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Abstract Combinatorial Particle Swarm Optimization
(CPSO) is a relatively recent technique for solving com-
binatorial optimization problems. CPSO has been used in
different applications, e.g., partitional clustering and project
scheduling problems, and it has shown a very good perfor-
mance. In partitional clustering problem, CPSO needs to
determine the number of clusters in advance. However, in
many clustering problems, the correct number of clusters is
unknown, and it is usually impossible to estimate. In this
paper, an improved version, called CPSOII, is proposed as a
dynamic clustering algorithm, which automatically finds the
best number of clusters and simultaneously categorizes data
objects. CPSOII uses a renumbering procedure as a prepro-
cessing step and several extended PSO operators to increase
population diversity and remove redundant particles. Using
the renumbering procedure increases the diversity of pop-
ulation, speed of convergence and quality of solutions. For
performance evaluation, we have examined CPSOII using
both artificial and real data. Experimental results show that
CPSOII is very effective, robust and can solve clustering
problems successfully with both known and unknown num-
ber of clusters. Comparing the obtained results from CPSOII
with CPSO and other clustering techniques such as KCPSO,
CGA and K-means reveals that CPSOII yields promising re-
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sults. For example, it improves 9.26 % of the value of DBI
criterion for Hepato data set.
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1 Introduction

Clustering is one of the most popular techniques in data min-
ing, where the goal is to partition a set of unlabeled data ob-
jects into a number of groups of similar objects. Each group,
called a cluster, includes objects that are similar to objects
within the cluster and are different from those in other clus-
ters. Clustering techniques have been used in many different
applications, such as machine learning, image segmentation,
web mining, bioinformatics and economics.

So far, many clustering techniques have been proposed
[1]. In general, these techniques can be classified basically
into two main categories: hierarchical and non-hierarchical
(or partitional) clustering techniques [2].

Hierarchical clustering techniques organize data into a hi-
erarchical structure and do not need to determine the number
of clusters in advance. These techniques are mainly classi-
fied as agglomerative and divisive techniques [3]. An ag-
glomerative clustering technique is a “bottom up” approach
which treats each data object as a singleton cluster in the
beginning and then recursively merges two or more of the
most appropriate clusters to form a larger cluster until an
appropriate clustering result emerges. Divisive clustering is
a “top down” approach and proceeds in an opposite way. In
the beginning, all data objects belong to a cluster and are
successively divided into two smaller clusters until an ap-
propriate clustering result is obtained.
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On the other hand, partitional clustering techniques at-
tempt to directly partition data objects into a set of disjoint
clusters [4]. Partitional clustering is a combinatorial prob-
lem, which is a branch of discrete optimization problems.
Also, in partitional clustering, the set of feasible solutions
is finite and grows combinatorially with the problem size
[5]. Several studies have used Particle Swarm Optimiza-
tion (PSO) to solve Combinatorial Optimization Problems
(COP) [6]. Clerc [6] provides several examples of PSO ap-
plied to combinatorial problems such as the knapsack, the
traveling salesman, and the quadratic assignment problems.
Recently, some researches have used the combinatorial par-
ticle swarm optimization to solve the partitional clustering
problems. Jarboui et al. [7] proposed a clustering method
based on the Combinatorial Particle Swarm Optimization
(CPSO) with fixed number of clusters. In another study,
Yucheng and Szu-Yuan [8] proposed a clustering method
with variable number of clusters, and they used the CPSO
and K-means algorithms. A comprehensive review of evolu-
tionary algorithms for the clustering problem can be found
in [9].

The partitional clustering aims at optimizing cluster cen-
ters and the number of clusters. One of the major drawbacks
of the partitional approaches is the difficulty in determining
the number of clusters [2]. In many clustering problems, the
correct number of clusters is not known, and it is impossible
to estimate. Most clustering algorithms need to determine
the number of clusters in advance. A solution for this prob-
lem is to use dynamic clustering techniques. Dynamic clus-
tering techniques have two general objectives, finding the
optimal number of clusters and partitioning the data objects
into clusters.

This paper proposes a combinatorial particle swarm opti-
mization for dynamic data clustering. The proposed method
improves the ideas presented by Jarboui et al. [7] and is
called Combinatorial Particle Swarm Optimization II (CP-
SOII). It should be noted that CPSOII can be used for other
COPs as well, with only some modifications. CPSOII auto-
matically finds the best number of clusters and partitions the
data objects into clusters effectively. Most existing methods
for dynamic clustering, such as K-means and Combinato-
rial Particle Swarm Optimization (KCPSO) [8], Dynamic
Clustering using Particle Swarm Optimization (DCPSO)
[10] and Two-leveled Symbiotic Evolutionary Clustering
Algorithm (TSECA) [11], divide the problem into two sub-
problems: first, finding the number of clusters and second,
partitioning the data objects into clusters. They usually use
K-means clustering algorithm for the second objective, how-
ever, in K-means algorithm, the initialization step may have
an effect on the clustering results [3] and decreases the gen-
eral performance of the clustering method. CPSOII consid-
ers the clustering problem as a single problem and simul-
taneously finds both the number of clusters and the corre-
sponding clustering results.

Like most existing methods [7, 8, 12–16], CPSOII uses a
representation called label-based to encode each clustering
solution. This representation is naturally redundant and can
reduce the diversity of population in swarm intelligence al-
gorithms. Most of the existing methods, such as CPSO [7]
and KCPSO [8] have not paid attention to this problem. In
contrast, CPSOII proposes a novel renumbering procedure
to solve this problem. The proposed renumbering procedure
is used as a preprocessing step before applying the extended
PSO operators, and has two distinct advantages. First, CP-
SOII algorithm will be independent of different encodings of
a clustering solution. Second, it increases the rate of distinct
particles in swarm and hence, the diversity of population,
speed of convergence and quality of solution are increased.

The performance of CPSOII has been evaluated by both
artificial and real-world data sets with respect to three clus-
tering metrics, Sum of Squared Error (SSE), Variance Ratio
Criterion (VRC) and Davies-Bouldin Index (DBI). The ex-
perimental results of CPSOII are compared with CPSO [7],
Clustering Genetic Algorithm (CGA) [12] and K-means al-
gorithms, when the number of clusters is known and with
KCPSO [8] and CGA [12], when the number of clusters is
unknown.

The experimental results show that CPSOII is very ef-
fective, robust and can solve clustering problems success-
fully with both known and unknown number of clusters.
Comparing the obtained results of CPSOII with CPSO and
other clustering techniques, such as KCPSO, CGA and K-
means, reveals that CPSOII yields promising results, e.g., it
improves 9.26 % of the value of DBI criterion for Hepato
[17] data set. Additionally, the number of clusters found by
CPSOII algorithm is the closest number to that of classes
in different data sets. Furthermore, the rate of distinct parti-
cles in swarm and the speed of convergence of CPSOII are
higher than the other compared methods.

The rest of this paper is organized as follows. In Sect. 2,
related works are briefly reviewed. In Sect. 3, clustering
problem, particle swarm optimization and combinatorial
PSO algorithm for partitional clustering problem are de-
scribed as a background. In Sect. 4, CPSOII algorithm is
described in detail. Section 5 presents the clustering criteria,
implementations, benchmark data sets, experimental setups
and the results obtained by CPSOII in comparison to the
other clustering methods. Finally, conclusions are presented
in Sect. 6.

2 Related works

Clustering techniques based on Evolutionary Computing
(EC) and Swarm Intelligence algorithms (SI) have outper-
formed many classical clustering techniques [18]. There
have been a lot of studies in the literature for data cluster-
ing with evolutionary algorithms [9]. Although most of them



Dynamic clustering using combinatorial particle swarm optimization 291

are based on a fixed number of clusters, there are methods
with a variable number of clusters, in which the clustering
algorithm attempts to find optimal number of clusters. These
works will be briefly reviewed in this section.

Compared with other evolutionary algorithms, Genetic
Algorithm (GA) has been most frequently used in the clus-
tering problems. Hruschka et al. [12, 13] proposed a dy-
namic clustering algorithm based on GA. Their algorithm
was called CGA, it uses label-based integer encoding, in
which a chromosome is an integer vector of N positions.
Each element of this vector is associated with a data ob-
ject and takes a value (cluster label) over the alphabet
{1,2,3, . . . ,K}, where K is the number of clusters. In this
clustering algorithm, a limited crossover and a proportional
selection are used. Bandyopadhyay and Maulik [19] pro-
posed a GA-based algorithm to solve dynamic clustering
problems. Their algorithm is called Genetic Clustering for
Unknown K (GCUK). Liu et al. [20] developed a GA-based
clustering method which is called Automatic Genetic Clus-
tering for Unknown K (AGCUK). In this method, noisy se-
lection and division–absorption mutation were designed to
keep a balance selection between pressure and population
diversity.

Modified PSO algorithm for solving clustering is the em-
phasis of PSO-based clustering methods. Jarboui et al. [7],
presented a discrete PSO algorithm called CPSO to solve
partitional clustering problems. This method uses the label-
based representation to encode clustering solutions and the
number of clusters is known or set in advance. Karthi et
al. [21] proposed a Discrete Particle Swarm Optimization
Algorithm (DPSOA) for data clustering. In DPSOA algo-
rithm, particles are represented as groups of data objects
called cluster blocks. Also, Omran et al. [10] proposed a dy-
namic clustering approach, based on PSO. Their algorithm
was called DCPSO and applied to an unsupervised image
classification. In DCPSO, the binary PSO is used to find
the best number of clusters, and the center of the chosen
clusters is then refined via K-means clustering algorithm.
Yucheng and SzuYuan [8] used CPSO [7] and K-means al-
gorithms for dynamic data clustering. Their algorithm was
called KCPSO. In each iteration of KCPSO, the CPSO al-
gorithm is used to optimize the number of clusters, and then
K-means is used to find the best clustering result. The au-
thors compared KCPSO with DCPSO and GCUK and the
results revealed that in most cases, KCPSO outperforms
DCPSO and GCUK in both finding the best number of clus-
ters and clustering results. Latif et al. [22] presented a dy-
namic clustering method, based on binary multi-objective
PSO that is called Dynamic Clustering using Binary Multi-
Objective Particle Swarm Optimization (DCBMPSO). Paoli
et al. [23] also used multi-objective PSO for dynamic clus-
tering. This method was applied on hyper-spectral images as
a case study. In this method, each particle position is repre-
sented as a vector of 2 × K × D + D elements, where K

is the number of clusters represented by a particle, and D is
the number of dimensions of data objects. First K × D ele-
ments of particle position are the mean of clusters. Second
K × D elements are the variance of clusters and last D ele-
ments determine the selected and unselected dimensions of
data objects for clustering.

The hybrid evolutionary algorithms have also been used
in clustering. Niknam et al. [4] presented a hybrid evolution-
ary algorithm based on PSO and Simulated Annealing (SA)
to find optimal cluster centers. In another study, Niknam and
Amiri [24] proposed a cluster analysis optimization algo-
rithm based on a combination of PSO, Ant Colony Opti-
mization (ACO) and K-means. Siriporn and Kim [25] also
proposed a combination of GA, ACO and fuzzy c-means for
partitional clustering problem.

3 Background

In this section, we describe the clustering problem, particle
swarm optimization and combinatorial PSO algorithm for
partitional clustering problems.

3.1 Clustering problem

The clustering problem is formally defined as follows:
Consider a set of N d-dimensional data objects O =

{O1,O2, . . . ,ON}, where Oi = (oi1, oi2, . . . , oid) ∈ Rd .
Each oij called a feature (attribute, variable, or dimension)
and presents value of data object i at dimension j .

Given O the set of data objects, the goal of partitional
clustering is to divide the data objects into K clusters
{C1,C2, . . . ,CK}, that satisfies the following conditions:

(a) Ci �= ϕ, i = 1, . . . ,K

(b)
⋃K

i=1 Ci = O

(c) Ci ∩ Cj = ϕ, i, j = 1, . . . ,K and i �= j

In general, the data objects are assigned to clusters based
on a similarity measure. In this paper, we use Euclidean dis-
tance [3] for this purpose.

3.1.1 Encoding schemes

Several encoding schemes of clustering solutions have been
proposed in the literature. Hruschka et al. [9] categorized
them into three types: binary, integer and real. In this paper,
CPSOII uses a label-based representation. This representa-
tion is an important integer encoding, in which a solution
is an integer vector of N labels, each label corresponds to
a particular data object and determines the cluster number
of data object in the solution [9]. However, the label-based
representation is naturally redundant and one-to-many, i.e.,
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Fig. 1 An example of the label-based integer encoding and redundant
solutions

there are K! different solutions that represent the same solu-
tion [9]. Figure 1 shows an example of the label-based rep-
resentation with redundant solutions. The problem can be
solved by applying a renumbering procedure [26].

3.2 Particle swarm optimization (PSO)

PSO is an evolutionary optimization technique introduced
by Kennedy and Eberhart [27], which is inspired by the so-
cial behavior of bird flocking and fish schooling. PSO is a
population-based search method, where the individuals, re-
ferred to as particles, are grouped into a swarm. Each parti-
cle represents a candidate solution to the optimization prob-
lem and is determined by its position and velocity. In addi-
tion, each particle has memory and retains its best experi-
ence (Pbest).

PSO combines self-experiences with social-experience.
In this algorithm, a swarm of particles flies through the
search space. However, this search process is not carried out
entirely randomly and the position of a particle is influenced
by the following factors: best position visited by itself (i.e.,
its own best experience), the position of the best particle in
its neighborhood (i.e., the best social experience), and its
current velocity. When a particle takes the entire population
as its neighbors, the best value is a global best (called Gbest)
and when it takes the smaller group as its neighbors, the best
value is a local best, called Lbest. The performance of each
particle is measured according to a predefined fitness func-
tion.

During the search process, the particles are moved ac-
cording to the following equations:

vt+1
i = wvt

i + c1r1
(
Pbestti − xt

i

) + c2r2
(
Gbestt − xt

i

)
(1)

xt+1
i = xt

i + vt+1
i (2)

Where xt
i and vt

i are the current position and the velocity
of ith particle at iteration t , respectively. Gbestt and Pbestti
are the global and personal best position of ith particle dur-
ing iterations 1 to t , respectively. w is the inertia weight that
controls the impact of the previous velocities on the current
velocity. r1 and r2 are uniformly distributed random vari-
ables in range [0,1] to provide stochastic weighting of the

different components participating in the particle velocity
definition. c1 and c2 are the factors to determine the impact
of the personal best and the global best, respectively. After
updating the velocity and position of a particle, its Pbest is
updated according to (3).

Pbestt+1
i =

{
xt+1
i if f (xt+1

i ) < f (Pbestti ),

Pbestti otherwise.
(3)

Where f (xt+1
i ) < f (Pbestti ) means that the new position

xt+1
i is better than the current Pbest of the ith particle. After

updating the velocity, position and Pbest of all particles, the
particle with the best fitness is selected as Gbestt+1. These
operations are repeated until a termination criterion is met
(e.g., the number of iterations is performed, or the adequate
fitness is reached).

The main strength of PSO is its fast convergence, in con-
trast to many global optimization algorithms like GA, SA,
Tabu Search (TS) and etc. [28]. But for applying PSO suc-
cessfully, one of the key issues is to find how to map the
problem solution into the PSO particle, which have great
impacts on its feasibility and performance [29].

3.3 Combinatorial PSO

Jarboui et al. [7] presented a new discrete PSO algorithm
called CPSO to solve partitional clustering problems. In this
paper, CPSO algorithm is presented as CPSOI. CPSOI, like
many clustering algorithms, needs to determine the number
of clusters in advance.

It is worth remembering that the original PSO, as op-
posed to CPOSI, is basically developed for continuous opti-
mization problems. CPSOI essentially differs from the orig-
inal (or continuous) PSO in two characteristics: particle and
velocity definitions. In the original PSO, a real-based repre-
sentation is employed to encode each particle. Analogously,
CPSOI uses the label-based representation to encode clus-
tering solutions. In contrast to the velocity definition of the
original PSO mentioned in (1), CPSOI uses (4) to update the
velocity of each particle.

vt+1
ij = wvt

ij + r1c1
(−1 − yt

ij

) + r2c2(1 − yt
ij ) (4)

where

yt
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if xt
ij = Gbesttj ,

−1 if xt
ij = Pbesttij ,

−1 or 1 randomly if (xt
ij = Gbesttj = Pbesttij ),

0 otherwise.

Where Y t
i is a dummy variable used to permit the transition

from the combinatorial state to the continuous state and vice
versa. The change of the velocity vt

ij depends on the value

of Y t−1
i . It should be noted that if the velocity of a particle

is more than the maximum user-defined speed limit (Vmax)
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or less than the minimum user-defined speed limit (Vmin), it
will be set Vmax or Vmin, respectively.

After updating the velocity, the position of each particle
is updated according to (5).

xt+1
ij =

⎧
⎪⎨

⎪⎩

Gbesttj if yt+1
ij = 1,

Pbesttij if yt+1
ij = −1,

a random number otherwise,

(5)

where

yt+1
ij =

⎧
⎪⎨

⎪⎩

1 if λt+1
ij > α,

−1 if λt+1
ij < −α,

0 otherwise,

λt+1
ij = yt

ij + vt+1
ij .

Where α is manually determined by experts as a parameter
for fitting intensification and diversification.

4 Proposed CPSOII

CPSOI has several shortcomings. First, it needs to determine
the number of clusters in advance. Second, it uses the label-
based representation to encode clustering solutions, there-
fore, the particles of swarm are prone to the redundancy.
Third, during the evolution process, it may generate invalid
particles, because the number of clusters is fixed and it is
possible to generate an empty cluster. CPSOII is an exten-
sion of the original PSO algorithm for solving partitional
clustering problems, it automatically finds the best number
of clusters and simultaneously categorizes data objects. The
general process of CPSOII algorithm is given in Fig. 2.

CPSOII algorithm consists of seven steps. In the first
step, algorithm parameters, such as swarm size, maximum
number of iterations, and parameters used in the velocity
equation are initialized. In the second step, the initial parti-
cles of swarm are generated and the Pbest of each particle is
initialized with current position of the corresponding parti-
cle. This step includes two activities: generating particles by
using K-means algorithm and generating particles randomly.
After generating initial particles, the fitness of each particle
is calculated in the third step. Thereafter, in the fourth step,
the particle with the best fitness is selected as the Gbest
particle. In the fifth step, the position and velocity of each
particle Xt

i is updated. This step has four sub-steps. First,
the renumbering procedure is used to renumber Pbest and
Gbest clusters according to their similarity with Xt

i clusters.
Then, the velocity equation of CPSOII (see (6)) is used to
compute the velocity of the particle and then the particle is
moved to a new position. Finally, the validity of the particle
is evaluated and if it is invalid, the correction procedure is
used to make it valid. After updating the velocity and posi-
tion of each particle according to the fifth step, the fitness

Fig. 2 General process of CPSOII algorithm

of all particles are computed again in the sixth step. Finally,
in the seventh step, Gbest and Pbest of each particle are de-
termined. In the mentioned steps, the steps 1–4 are executed
only once, but steps 5–7 are repeated until the termination
condition is satisfied.

The main concepts of CPSOII and its steps are described
in the following sections.

4.1 Cluster encoding in particles

CPSOII uses the label-based integer encoding to repre-
sent the clustering solutions. With this schema, the posi-
tion Xi of each particle will simply be a vector that pro-
vides integer numbers representing the cluster number of
data objects. The velocity Vi of each particle will be a
vector of integer numbers representing the recent move.
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In this paper, we represent the swarm as a set of M par-
ticles. Each particle is determined with its position, ve-
locity and Pbest. Each particle position Xi and particle
velocity Vi , i = 1, . . . ,M , characterized by N elements,
xi1, . . . , xij , . . . , xiN and vi1, . . . , vij , . . . , viN , where N is
the number of data objects, xij ∈ {1, . . . ,Ki}, represents
the cluster number of j th data object in ith particle and
vij ∈ {0, . . . ,Ki}, represents the recent move of j th data ob-
ject in ith particle. The velocity value of 0 in each element
means that cluster number of corresponding data objects in
the previous move was not changed. A representation of the
particle position and velocity are shown in Fig. 3. It should
be noted that Ki is the number of clusters related to particle
i and is assumed to lie in the range [Kmin,Kmax], where the
value of Kmin by default is 2, unless it is manually specified
and the value of Kmax by default is chosen

√
N + 1 [30],

unless it is manually specified.

Fig. 3 CPSOII particle position and velocity structure

4.2 Swarm initialization

The most common technique in EC for initializing popula-
tion is random uniform initialization, in which each particle
of the initial swarm and, consequently, the initial best po-
sitions are drawn by sampling a uniform distribution over
the search space [31]. Random uniform initialization is an
unguided initialization process to generate the initial swarm
and if there are items of information available regarding the
location of the global minimizer in the search space, then it
is capable to initialize the swarm around global minimizer
and generate better particles. This is called guided initial-
ization.

CPSOII algorithm uses both guided and unguided initial-
ization processes to generate the initial swarm of particles.
The flowchart of the swarm initialization is shown in Fig. 4.
The guided initialization in CPSOII algorithm is optional
and if it is not used, only the unguided initialization is used
to generate all particles of swarm. When the guided initial-
ization is used, the initial swarm of particles is partitioned
into two groups, the first group is generated by K-means al-
gorithm (guided initialization) and the second one is ran-
domly generated (unguided initialization). The maximum
number of particles in the first group is L = Kmax −Kmin +1
(note that if the maximum swarm size (M) is smaller than L,
then L = M). K-means algorithm is performed L times and
each time with 5 iterations. Each run of K-means algorithm
generates one particle with K clusters, where the value of K

for run i is Kmin + i −1. Initial points of K-means algorithm

Fig. 4 Flowchart of swarm
initialization
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are randomly generated, and thereafter, each data object is
assigned to the closest cluster center, based on the Euclidean
distance.

The second group of particles is randomly generated. The
number of particles in the second group is M − L. For par-
ticle i from the second group, the number of clusters Ki is
randomly generated in the range [Kmin,Kmax], then, each
data object of data set is randomly assigned to one cluster.

After generating the initial particles of swarm, the initial
velocity of all particles are assigned to zero and the initial
Pbest of each particle is assigned to its current position.

4.3 Fitness evaluation

In this paper, three different criteria, SSE, VRC, and DBI,
are separately used to compute the fitness of a particle. SSE
is a simple criterion and considers only within-cluster dis-
tance. This criterion is appropriate for algorithms with fixed
number of clusters. VRC and DBI consider both within-
cluster and between-cluster distances and are suitable for
the dynamic clustering algorithms. However, the DBI cri-
terion has been most frequently used in dynamic clustering.
Hence, only DBI criterion will be used to compare CPSOII
with dynamic clustering algorithms, and the three aforemen-
tioned criteria will be used to compare algorithms with the
fixed number of clusters.

4.4 Particles moving

In CPSOII algorithm, the movement of particles to a new
position is performed in four steps as shown in Fig. 2. These
steps are described with more details in below.

4.4.1 Cluster renumbering

The goal of the cluster renumbering step is to remove the
redundant particles described in Sect. 3.1.1, and to prepare
Pbesti and Gbest particles to calculate their difference with
particle Xi in the step 5.2. Figure 5 presents a pseudocode of
the proposed renumbering procedure. In part 5 of this proce-
dure, the similarity degree between the clusters of two input
particles is calculated by using a similarity function, then, in
part 6, two clusters with the highest similarity are matched
to each other. Part 6 of the procedure is repeated R times,
where R = min{Ki,KGbest} (or R = min{Ki,KPbesti }) and
in each iteration, two clusters of two input particles are
matched to each other and not be considered in the next iter-
ations. Thereafter, in part 9, the clusters of Gbest (or Pbesti )
are renumbered according to their matches with clusters of
Xi . Due to different variances of the number of clusters in
different particles, it is possible that some clusters of Gbest
or Pbesti will not be matched to any cluster of Xi or vice
versa. In this case, after renumbering matched clusters, un-
matched clusters of particles use the unused numbers in the

Fig. 5 Pseudocode of the renumbering procedure

cluster numbering (part 10). Table 1 shows the list of bi-
nary similarity functions used in CPSOII. Choi et al. [32]
collected and analyzed 76 binary similarity functions and
distance measures used over the last century.

Example 1 Figure 6 illustrates an example of the cluster
renumbering process in CPSOII algorithm. The similarity
degree of Cluster1 of Gbest with Cluster1 of Xi , using Jac-
card similarity function (see Table 1), is 3

4 and it is the high-
est similarity degree in this example. Therefore, these clus-
ters are matched to each other. After that, Cluster4 of Gbest
and Cluster2 of Xi , with similarity 2

3 is the highest similar-
ity degree and are matched to each other. Finally, Cluster2
of Gbest is matched to Cluster3 of Xi . Figure 6(c) illustrates
the result of the matching process. After matching, the clus-
ters of Gbest are renumbered to the corresponding matched
cluster numbers. Cluster3 from Gbest is an unmatched clus-
ter, so it gets an unused cluster number that is 4 in this ex-
ample.

The renumbering procedure makes CPSOII insensitive to
different encodings of clustering solutions.

Example 2 Consider two particles with the following en-
codings: [2222333111], [1112222333]—each one repre-
sents three clusters. Assuming that the first particle is a bet-
ter solution. In the movement of the second particle toward
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Fig. 6 Example of the cluster renumbering process in CPSOII

Table 1 Used similarity measures for binary data

Measure Forms

Simple Matching coefficient S(ci , cj ) = n11+n00
n11+n00+n10+n01

Rogers and Tanimoto measure S(ci , cj ) = n11+n00
n11+n00+2(n10+n01)

Jaccard coefficient S(ci , cj ) = n11
n11+n10+n01

Sokal and Sneath measure1 S(ci , cj ) = n11
n11+2(n10+n01)

Sokal and Sneath measure2 S(ci , cj ) = n11+n00

n11+n00+ 1
2 (n10+n01)

Dice coefficient S(ci , cj ) = n11

n11+ 1
2 (n10+n01)

NEI & LI measure S(ci , cj ) = 2n11
(n11+n10)+(n11+n01)

n00 denotes the number of data objects absent in both ci and cj (nega-
tive matches)

n11 denotes the number of data objects present in both ci and cj (posi-
tive matches)

n01 denotes the number of data objects absent in ci and present in cj .

n10 denotes the number of data objects present in ci and absent in cj

the first particle with current information of encoding, it is
diverted from better solution because the encodings of two
particles are very different and this may divert particles from
better solution. Using the renumbering procedure, the first
particle encoding is changed to [1111222333] and with this
encoding, the movement of the second particle toward the
first one, is more deliberate and rational than the previous
case. It is an important benefit and it guides the algorithm
toward better solutions.

4.4.2 Velocity computation

In PSO algorithm and its extensions, it is the velocity vector
that drives the optimization process. In CPSOII algorithm,
the velocity of each particle is modified by (6).

V t+1
i = W ⊗ V t

i ⊕ ((
R1 ⊗ (Pbestti � Xt

i )
)

⊕ (
R2 ⊗ (Gbestt � Xt

i )
))

(6)

Where Xt
i and V t

i are the position and velocity of particle i

at iteration t , respectively. Pbestti and Gbestt are the best po-
sitions obtained by the particle i and the swarm of particles
during time t , respectively. W , R1 and R2 are vectors with
size N comprising 0 or 1 elements, such that the values of
these vectors are randomly generated with probability w, r1

and r2, respectively. The values of w, r1 and r2 have major
effect on the performance of CPSOII.

In (6), Difference (�), Multiply (⊗) and Merge (⊕) op-
erators are introduced. Although, Difference operator is ap-
proximately similar to the calculation of y in the CPSOI al-
gorithm mentioned in (4), Multiply and Merge operators are
quite different from the operators used by CPSOI. In addi-
tion, the type of each velocity vector element of CPSOI and
CPSOII are different. In CPSOI, the velocity vector is a vec-
tor with N real elements, on the contrary, CPSOII uses the
velocity vector with N integer elements. The definitions of
the operators used in the body of (6) are defined as follows:

Difference operator (�) This operator computes the dif-
ference between the current position of ith particle, Xt

i , and
personal-best position (or global-best position). The � op-
erator is defined in (7) and (8). We use λP t

i to show the dif-
ference of particle Xt

i and its Pbestti position, and λGt
i for

Xt
i and Gbestt position.

λP t
i = Pbestti � Xt

i (7)

where

λpt
ij =

{
pbesttij if xt

ij �= pbesttij
0 otherwise

,

pbesttij ∈ {1, . . . ,KPbestti
},

λGt
i = Gbestt � Xt

i , (8)

where

λgt
ij =

{
gbesttj if xt

ij �= gbesttj
0 otherwise

,

gbesttj ∈ {1, . . . ,KGbestt }.
The difference between particle position Xt

i and Pbestti
(or Gbestt ) is a vector of N elements. If each nonzero el-
ement of the difference is replaced with the corresponding
element in Xt

i , then, the position of Xt
i will be modified to

the position of Pbestti (or Gbestt ). CPSOII algorithm uses
this property to move toward a desired position Pbestti (or
Gbestt ). According to this property, the difference between
two particles with same position is a vector with N zero el-
ements.
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Multiply operator (⊗) This operator manages the explo-
ration and exploitation abilities of the swarm, using W , R1

and R2 vectors. The values of these vectors are controlled
by w, r1 and r2 variables. Generally, the value of w controls
the movement of particles in the previous direction and the
values of r1 and r2 control the movement of particles in the
direction of Pbest and Gbest, respectively. The ⊗ operator
is equivalent to Hadamard product which is defined in (9).

C = A ⊗ B where ci = aibi . (9)

Where A and B are two vectors with the same size; ai and
bi are the ith element of vector A and B , respectively.

Merge operator (⊕) This operator merges two vectors of
N elements and defined by (10).

Y t
i = λP t

i ⊕ λGt
i (10)

where

yt
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λgt
ij if λgt

ij �= 0 and λpt
ij = 0,

λpt
ij if λgt

ij = 0 and λpt
ij �= 0,

λgt
ij or λpt

ij randomly if λgt
ij �= 0 and λpt

ij �= 0,

0 otherwise.
In CPSOII algorithm, the merge operator is used to merge

the three components of the velocity equation (see (6)).

4.4.3 Particle moving

After computing the velocity of a selected particle, the new
position of the particle is generated based on (11).

xt+1
ij =

{
vt+1
ij if vt+1

ij �= 0,

a random number r otherwise.
(11)

Where r is an integer random value uniformly distributed in
the range [1,Ki + 1] and Ki + 1 < Kmax. With this range,
CPSOII algorithm acquires the ability to add a new cluster.
However, the difference in the number of clusters of Xi with
Pbesti and Gbest can also cause some clusters in Xi to be
added or removed.

After computing the velocity value of each particle in the
original PSO, it is added to the current position of the parti-
cle and the new position of the particle is generated. In the
CPSOII, the velocity vector contains the recent movements
of each particle. This means that the non-zero elements of
velocity vector are the same as the corresponding elements
of the position vector. With this property of velocity vector,
we actually map (2) of the original PSO to (6) of CPSOII.
Therefore, in (11), there is no Merge operator.

Example 3 Figure 7 illustrates an example of creating a new
position and velocity of particle Xt

i . Figure 7(b, c, d) illus-
trates how the velocity operators (�, ⊗ and ⊕) are per-
formed. Figure 7(e) shows the particle movement and the
generation of its new position.

Fig. 7 An example of creating a new position and velocity of particle
Xi

4.4.4 Position validation

To avoid generating solutions with empty clusters, the new
position of each particle is checked. Then, if there are empty
clusters, they are removed by the renumbering process. In
the label-based representation, a particle is invalid if the
number of its clusters is smaller than the largest cluster num-
ber used in the cluster encoding. In each iteration of the cor-
rection procedure, the cluster with the largest cluster number
is renumbered to the smallest unused cluster number.

Example 4 Figure 8 illustrates an invalid particle (in which
clusters 1 and 3 are empty) as an example for performing
validation via the renumbering process. In this figure, par-
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Fig. 8 A sample of invalid solution and applying the correction pro-
cess

ticle Xt
i is an invalid particle, because it has just 4 clusters,

but the largest cluster number is 6.

5 Experimental results

In this section, the performance of five clustering algo-
rithms: CPSOII, CPSOI [7], CGA [12], KCPSO [8] and K-
means, are compared. The used criteria for comparing the
results are SSE, VRC and DBI.

5.1 Clustering criteria

SSE [3] is one of the most common partitional clustering cri-
teria and its general objective is to obtain a partition which
minimizes the squared error. This criterion is defined in (12).

SSE =
K∑

i=1

∑

O∈Ci

(ci − O)(ci − O)T (12)

where

ci = 1

Ni

∑

O∈Ci

O.

Where ci is the mean of cluster Ci (cluster centroid) and Ni

denotes the number of data objects belonging to cluster Ci .
SSE is an appropriate measurement when the number of

clusters is known. But for dynamic clustering or when the
number of clusters is unknown, SSE cannot be used because
its value is reduced by increasing the number of clusters and
if the number of clusters is equal to the number of objects,
then the value of SSE will be zero.

VRC [33] is another criterion which can be used for
cluster validation. This criterion considers both the within-
cluster and between-cluster distances. The VRC is defined
in (13).

VRC = Inter

SSE
× N − K

K − 1
(13)

where

Inter =
K∑

i=1

Ni(ci − c)(ci − c)T

c = 1

N

N∑

i=1

O.

The ratio (N − K)/(K − 1) is the normalization term and
prevents VRC to increase monotonically with the number of
clusters. Inter is the between-cluster distance and c is the
mean of all data objects (i.e., data centroid). A large value
of VRC shows better clustering results based on (13).

One of the popular criteria for the evaluation of clus-
ters is DBI [34]. It combines inter (between-cluster separa-
tion) and intra (within-cluster scatter) cluster distances. The
within-cluster scatter for cluster Ci is defined in (14) and
the between-cluster separation for two clusters Ci and Cj is
defined in (15).

Si,q =
(

1

Ni

∑

O∈Ci

‖O − ci‖q

2

) 1
q

(14)

dij,t = ‖ci − cj‖t . (15)

Si,q denotes the qth root of the qth moment of the objects
belonging to cluster Ci with respect to their mean. In (14)
and (15), q and t are integer numbers, where (q and t ≥ 1)
can be selected independently. Finally, DBI is defined as:

DB = 1

K

K∑

i=1

Ri,qt (16)

where

Ri,qt = max
j,j �=i

{
Si,q + Sj,q

dij,t

}

.

A small value of DBI shows better clustering results. The
computational complexity of DBI is higher than SSE and
VRC. However, it is an appropriate criterion for dynamic
clustering and is used recently in [8, 11, 14, 20, 35] for this
purpose.

5.2 Implementation

CPSOII is implemented in Microsoft Visual C#.Net 2010.
All experiments conducted in this paper were run in win-
dows 7 on Desktop pc with Intel Core i5, 2.4 GHz processor
and 4 GB real memory. We also implemented CPSOI de-
scribed in Sect. 3.3, KCPSO and CGA algorithm.

5.3 Experimental data

We evaluate CPSOII using artificial data sets (Table 2) and
real-world data sets (Table 3). Note that: (i) in Table 2, just
Dataset 1 has non overlapping clusters, (ii) the data sets
shown in Table 3 are used as a benchmark for the evalua-
tion of clustering methods in recent years.

5.4 Experiments setup

CPSOII has multiple parameters that must be set by user,
including Swarm Size, Max Iterations, w, r1, r2, Kmin, and
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Kmax. The values of w, r1 and r2 parameters determine the
exploration and exploitation abilities of the swarm. In CP-
SOII algorithm, with high values of r1 and r2, particles tend
to move toward Pbest and Gbest, respectively. With low val-
ues, particle motions are dependent on the value of w, in
which if the value of w is small, the particle motions will be
more random and if the value of w is large, the particle mo-
tions are dependent on the recent value of their velocities. To
improve the efficiency and accelerate the search process, it
is vital to determine the best value for each of these parame-
ters. For this purpose, we ran CPSOII algorithm with differ-
ent values of parameters (for all cases of these parameters in

Table 2 Description of the artificial data sets [36] used in [8, 19, 35]

Dataset # Data
objects

# Features # Classes Size of Classes

Dataset 1 400 3 4 Size of each class is 100

Dataset 2 250 2 5 Size of each class is 50

Dataset 3 300 2 6 Size of each class is 50

Dataset 4 500 2 10 Size of each class is 50

the range [0,1] with step 0.01) using all introduced data sets.
Then, we selected the values with the best results. In this ex-
periment, other parameters were set as follows: The swarm
is comprised of 150 particles and 2500 iterations. Both Kmin

and Kmax take the number of classes in the corresponding
data sets. Figure 9 illustrates the impacts of w, r1 and r2 pa-
rameters on the VRC criterion using Hepato data set. The re-

Table 3 Description of the real-world data sets

Dataset # Data
objects

#
Features

#
Classes

Size of Classes

Iris [37] 150 4 3 Size of each class is 50

Glass [37] 214 9 7 70, 76, 17, 29, 13, 9, 0

Breast
Cancer
[37]

683 9 2 239, 444

Libras
Movement [37]

360 90 15 Size of each class is 24

Hepato [17] 536 9 4 116, 178, 124, 118

Vowel [17] 871 3 6 72, 89, 172, 151, 207, 180

Fig. 9 Effects of w, r1 and r2 parameters on the VRC criterion using Hepato data set (Average of 10 runs)
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sults show that the suitable value for r1 is in range [0.4,0.5]
(Fig. 9(a)), for r2 is in range [0.6,0.7] (Fig. 9(b)) and for w

is in range [0.6,0.8] (Fig. 9(c)). We tested other introduced
data sets and got almost the same results. However, to obtain
better results on other data sets, the values of w, r1 and r2

may be modified.
The parameter settings of CPSOI, KCPSO and CGA al-

gorithms were determined by both referring to their original
papers and performing empirical studies. Table 4 illustrates
the parameter settings of CPSOI, CPSOII, KCPSO, CGA
and K-means algorithms.

5.5 Experimentations and results

In this section, we describe experiments carried out to test
the performance of CPSOII algorithm. For this purpose, we
investigate the effectiveness of CPSOII in two cases, with
the unknown and known number of clusters. In the first case,
the performance of CPSOII is compared with KCPSO [8]
and CGA [12]. In the second case, the performance of CP-
SOII is compared with CPSOI [7], CGA [12] and K-means
clustering algorithms.

Thereafter, we compare the speed of convergence of CP-
SOII, CPSOI, CGA and KCPSO algorithms toward quali-
fied solutions, in both with and without using K-means algo-
rithm for the swarm initialization (Guided and Unguided ini-
tialization). Finally, we evaluate the effect of the renumber-
ing procedure and various similarity functions on the quality
of solutions and the rate of distinct particles.

In all cases, algorithms run 10 times and the obtained
results for each algorithm are reported. Note that the run-
time of each algorithm is reported when the fitness value of
the evolutionary algorithms (CPSOII, CPSOI, KCPSO and
CGA) does not change during 50 iterations.

5.5.1 Experimental results with unknown number of
clusters

CPSOII is a dynamic clustering method and automatically
finds the best number of clusters during the clustering pro-
cess. In this section, we compare CPSOII with KCPSO [8]
and CGA [12], when the number of clusters is unknown. It
should be mentioned that KCPSO uses K-means in its ini-
tialization phase. Therefore, Guided & Unguided initializa-
tion is not applicable on KCPSO. For this reason, we have
executed KCPSO without any modifications. The results
provided by CPSOII and their comparison with KCPSO and
CGA algorithm, are shown in Tables 5 and 6. For each data
set, the best results obtained by algorithms are highlighted
in bold face. The differences between number of classes
and AvgK of CPSOII, KCPSO and CGA for artificial and
real-world data sets are shown in Figs. 10 and 11, respec-
tively. Ta
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Fig. 10 Differences between
number of classes and Avg K of
CPSOII, CGA and KCPSO for
artificial data sets

Fig. 11 Differences between
number of classes and Avg K of
CPSOII, CGA and KCPSO for
real-world data sets

The results indicate that CPSOII with the Guided & Un-
guided initialization performs better than the average DBI
for artificial data sets (Table 5). But the value of average K ,
obtained by CPSOII with only the Unguided initialization,
is the closest number to the number of classes of data sets.
For real-world data sets (Table 6), CPSOII with the Guided
& Unguided initialization performs better than the average
DBI and K for most data sets. However, in some cases, CP-
SOII with the Unguided initialization shows better results.
Generally, the average number of clusters found by CPSOII
algorithm is the closest number to the number of classes in
different data sets.

5.5.2 Experimental results with known number of clusters

For the fixed value of K and parameter settings according to
Table 4, the provided results by CPSOII algorithm are com-
pared to CPSOI, CGA and K-means algorithms in Tables 7,
8 and 9. In these tables, Improvement Ratio (IR) is a sim-
ple metric to compute the improvement extent of CPSOII in
comparison to other methods. Equations (17), (18) and (19)

show IR metric according to the DBI, VRC and SSE criteria,
respectively.

IRDBI = y − x

y
× 100, (17)

IRVRC = x − y

x
× 100, (18)

IRSSE = y − x

y
× 100. (19)

Where x is the result obtained by CPSOII and y is the best
result obtained by other methods.

Based on the results shown in Table 7, for the artificial
data sets, CPSOII, CPSOI and CGA algorithms obtain the
same best value in the SSE and VRC criteria, but for the
DBI criterion, CPSOII algorithm obtains better than the best
value for Dataset 2 and Dataset 4. Also, the average value of
DBI criterion, obtained by CPSOI and CGA for Dataset 2,
Dataset 3 and Dataset 4, are worse than CPSOII. The results
of K-means algorithm for all data sets, except Dataset 1, are
worse than other algorithms.

Based on the results shown in Tables 8 and 9, for real-
world data sets, with both Guided and Unguided initializa-
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% tion, CPSOII performed better than CPSOI, CGA and K-

means in all of the three used criteria significantly. For ex-
ample, as shown in Table 8, the values of IRDBI for Libras
Movement and Hepato data sets are 8.44 % and 7.19 %, re-
spectively. Also, this value for Hepato using Guided & Un-
guided initialization (Table 9) is 9.26 %.

Figure 12 shows the IR values (IRDBI, IRVRC and IRSSE)
of CPSOII in the best and average values of three used cri-
teria with both the Guided and Unguided initialization.

5.5.3 Convergence test

The speed of convergence and the quality of solution are two
important problems in the optimization algorithms. These
problems are dependent on several factors, such as algo-
rithm type and heuristics used in various steps of the algo-
rithm. CPSOII as an extension of PSO algorithm inherits
the fast convergence property of PSO. Additionally, using
the renumbering procedure and the Guided initialization in-
crease the speed of convergence.

Experimental results show that the convergence of CP-
SOII toward the qualified solutions, in both cases of known
and unknown number of clusters, is faster than the other
compared algorithms. Figure 13 shows the convergence to-
ward the qualified solutions for CPSOII, CPSOI and CGA
algorithms using the Unguided initialization and based on
the DBI criterion. Based on the curves shown in Fig. 13,
the convergence of CPSOII toward the qualified solutions
in all of six real-world data sets is faster than CPSOI and
CGA. The difference of the convergence in Libras Move-
ment data set is more than others. The Libras Movement
data set is a high dimensional one (with 90 features) that
makes partitioning of its data objects more complex. The re-
sults shown in Fig. 13(d) indicate that CPSOII for complex
data sets achieves far better performance and convergence
than CGA and CPSOI.

The Guided initialization as a heuristic improves the
speed of convergence and the quality of solutions. Fig-
ure 14 shows the effect of the Guided initialization in the
convergence of CPSOII toward qualified solutions. The re-
sults show that by using the Guided initialization, the num-
ber of iterations for finding better solutions is reduced and
therefore, the speed of algorithms is increased. As men-
tioned above, KCPSO uses K-means in the swarm ini-
tialization phase, so the convergence of it is compared
with CPSOII only using Guided & Unguided initialization
(Fig. 15).

5.5.4 Effects of renumbering procedure and various
similarity functions

Population diversity is a way to monitor the degree of the
convergence or divergence in PSO search process [38]. Sev-
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Fig. 12 The IR values of CPSOII in the Best and Avg values of DBI, VRC and SSE criteria with both the Guided and Unguided initialization

eral definitions of PSO population diversity measurements
have been proposed in the literature [38]. There are dif-
ferent ways of introducing diversity and controlling its de-
gree. Random restart and controlling swarm size are sim-
ple techniques for this purpose. Norouzzadeh et al. [39]
used a random restart technique for injecting diversity to
swarm. Clerc [6] and Zhang et al. [40] changed the size
of swarm according to the performance of the algorithm
dynamically. The size of swarm is important, because too
few particles will cause the algorithm to converge prema-
turely to a local optima, while too many particles will slow
down the algorithm [41]. As described in Sect. 3.1.1, the
integer encoding scheme is naturally redundant. One of
the disadvantages of redundant particles is that it reduces
the size of swarm because there are more than one par-
ticle that represent the same solution. Thus, this problem
can reduce the diversity of PSO algorithm. In the CPSOII
algorithm, using the renumbering procedure is helpful for
solving this problem. Hence, removing redundant particles
in CPSOII increases the diversity of population and the
speed of convergence appropriately. Table 10 shows the ef-
fect of similarity functions on the Rate of Distinct Parti-
cles (RDP) and clustering results. In this table, RDP shows
the average rate of distinct particles during the evolution
process and computed by (20) at the end of each itera-
tion.

RDP =
MaxIteration∑

t=1

(

1 − (NOIdenticalt + NORedundantt )

SwarmSize

)

× 100 (20)

Where NOIdenticalt and NORedundantt are the number of
identical and redundant particles at iteration t , respectively.
As shown in Table 10 and as expected, when the renumber-
ing procedure is used, it appears that the rate of distinct par-
ticles is increased, and the average DBI is improved. Among
the various similarity functions, Sokal & Sneath2 similarity
function obtains better the average DBI and RDP in most
cases. In addition, for some data sets, Sokal & Sneath1 and
Rogers & Tanimoto similarity functions achieve suitable re-
sults. Based on these results, it is concluded that similarity
functions and renumbering procedure play key roles in the
evolutionary process and when they are used, the movement
toward the correct direction is facilitated. Figure 16 illus-
trates RDP in CPSOII, CPSOI and CGA during the evolu-
tion process. KCPSO uses real encoding, so it has not been
considered in this experiment.

Based on the results shown in Table 10 and Fig. 16, the
number of distinct particles in CPSOII with the renumber-
ing procedure is higher than CPSOI and CGA, thus, CP-
SOII is able to explore more regions. Moreover, it is con-
cluded that the rate of distinct particles is dependent upon
the number of objects in data sets, because for data sets
with more objects, the number of different permutations of
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Fig. 13 Comparing convergence of CPSOII, CPSOI and CGA algorithms toward qualified solutions using the Unguided initialization (using the
DBI criterion)
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Fig. 14 The effect of the Guided initialization in the convergence of CPSOII toward qualified solutions (using the DBI criterion)
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Fig. 15 Comparing convergence of KCPSO and CPSOII with the Guided & Unguided initialization toward qualified solutions (using the DBI
criterion)
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Fig. 16 Comparing the rate of distinct particles in CPSOII, CPSOI and CGA algorithms during the evolution process
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objects is high and thus, the probability of generating two
particles with the same or redundant clustering solution is
low. On the other hand, converging to the global best so-
lution leads to a decrease in the value of RDP, because
most of the particles move to the global best region and
the probability of generating two particles with the same
or redundant clustering solution in a small region is higher
than a large region. The RDP of CPSOII has been com-
pared with CPSOI and CGA algorithms and the results are
illustrated in Table 11. Based on these results, the CPSOII
algorithm has a better average DBI, and also the average
RDP during the evaluation process is higher than CPSOI and
CGA.

5.5.5 Scalability discussion

It should be noted that a major limitation of evolutionary
clustering techniques in comparison to traditional cluster-
ing techniques, such as K-Means, is that they are too time
consuming. There is a trade-off between time and quality
in clustering techniques. Traditional clustering techniques
sacrifice the quality of clustering in order to decrease the
process time, while evolutionary clustering techniques pre-
fer to achieve better clustering results by consuming more
time. To better illustrate this point, we used three large data
sets (introduced in Table 12) and compared CPSOII, CP-
SOI, CGA and K-means algorithms. The results of these
experiments are shown in Table 13.

The results indicate that although CPSOII, CPSOI and
CGA consume more time, their results are considerably bet-
ter than K-means.

Combining evolutionary clustering techniques with tradi-
tional clustering techniques is a solution to reduce the run-
time of evolutionary clustering techniques. Guided & Un-
guided initialization is a simple example of this combina-
tion. Comparing the results of Unguided initialization with
Guided & Unguided initialization in Tables 5, 6, 8 and 9
shows that the average time of algorithms with Guided &
Unguided initialization is better than Unguided initializa-
tion.

6 Conclusions

Partitional clustering methods attempt to partition the data
objects into a set of disjoint clusters directly. In this pa-
per, we proposed a combinatorial particle swarm optimiza-
tion for dynamic data clustering (CPSOII). CPSOII finds the
best number of clusters automatically and partitions the data
objects into clusters effectively. Compared with other PSO
based clustering algorithms, such as CPSOI, KCPSO and
DCPSO, CPSOII operators are simple and effective. CP-
SOII uses both the guided and unguided initialization to Ta
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generate an initial swarm of particles. Experimental results
(presented in Sect. 5.5.3) revealed that the guided initial-
ization improved the speed of convergence and the quality
of solution in most cases. However, in some cases, the best
value obtained by algorithm with the guided initialization
was worse than algorithm with the unguided initialization.

CPSOII uses the renumbering procedure as a preprocess-
ing, before computing the velocity of each particle. This
procedure removes redundant particles and consequently in-
creases the rate of distinct particles and the diversity of pop-
ulation. In addition, it makes the CPSOII algorithm insen-
sitive to different encodings of clustering solutions. This is
an important advantage and increases the speed of conver-
gence and the quality of solutions, because particles are con-
sciously moved in this case. In this paper, we used seven dif-
ferent binary similarity functions for the renumbering proce-
dure. The effects of these functions were tested and results
revealed that the Sokal & Sneath2 similarity function ob-
tained better average DBI and the rate of distinct particles in
most cases.

The performance of CPSOII is evaluated with both artifi-
cial and real-world data sets and also with the consideration
of three clustering metrics, SSE, VRC and DBI. Comparing
the obtained results of CPSOII with CPSO [7], KCPSO [8],
CGA [12] and K-means algorithms revealed that CPSOII
yielded promising results, for example, it improved 9.26 %
of the value of DBI criterion for Hepato data set. The ob-
tained results for unknown number of clusters showed that
CPSOII with the guided initialization achieved better aver-
age DBI for most data sets. Also, the obtained average K

(number of clusters) with CPSOII is the closest number to
the number of classes of data sets in comparison to KCPSO
and CGA.

In future work, we intend to use Multi-Objective Particle
Swarm Optimization (MOPSO) to dynamic data clustering
to improve the performance of the proposed method. More-
over, we are going to use guided and unguided mutation and
population topology to improve the results.
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