some drawbacks of the fitness functions in the pre-
vious studies and then describe the details of the proposed
fitness function.

In most of the previous studies (e.g., [8–10, 23, 32] and
[19] where they mostly dealt with P-optimizing negoti-
ations), fitness functions as the form of utility functions
were widely adopted. Therefore, total utility functions Ux

Total
in (7) and Ux

Total-mapped in (11) also can be adopted as fitness
functions for the coevolutionary learning. To do this, we
need to evaluate the suitability (or effectiveness) of the fit-
ness functions adopting Ux

Total and Ux
Total-mapped . Ux

Total is
calculated by linearly combining the results of: (1) Ux

NP
in (5) multiplied by wx

NP and (2) Ux
NS in (6) multiplied by

wx
NS. Similarly, Ux

Total-mapped is calculated by linearly com-
bining the results of: (1) Ux

NP in (5) multiplied by wx
NP and

(2) Ux
NS-mapped in (10) multiplied by wx

NS. The difference be-
tween the fitness functions using Ux

Total and Ux
Total-mapped

is that the fitness function adopting Ux
Total considers the

different emphases in calculating Ux
NS in [0,dTx

c ] by giv-
ing a higher value to Ux

NS for a smaller agreement time.
However, the fitness function adopting Ux

Total-mapped has the
same value of Ux

NS for all agreement times belonging to
[0,dTx

c ] as Ux
NS(dTx

c ). Using the fitness function as either
Ux

Total or Ux
Total-mapped , the coevolution performance in terms

of intensification capability for coevolving converged solu-
tions can be severely deteriorated. As a result, both EDAs
for POPB and POPS generally cannot evolve effective PS-
optimizing negotiation strategies (within reasonable gener-
ations). In the case of the fitness function adopting Ux

Total,
this is mainly because the fitness at different P x

c and T x
c

can have the same value as Ux
Total(dPx

c ,dTx
c ). For example,

consider the case that: (1) an individual i obtained a nego-
tiation outcome at the agreement price P i

c and the agree-
ment time T i

c where Ui
T consists of Ui

NP(P i
c ) (< Ui

NP(dPi
c))

and Ui
NS(P

i
c ) (> Ui

NS(dT i
c)) and (2) another individual j

obtained a negotiation outcome at the agreement price
P

j
c and the agreement time T

j
c where U

j

Total consists

of U
j
NP(P

j
c ) (> U

j
NP(dPj

c )) and U
j

NS(T
j
c ) (< U

j

NS(dTj
c )).

Then, there are many possible combinations of values for
(P i

c , T i
c ) and (P

j
c , T

j
c ) where the fitness fit(P i

c , T i
c )—set

as Ui
Total(P

i
c , T i

c ) = wx
NP × Ui

NP(P i
c ) + wx

NS × Ui
NS(T

i
c )—

is equal to fit(P j
c , T

j
c )—set as U

j

Total(P
j
c , T

j
c ) = wx

NP ×
U

j
NP(P

j
c ) + wx

NS × U
j

NS(T
j
c ), in which both are equal to
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Ux
Total(dPx

c ,dTx
c ). Hence, the ambiguity (in representing

fit(P x
c , T x

c ) that needs to be maximized at Ux
Total(dPx

c ,dTx
c ))

makes the coupled fitness landscape for the coevolutionary
learning more complicated (to evolve effective solutions),
which leads to the deterioration of intensification capability
of both EDAs. In the case of the fitness function adopting
Ux

Total-mapped , the problem of such ambiguity may be solved
to some extent compared to the fitness function adopting
Ux

Total. This is because fitness values can be solely deter-
mined by price utility if the agreement times of all individ-
uals are made in [0,dTx

c ] in which speed utilities of all indi-
viduals are the same. However, we cannot always guarantee
that all agreement times are within [0,dTx

c ] because these
depend on the negotiation parameter settings and the evo-
lution of EDAs. Hence, although the fitness function using
Ux

Total-mapped is more robust than the fitness function adopt-
ing Ux

Total in charactering more promising solutions, both
cannot solve the problem of the ambiguity (completely) and
prevent deterioration of intensification capability. From this
analysis, we found that the fitness functions (as the form of
the total utility functions in Ux

Total and Ux
Total-mapped) are not

appropriate for coevolving effective PS-optimizing negotia-
tion strategies (within reasonable numbers of generations).

For designing an effective fitness function, this work uses
price and speed likelihood functions instead of using price
and speed utility functions directly. Given wx

NP and wx
NS, the

price likelihood function (Lhx
NP) measures the likelihood be-

tween Px and dPx
c and the speed likelihood function (Lhx

NS)
measures the likelihood between Tx and dTx

c .
Lhx

NP for a price Px is defined as follows:

Lhx
NP(Px) =

⎧⎪⎪⎨
⎪⎪⎩

1√
π ·ρNP

exp
(− |RPx−Px |

|RPx−IPx | −wx
NP

ρNP

)2
,

if an agreement is reached,

0, otherwise,

(14)

where |RPx −Px |/|RPx − IPx | is a relative position of Px in
AccZNP

x . As Px is close to dPx
c , |RPx − Px |/|RPx − IPx | −

wx
NP will have a smaller value; hence, a higher value of Lhx

NP
will be obtained. Through empirical studies, the deviation of
Lhx

NP (i.e., the shape of Lhx
NP) is designed to be very narrow

by normalizing it with ρNP = wx
NP/100 in which ρNP can be

considered as a weighting factor to put more emphasis on
Px (i.e., for achieving a higher value of Lhx

NP) if it is closer
to dPx

c . Instead of using price utility in (4), (14) measures
the closeness of Px from dPx

c using the Gaussian likelihood
function designed to maximize Lhx

NP(Px) at Px = dPx
c .

Lhx
NS for a negotiation time Tx is defined as follows:

Lhx
NS(Tx) =

⎧⎪⎪⎨
⎪⎪⎩

1√
π ·ρNS

exp
(− (1.0− Tx

τx
)−wx

NS
ρNS

)2
,

if an agreement is reached,

0, otherwise,

(15)

where (1.0 − Tx/τx) is a relative position of Tx in AccZNT
x .

As Tx is close to dTx
c , (1.0 − Tx/τx) − wx

NS will have the
smaller value; hence, a higher value of Lhx

NS will be ob-
tained. Through empirical studies, the deviation of Lhx

NS is
designed to be not very narrow (compared to the deviation
of Lhx

NP) by normalizing it with ρNS = wx
NS. ρNS has a large

value to put less emphasis on dTx
c because a shorter agree-

ment time will be better for both B and S; however, setting
ρNS to be too large will slow down the coevolution speed
because large possible solution candidates can slow down
coevolution speed, which affects the intensification capabil-
ity of EDAs. Instead of using speed utility in (5) or (10),
(15) measures the closeness of Tx from dTx

c using the Gaus-
sian likelihood function designed to maximize Lhx

NS(Tx) at
Tx = dTx

c . In regard to optimizing negotiation speed, a spe-
cial mapping function f x

t-map(T
x
c ) for negotiation time was

adopted and is defined as follows:

f x
t-map

(
T x

c

) =
{

dTx
c , if T x

c ∈ [0,dTx
c ],

T x
c , otherwise.

(16)

This is essential to assist and realize the coevolution of ef-
fective PS-optimizing negotiation strategies for both B and
S because: (1) all T x

c in [0,dTx
c ] satisfy the preference of

negotiation speed and (2) in general, a shorter negotiation
time will be better than a longer negotiation time.

Finally, using Lhx
NP in (14) and Lhx

NS in (15) together with
f x

t-map in (16), the final proposed fitness function for EDAs
is defined as follows:

fit
(
P x

c , T x
c

)

= wx
NP · exp

( |Lhx
NP(P x

c ) − Lhx
NP(dPx

c )|
Lhx

NP(dPx
c )

)−(1−wx
NP)

+ wx
NS

· exp

( |Lhx
NS(f

x
t-map(T

x
c )) − Lhx

NS(dTx
c )|

Lhx
NS(dTx

c )

)−(1−wx
NS)

.

(17)

The more Lhx
NP(P x

c ) is close to Lhx
NP(dPx

c ) and wx
NP is large,

the more the value of the exponential function for price
in (17) is large. Similarly, the more Lhx

NS(T
x
c ) is close to

Lhx
NS(dTx

c ) and wx
NS is large, the more the value of the expo-

nential function for negotiation speed in (17) is large. There-
fore, fit(P x

c , T x
c ) emphasizes the exponential functions for

price and negotiation speed by linearly combining them with
wx

NP and wx
NS, respectively.

5 Empirical evaluation and analysis

In this section, we first detail the methodology for analyz-
ing the performance of coevolved PS-optimizing negotia-
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Table 2 Parameter setting for
negotiation agents B and S Parameters Values

For Type-I experiments Possible price range of B [IPB,RPB ] [5,80]
Possible price range of S [IPS,RPS ] [95,15]

For Type-II experiments Possible price range of B [IPB,RPB ] [15,60]
Possible price range of S [IPS,RPS ] [85,40]

For both Type-I and
Type-II experiments

Possible strategy range [λlower, λupper] [0,5]
Deadline range Long [16,30]

Mid [31,60]
Short [61,120]

tion strategies (of PS-optimizing agents B and S) using S-
EDAs or ID2C-EDAs under an incomplete information set-
ting. We then proceed to the actual empirical study of the
coevolved PS-optimizing negotiation strategies by compar-
ing them with the optimal negotiation strategies obtained
under a complete information setting. Furthermore, we com-
pare and analyze the empirical results of S-EDAs and ID2C-
EDAs obtained from coevolutionary learning.

5.1 Methodology

For PS-optimizing agents B and S, optimal PS-optimizing
negotiation outcomes and the corresponding negotiation
strategies are subject to the size of AgZNP as described in
Sect. 4.1. Hence, two groups of experiments were designed
to evaluate the performance of PS-optimizing negotiations
for the different negotiation situations: (1) Type-I experi-
ments for the negotiation settings with sufficient AgZNP, and
(2) Type-II experiments for the negotiations with insufficient
AgZNP. In each group of experiments, the coevolution re-
sults using ID2C-EDAs are compared with those of S-EDAs
to evaluate their coevolution performance in finding effec-
tive PS-optimizing negotiation strategies.

5.1.1 Testbed

To evaluate the performance of the coevolved PS-optimizing
negotiation strategies of the proposed PS-optimizing agents,
a simulation testbed consisting of a virtual negotiation en-
vironment for supporting population-based negotiations in
an incomplete information setting using EDAs was imple-
mented using C++. Both POPB and POPS were evolved us-
ing either S-EDAs or ID2C-EDAs as described in Sect. 3.
Coevolutionary interaction is achieved from the (population-
based) negotiations between POPB and POPS as described
in Sect. 4.2. In addition, each POPB and POPS has a con-
troller that: (1) generates agents and initializes their nego-
tiation parameters (such as preferences of price and nego-
tiation speed, IP, RP, deadlines and negotiation strategies),
(2) manages the information of the matched pairs of agents

between POPB and POPS , (3) monitors the termination sta-
tus of its EDA and shares the information with the con-
troller of the opponent population to check the termination
conditions for the coevolution, which is to terminate both
EDAs simultaneously, (4) synchronizes PS-optimizing ne-
gotiations and handles message passing and payment trans-
fer between all matched agents, and (5) reinitializes its pop-
ulation and restarts evolution of EDAs when the CNTmax is
reached.

The experiments were conducted on a computer with
Windows XP (32-bit) service pack 3, Intel® Core™2 Duo
CPU E8500 @ 3.16 GHz & 3.17 GHz and 4 GB RAM.

5.1.2 Experimental settings

The input parameters for two types of PS-optimizing nego-
tiation agents B and S are described in Table 2.

The price ranges (determined by IPs and RPs) and strat-
egy ranges for B and S were adopted for the purpose of
the Type-I and Type-II experiments. The deadline range of
agents was grouped into three categories empirically: Long
when negotiation rounds are in [16,30]; Moderate (denoted
as Mid in Table 2) when negotiation rounds are in [31,60];
and Short when negotiation rounds are in [31,60]. The dead-
line ranges [1,15] and [121,∞] were not considered be-
cause repeated experimental tuning showed that the average
success rate of PS-optimizing negotiations is very low when
the agents adopt their deadlines in the ranges. Due to space
limitation, three representative values from the three cate-
gories are chosen, respectively: 20 for Short, 50 for Mid,
and 100 for Long. Based on a bargaining advantage in terms
of time, there exist six representative deadline combinations
between B and S as follows:

(1) (Long, Mid), (Mid, Short) and (Long, Short) for the case
that B has a longer deadline than S,

(2) (Mid, Long), (Short, Mid) and (Short, Long) for the case
that S has a longer deadline than B .

However, since cases 1 and 2 are symmetrical and the sim-
ilar analysis can be applied to both cases, we only describe
the results for the case 1. In the negotiations between B
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Table 3 Combinations of preference criteria of B and S

Optimization mode Preference criteria of B Preference criteria of S

Mode 1: more-P-optimizing vs. more-P-optimizing (wB
NP,wB

NS) = (0.7,0.3) (wS
NP,wS

NS) = (0.7,0.3)

Mode 2: more-P-optimizing vs. exact-PS-optimizing (wB
NP,wB

NS) = (0.7,0.3) (wS
NP,wS

NS) = (0.5,0.5)

Mode 3: more-P-optimizing vs. more-S-optimizing (wB
NP,wB

NS) = (0.7,0.3) (wS
NP,wS

NS) = (0.3,0.7)

Mode 4: exact-PS-optimizing vs. more-P-optimizing (wB
NP,wB

NS) = (0.5,0.5) (wS
NP,wS

NS) = (0.7,0.3)

Mode 5: exact-PS-optimizing vs. exact-PS-optimizing (wB
NP,wB

NS) = (0.5,0.5) (wS
NP,wS

NS) = (0.5,0.5)

Mode 6: exact-PS-optimizing vs. more-S-optimizing (wB
NP,wB

NS) = (0.5,0.5) (wS
NP,wS

NS) = (0.3,0.7)

Mode 7: more-S-optimizing vs. more-P-optimizing (wB
NP,wB

NS) = (0.3,0.7) (wS
NP,wS

NS) = (0.7,0.3)

Mode 8: more-S-optimizing vs. exact-PS-optimizing (wB
NP,wB

NS) = (0.3,0.7) (wS
NP,wS

NS) = (0.5,0.5)

Mode 9: more-S-optimizing vs. more-S-optimizing (wB
NP,wB

NS) = (0.3,0.7) (wS
NP,wS

NS) = (0.3,0.7)

Table 4 Parameter settings for S-EDAs and ID2C-EDAs

Type Parameters Values

Both S-EDAs and
ID2C-EDAs

nP 50

nS 25

nO 50

Gmax 2500

CNTmax 10

δfit 10−5

ID2C-EDA α 10−3

β 10−4

Band_Size 0.1

Gmax_infeasible_band 10

S-EDA δvar 1.35

ID2C-EDA δhigh 0.125

δlow 0.05

δvar 0.0005

ID2C-EDA LNS_SIZE 8

and S, the experiments were set such that S starts its ne-
gotiation first by proposing its first proposal to B .

Different emphases on price and negotiation speed (i.e.,
different weightings between wp and ws ) lead to different
groups of preference criteria. Each PS-optimizing agent x

has three representative preference criteria as follows:

(1) more-P-optimizing case: (wx
NP,wx

NS) = (0.7,0.3)

(2) exact-PS-optimizing case: (wx
NP,wx

NS) = (0.5,0.5)

(3) more-S-optimizing case: (wx
NP,wx

NS) = (0.3,0.7)

Hence, the following nine combinations are possible be-
tween B and S as described in Table 3.

The experimental parameter settings for S-EDAs and
ID2C-EDAs are described in Table 4. We used the experi-
mentally tuned parameters from [8] and [10].

5.1.3 Description of results

Even though extensive simulations were carried out for all
the situations, only representative results are presented in
this section due to space limitation. Empirical results for
the Type-I and Type-II experiments are shown in Tables 6
to 8 and Tables 9 to 11, respectively. All the values in the
experimental tables were averaged based on more than 103

runs. The symbols for the results in Tables 6 to 11 and their
descriptions are summarized in Table 5. In the results of Ta-
bles 6 to 11, the rows for the performance measures (see
Sect. 5.1.4) are shaded; in addition, the rows for the results
achieved from ID2C-EDAs are in boldface to discriminate
and emphasize them with those achieved from S-EDAs.

5.1.4 Performance measure

Under a complete information setting, optimal PS-optimiz-
ing negotiation outcomes and negotiation strategies are
achieved as follows: (1) P

PS-opt
c and T

PS-opt
c are obtained

from equilibrium analyses using Theorems 3 to 5 and
(2) from the obtained P

PS-opt
c and T

PS-opt
c , λPS-opt

B and λ
PS-opt
S

are calculated using (12) and (13), respectively.
Under an incomplete information setting, if EDAs carry

out balanced coevolution (for both POPB and POPS ), the
agreement price and agreement time obtained for B will be
very close to the agreement price and agreement time ob-
tained for S, respectively. This is because the optimal agree-
ment price and agreement time of B should be equal to those
of S, respectively. To verify the effectiveness of the coe-
volved PS-optimizing negotiation strategies of both B and
S, we compare the coevolution results (obtained from co-
evolutionary learning using either S-EDAs or ID2C-EDAs)
with the optimal results (obtained under a complete infor-
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Table 5 Summary of notation for the results

Type Notation Description

Agreement Price

Pc P
PS-opt
c The optimal agreement price achieved from one of Theorems 3 to 5 under a complete information setting

P̄
B (S-EDA)
c

∑
P

B (S-EDA)
c /No. of experimental runs: Average value of the agreement prices for POPB achieved from

coevolutionary learning using S-EDA for B

P̄
B (ID2C-EDA)
c

∑
P

B (ID2C-EDA)
c /No. of experimental runs: Average value of the agreement prices for POPB achieved

from coevolutionary learning using ID2C-EDA for B

P̄
S (S-EDA)
c

∑
P

S (S-EDA)
c /No. of experimental runs: Average value of the agreement prices for POPS achieved from

coevolutionary learning using S-EDA for S

P̄
S (ID2C-EDA)
c

∑
P

S (ID2C-EDA)
c /No. of experimental runs: Average value of the agreement prices for POPS achieved

from coevolutionary learning using ID2C-EDA for S

Agreement Time

Tc T
PS-opt
c The optimal agreement time achieved from one of Theorems 3 to 5 under a complete information setting

T̄
B (S-EDA)
c

∑
T

B (S-EDA)
c /No. of experimental runs: Average value of the agreement times for POPB achieved from

coevolutionary learning using S-EDA for B

T̄
B (ID2C-EDA)
c

∑
T

B (ID2C-EDA)
c /No. of experimental runs: Average value of the agreement times for POPB achieved

from coevolutionary learning using ID2C-EDA for B

T̄
S (S-EDA)
c

∑
T

S (S-EDA)
c /No. of experimental runs: Average value of the agreement times for POPS achieved from

coevolutionary learning using S-EDA for S

T̄
S (ID2C-EDA)
c

∑
T

S (ID2C-EDA)
c /No. of experimental runs: Average value of the agreement times for POPS achieved

from coevolutionary learning using ID2C-EDA for S

Strategy

λB λ
PS-opt
B PS-optimizing negotiation strategy of B achieved from (13) under a complete information setting

λ̄
PS-opt (S-EDA)
B

∑
λ

PS-opt (S-EDA)
B /No. of experimental runs: Average value of the coevolved PS-optimizing negotiation

strategies using S-EDA for B

λ̄
PS-opt (ID2C-EDA)
B

∑
λ

PS-opt (ID2C-EDA)
B /No. of experimental runs: Average value of the coevolved PS-optimizing

negotiation strategies using ID2C-EDA for B

λS λ
PS-opt
S PS-optimizing negotiation strategy of S achieved from (14) under a complete information setting

λ̄
PS-opt (S-EDA)
S

∑
λ

PS-opt (S-EDA)
S /No. of experimental runs: Average value of the coevolved PS-optimizing negotiation

strategies using S-EDA for S

λ̄
PS-opt (ID2C-EDA)
S

∑
λ

PS-opt (ID2C-EDA)
S /No. of experimental runs: Average value of the coevolved PS-optimizing

negotiation strategies using ID2C-EDA for S

Convergence of EDA

NGen N̄Gen (S-EDA) ∑
NGen (S-EDA)/No. of experimental runs: Average value of the number of generations for

coevolutionary learning using S-EDAs

N̄Gen (ID2C-EDA) ∑
NGen (ID2C-EDA)/No. of experimental runs: Average value of the number of generations for

coevolutionary learning using ID2C-EDAs

NRe_init N̄Re_init (S-EDA) ∑
NRe_init (S-EDA)/No. of experimental runs: Average value of the number of evolution restarts for

coevolutionary learning using S-EDAs

N̄Re_init (ID2C-EDA) ∑
NRe_init (ID2C-EDA)/No. of experimental runs: Average value of the number of evolution restarts for

coevolutionary learning using ID2C-EDAs

mation setting) by examining the following two conditions:
(1) closeness to the optimum: the obtained PS-optimizing
negotiation outcomes and coevolved PS-optimizing negoti-
ation strategies should be close to the optimal results and
(2) balanced coevolution: the obtained negotiation outcomes

of B should be the same as those of S as a result of coevo-
lutionary learning.

First, for measuring closeness between the coevolution
results and optimal results, the following three types of
closeness metric are devised for each type of EDA:
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(1) δ
Px

c

dist measures the closeness between P
PS-opt
c and the

agreement price P̄
x (S-EDA)
c (respectively, P̄ x (ID2C-EDA)

c )
obtained from coevolutionary learning as follows:

δ
Px

c

dist(S-EDA) = |P̄ x (S-EDA)
c − P

PS-opt
c | for the coevolu-

tion using S-EDA,

δ
Px

c

dist(ID
2C-EDA) = |P̄ x (ID2C-EDA)

c −P
PS-opt
c | for the co-

evolution using ID2C-EDA

where if S-EDA (respectively, ID2C-EDA) has obtained

P̄
x (S-EDA)
c (respectively, P̄

x (ID2C-EDA)
c ) that is the same as

P
PS-opt
c from coevolutionary learning, then δ

Px
c

dist(S-EDA) (re-

spectively, δ
Px

c

dist(ID
2C-EDA)) will be 0; otherwise,

δ
Px

c

dist(S-EDA) (respectively, δ
Px

c

dist(ID
2C-EDA)) will be larger

than 0.

(2) δ
T x

c

dist measures the closeness between T
PS-opt
c and the

agreement time T̄
x (S-EDA)
c (respectively, T̄

x (ID2C-EDA)
c )

obtained from coevolutionary learning as follows:

δ
T x

c

dist(S-EDA) = T̄
x (S-EDA)
c − max(T

PS-opt
c ) for the co-

evolution using S-EDA,

δ
T x

c

dist(ID
2C-EDA) = T̄

x (ID2C-EDA)
c − max(T

PS-opt
c ) for

the coevolution using ID2C-EDA

where we consider its maximum value max(T
PS-opt
c ) as

the basis of closeness because T
PS-opt
c can be represented

as a range of negotiation time. Hence, if S-EDA (respec-
tively, ID2C-EDA) has obtained T̄

x (S-EDA)
C (respectively,

T̄
x (ID2C-EDA)
c ) belonging to T

PS-opt
c , then δ

T x
c

dist(S-EDA) (re-

spectively, δ
T x

c

dist(ID
2C-EDA)) will be less than or equal to 0

(i.e., negative real numbers or 0); otherwise, δ
T x

c

dist(S-EDA)

(respectively, δ
T x

c

dist(ID
2C-EDA)) will have positive real num-

bers.

(3) δ
λx

dist measures the closeness between λ
PS-opt
x and coe-

volved PS-optimizing negotiation strategy λ̄
PS-opt (S-EDA)
x

(respectively, λ̄
PS-opt (ID2C-EDA)
x ) from coevolutionary

learning as follows:
δ
λx

dist(S-EDA) = λ̄
PS-opt (S-EDA)
x − max(λ

PS-opt
x ) for the

coevolution using S-EDA,

δ
λx

dist(ID
2C-EDA) = λ̄

PS-opt (ID2C-EDA)
x − max(λ

PS-opt
x )

for the coevolution using ID2C-EDA

where we consider the maximum value max(λ
PS-opt
x ) as

the basis of closeness because λ
PS-opt
x can be represented

as a range of strategy. Hence, if S-EDA (respectively,
ID2C-EDA) has coevolved λ̄

PS-opt (S-EDA)
x (respectively,

λ̄
PS-opt (ID2C-EDA)
x ) belonging to λ

PS-opt
x , then δ

λx

dist(S-EDA)

(respectively, δ
λx

dist(ID
2C-EDA)) will be less than or

equal to 0 (i.e., negative real numbers or 0); otherwise,
δ
λx

dist(S-EDA) (respectively, δ
λx

dist(ID
2C-EDA)) will have pos-

itive real numbers.

Second, for checking whether balanced negotiation out-
comes were achieved, we will simply compare the closeness
metric of B with that of S for the obtained agreement prices
and agreement times, respectively, as follows:

(1) δ
PB

c

dist(S-EDA) and δ
PS

c

dist(S-EDA) are compared for the co-
evolution using S-EDA,

δ
PB

c

dist(ID
2C-EDA) and δ

PS
c

dist(ID
2C-EDA) are compared

for the coevolution using ID2C-EDA

where if δ
PB

c

dist(S-EDA) and δ
PS

c

dist(S-EDA) (respectively,

δ
PB

c

dist(ID
2C-EDA) and δ

PS
c

dist(ID
2C-EDA)) have the same val-

ues, then it is determined that S-EDAs (respectively, ID2C-
EDAs) achieved balanced agreement prices (for both B

and S); otherwise, it is determined that S-EDAs (respec-
tively, ID2C-EDAs) achieved biased agreement prices (for
both B and S).

(2) δ
T B

c

dist(S-EDA) and δ
T S

c

dist(S-EDA) are compared for the co-
evolution using S-EDA,

δ
T B

c

dist(ID
2C-EDA) and δ

T S
c

dist(ID
2C-EDA) are compared

for the coevolution using ID2C-EDA

where if δ
T B

c

dist(S-EDA) and δ
T S

c

dist(S-EDA) (respectively,

δ
T B

c

dist(ID
2C-EDA) and δ

T S
c

dist(ID
2C-EDA)) have the same val-

ues, then it is determined that S-EDAs (respectively, ID2C-
EDAs) achieved balanced agreement times (for both B

and S); otherwise, it is determined that S-EDAs (respec-
tively, ID2C-EDAs) achieved biased agreement times (for
both B and S).

In addition, for measuring and comparing the coevo-
lution performance between S-EDAs and ID2C-EDAs in
terms of the number of generations, we can use NGen and
NRe_init together as a performance measure. This is because
the total average number of generations for coevolution-
ary learning is determined as (NRe_init × Gmax) + NGen.
Furthermore, NRe_init gives additional information about
the coevolution capability of S-EDAs and ID2C-EDAs. For
example, there can be the case that N̄Re_init(S-EDA) (re-
spectively, N̄Re_init(ID2C-EDA)) has reached CNTmax, which
means that S-EDAs (respectively, ID2C-EDAs) does not
have enough coevolution capability for achieving converged
solutions. The higher value of N̄Re_init(S-EDA) (respectively,
N̄Re_init(ID2C-EDA)) indicates insufficient coevolution capa-
bility of S-EDAs (respectively, ID2C-EDAs) for achieving
converged solutions.

5.2 Observations and analyses

5.2.1 Results of Type-I experiments

For (Long, Mid) in Table 6, (Mid, Short) in Table 7 and
(Long, Short) in Table 8, B has a bargaining advantage
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Table 6 Results of Type-I experiments in (Long, Mid)

(Long, Mid) IPB = 5, RPB = 80, τB = 100; IPS = 95, RPS = 15, τS = 50

Combinations of Weights

(wB
NP,wB

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 27.5 42.5 57.5

dTB
c 70 50 30

(wS
NP,wS

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 71 55 39 71 55 39 71 55 39

dTB
c 35 25 15 35 25 15 35 25 15

PS-Optimization mode (Mode 1) (Mode 2) (Mode 3) (Mode 4) (Mode 5) (Mode 6) (Mode 7) (Mode 8) (Mode 9)

Agreement Price

Pc P
PS-opt
c 27.50 27.50 27.50 42.50 42.50 39.00 57.50 55.00 39.00

P̄
B (S-EDA)
c 27.58 27.67 27.59 42.38 42.25 42.53 55.03 57.32 39.30

(6.94E–01) (7.57E–01) (7.45E–01) (1.04E+00) (1.26E+00) (9.89E–01) (7.32E+00) (8.07E+00) (5.70E–02)

δ
P B

c

dist (S-EDA) 0.08 0.17 0.09 0.12 0.25 3.53 2.47 2.32 0.30

P̄
B (ID2C-EDA)
c 27.50 27.55 27.60 42.53 42.59 39.00 57.96 55.25 39.00

(9.73E–03) (2.08E–01) (4.65E–01) (9.13E–02) (4.16E–01) (1.54E–03) (2.40E–01) (7.54E–01) (1.07E–03)

δ
P B

c

dist (ID
2C-EDA) 0 0.05 0.10 0.03 0.09 0 0.46 0.25 0

P̄
S (S-EDA)
c 59.43 51.99 40.59 66.84 52.96 43.54 65.86 54.60 38.99

(1.67E+01) (1.02E+01) (1.31E+01) (7.75E+00) (8.23E+00) (1.58E+01) (9.88E+00) (4.85E+00) (2.55E–02)

δ
P S

c

dist(S-EDA) 31.93 24.49 13.09 24.34 10.46 4.54 8.36 0.40 0.01

P̄
S (ID2C-EDA)
c 27.50 27.55 27.60 42.53 42.59 39.00 57.96 55.25 39.00

(9.73E–03) (2.08E–01) (4.65E–01) (9.13E–02) (4.16E–01) (1.54E–03) (2.40E–01) (7.54E–01) (1.07E–03)

δ
P S

c

dist(ID
2C-EDA) 0 0.05 0.10 0.03 0.09 0 0.46 0.25 0

Agreement Time

Tc T
PS-opt
c [1, 35.00] [1, 25.00] [1, 15.00] [1, 35.00] [1, 25.00] [1, 15.00] [1, 35.00] [1, 25.00] [1, 15.00]

T̄
B (S-EDA)
c 45.31 43.90 43.73 39.86 40.58 39.38 27.00 25.95 1.00

(3.98E+00) (4.70E+00) (5.17E+00) (6.89E+00) (6.23E+00) (6.48E+00) (8.45E+00) (8.26E+00) (0.00E+00)

δ
T B

c

dist(S-EDA) +10.31 +18.9 +28.73 +4.86 +15.58 +24.38 −8.00 +0.95 −14.00

T̄
B (ID2C-EDA)
c 35.62 25.14 12.85 35.84 25.51 1.00 35.16 1.13 1.00

(1.30E+00) (2.25E+00) (5.12E+00) (3.68E–01) (6.11E–01) (0.00E+00) (3.68E–01) (4.18E–01) (0.00E+00)

δ
T B

c

dist(ID
2C-EDA) +0.62 +0.14 −2.15 +0.84 +0.51 −14.00 +0.16 −23.87 −14.00

T̄
S (S-EDA)
c 29.86 30.05 27.59 29.64 30.35 23.99 30.24 30.80 1.00

(8.57E+00) (1.05E+01) (1.39E+01) (8.91E+00) (1.05E+01) (1.36E+01) (8.81E+00) (9.70E+00) (0.00E+00)

δ
T S

c

dist(S-EDA) −5.14 +5.05 +12.59 −5.36 +5.35 +8.99 −4.76 +5.80 −14.00

T̄
S (ID2C-EDA)
c 35.52 24.90 12.67 35.07 25.08 1.00 35.16 1.13 1.00

(1.31E+00) (2.20E+00) (5.03E+00) (2.56E–01) (4.42E–01) (0.00E+00) (3.68E–01) (4.18E–01) (0.00E+00)

δ
T S

c

dist(ID
2C-EDA) +0.52 −0.10 −2.33 +0.07 +0.08 −14.00 +0.16 −23.87 −14.00

Strategy

λB λ
PS-opt
B (0, 1.1468] (0, 0.8685] (0, 0.6346] (0, 0.6603] (0, 0.5000] (0, 0.4170] (0, 0.2962] (0, 0.2925] (0, 0.4170]

λ̄
PS-opt (S-EDA)
B 1.4905 1.4306 1.4316 0.7502 0.7688 0.7365 0.3175 0.2734 0.0900

(1.58E–01) (1.64E–01) (1.85E–01) (1.29E–01) (1.28E–01) (1.26E–01) (1.49E–01) (1.24E–01) (4.10E–02)

δ
λB

dist(S-EDA) +0.3437 +0.5621 +0.7970 +0.0899 +0.2688 +0.3195 +0.0213 −0.0191 −0.3270

λ̄
PS-opt (ID2C-EDA)
B

1.1377 0.8517 0.5628 0.6592 0.4980 0.1718 0.3315 0.0856 0.1659
(3.83E–02) (5.43E–02) (1.28E–01) (3.32E–03) (1.12E–02) (9.80E–06) (4.33E–03) (6.20E–03) (1.68E–02)

δ
λB

dist(ID
2C-EDA) −0.0091 −0.0168 −0.0718 −0.0011 −0.002 −0.2452 +0.0353 −0.2069 −0.2511
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Table 6 (Continued)

(Long, Mid) IPB = 5, RPB = 80, τB = 100; IPS = 95, RPS = 15, τS = 50

λS λ
PS-opt
S (0, 0.4763] (0, 0.2451] (0, 0.1411] (0, 1.1809] (0, 0.6077] (0, 0.2962] (0, 1.4833] (0, 1.0000] (0, 0.2962]

λ̄
PS-opt (S-EDA)
S 2.0679 1.7902 1.2374 2.3773 1.9054 1.0098 2.3907 1.8967 0.0911

(1.38E+00) (1.31E+00) (1.25E+00) (1.18E+00) (1.37E+00) (1.01E+00) (1.23E+00) (1.23E+00) (1.17E–04)

δ
λB

dist(S-EDA) +1.5916 +1.5451 +1.0963 +1.1964 +1.2977 +0.7136 +0.9074 +0.8967 −0.2051

λ̄
PS-opt (ID2C-EDA)
S

0.4778 0.2423 0.1252 1.1825 0.6101 0.0912 2.1688 0.1830 0.0912
(3.97E–02) (2.56E–02) (3.46E–02) (4.92E–03) (1.13E–02) (7.00E–06) (1.68E–02) (1.76E–02) (4.87E–06)

δ
λS

dist(ID
2C-EDA) +0.0015 −0.0028 −0.0159 +0.0016 +0.0024 −0.2050 +0.6855 −0.8170 −0.2050

Convergence of EDA

NGen N̄Gen (S-EDA) 2500 2500 2500 2500 2500 2500 2500 2500 33.25

N̄Gen (ID2C-EDA) 67.87 144.23 316.66 95.72 103.40 380.22 666.10 983.24 44.42

NRe_init N̄Re_init (S-EDA) 10 10 10 10 10 10 10 10 0

N̄Re_init (ID2C-EDA) 0 0 0.041 0 0 0.014 0.012 0.521 0

Table 7 Results of Type-I experiments in (Mid, Short)

(Mid, Short) IPB = 5, RPB = 80, τB = 50; IPS = 95, RPS = 15, τS = 25

Combinations of Weights

(wB
NP,wB

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 27.5 42.5 57.5

dTB
c 35 25 15

(wS
NP,wS

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 71 55 39 71 55 39 71 55 39

dTB
c 14 10 6 14 10 6 14 10 6

PS-Optimization mode (Mode 1) (Mode 2) (Mode 3) (Mode 4) (Mode 5) (Mode 6) (Mode 7) (Mode 8) (Mode 9)

Agreement Price

Pc P
PS-opt
c 27.50 27.50 27.50 42.50 42.50 39.00 57.5 55.00 39.00

P̄
B (S-EDA)
c 27.45 27.49 27.40 42.67 42.20 42.12 56.80 56.71 39.31

(9.81E–01) (9.65E–01) (1.01E+00) (1.90E+00) (1.91E+00) (2.54E+00) (4.94E+00) (4.47E+00) (6.51E–02)

δ
P B

c

dist (S-EDA) 0.05 0.01 0.10 0.17 0.30 3.12 0.70 1.71 0.31

P̄
B (ID2C-EDA)
c 27.50 27.57 27.54 42.79 42.66 39.00 58.39 55.30 39.00

(1.12E–02) (2.64E–01) (6.19E–01) (4.34E–01) (4.94E–01) (1.37E–02) (2.64E–01) (8.16E–01) (6.12E–04)

δ
P B

c

dist (ID
2C-EDA) 0 0.07 0.04 0.29 0.16 0 0.89 0.30 0

P̄
S (S-EDA)
c 64.21 53.81 46.03 66.55 54.31 43.51 65.40 53.89 39.00

(1.19E+01) (6.75E+00) (1.39E+01) (8.82E+00) (6.24E+00) (1.32E+01) (9.78E+00) (7.40E+00) (2.70E–02)

δ
P S

c

dist(S-EDA) 36.71 26.31 18.53 24.05 11.81 4.51 7.9 1.11 0.00

P̄
S (ID2C-EDA)
c 27.50 27.57 27.54 42.79 42.66 39.00 58.39 55.30 39.00

(1.12E–02) (2.64E–01) (6.19E–01) (4.34E–01) (4.94E–01) (1.37E–02) (2.64E–01) (8.16E–01) (6.12E–04)

δ
P S

c

dist(ID
2C-EDA) 0 0.07 0.04 0.29 0.16 0 0.89 0.30 0

Agreement Time

Tc T
PS-opt
c [1, 14.00] [1, 10.00] [1, 6.00] [1, 14.00] [1, 10.00] [1, 6.00] [1, 14.00] [1, 10.00] [1, 6.00]

T̄
B (S-EDA)
c 18.04 18.25 18.30 15.55 15.98 13.60 13.36 12.81 1.00

(2.87E+00) (1.77E+00) (2.26E+00) (3.41E+00) (3.18E+00) (5.99E+00) (2.98E+00) (3.45E+00) (0.00E+00)

δ
T B

c

dist(S-EDA) +4.04 +8.25 +12.30 +1.55 +5.98 +7.60 −0.64 +2.81 −5.00
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Table 7 (Continued)

(Mid, Short) IPB = 5, RPB = 80, τB = 50; IPS = 95, RPS = 15, τS = 25

T̄
B (ID2C-EDA)
c 14.69 10.31 5.84 14.64 10.46 1.00 14.65 1.13 1.00

(5.26E–01) (1.39E+00) (1.80E+00) (4.82E–01) (5.01E–01) (0.00E+00) (4.79E–01) (3.38E–01) (0.00E+00)

δ
T B

c

dist(ID
2C-EDA) +0.69 +0.31 −0.16 +0.64 +0.46 −5.00 +0.65 −8.87 −5.00

T̄
S (S-EDA)
c 11.87 12.49 9.29 12.39 12.41 8.47 11.93 11.96 1.00

(3.15E+00) (3.82E+00) (5.57E+00) (3.52E+00) (3.79E+00) (5.74E+00) (3.41E+00) (3.74E+00) (0.00E+00)

δ
T S

c

dist(S-EDA) −2.13 +2.49 +3.29 −1.61 +2.41 +2.47 −2.07 +1.96 −5.00

T̄
S (ID2C-EDA)
c 14.69 10.03 5.64 14.25 10.06 1.00 14.14 1.13 1.00

(5.44E–01) (1.32E+00) (1.70E+00) (4.35E–01) (2.39E–01) (0.00E+00) (3.49E–01) (3.38E–01) (0.00E+00)

δ
T S

c

dist(ID
2C-EDA) +0.69 +0.03 −0.36 +0.25 +0.06 −5.00 +0.14 −8.87 −5.00

Strategy

λB λ
PS-opt
B (0, 0.9458] (0, 0.7481] (0, 0.5678] (0, 0.5445] (0, 0.4307] (0, 0.3731] (0, 0.2802] (0, 0.2519] (0, 0.3731]

λ̄
PS-opt (S-EDA)
B 1.1341 1.1421 1.1540 0.5690 0.5935 0.5037 0.2740 0.2635 0.1015

(1.59E–01) (1.17E–01) (1.34E–01) (1.12E–01) (1.14E–01) (2.04E–01) (8.90E–02) (7.88E–02) (5.13E–02)

δ
λB

dist(S-EDA) +0.1883 +0.3940 +0.5862 +0.0245 +0.1628 +0.1306 −0.0062 +0.0116 −0.2716

λ̄
PS-opt (ID2C-EDA)
B

0.9343 0.7221 0.5259 0.5380 0.4275 0.2022 0.2670 0.1008 0.1993
(2.56E–02) (6.41E–02) (9.23E–02) (9.53E–03) (8.65E–03) (1.03E–04) (3.90E–03) (5.35E–03) (1.20E–02)

δ
λB

dist(ID
2C-EDA) −0.0115 −0.0260 −0.0419 −0.0065 −0.0032 −0.1709 −0.0132 −0.1511 −0.1738

λS λ
PS-opt
S (0, 0.4763] (0, 0.2451] (0, 0.1411] (0, 1.1809] (0, 0.6077] (0, 0.2962] (0, 2.1243] (0, 1.0000] (0, 0.2962]

λ̄
PS-opt (S-EDA)
S 2.1689 1.8539 1.1001 2.5325 1.8229 0.8535 2.2375 1.6268 0.1190

(1.27E+00) (1.21E+00) (1.21E+00) (1.28E+00) (1.21E+00) (8.94E–01) (1.25E+00) (1.07E+00) (1.61E–04)

δ
λB

dist(S-EDA) +1.6926 +1.6088 +0.9590 +1.3516 +1.2152 +0.5573 +0.1132 +0.6268 −0.1772

λ̄
PS-opt (ID2C-EDA)
S

0.4824 0.2403 0.1328 1.1973 0.6128 0.1191 2.1941 0.2424 0.1191
(3.44E–02) (3.63E–02) (3.16E–02) (2.46E–02) (1.51E–02) (8.16E–05) (1.71E–02) (2.91E–02) (3.66E–06)

δ
λS

dist(ID
2C-EDA) +0.0061 −0.0048 −0.0083 +0.0164 +0.0051 −0.1771 +0.0698 −0.7576 −0.1771

Convergence of EDA

NGen N̄Gen (S-EDA) 2500 2500 2500 2500 2500 2315.76 2500 2500 30.72

N̄Gen (ID2C-EDA) 63.85 95.64 133.86 96.58 98.16 889.92 78.02 414.8 43.99

NRe_init N̄Re_init (S-EDA) 10 10 10 10 10 9.317 10 10 0

N̄Re_init (ID2C-EDA) 0 0 0 0 0 0.643 0 0.112 0

Table 8 Results of Type-I experiments in (Long, Short)

(Long, Short) IPB = 5, RPB = 80, τB = 100; IPS = 95, RPS = 15, τS = 25

Combinations of Weights

(wB
NP,wB

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 27.5 42.5 39

dTB
c 70 50 6

(wS
NP,wS

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 71 55 39 71 55 39 71 55 39

dTB
c 14 10 6 14 10 6 14 10 6

PS-Optimization mode (Mode 1) (Mode 2) (Mode 3) (Mode 4) (Mode 5) (Mode 6) (Mode 7) (Mode 8) (Mode 9)

Agreement Price

Pc P
PS-opt
c 27.50 27.50 27.50 42.50 42.50 39.00 57.50 55.00 39.00
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Table 8 (Continued)

(Long, Short) IPB = 5, RPB = 80, τB = 100; IPS = 95, RPS = 15, τS = 25

P̄
B (S-EDA)
c 27.42 27.48 27.18 41.57 42.40 39.78 57.13 54.98 39.30

(2.61E+00) (2.65E+00) (2.67E+00) (3.81E+00) (3.81E+00) (2.13E+00) (2.75E+00) (7.32E+00) (5.38E–02)

δ
P B

c

dist (S-EDA) 0.08 0.02 0.32 0.93 0.10 0.78 0.37 0.02 0.30

P̄
B (ID2C-EDA)
c 27.50 27.68 27.80 43.30 42.56 39.00 57.72 55.15 39.00

(2.87E–03) (4.18E–01) (8.90E–01) (2.12E–01) (2.81E+00) (2.25E–05) (4.32E+00) (5.97E–01) (1.00E–05)

δ
P B

c

dist (ID
2C-EDA) 0 0.18 0.30 0.80 0.06 0 0.22 0.15 0

P̄
S (S-EDA)
c 60.12 51.42 46.54 59.12 51.36 39.36 58.43 50.78 39.00

(1.61E+01) (1.34E+01) (1.48E+01) (1.58E+01) (1.58E+01) (5.74E+00) (6.22E+00) (1.31E+01) (3.06E–02)

δ
P S

c

dist(S-EDA) 32.62 23.92 19.04 16.62 8.86 0.36 0.93 4.22 0

P̄
S (ID2C-EDA)
c 27.50 27.68 27.80 43.30 42.56 39.00 57.72 55.15 39.00

(2.87E–03) (4.18E–01) (8.90E–01) (2.12E–01) (2.81E+00) (2.00E–05) (4.32E+00) (5.97E–01) (1.00E–05)

δ
P S

c

dist(ID
2C-EDA) 0 0.18 0.30 0.80 0.06 0 0.22 0.15 0

Agreement Time

Tc T
PS-opt
c [1, 14.00] [1, 10.00] [1, 6.00] [1, 14.00] [1, 10.00] [1, 6.00] [1, 14.00] [1, 10.00] [1, 6.00]

T̄
B (S-EDA)
c 17.79 18.05 18.16 15.79 15.84 3.73 13.96 14.59 1.00

(3.56E+00) (2.97E+00) (3.12E+00) (3.30E+00) (3.30E+00) (6.04E+00) (1.46E+00) (3.82E+00) (0.00E+00)

δ
T B

c

dist(S-EDA) +3.79 +8.05 +12.16 +1.79 +5.84 −2.27 −0.04 +4.59 −5.00

T̄
B (ID2C-EDA)
c 14.81 10.56 5.57 14.64 10.35 1.00 14.45 1.07 1.00

(7.06E–01) (7.01E–01) (1.97E+00) (4.82E–01) (1.07E+00) (0.00E+00) (7.44E–01) (2.56E–01) (0.00E+00)

δ
T B

c

dist(ID
2C-EDA) +0.81 +0.56 −0.43 +0.64 +0.35 −5.00 +0.45 −8.93 −5.00

T̄
S (S-EDA)
c 12.03 11.58 11.32 12.26 11.29 2.90 13.77 11.93 1.01

(3.80E+00) (4.19E+00) (5.57E+00) (3.71E+00) (3.71E+00) (4.75E+00) (1.26E+00) (4.91E+00) (1.00E–01)

δ
T S

c

dist(S-EDA) −1.97 +1.58 +5.32 −1.74 +1.29 −3.10 −0.23 +1.93 −4.99

T̄
S (ID2C-EDA)
c 14.76 10.33 5.36 14.27 10.10 1.00 14.16 1.07 1.00

(7.26E–01) (6.82E–01) (1.86E+00) (4.46E–01) (1.00E+00) (0.00E+00) (6.62E–01) (2.56E–01) (0.00E+00)

δ
T S

c

dist(ID
2C-EDA) +0.76 +0.33 −0.64 +0.27 +0.10 −5.00 +0.16 −8.93 −5.00

Strategy

λB λ
PS-opt
B (0, 0.6124] (0, 0.5229] (0, 0.4279] (0, 0.3525] (0, 0.3010] (0, 0.2812] (0, 0.1814] (0, 0.1761] (0, 0.2812]

λ̄
PS-opt (S-EDA)
B 0.6829 0.6864 0.6968 0.3816 0.3699 0.1322 0.1796 0.2122 0.0883

(1.21E–01) (1.04E–01) (1.24E–01) (8.48E–02) (8.48E–02) (1.15E–01) (3.33E–02) (9.93E–02) (3.89E–02)

δ
λB

dist(S-EDA) +0.0705 +0.1635 +0.2689 +0.0291 +0.0689 −0.1490 −0.0018 +0.0361 −0.1929

λ̄
PS-opt (ID2C-EDA)
B

0.6102 0.5161 0.3898 0.3418 0.3441 0.1716 0.1858 0.0870 0.1703
(1.48E–02) (1.71E–02) (6.17E–02) (2.84E–03) (4.70E–01) (2.13E–03) (1.08E–01) (3.22E–03) (8.38E–03)

δ
λB

dist(ID
2C-EDA) −0.0022 −0.0068 −0.0381 −0.0107 +0.0431 −0.1096 +0.0044 −0.0891 −0.1109

λS λ
PS-opt
S (0, 0.4763] (0, 0.2451] (0, 0.1411] (0, 1.1809] (0, 0.6077] (0, 0.2962] (0, 2.1243] (0, 1.0000] (0, 0.2962]

λ̄
PS-opt (S-EDA)
S 2.0434 1.5194 1.3860 2.0242 1.4509 0.3333 2.1387 1.7600 0.1190

(1.39E+00) (1.21E+00) (1.17E+00) (1.30E+00) (1.30E+00) (6.62E–01) (5.13E–01) (1.37E+00) (1.89E–04)

δ
λB

dist(S-EDA) +1.5671 +1.2743 +1.2449 +0.8433 +0.8432 +0.0371 +0.0144 +0.7600 −0.1772

λ̄
PS-opt (ID2C-EDA)
S

0.5103 0.2474 0.1313 1.2241 0.6612 0.1191 2.2020 0.2366 0.1191
(2.86E–01) (1.90E–02) (3.42E–02) (1.15E–02) (4.38E–01) (1.00E–07) (2.83E–01) (1.91E–02) (1.00E–07)

δ
λS

dist(ID
2C-EDA) +0.0340 +0.0023 −0.0098 +0.0432 +0.0535 −0.1771 +0.0777 −0.7634 −0.1771

Convergence of EDA

NGen N̄Gen (S-EDA) 2500 2500 2500 2500 2500 1502.13 1528.36 2500 32.89

N̄Gen (ID2C-EDA) 55.55 91.5 96.33 81.38 90.25 1062.42 72.61 309.81 44.79

NRe_init N̄Re_init (S-EDA) 10 10 10 10 10 4.374 4.590 10 0

N̄Re_init (ID2C-EDA) 0 0 0 0 0 0.382 0 0.243 0
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over S in terms of time. Furthermore, in (Long, Mid), (Mid,
Short) and (Long, Short), dPB

c and min(dTB
c ,dTS

c )—which
determine the optimum agreement points of all optimization
modes 1 to 9—are in the range of NSS. Hence, we calculated
both P

PS-opt
c and T

PS-opt
c from Theorem 3, λ

PS-opt
B from (12)

and λ
PS-opt
S from (13). From the results in Tables 6 to 8, the

following two observations were drawn.

Observation 1 While S-EDAs generally could not obtain
effective PS-optimizing negotiation outcomes and coevolve
effective PS-optimizing negotiation strategies in most of the
optimization modes, ID2C-EDAs generally obtained effec-
tive PS-optimizing negotiation outcomes and coevolved ef-
fective PS-optimizing negotiation strategies in all the opti-
mization modes.

Analysis It can be observed from Tables 6 to 8 that: (1) the

values of δ
PB

c

dist(S-EDA) and δ
PS

c

dist(S-EDA) were large (es-

pecially, for S), and the difference between δ
PB

c

dist(S-EDA)

and δ
PS

c

dist(S-EDA) was too large to be effective agreement
prices in most of the optimization modes, (2) the val-

ues of δ
T B

c

dist(S-EDA) and δ
T S

c

dist(S-EDA) were large positive

real numbers and the difference between δ
T B

c

dist(S-EDA) and

δ
T S

c

dist(S-EDA) was too large to be effective agreement times
in most of the optimization modes, and (3) the values of
δ
λB

dist(S-EDA) and δ
λS

dist(S-EDA) were large positive real num-
bers (especially, for S) to be effective PS-optimizing negoti-
ation strategies in most of the optimization modes. These
indicate that S-EDAs generally: (1) achieved both inef-
fective agreement prices (especially, for S) and agreement
times and (2) coevolved ineffective PS-optimizing negotia-
tion strategies in terms of both closeness to the optimum and
balanced coevolution. This was mainly because of different
coevolution speed between POPB and POPS ; since POPB

has converged to around an optimal value more rapidly than
POPS,POPS could not have sufficient diversity (of oppo-
nents) to optimize its solutions in making coevolutionary
interactions and hence, S-EDAs could not achieve effective
and balanced solutions. This phenomenon can be considered
as the premature convergence in the coevolution situation.

It can be also observed from Tables 6 to 8 that: (1) both

the values of δ
PB

c

dist(ID
2C-EDA) and δ

PS
c

dist(ID
2C-EDA) were

either small or optimal, and the difference between

δ
PB

c

dist(ID
2C-EDA) and δ

PS
c

dist(ID
2C-EDA) was also small in all

the optimization modes; (2) the values of δ
T B

c

dist(ID
2C-EDA)

and δ
T S

c

dist(ID
2C-EDA) were small or in the range of the op-

timum and the difference between δ
T B

c

dist(ID
2C-EDA) and

δ
T S

c

dist(ID
2C-EDA) was also small in most of the optimiza-

tion modes; and (3) the values of δ
λB

dist(ID
2C-EDA) and

δ
λS

dist(ID
2C-EDA) were small in most of the optimization

modes. These indicate that ID2C-EDAs generally could:
(1) achieve both effective agreement prices and agreement
times and (2) coevolve effective PS-optimizing negotiation
strategies in terms of both closeness to the optimum and
balanced coevolution. This was because ID2C-EDAs have
sufficient capability for achieving close to optimal and bal-
anced solutions for both B and S by dynamically adjusting
the degree of intensification and diversification of POPB

and POPS using DR. Furthermore, by adopting LNS and
PR, it is possible for ID2C-EDAs to improve solution accu-
racy and to avoid inappropriate population configurations,
respectively.

Observation 2 While S-EDAs could not coevolve con-
verged populations, ID2C-EDAs generally coevolved con-
verged populations.

Analysis It can be observed from Tables 6 to 8 that the
values of N̄Re_init(S-EDA) reached CNTmax in most of the
optimization modes while the values of N̄Re_init(ID2C-EDA)

were much smaller than N̄Re_init(S-EDA) (and were often
close to 0) in all the optimization modes. Hence, compar-
ing to ID2C-EDAs, S-EDAs required an extremely larger
number of (total) generations for the coevolution. This in-
dicates that S-EDAs generally did not have enough capabil-
ity for coevolving converged populations while ID2C-EDAs
had enough capability for coevolving converged populations
within a reasonable number of generations. The reason that
ID2C-EDAs outperformed S-EDAs is mainly due to the in-
novation of DR (in the coevolution process) which allows
ID2C-EDAs to search for promising solutions adaptively. In
DR, the diversification procedure helps to avoid premature
convergence in a population by maintaining population di-
versity to a certain level and the refinement procedure helps
to achieve optimal solutions by generating promising solu-
tions using regional population history information and re-
placing less feasible solutions with the generated promising
solutions. Furthermore, LNS can contribute to resolving the
problem of the late convergence of populations, and PR as-
sists to avoid configuring inappropriate populations in early
generations. Hence, by adopting DR together with LNS and
PR, each ID2C-EDA is more likely to escape premature con-
vergence and maintain enough population diversity, which
enables ID2C-EDAs to coevolve converged populations in
the coevolutionary learning.

From these Observations 1 and 2, we can draw the fol-
lowing conclusion for the Type-I experiments.

Conclusion 1 When the negotiation setting with suffi-
ciently large AgZNP is provided for PS-optimizing agents,
ID2C-EDAs generally coevolve effective (converged) PS-
optimizing negotiation strategies for both B and S while
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S-EDA generally fails to coevolve such negotiation strate-
gies within reasonable numbers of generations in most of
the cases.

5.2.2 Results of Type-II experiments

For (Long, Mid) in Table 9, (Mid, Short) in Table 10 and
(Long, Short) in Table 11, B has a bargaining advantage over
S in terms of time. In addition, in (Long, Mid), (Mid, Short)
and (Long, Short), dPB

c and min(dTB
c ,dTS

c ) of the optimiza-
tion modes 1 to 6 are not in the range of NSS. Hence, we
calculated both P

PS-opt
c and T

PS-opt
c from Theorem 5, λ

PS-opt
B

from (12) and λ
PS-opt
S from (13). In contrast, in (Long, Mid),

(Mid, Short) and (Long, Short), dPB
c and min(dTB

c ,dTS
c )

of the optimization modes 7 to 9 are in the range of NSS.
Hence, we calculated both P

PS-opt
c and T

PS-opt
c from The-

orem 3, λ
PS-opt
B from (12) and λ

PS-opt
S from (13). From the

results in Tables 9 to 11, the following three observations
were drawn.

Observation 3 In optimization modes 1 to 6, both S-
EDAs and ID2C-EDAs generally achieved effective PS-
optimizing negotiation outcomes and coevolved effective
PS-optimizing negotiation strategies.

Analysis From the results of the optimization modes 1
to 6 in Tables 9 to 11, it can be seen that: (1) the values

of δ
PB

c

dist(S-EDA) and δ
PS

c

dist(S-EDA) were small and the dif-

ference between δ
PB

c

dist(S-EDA) and δ
PS

c

dist(S-EDA) was also

small, (2) the values of δ
T B

c

dist(S-EDA) and δ
T S

c

dist(S-EDA) were
in the range of the optimum and the difference between

δ
T B

c

dist(S-EDA) and δ
T S

c

dist(S-EDA) was small, and (3) the val-

ues of δ
λB

dist(S-EDA) and δ
λS

dist(S-EDA) were in the range
of the optimum. These indicate that S-EDAs generally
could: (1) obtain effective agreement prices and agree-
ment times and (2) coevolve effective PS-optimizing ne-
gotiation strategies in terms of both closeness to opti-
mum and balanced coevolution. Similarly, from all the re-
sults of the optimization modes 1 to 6 in Tables 9 to 11,

it can be seen that: (1) the values of δ
PB

c

dist(ID
2C-EDA)

and δ
PS

c

dist(ID
2C-EDA) were 0 and the difference between

δ
PB

c

dist(ID
2C-EDA) and δ

PS
c

dist(ID
2C-EDA) was also 0; (2) the

values of δ
T B

c

dist(ID
2C-EDA) and δ

T S
c

dist(ID
2C-EDA) were 0,

and the difference between δ
T B

c

dist(ID
2C-EDA) and δ

T S
c

dist(ID
2C-

EDA) was also 0; and (3) the values of δ
λB

dist(ID
2C-EDA) and

δ
λS

dist(ID
2C-EDA) were in the range of the optimum. In sum-

mary, both S-EDAs and ID2C-EDAs could obtain optimal
PS-optimizing negotiation outcomes and coevolve optimal
PS-optimizing negotiation strategies for these modes. In the
results, the coevolved negotiation agreements were made at

RPS and τS . This is because B adopting the time-dependent
negotiation strategy achieves all of its payoff at τS by ac-
cepting S′s final proposal RPS . Since we designed the fitness
function putting more emphasis on optimizing price than op-
timizing speed by setting ρNP = wx

NP/100 and ρNS = wx
NS,

S-EDAs and ID2C-EDAs are less likely to make price con-
cessions for achieving rapid agreements and strictly hold
RPS as the optimal agreement price. This is the reason
of the successful coevolution performance of S-EDAs for
the above cases (when it is compared to the Type-I experi-
ments).

Observation 4 In the optimization modes 7 to 9, ID2C-
EDAs generally obtained effective PS-optimizing negotia-
tion outcomes and coevolved effective PS-optimizing nego-
tiation strategies while S-EDAs did not.

Analysis From the results of the optimization modes 7 to 9
in Tables 9 to 11, it can be seen that: (1) the values of

δ
PB

c

dist(S-EDA) and δ
PS

c

dist(S-EDA) were large and the difference

between δ
PB

c

dist(S-EDA) and δ
PS

c

dist(S-EDA) was too large to be

effective agreement prices; (2) the values of δ
T B

c

dist(S-EDA)

and δ
T S

c

dist(S-EDA) were large positive real numbers and the

difference between δ
T B

c

dist(S-EDA) and δ
T S

c

dist(S-EDA) was too
large to be effective agreement times; and (3) the values
of δ

λB

dist(S-EDA) and δ
λS

dist(S-EDA) were large positive real
numbers to be effective PS-optimizing negotiation strate-
gies. These indicate that S-EDAs generally could: (1) obtain
both ineffective agreement prices and agreement times and
(2) coevolve ineffective PS-optimizing negotiation strate-
gies in terms of both closeness to optimum and balanced
coevolution. In contrast, from all the results of the op-
timization modes 7 to 9 in Tables 9 to 11, it can also

be observed that: (1) both the values of δ
PB

c

dist(ID
2C-EDA)

and δ
PS

c

dist(ID
2C-EDA) were small and the difference be-

tween δ
PB

c

dist(ID
2C-EDA) and δ

PS
c

dist(ID
2C-EDA) is also small;

(2) the values of δ
T B

c

dist(ID
2C-EDA) and δ

T S
c

dist(ID
2C-EDA)

were large positive real numbers and the difference be-

tween δ
PB

c

dist(ID
2C-EDA) and δ

PS
c

dist(ID
2C-EDA) was small;

and (3) the values of δ
λB

dist(ID
2C-EDA) and δ

λS

dist(ID
2C-EDA)

were small. These indicate that ID2C-EDAs generally could:
(1) achieve both effective agreement prices and agreement
times and (2) coevolve effective PS-optimizing negotiation
strategies in terms of both closeness to optimum and bal-
anced coevolution.

Observation 5 S-EDAs could not coevolve converged popu-
lations in some cases while ID2C-EDAs generally coevolved
converged populations in most of the cases.
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Table 9 Results of Type-II experiments in (Long, Mid)

(Long, Mid) IPB = 15, RPB = 60, τB = 100; IPS = 85, RPS = 40, τS = 50

Combinations of Weights

(wB
NP,wB

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 28.5 37.5 46.5

dTB
c 70 50 30

(wS
NP,wS

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 71.5 62.5 53.5 71.5 62.5 53.5 71.5 62.5 53.5

dTB
c 35 25 15 35 25 15 35 25 15

PS-Optimization mode (Mode 1) (Mode 2) (Mode 3) (Mode 4) (Mode 5) (Mode 6) (Mode 7) (Mode 8) (Mode 9)

Agreement Price

Pc P
PS-opt
c 40.00 40.00 40.00 40.00 40.00 40.00 46.50 46.50 46.50

P̄
B (S-EDA)
c 40.00 40.00 40.00 40.00 40.00 40.00 52.09 47.32 45.52

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (1.87E+00) (4.43E+00) (1.65E+00)

δ
P B

c

dist (S-EDA) 0 0 0 0 0 0 5.59 0.82 0.98

P̄
B (ID2C-EDA)
c 40.00 40.00 40.00 40.00 40.00 40.00 47.13 46.51 46.54

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (8.22E–01) (5.23E–02) (1.07E–03)

δ
P B

c

dist (ID
2C-EDA) 0 0 0 0 0 0 0.63 0.01 0.04

P̄
S (S-EDA)
c 40.07 40.08 40.52 40.05 40.06 40.39 59.50 51.76 52.12

(1.61E–01) (1.51E–01) (3.35E–01) (1.09E–01) (1.16E–01) (1.97E–01) (4.25E–01) (7.14E+00) (5.80E+00)

δ
P S

c

dist(S-EDA) 0.07 0.08 0.52 0.05 0.06 0.39 13.00 5.26 5.62

P̄
S (ID2C-EDA)
c 40.00 40.00 40.00 40.00 40.00 40.00 47.13 46.51 46.54

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (8.22E–01) (5.23E–02) (1.07E–03)

δ
P S

c

dist(ID
2C-EDA) 0 0 0 0 0 0 0.63 0.01 0.04

Agreement Time

Tc T
PS-opt
c [1, 50.00] [1, 50.00] [1, 50.00] [1, 50.00] [1, 50.00] [1, 50.00] [1, 35.00] [1, 25.00] [1, 15.00]

T̄
B (S-EDA)
c 50.00 50.00 50.00 50.00 50.00 50.00 17.84 41.50 44.85

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (8.93E+00) (9.83E+00) (4.83E+00)

δ
T B

c

dist(S-EDA) 0 0 0 0 0 0 −17.16 +16.50 +29.85

T̄
B (ID2C-EDA)
c 50.00 50.00 50.00 50.00 50.00 50.00 39.09 25.83 15.73

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (2.28E+00) (5.79E–01) (0.00E+00)

δ
T B

c

dist(ID
2C-EDA) 0 0 0 0 0 0 +4.09 +0.83 +0.73

T̄
S (S-EDA)
c 50.00 50.00 50.00 50.00 50.00 50.00 26.92 37.30 42.62

(0.00E+00) (0.00E+00) (3.16E–02) (0.00E+00) (0.00E+00) (0.00E+00) (6.94E+00) (7.94E+00) (3.48E+00)

δ
T S

c

dist(S-EDA) 0 0 0 0 0 0 −8.08 +12.30 +27.62

T̄
S (ID2C-EDA)
c 50.00 50.00 50.00 50.00 50.00 50.00 35.16 25.22 15.21

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (2.28E+00) (6.02E–01) (0.00E+00)

δ
T S

c

dist(ID
2C-EDA) 0 0 0 0 0 0 +0.16 +0.22 +0.21

Strategy

λB λ
PS-opt
B (0, 0.8480] (0, 0.8480] (0, 0.8480] (0, 0.8480] (0, 0.8480] (0, 0.8480] (0, 0.3397] (0, 0.2573] (0, 0.1880]

λ̄
PS-opt (S-EDA)
B 0.8358 0.8356 0.8359 0.8355 0.8354 0.8356 0.1048 0.3967 0.4776

(1.58E–01) (6.82E–03) (6.68E–03) (6.72E–03) (6.77E–03) (6.82E–03) (3.34E–02) (1.57E–01) (8.15E–02)

δ
λB

dist(S-EDA) −0.0122 −0.0124 −0.0121 −0.0125 −0.0126 −0.0124 −0.2349 +0.1394 +0.2896

λ̄
PS-opt (ID2C-EDA)
B

0.8480 0.8480 0.8480 0.8480 0.8480 0.8480 0.3594 0.2574 0.1886
(6.68E–03) (8.66E–15) (8.66E–15) (8.66E–15) (8.66E–15) (8.66E–15) (3.84E–02) (2.58E–03) (1.68E–02)

δ
λB

dist(ID
2C-EDA) 0 0 0 0 0 0 +0.0197 +0.0001 +0.0006
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Table 9 (Continued)

(Long, Mid) IPB = 15, RPB = 60, τB = 100; IPS = 85, RPS = 40, τS = 50

λS λ
PS-opt
S (0, 5.0000] (0, 5.0000] (0, 5.0000] (0, 5.0000] (0, 5.0000] (0, 5.0000] (0, 0.4374] (0, 0.2251] (0, 0.1296]

λ̄
PS-opt (S-EDA)
S 1.7414 1.8784 2.4064 1.7518 1.8795 2.3324 0.9700 1.5103 2.1217

(1.10E+00) (1.12E+00) (1.11E+00) (1.06E+00) (1.12E+00) (1.09E+00) (3.09E–01) (1.33E+00) (1.35E+00)

δ
λB

dist(S-EDA) −3.2586 −3.1216 −2.5936 −3.2482 −3.1205 −2.6676 +0.5326 +1.2852 +1.9921

λ̄
PS-opt (ID2C-EDA)
S

5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 0.7325 0.2283 0.1441
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (2.21E–01) (9.60E–03) (4.87E–06)

δ
λS

dist(ID
2C-EDA) 0 0 0 0 0 0 +0.2951 +0.0032 +0.0145

Convergence of EDA

NGen N̄Gen (S-EDA) 20.80 20.56 20.05 20.79 20.84 20.42 135.65 2500 2500

N̄Gen (ID2C-EDA) 68.47 69.45 68.61 70.48 70.59 70.47 934.36 160.75 181.35

NRe_init N̄Re_init (S-EDA) 0 0 0 0 0 0 0 10 10

N̄Re_init (ID2C-EDA) 0 0 0 0 0 0.012 0.144 0 0.002

Table 10 Results of Type-II experiments in (Mid, Short)

(Mid, Short) IPB = 15, RPB = 60, τB = 50; IPS = 85, RPS = 40, τS = 25

Combinations of Weights

(wB
NP,wB

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 28.5 37.5 46.5

dTB
c 35 25 15

(wS
NP,wS

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 71.5 62.5 53.5 71.5 62.5 53.5 71.5 62.5 53.5

dTB
c 14 10 6 14 10 6 14 10 6

PS-Optimization mode (Mode 1) (Mode 2) (Mode 3) (Mode 4) (Mode 5) (Mode 6) (Mode 7) (Mode 8) (Mode 9)

Agreement Price

Pc P
PS-opt
c 40.00 40.00 40.00 40.00 40.00 40.00 46.50 46.50 46.50

P̄
B (S-EDA)
c 40.00 40.00 40.00 40.00 40.00 40.00 48.60 48.62 47.12

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (4.47E+00) (5.18E+00) (4.40E+00)

δ
P B

c

dist (S-EDA) 0 0 0 0 0 0 2.10 2.12 0.62

P̄
B (ID2C-EDA)
c 40.00 40.00 40.00 40.00 40.00 40.00 46.66 46.53 46.55

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (4.05E–01) (1.62E–01) (2.83E–01)

δ
P B

c

dist (ID
2C-EDA) 0 0 0 0 0 0 0.16 0.03 0.05

P̄
S (S-EDA)
c 40.24 40.31 41.31 40.10 40.10 40.70 51.50 51.06 49.75

(4.33E–01) (5.78E–01) (8.03E–01) (2.06E–01) (2.00E–01) (3.46E–01) (4.98E+00) (5.90E+00) (5.47E+00)

δ
P S

c

dist(S-EDA) 0.24 0.31 1.31 0.10 0.10 0.70 5.00 4.56 3.25

P̄
S (ID2C-EDA)
c 40.00 40.00 40.00 40.00 40.00 40.00 46.66 46.53 46.55

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (4.05E–01) (1.62E–01) (2.83E–01)

δ
P S

c

dist(ID
2C-EDA) 0 0 0 0 0 0 0.16 0.03 0.05

Agreement Time

Tc T
PS-opt
c [1, 20.00] [1, 20.00] [1, 20.00] [1, 20.00] [1, 20.00] [1, 20.00] [1, 14.00] [1, 10.00] [1, 6.00]

T̄
B (S-EDA)
c 20.00 20.00 20.00 20.00 20.00 20.00 16.91 16.14 16.90

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (2.12E+00) (4.22E+00) (4.29E+00)

δ
T B

c

dist(S-EDA) 0 0 0 0 0 0 +2.91 +6.14 +10.9
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Table 10 (Continued)

(Mid, Short) IPB = 15, RPB = 60, τB = 50; IPS = 85, RPS = 40, τS = 25

T̄
B (ID2C-EDA)
c 20.00 20.00 20.00 20.00 20.00 20.00 15.07 10.93 6.82

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (6.06E–01) (1.08E+00) (1.58E+00)

δ
T B

c

dist(ID
2C-EDA) 0 0 0 0 0 0 +1.07 +0.93 +0.82

T̄
S (S-EDA)
c 20.00 20.00 20.00 20.00 20.00 20.00 16.55 15.27 16.20

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (2.02E+00) (3.93E+00) (4.48E+00)

δ
T S

c

dist(S-EDA) 0 0 0 0 0 0 +2.55 +5.27 +10.2

T̄
S (ID2C-EDA)
c 20.00 20.00 20.00 20.00 20.00 20.00 14.33 10.35 6.30

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (8.14E–01) (1.15E+00) (1.59E+00)

δ
T S

c

dist(ID
2C-EDA) 0 0 0 0 0 0 +0.33 +0.35 +0.30

Strategy

λB λ
PS-opt
B (0, 0.6415] (0, 0.6415] (0, 0.6415] (0, 0.6415] (0, 0.6415] (0, 0.6415] (0, 0.2802] (0, 0.2216] (0, 0.1682]

λ̄
PS-opt (S-EDA)
B 0.6243 0.6242 0.6244 0.6233 0.6232 0.6228 0.2708 0.2767 0.3110

(9.37E–03) (9.51E–03) (9.46E–03) (9.65E–03) (9.63E–03) (9.61E–03) (1.29E–01) (1.73E–01) (1.52E–01)

δ
λB

dist(S-EDA) −0.0172 −0.0173 −0.0171 −0.0182 −0.0183 −0.0187 −0.0094 +0.0551 +0.1428

λ̄
PS-opt (ID2C-EDA)
B

0.6415 0.6415 0.6415 0.6415 0.6415 0.6415 0.2808 0.2235 0.1712
(8.44E–15) (8.44E–15) (8.44E–15) (8.44E–15) (8.44E–15) (8.44E–15) (1.26E–02) (1.64E–02) (2.31E–02)

δ
λB

dist(ID
2C-EDA) 0 0 0 0 0 0 +0.0006 +0.0019 +0.0030

λS λ
PS-opt
S (0, 5.0000] (0, 5.0000] (0, 5.0000] (0, 5.0000] (0, 5.0000] (0, 5.0000] (0, 0.4374] (0, 0.2251] (0, 0.1296]

λ̄
PS-opt (S-EDA)
S 2.0026 2.2664 2.4863 1.9527 2.2258 2.4636 2.0629 1.6843 2.1043

(1.17E+00) (1.20E+00) (1.09E+00) (1.16E+00) (1.24E+00) (1.14E+00) (1.61E+00) (1.43E+00) (1.57E+00)

δ
λB

dist(S-EDA) −2.9974 −2.7336 −2.5137 −3.0473 −2.7742 −2.5364 +1.6255 +1.4592 +1.9747

λ̄
PS-opt (ID2C-EDA)
S

5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 0.5429 0.2813 0.1723
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (5.50E–01) (4.34E–01) (3.45E–01)

δ
λS

dist(ID
2C-EDA) 0 0 0 0 0 0 +0.1055 +0.0562 +0.0427

Convergence of EDA

NGen N̄Gen (S-EDA) 46.69 48.63 46.25 48.15 48.87 49.61 2500 2500 2500

N̄Gen (ID2C-EDA) 89.33 92.04 95.71 90.96 90.96 93.16 178.91 168.81 131.09

NRe_init N̄Re_init (S-EDA) 0 0 0 0 0 0 10 10 10

N̄Re_init (ID2C-EDA) 0 0 0 0 0 0 0.042 0.003 0.001

Table 11 Results of Type-II experiments in (Long, Short)

(Long, Short) IPB = 15, RPB = 60, τB = 100; IPS = 85, RPS = 40, τS = 25

Combinations of Weights

(wB
NP,wB

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 28.5 37.5 46.5

dTB
c 70 50 30

(wS
NP,wS

NS) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7)

dPB
c 71.5 62.5 53.5 71.5 62.5 53.5 71.5 62.5 53.5

dTB
c 14 10 6 14 10 6 14 10 6

PS-Optimization mode (Mode 1) (Mode 2) (Mode 3) (Mode 4) (Mode 5) (Mode 6) (Mode 7) (Mode 8) (Mode 9)

Agreement Price

Pc P
PS-opt
c 40.00 40.00 40.00 40.00 40.00 40.00 46.50 46.50 46.50
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Table 11 (Continued)

(Long, Short) IPB = 15, RPB = 60, τB = 100; IPS = 85, RPS = 40, τS = 25

P̄
B (S-EDA)
c 36.76 34.00 38.88 38.11 34.44 39.52 36.03 42.90 39.64

(1.52E+01) (1.62E+01) (1.40E+0) (1.32E+01) (1.64E+01) (1.19E+01) (2.02E+01) (1.32E+01) (1.73E+01)

δ
P B

c

dist (S-EDA) 3.24 6.00 1.12 1.89 5.56 0.48 10.47 3.60 6.86

P̄
B (ID2C-EDA)
c 40.00 40.00 40.00 40.00 40.00 40.00 46.62 46.49 46.54

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (2.44E–01) (4.91E–01) (1.02E+00)

δ
P B

c

dist (ID
2C-EDA) 0 0 0 0 0 0 0.12 0.01 0.04

P̄
S (S-EDA)
c 39.76 37.29 42.57 40.79 36.72 42.52 38.63 46.20 42.46

(1.72E+01) (1.85E+01) (1.57E+01) (1.48E+01) (1.80E+01) (1.33E+01) (2.18E+01) (1.48E+01) (1.87E+01)

δ
P S

c

dist(S-EDA) 0.24 2.71 2.57 0.79 3.28 2.52 7.87 0.3 4.04

P̄
S (ID2C-EDA)
c 40.00 40.00 40.00 40.00 40.00 40.00 46.62 46.49 46.54

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (2.44E–01) (4.91E–01) (1.02E+00)

δ
P S

c

dist(ID
2C-EDA) 0 0 0 0 0 0 0.12 0.01 0.04

Agreement Time

Tc T
PS-opt
c [1, 20.00] [1, 20.00] [1, 20.00] [1, 20.00] [1, 20.00] [1, 20.00] [1, 14.00] [1, 10.00] [1, 6.00]

T̄
B (S-EDA)
c 16.89 16.27 17.08 17.57 16.20 18.13 14.33 17.23 15.64

(6.88E+00) (7.66E+00) (6.18E+00) (5.95E+00) (7.61E+00) (5.26E+00) (8.08E+00) (5.38E+00) (6.92E+00)

δ
T B

c

dist(S-EDA) −3.11 −3.73 −2.92 −2.43 −3.80 −1.87 +0.33 +7.23 +9.64

T̄
B (ID2C-EDA)
c 20.00 20.00 20.00 20.00 20.00 20.00 16.34 12.36 9.01

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (2.26E+00) (3.69E+00) (5.56E+00)

δ
T B

c

dist(ID
2C-EDA) 0 0 0 0 0 0 +2.34 +2.36 +3.01

T̄
S (S-EDA)
c 15.34 15.02 15.90 16.79 15.26 16.78 12.54 15.67 14.57

(6.72E+00) (7.74E+00) (6.16E+00) (5.89E+00) (7.45E+00) (5.50E+00) (7.93E+00) (5.43E+00) (7.02E+00)

δ
T S

c

dist(S-EDA) −4.66 −4.98 −4.10 −3.21 −4.74 −3.22 −1.46 +5.67 +8.57

T̄
S (ID2C-EDA)
c 20.00 20.00 20.00 20.00 20.00 20.00 15.51 11.83 8.49

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (3.49E–01) (3.70E+00) (5.30E+00)

δ
T S

c

dist(ID
2C-EDA) 0 0 0 0 0 0 +1.51 +1.83 +2.49

Strategy

λB λ
PS-opt
B (0, 0.9458] (0, 0.7481] (0, 0.5678] (0, 0.5445] (0, 0.4307] (0, 0.3731] (0, 0.2802] (0, 0.2519] (0, 0.3731]

λ̄
PS-opt (S-EDA)
B 0.5873 0.7223 0.5300 0.5840 0.6036 0.5019 0.7185 0.3983 0.7241

(7.88E–01) (9.38E–01) (8.32E–01) (8.72E–01) (7.27E–01) (7.97E–01) (1.07E+00) (7.23E–01) (1.27E+00)

δ
λB

dist(S-EDA) −0.3585 −0.0258 −0.0378 +0.0395 +0.1729 +0.1288 +0.4383 +0.1464 +0.3510

λ̄
PS-opt (ID2C-EDA)
B

0.3652 0.3652 0.3652 0.3652 0.3652 0.3652 0.1883 0.1654 0.1424
(1.89E–15) (1.89E–15) (1.89E–15) (1.89E–15) (1.89E–15) (1.89E–15) (1.34E–02) (2.39E–02) (3.85E–02)

δ
λB

dist(ID
2C-EDA) −0.5806 −0.3829 −0.2026 −0.1793 −0.0655 −0.0079 −0.0919 −0.0865 −0.2307

λS λ
PS-opt
S (0, 0.4763] (0, 0.2451] (0, 0.1411] (0, 1.1809] (0, 0.6077] (0, 0.2962] (0, 2.1243] (0, 1.0000] (0, 0.2962]

λ̄
PS-opt (S-EDA)
S 1.7324 2.2494 1.9806 1.9972 1.9617 2.0524 2.1617 2.1436 2.3895

(1.25E+00) (1.32E+00) (1.15E+00) (1.19E+00) (1.37E+00) (1.41E+00) (1.42E+00) (1.42E+00) (1.49E+00)

δ
λB

dist(S-EDA) +1.2561 +2.0043 +1.8395 +0.8163 +1.3540 +1.7562 +0.0374 +1.1436 +2.0933

λ̄
PS-opt (ID2C-EDA)
S

5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 1.3152 0.9042 0.6914
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (1.63E+00) (1.49E+00) (1.15E+00)

δ
λS

dist(ID
2C-EDA) +4.5237 +4.7549 +4.8589 +3.8191 +4.3923 +4.7038 −0.8091 −0.0958 +0.3952

Convergence of EDA

NGen
N̄Gen (S-EDA) 1976.16 1893.64 1829.05 1881.40 1943.57 1844.05 2500 2500 2500

N̄Gen (ID2C-EDA) 176.98 183.82 190.06 186.18 196.66 196.67 235.57 237.53 181.80

NRe_init
N̄Re_init (S-EDA) 7.568 6.964 7.254 7.381 6.527 7.091 10 10 10

N̄Re_init (ID2C-EDA) 0 0 0 0 0 0 0.001 0 0.039
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Analysis From the results of optimization modes 1 to 6
in Tables 9 to 11, it can be observed that the values of
N̄Re_init(S-EDA) were 0 in (Long, Mid) and (Mid, Short) but
were very high (> 6) in (Long, Short). Hence, S-EDAs re-
quired an extremely many generations for coevolving con-
verged populations in (Long, Short). This is because (Long,
Short) has a large search space compared to (Long, Mid)
and (Mid, Short). These indicate that the search capabil-
ity of S-EDAs was deteriorated in the large search space
of (Long short). In contrast, it can also be observed from
the results of optimization modes 1 to 6 in Tables 9 to 11
that the values of N̄Re_init(ID2C-EDA) were all 0. This indi-
cates that ID2C-EDAs have enough search capability even
in the large search space. From most of the results of the op-
timization modes 7 to 9 in Tables 9 to 11, it can be observed
that the values of N̄Re_init(S-EDA) were 10. This indicates that
S-EDAs could not have enough capability for coevolving
converged populations within reasonable numbers of gen-
erations for these modes. In contrast, from all the results of
the optimization modes 7 to 9 in Tables 9 to 11, it can be ob-
served that the values of N̄Re_init(ID2C-EDA) were very small.
This indicates that ID2C-EDAs have enough capability for
coevolving converged populations within reasonable num-
bers of generations for these modes. A similar analysis used
in Observation 2 can be used to explain why ID2C-EDAs
outperformed S-EDAs.

From the Observations 3 to 5, we can draw the following
conclusion for the Type-II experiments.

Conclusion 2 When the negotiation settings with insuffi-
cient AgZNP are provided for PS-optimizing agents, ID2C-
EDAs generally coevolve effective converged PS-optimizing
negotiation strategies for both B and S within reasonable
numbers of generations while S-EDA has a high possibility
of failure in coevolving such negotiation strategies.

6 Related works

Since this work mainly focuses on finding effective negotia-
tion strategies for PS-optimizing agents with incomplete in-
formation using coevolutionary learning, the related works
are approaches using EAs for evolving negotiation strate-
gies.

There are some existing works on using EAs as a decision
making component to determine an agent’s optimal negoti-
ation strategy (that ensures reaching an agreement success-
fully and achieving higher utilities) under incomplete infor-
mation settings by generating adaptive proposals at every
negotiation round (e.g., [18, 39, 40]). However, EAs in this
work were used for learning agents’ negotiation strategies to
find both agents’ effective negotiation strategies through co-
evolutionary learning under an incomplete information set-

ting. Hence, this section only introduces and discusses re-
lated works on applying EAs to learn effective negotiation
strategies.

In [24], Oliver has utilized standard GAs [7] for learn-
ing (simple) strategies of agents in which agents use quite
simple threshold rules for bargaining and showed that by
adopting GAs, agents can learn strategies for simple nego-
tiation games. Whereas empirical studies seem to indicate
the agents in [24] are generally successful in learning effec-
tive strategies, the research is only limited to learning simple
threshold rules; offers are accepted if agents learn strategies
having a higher utility over a predefined threshold.

In [23], Matos et al. have also utilized a GA for learn-
ing the most successful strategies against different types
of opponents in different negotiation situations in which a
service-oriented negotiation model in [4] was adopted to de-
termine successful strategies for different types of environ-
ment by coevolving negotiation strategies and tactics. Em-
pirical results in [23] are carried out for bilateral negotia-
tions having two issues and showed that the agents adopting
the GA are generally effective in evolving effective strate-
gies for different negotiation circumstances. Nevertheless,
the approach used in [23] has a serious limitation in that it
requires a centralized coevolution model where complete in-
formation about each agent is assumed for evolving popula-
tions using one GA. Furthermore, such assumption is not re-
alistic in many practical negotiation systems in which agents
generally have incomplete information about each other.

In [13], Jin and Tsang have utilized a genetic program-
ming (GP) for comparing the evolved results achieved from
the GP with sub-game perfect equilibrium (SPE) solutions
from game-theoretic analysis for complete information bar-
gaining problems and showed that GP results achieved ap-
proximate solutions to the SPE solutions. Later, in [12], Jin
has extended the simple bargaining problems to incomplete
information bargaining problems and showed that the GP
was capable of achieving reasonably good solutions. Simi-
lar to [23], the works [13] and [12] also have the problem
of the centralized coevolution model for the coevolutionary
learning using one GP.

This paper significantly and considerably extended the
previous works reported in [8, 9, 32] and [10].

In [32], Sim has utilized an EDA (specifically, UMDAc)
for coevolving effective negotiation strategies of agents hav-
ing difference preference criteria for optimizing price and
optimizing negotiation speed and it seems that the prelim-
inary empirical results in [32] showed that the EDA was
capable of coevolving PS-optimizing negotiation strategies
of agents for P-optimizing negotiation. The fitness function
used in [32] was the (total) utility function, which is similar
to (7) in this work, consisting of both price and speed utility
functions in which each weighting factor was incorporated
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to its corresponding utility function. However, using the co-
evolved results in [32], it is difficult to investigate conver-
gence of the EDA because the results have no information
about generations required for achieving converged popula-
tions. Later, in the extended work [9], Gwak and Sim have
found the problem of the fitness function in [32] and have
devised new fitness functions based on measuring the dif-
ference between: (1) the ratio of the price weighting factor
to the time weighting factor and (2) the corresponding ratio
of price utility to speed utility. Although the fitness func-
tion in [32] has some ambiguity in defining better negoti-
ation solutions with higher fitness in the composite utility
space (as described in Sect. 4.1), the fitness functions in [9]
are more effective in defining better negotiation solutions.
This is because they can differentiate negotiation strategies
with the given ratio of the price weighting to the speed
weighting from others. Empirical results in [9] showed that
the devised fitness functions outperform the fitness func-
tion used in [32]. Furthermore, comparing the coevolution
performance between conventional GA and EDA for find-
ing effective negotiation strategies, it can be found that both
conventional GA and EDA have limited performance for co-
evolving effective negotiation strategies.

In [8] and [10], Gwak and Sim empirically have proved
that conventional GA and EDA generally could not achieve
effective (or near-optimal) coevolution results for finding
optimal P-optimizing negotiation solutions. In addition, un-
der the assumption that dynamic diversity controlling meth-
ods can assist EAs to coevolve optimal solutions for both
populations (in which both agents adopted different EAs and
a decentralized coevolution model was assumed), the DR
procedure was devised and two local improvement methods
called LNS and PR were also devised for further coevolu-
tion performance improvement. If DR together with LNS
and PR is incorporated with conventional GA (respectively,
conventional EDA), we called it ID2C-GA (respectively,
ID2C-EDA). Empirical results showed that ID2C-GA and
ID2C-EDA have complementary performance in that one
achieved better performance for some cases and the other
one achieved better performance for the other cases. Fur-
thermore, since it was also shown that ID2C-EDA has better
performance than ID2C-EDA for coevolving optimal strate-
gies in the larger solution space, we adopted ID2C-EDA as
the EA model for the coevolutionary learning.

Finally, it is acknowledged that this work significantly
and considerably enhances [32] and [9] as well as the closely
related works [12, 13, 23, 24] as follows:

1) In [32] and [9], there is theory only for optimal ne-
gotiation solutions of P-optimizing negotiations given
as Theorems 1 and 2; however, there is no such the-
ory for the other types of negotiations (e.g., for PS-
optimizing negotiations). To this end, this work provides
theoretical background of optimal negotiation solutions

for PS-optimizing negotiations given as Theorems 3 to 5
by designing optimal PS-optimizing agents with com-
plete information. Hence, it is possible (i) to calculate
optimal negotiation solutions for each PS-optimization
mode and (ii) to evaluate optimality of coevolved nego-
tiation solutions (under an incomplete information set-
ting) by comparing them with the optimal negotiation
solutions.

(2) Since the fitness function in [9] (showing better perfor-
mance than the fitness function in [32]) simply mea-
sures difference of ratios between weightings and util-
ities, higher fitness values indicate that the ratios are
(much) closer. Furthermore, using the fitness function
in [25], it is hard to find direct relationship between
fitness and optimal PS-optimizing negotiation solutions
achieved from Theorems 3 to 5. Hence, it is required to
develop the new fitness function in (17) which is based
on composite likelihoods of agreement price in (14) and
agreement time in (15).

(3) Although the previous works [12, 13, 23, 24] and [32]
assumed a fully centralized coevolution model using
one EA in which complete information about each agent
is assumed for evolutionary learning, this work provides
the fully decentralized coevolution model in Sect. 4.2
using two EDAs (for populations of B and S, respec-
tively) and a coordinator to share and determine condi-
tions of coevolution termination and inappropriate co-
evolution. The decentralized coevolution model will be
more realistic in simulating negotiations of agents hav-
ing fully incomplete information about each other.

(4) Although the experiments in both [32] and [9] were car-
ried out under the assumption that both agents have
the same negotiation mode (e.g., if B is exact-PS-
optimizing, then S is also exact-PS-optimizing), this
work carried out extensive experiments by consider-
ing all possible combinations of (representative) PS-
optimizing negotiation modes between B and S (see Ta-
ble 3).

(5) As shown in [8] and [10], conventional EAs such as S-
GAs and S-EDAs has some drawbacks for coevolution-
ary learning due to premature convergence and biased
coevolution effects, which can be also observed from
the results in [32] and [9]. In contrast, ID2C-GAs and
ID2C-EDAs have enough coevolution capability for co-
evolutionary learning because they are augmented with
DR together with LNS and PR. Empirical results in
Observations 1 to 5 demonstrated that effective (some-
times optimal) PS-optimizing negotiation solutions can
be achieved using ID2C-EDAs for the coevolutionary
learning while such solutions cannot be achieved using
S-EDAs. Hence, this paper can be seen as an extension
of [8] and [10] providing empirical evidences of the ef-
fectiveness of ID2C-EDAs for coevolutionary learning.



A novel method for coevolving PS-optimizing negotiation strategies 415

7 Conclusion and future work

Based on the theoretical results obtained in Sect. 4.1 for find-
ing optimal negotiation strategies of PS-optimizing agents
with complete information, this work has developed an
effective coevolutionary learning mechanism (by adopting
ID2C-EDAs) for finding effective PS-optimizing negotiation
strategies of PS-optimizing agents with incomplete informa-
tion. The novel feature and significance of this research is
therefore designing and developing negotiation mechanisms
that can: (1) optimize both price and negotiation speed of
PS-optimizing agents with complete information and (2) co-
evolve effective, or (near-)optimal, negotiation strategies for
PS-optimizing agents with incomplete information.

The contributions of this work are detailed as follows.

(1) For PS-optimizing negotiation under a complete infor-
mation setting, this work determines P

PS-opt
c and T

PS-opt
c

(Theorems 3 to 5 in Sect. 4.1) that lead to optimal ne-
gotiation strategies for both PS-optimizing agents [(12)
and (13) in Sect. 4.1]. Whereas Theorems 1 and 2 are
based on Theorems 1 and 2 in [40, pp. 199–200], this re-
search, to the best of the authors’ knowledge, is the ear-
liest work suggesting optimality of agreements between
PS-optimizing agents with incomplete information.

(2) This contribution distinguishes this work from [40]
and [5] in that (i) [5] only showed that there are three
classes of optimal strategy such as Boulware, Linear
and Conceder depending on different negotiation sce-
narios and (ii) [40] only focused on showing that there
is optimal negotiation strategies for both P-optimizing
agents in which one agent (having a bargaining ad-
vantage over the opponent in terms of time) maxi-
mizes its price utility and guarantees that an agree-
ment is reached. The following summarizes the optimal-
ity of agreements for P-optimizing and PS-optimizing
agents.

Optimal agreement point of P-optimizing agents

When τB > τS

{
P

P -opt
c = RPS

T
PS-opt
c = τS

When τB < τS

{
P

P -opt
c = RPB

T
PS-opt
c = τB

Optimal agreement points of PS-optimizing agents

When τB > τS

⎧⎨
⎩

P
PS-opt
c = maxdPx

c
{UB

NP(dPB
c ),UB

NP(dPS
c )}

T
PS-opt
c = [0,maxdTx

c
{UB

NS(dTB
c ),UB

NS(dTS
c )}]

When τB < τS

⎧⎨
⎩

P
PS-opt
c = maxdPx

c
{UB

NP(dPB
c ),UB

NP(dPS
c )}

T
PS-opt
c = [0,maxdTx

c
{UB

NS(dTB
c ),UB

NS(dTS
c )}]

(3) Whereas several existing works (discussed in Sect. 6)
adopt EAs for evolving successful negotiation strate-
gies for agents under different negotiation situations,
these works are limited in that: (1) agents mostly did
not consider optimization of both price and negotiation
speed and (2) centralized coevolution models were used
for coevolutionary learning in which complete informa-
tion settings for agents are generally assumed. How-
ever, agents in this work are designed to optimize both
price and negotiation speed using coevolutionary learn-
ing for an incomplete information setting. Furthermore,
we adopted a decentralized coevolution model in which
incomplete information settings can be generally as-
sumed.

(4) In comparison with authors’ previous works [32] and
[9], this paper has provided much more detailed and en-
hanced designs for PS-optimizing agents for both com-
plete and incomplete information settings (Sect. 4).

(5) A new fitness function was designed and implemented
for S-EDAs and ID2C-EDAs and has the following
novel features.
(a) The likelihood based (Gaussian) distance metric

was formulated and applied to measure the close-
ness between the achieved agreement price and time
and the desired agreement price and time, respec-
tively.

(b) The fitness function is composed of a weighted
linear combination of individual similarities for
price and negotiation speed in which each sim-
ilarity is weighted by the corresponding prefer-
ence weight and is also magnified by the weight
for further discrimination from the other similari-
ties.

(c) While the previous fitness functions in [32] and [9]
as the form of utility functions lead to the deteri-
oration of intensification capability of both EDAs
(Sect. 4.2), the proposed fitness function is effec-
tive in coevolving effective negotiation strategies for
both PS-optimizing agents.

(6) Empirical results (Observations 1 to 5) show that
(i) ID2C-EDAs significantly outperforms S-EDAs in
terms of coevolution performance for achieving close
to the optimum and balanced solutions and (ii) through-
out the (decentralized) coevolutionary learning, ID2C-
EDAs adopting the proposed fitness function generally
achieved effective, or (near-)optimal, negotiation strate-
gies for both PS-optimizing agents for various com-
binations of preference criteria under the negotiation
settings having both sufficient and insufficient AgZNP.
From these results, we can conclude that ID2C-EDAs
are more suitable than S-EDAs for the coevolutionary
learning in achieving effective PS-optimizing negoti-
ation strategies. Hence, this work together with [10]
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can also provide evidences to show the effectiveness
of ID2C-EDAs for competitive coevolution of heteroge-
neous populations.

Finally, the authors acknowledge that although this work
develops a coevolutionary learning approach for finding ef-
fective PS-optimizing negotiation strategies under an in-
complete information setting in which one agent having a
bargaining advantage over the other in terms of time, this
work in its present form does not deal with the negotia-
tion situation that neither agent has bargaining advantage
in terms of time. Hence, extending this work to include
the design of PS-optimizing agents neither having a bar-
gaining advantage is on the agenda for future work. Since
the focus of this work is designing a PS-optimizing negoti-
ation mechanism, for simplicity, this work only considers
bilateral single-issue negotiations between PS-optimizing
agents. In addition, ID2C-EDAs were adopted for coevo-
lutionary learning because they have showed better perfor-
mance in searching larger solution space than ID2C-GAs
for competitive coevolution [10]. Therefore, other possible
enhancements of this work may include: (1) extending this
work to deal with multi-issue negotiations and (2) adopting
other possible types of EAs with the dynamic diversity con-
trolling method in this work to compare the coevolution per-
formances and find a more effective and efficient EA model
for the coevolutionary learning.
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