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Abstract We present a new framework, managing Con-
straint Satisfaction Problems (CSPs) with preferences in a
dynamic environment. Unlike the existing CSP models man-
aging one form of preferences, ours supports four types,
namely: unary and binary constraint preferences, composite
preferences and conditional preferences. This offers more
expressive power in representing a wide variety of dynamic
constraint applications under preferences and where the pos-
sible changes are known and available a priori. Conditional
preferences allow some preference functions to be added
dynamically to the problem, during the resolution process,
if a given condition on some variables is true. A compos-
ite preference is a higher level of preference among the
choices of a composite variable. Composite variables are
variables whose possible values are CSP variables. In other
words, this allows us to represent disjunctive CSP variables.
The preferences are viewed as a set of soft constraints us-
ing the fuzzy CSP framework. Solving constraint problems
with preferences consists in finding a solution satisfying all
the constraints while optimizing the global preference value.
This is handled by four variants of the branch and bound
algorithm, we propose in this paper, and where constraint
propagation is used to improve the time efficiency in prac-
tice. In order to evaluate and compare the performance of
these four strategies, we conducted an experimental study on
randomly generated dynamic CSPs with quantitative prefer-
ences. The results are reported and discussed in the paper.
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1 Introduction

A Constraint Satisfaction Problems (CSP) consists of a fi-
nite set of variables with finite domains, and a finite set of
constraints restricting the possible combinations of variable
values [9]. A solution tuple to a CSP is a set of assigned val-
ues to variables that satisfy all the constraints. Since a CSP
is known to be an NP-hard problem in general,1 a backtrack
search algorithm of exponential time cost is needed to find
a complete solution. In order to overcome this difficulty in
practice, constraint propagation techniques have been pro-
posed [9, 15, 18, 23]. The goal of these techniques is to
reduce the size of the search space before and during the
backtrack search. In the past four decades the CSP frame-
work, with its solving techniques, has demonstrated its abil-
ity to efficiently model and solve a large size real-life appli-
cations, such as scheduling and planning problems, config-
uration, bioinformatics, vehicle routing and scene analysis
[21]. However, dealing with these applications requires the
consideration of their dynamic aspect since they are usually
evolving in a non static environment. Moreover, the goal in
general when tackling these applications is to find a good
(if not the best) solution (or scenario) satisfying the problem
requirements while optimizing a given objective function.

This has motivated us to propose the following exten-
sions to the CSP framework in order to manage, in a dy-
namic environment, constraints with preferences.

1There are special cases where CSPs are solved in polynomial time,
for instance, the case where a CSP network is a tree [15, 19].
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In order to allow the addition of variables and their
related constraints dynamically to the problem to solve,
during the resolution process, we have extended the CSP
with composite variables and activity (or conditional) con-
straints. We call Conditional and Composite Constraint Sat-
isfaction Problem (CCCSP) this extension. Composite vari-
ables are variables whose possible values are CSP vari-
ables.2 In other words this allows us to represent disjunc-
tive CSP variables. An activity constraint has the following

form X1 ∧ · · · ∧ Xp
condition→ Y where X1, . . . ,Xp and Y are

variables (composite or CSP variables). This activity con-
straint will activate Y (Y will be added to the problem to
solve) if X1 ∧ · · · ∧ Xp are active (currently present in the
problem to solve) and condition holds between these vari-
ables. condition corresponds here to the assignment of par-
ticular values to some variables. Solving a CCCSP is a de-
cision problem which consists in looking for an assignment
of values to the CSP variables such that all the constraints
are satisfied. Like a CSP, a CCCSP is in general NP-hard
and in order to efficiently solve it, we have updated the con-
straint propagation techniques we mentioned earlier in order
to handle the case of conditional constraints and composite
variables.

Preferences are handled in a dynamic environment by
augmenting the CCCSP with the following: unary and bi-
nary constraint, composite and conditional preferences.
We call Conditional and Composite Constraint Satisfac-
tion Problem with Preferences (CCCSPP) this augmented
model. Unary (also called variable value) and binary con-
straint preferences associate degrees of preferences respec-
tively to variables domain values and constraints,3 in order
to favor some decisions. A composite preference is a higher
level of preference among the choices of a composite vari-
able. Conditional preferences allow some preference func-
tions (unary or binary constraint; or composite) to be added
dynamically to the problem (associated to a given CSP vari-
able, constraint or composite variable), during the resolution
process, if a given condition on some variables is true. Solv-
ing a CCCSPP is an optimization problem which consists in
finding the best solution according to the preference values.
This is done by a variant of the branch a bound algorithm
we propose in this paper and where constraint propagation
is used to prune some inconsistent values at the early stage
of the resolution process. Experimental tests, we conducted
on random CCCSPPs generated with the RB model [37], fa-
vor the MAC principle [9, 15] as the constraint propagation
strategy to be used within the branch and bound algorithm.

2We call CSP variables, the variables of a traditional CSP.
3In this paper, we are assuming that the constraints are binary and are
defined in extension. For instance, the constraint Cij between 2 vari-
ables Xi and Xj is the subset of the Cartesian product of Xi ’s and Xj ’s
domains.

The remaining of the paper is structured as follows. First,
related work in the area of constraint preferences is reported
in the next section. We then introduce in Sect. 3, through
an example, our CCCSP model and the corresponding solv-
ing techniques. Section 4 introduces the CCCSPP through
unary and binary constraint, composite and conditional pref-
erences. In Sect. 5 we present the branch and bound al-
gorithm for solving CCCSPPs. Experimental tests we con-
ducted on randomly generated CCCSPPs are presented in
Sect. 6. Conclusion and future work are finally listed in
Sect. 7.

2 Related work

Classical constraints, also called hard constraints, are rela-
tions that can be satisfied or violated. This two level notion
of satisfiability has been generalized to several levels in or-
der to express quantitative preferences. This generalization
is called a soft constraint. In order to handle soft constraints,
in the past decades the CSP framework has been extended to
several formalisms including fuzzy CSPs, weighted CSPs,
probabilistic CSPs and partial CSPs [11]. The most general
of these formalisms is the C-semiring-based Soft Constraint
Satisfaction Problems (SCSP) [6, 21]. In a SCSP, constraints
have several levels of satisfiability that are totally or partially
ordered according to the C-semiring structure. A semiring is
a tuple 〈A,+,×,0,1〉 such that:

– A is a set and 0,1 ∈ A;
– +, called the additive operation, is a commutative and as-

sociative operation such that 0 is its unit element;
– ×, called the multiplicative operation, is an associative

operation such that 1 is its unit element and 0 is its ab-
sorbing element. × distributes over +.

The set of the semiring specifies the values to be associ-
ated with each tuple of values of the variable domain. The
two semiring operations (+ and ×) represent constraint pro-
jection and combination respectively. A semiring for han-
dling constraints is called c-semiring. A c-semiring is a
semiring with additional properties on the two operations
such that + is idempotent, × is commutative, and 1 is the
absorbing element of +. A partial order relation ≤ is defined
over A to compare tuples of values and constraints.

Valued CSPs [5, 33] are an alternative to SCSPs with the
particularity that the levels of satisfiability in a valued CSP
are totally ordered [4].

Conditional Preference networks (CP-nets) [7] are a
graphical model for representing conditional and qualita-
tive preferences under the ceteris paribus assumption (with
all other things being without change). A CP-net is a set of
the cp-statements such as: “I prefer A to B when X holds”.
It is represented by a directed dependency graph (similar to
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a Bayesian Network) expressing all its cp-statements. Lex-
icographically ordered CSP in [12] is another alternative
framework for preferred variables and values. In this latter
model, variable selection is the primary factor while value
assignment is secondary. Recently, this framework has been
extended to Conditional lexicographic CSPs [36] for con-
ditional preferences. Qualitative (but unconditional) prefer-
ences have been addressed within the well known proposi-
tional satisfiability (SAT) problem as reported in [10]. In this
latter paper, the authors propose an extension of the Davis
Logemann Loveland procedure (DLL) to return an opti-
mal solution. Soft temporal constraints have been tackled in
[16] using fuzzy preferences and in [25] through utilitarian
preferences. A local search method, addressing Fuzzy CSPs
where some of the preferences are unspecified, has been pro-
posed in [13]. The goal here is to find an optimal solution
regardless of the missing information. In [22] a new model
has been proposed to tackle soft (called flexible) constraints
in a dynamic environment. The model is called Dynamic
Flexible CSP (DFCSP) and uses a solving method based on
a local repair algorithm called Flexible Local Change. Fi-
nally, in [28] the authors propose an approach that manages
CSP hard constraints, soft constraints and CP-nets.

To our best knowledge no published work addresses con-
straints with different types of preferences in a dynamic en-
vironment. Indeed, the difference between our model and
the works we cited earlier is that, we handle both qualita-
tive and quantitative preferences and in a dynamic environ-
ment (as opposed to, for instance, the work in [21] consid-
ering only the static environment). The dynamic aspect is
managed through conditional preferences and preferences
on composite variables (that we call composite preferences).
In Sect. 4 we will define, through examples, the different
components of our model using the Fuzzy CSP (FCSP) for-
malism [29]. Note that, since the fuzzy CSP only handles
quantitative preferences, we convert each qualitative prefer-
ence into a numeric value before processing it as we will see
through the different examples presented in Sect. 4.

3 Managing conditional constraints and composite
variables

3.1 The CCCSP model

In the following, we will first define the CCCSP model and
its corresponding constraint network (graph representation)
through the dress up game example. A backtrack search
method based on constraint propagation is then presented.

Definition 1 (Conditional and Composite Constraint Satis-
faction Problem, CCCSP) A CCCSP is CSP augmented by
conditional constraints and composite variables. More pre-
cisely, it is a tuple 〈X,DX,Y,DY , IV,C,A〉, where:

– X = {x1, . . . , xn} is a finite set of CSP variables.
– DX = {Dx1, . . . ,Dxn} is the set of domains of the CSP

variables. Each domain Dxi
contains the possible values

that xi can take.
– Y = {y1, . . . , ym} is the finite set of composite variables.
– DY = {Dy1, . . . ,Dym} is the set of domains of the com-

posite variables. Each domain Dyi
is the set of CSP vari-

ables that the composite variable yi can take.
– IV is the set of initial variables (including composite vari-

ables): IV ⊆ X ∪ Y .
– C = {C1, . . . ,Cp} is the set of compatibility constraints.

Each compatibility constraint is a binary relation4 be-
tween variables in case these latter variables are not com-
posite, or a set of binary relations if at least one of the two
variables involved is composite.

– A is the set of activity constraints. Each activity constraint
has the following form:

Z1 ∧ · · · ∧ Zp
condition→ T

where Z1, . . . ,Zp and T are (CSP or composite) vari-
ables; and p ≥ 1. This activity constraint will activate
T if Z1, . . . ,Zp are active and condition holds on these
variables. condition corresponds here to the assignment
of particular values to the variables Z1, . . . ,Zp .

Note that the CCTCSP we proposed in [26] is a particu-
lar case of the CCCSP where the CSP variables are events
defined on sets of numeric intervals and the compatibility
constraints, representing the relative position between a pair
of events, are disjunctions of Allen primitives [1, 14]. The
CCCSP can also be considered as a generalization of both
the CCSP [24] and the composite CSP [31] paradigms.

Like a CSP, we can represent a CCCSP by a graph where
nodes correspond to variables (CSP or composite variables)
while arcs represent compatibility or activity constraints.
Through the following example let us illustrate the CCCSP
and its graph representation.

Example 1 Let us consider the dress up game (see Fig. 1)
described as follows. This entertaining game provides the
user with sets of clothes, accessories and shoes. The user
will then use his/her free style Mix and Match imagination to
create a complete outfit. In order to assist the user to have an
appropriate outfit and be in a fashion trend, we can enhance
the dress up game by adding tips and advices (expertise)
from fashion designers. The fashion designers knowledge
can be viewed as the set of compatible constraints, activity
constraints and composite variables including the following:
“running shoes does not match with pants”, “pantsuit with

4Note that we only consider here the case of binary constraints. Non
binary constraints can actually be converted into binary ones in poly-
nomial time as shown in [2].
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Fig. 1 The dress up game

business shirt make you look elegant”, “jacket with jeans is
for a weekend look”, “set of skirt, jacket and shirt makes you
look feminine”, and “two piece matched suit without jewelry
is an appropriate dress for job interview”. A possible mix-
match dress up is to wear a T-shirt, short and running shoes
with a baseball cap. Another possible clothes set is a dress,
a necklace (J1) and a handbag (HB3) with pump shoes.

The dress up game is formulated in a natural way using
the CCCSP framework as follows (see Fig. 1 for the CCCSP
graph representation).

– Apparel and Shoes are initial active variables; the rest are
nonactive variables. Apparel is a composite variable.

– Activity constraints:

– APPAREL
APPAREL=TOP→ BOTTOM,

– APPAREL
APPAREL=BOTTOM→ TOP,

– SET
SET=Dress→ JEWELRY ,

– SET
SET=Dress→ HANDBAG,

– TOP
TOP=T-Shirt→ HAT ,

– BOTTOM
BOTTOM=Pant→ BELT ,

– BOTTOM
BOTTOM=Jeans→ BELT ,
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Fig. 2 Compatibility
constraints for the dress up
game

– and BOTTOM
BOTTOM=Skirt→ HANDBAG

– Compatibility constraints:
– (TOP, SHOES),
– (SET, SHOES),
– (BOTTOM, SHOES),
– (TOP, BELT),
– (HAT, BOTTOM),
– (JEWELRY, HANDBAG).

Figure 2 illustrates each of the above compatibility con-
straints.

3.1.1 Arc Consistency for CCCSPs: AC-3-CCCSP

In order to solve the CCCSP, we propose a solving method
based on constraint propagation. The goal of this method is
to overcome, in practice, the difficulty due to the exponential
search space of the possible CSPs generated by the CCCSP
to solve in addition to the search space we consider when
solving each CSP. Indeed, a CCCSP represents DM possible
CSPs where D is the domain size of the composite variables
and M the number of composite variables.

Constraint propagation enforces arc consistency [18, 23]
before and during the actual backtrack search as we will
show later when describing the details of our solving
method. In a classical CSP, arc consistency ensures that for
each variable pair (x1, x2), each value of x1’s domain has
a value in x2’s domain such that the constraint between the

two variables hold. In the case of a CCCSP, we have defined
arc consistency as follows.

We will assume in the following that x1 and x2 are non
composite variables while y1 and y2 are composite. After
identifying four possible cases depending on the constraint
shared by the two variables, arc consistency is enforced as
follows.

1. Case 1: The constraint is (x1, x2). This is the case in
a classical CSP. Arc consistency is applied here between
(x1, x2) i.e. each value a of x1 should have a support in
the domain of x2.

2. Case 2: The constraint is (y1, x1). Arc consistency is
applied between x1 and each CSP variable within y1 do-
main i.e. each value a, from the domain of each variable
x within y1, should have a support in the domain of x1.

3. Case 3: The constraint is (x1, y1). Each value a, from
the domain of x1, should have a support in at least one
domain of the variables within y1.

4. Case 4: The constraint is (y1, y2). Apply case 2 be-
tween y1 and each variable x within y2.

AC-3 [18] and its variant [3] are the most known and used
arc consistency algorithms. Figure 3 illustrates the code of
the algorithm AC-3. As shown in line 2 of the algorithm,
AC-3 starts with a list of all variable pairs (i, j) and enforces
the arc consistency for each of these pairs through the func-
tion REVISE as follows. For each value a from i’s domain,
REVISE looks for a value b in j ’s domain such that the con-
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Function REVISE(i, j)

1. REVISE ← false
2. For each value a ∈ Domaini Do
3. If there is no b ∈ Domainj such that

compatible(a, b)

4. Then remove a from Domaini

5. REVISE ← true
6. End-If
7. End-For

Algorithm AC-3
1. Given a constraint network CN = (E,R)

(E: set of variables, R: set of constraints
between variables)

2. Q ← {(i, j) | (i, j) ∈ R}
(list initialized to all relations of CN)

3. While Q �= Nil Do
4. Q ← Q − {(i, j)}
5. If REVISE(i, j) Then
6. Q ← Q  {(k, i) | (k, i) ∈ R ∧ k �= j}
7. End-If
8. End-While

Fig. 3 Pseudo-code of the algorithm AC-3

straint between i and j holds. If no such value b is found,
value a is removed from i’s domain (as it has no value in
j ’s domain supporting it). This change will be propagated
to all the variables sharing a constraint with variable i. For
that, we reconsider all variable pairs (k, i) where k is a vari-
able sharing a constraint with i. This is done in line 6 of the
algorithm AC-3.

To enforce arc consistency on a CCCSP we have ex-
tended AC-3 by considering the four cases above. We call
the new algorithm AC-3-CCCSP. Figure 4 illustrates the
pseudo-code of this algorithm. AC-3-CCCSP starts with a
list of pairs of variables to revise (the list Q containing all
the pair of variables sharing a constraint) and goes through
this list until this latter is empty. Each pair (i, j) is then pro-
cessed (revised) according to the above 4 cases as follows.

• Case 1. If i and j are CSP variables, we apply the tradi-
tional REVISE function of AC-3 [18] presented in Fig. 3.

• Case 2. If i is a CSP variable and j is a composite vari-
able, each value a of Di (where Di is the domain of vari-
able i) should have a support in at least one domain Dk

(where k is a CSP variable within the composite vari-
able j ). In other words, a is removed from Di if it does
not have any support in any domain Dk . This is imple-
mented by computing the union of the sets respectively
obtained by revising Di with each of the CSP variables
within j .

Algorithm AC-3-CCCSP
Given a graph G = (X,U)

Q ← {(i, j)|i, j ∈ U}
while Q �= Nil do

Q ← Q − {(i, j)}
if i or j is composite variable (cases 2, 3 and 4)

if REVISE_COMP(Di,Dj ) then
Q ← ⋃{(k, i)|k, i ∈ U and k �= j}

end if
else if REVISE(Di,Dj ) then (case 1)

Q ← ⋃{(k, i)|k, i ∈ U and k �= j}
end if

end if
end while

REVISE(Di,Dj )

REVISE ← false
For each value a ∈ Di do

if not compatible(a, b) for any value b ∈ Dj then
remove a from Di

REVISE ← true
end if

end for

REVISE_COMP (Di,Dj )

REVISE_COMP ← false
if i is a single variable and j is a composite variable
(case 2)

Dtmp ← ∅
For each event k ∈ Dj do

D ← Di − Dtmp

REVISE_COMP
← REVISE_COMP OR REVISE(D,Dk)

Dtmp ← Dtmp ∪ D

end for
Di ← Dtmp

end if
if i is a composite variable and j is a single variable
(case 3)

For each event k ∈ Di do
REVISE_COMP
← REVISE_COMP OR REVISE(Dk,Dj )

end for
end if
if i and j are composite variables (case 4)

For each event k ∈ Di do
REVISE_COMP(Dk,Dj )

end for
end if

Fig. 4 AC-3-CCCSP
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• Case 3. If i is a composite variable and j is a CSP vari-
able, the function REVISE is applied here on each pair of
variables (k, j) where k is a CSP variable within i.

• Case 4. Both i and j are composite variables. Here we
apply case 2 on each CSP variable within i, and j .

Note that AC-3-CCCSP is a generalization of the arc con-
sistency algorithm we proposed in [26] in the particular case
of temporal constraints (that we called CCTCSP).

3.2 Backtrack search for CCCSPs

Based on AC-3-CCCSP, our solving method is described in
two stages as follows.

1. Preprocessing stage. The goal here is to enforce AC-3-
CCCSP before the backtrack search in order to reduce the
size of the search space. Starting from an initial problem
containing a list of initially activated variables (including
composite variables), AC-3-CCCSP is enforced on these
initial variables in order to reduce some inconsistent val-
ues which will reduce the size of the search space. If the
initial problem is arc inconsistent (in the case of an empty
domain) then the method will stop and returns that the
CCCSP is inconsistent.

2. Backtrack search. In the same way as reported in [24,
32], we use arc consistency during the search in order to
detect, at the early stage of the search process, any sub-
set containing conflicting variables. Based on the forward
check (FC) principle [15], we pick an active variable v,
assign a value to it and perform AC-3-CCCSP between
this variable and the non assigned active variables. If one
domain of the non assigned variables becomes empty
then we assign another value to v or backtrack to the pre-
viously assigned variable if there are no more values to
assign to v. We activate any variable v′ resulting from
this assignment and perform AC-3-CCCSP between v′
and all the active variables. If arc inconsistency is de-
tected then we deactivate v′ and choose another value for
v (since the current assignment of v leads to an inconsis-
tent CCCSP). If v is a composite variable then assign a
variable to it (from its domain). Basically, this consists of
replacing the composite variable with one variable x of
its domain. We then assign a value to x and proceed as
shown before except that we do not backtrack in case all
values of x are explored. Instead, we will choose another
variable from the domain of the composite variable v or
backtrack to the previously assigned variable if all values
of v have been explored. This process will continue until
all the variables are assigned in which case we obtain a
solution to the CCCSP.

The flow chart of the above proposed solving method is
described in Fig. 5.

Fig. 5 Flow chart of the proposed backtrack search method

Note that, instead of using forward checking (FC) in step
two above, we can also use one of the following three strate-
gies.

– Maintaining Arc Consistency (MAC). This strategy
maintains a full arc consistency on the current and future
active variables (variables not assigned yet).

– FC+. Same as FC except that the applicability of the arc
consistency is extended to non active variables as well.

– MAC+. Same as MAC except that the applicability of the
arc consistency is extended to non active variables as well.
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Fig. 6 BT for the dress up
game

Figures 6, 7 and 8 illustrate the application of the stan-
dard backtrack search (BT, the solving method without arc
consistency in the second phase), FC and MAC to the dress
up game described in Example 1.

Like for classical CSPs, variable and value ordering, dur-
ing search, has a significant impact on the size of the ex-
plored space in the case of CCCSPs. For variable selection,
we use the heuristic method we proposed in [27] based on
Hill Climbing (HC) and Ant Colony Optimization (ACO)
and following conflict driven heuristics.

In the case of value selection, we start with the value that
leads to an easiest to solve CCCSP first since our goal here
is to find the first solution and that there is no preference
on the solution obtained. More precisely, in the case of a
composite variable x, we select the simple variables, within
the domain of x, by decreasing number of their degrees. For
a simple variable, we select the least constrained value first
(the value that causes the activation of the minimum number
of constraints).

4 Variable value, constraints, composite and
conditional preferences: the CCCSPP model

In the following we will present the different components
of our CCCSPP model through our dress up game example
extended to include preferences.

Example 2

1. There are four occasions to consider during the dress up:
job interview, party, sport and camping. If the occasion
selected is job interview or party, we prefer “set” instead
of mix-and-match pieces (“top” and “bottom”). If it is
camping or sport, we prefer “top” and “bottom” instead
of “set”.

2. We always prefer to wear “Casual” and “Boot” instead
of “Sandal”, “Running” and “Pump”.

3. We like handbag “HB3” and “HB4” the most.
4. For match clothes (Top&Bottom constraint), we like

“Blouse with Skirt”, “T-Shirt with Capri” and “Jacket
with Jeans” the most.
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Fig. 7 FC for the dress up game

Fig. 8 MAC for the dress up
game
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5. For Set&Shoes constraint, we prefer “Skirt-Suit with
Boot” and “Pant-Suit with Casual” to the rest.

4.1 Unary and binary constraints preferences

We define two types of preferences at the traditional CSP
level. The first one is imposed on variable values while the
second concerns the pairs of values within the binary con-
straints. Both preferences are defined over a fuzzy CSP. We
call the first one Soft Unary Constraint (SUC) and the sec-
ond one Soft Binary Constraint (SBC). As mentioned be-
fore in introduction, we are assuming here that the binary
constraints are defined in extension.

Definition 2 (Soft Unary Constraint, SUC) A Soft Unary
Constraint (SUC) is a function

fsuc:xi
: Dxi

→ A

where xi is a CSP variable and Dxi
its domain of values.

Example 3 The information in 2 and 3 in Example 2 above
can be formulated with SUCs as they concern preferences
on the values of CSP variables SHOES and HANDBAG
respectively. The SUC corresponding to 2 is the function
fsuc:SHOES defined, for example, as follows.

fsuc:SHOES(Casual) = fsuc:SHOES(Boot) = 1.0.

fsuc:SHOES(Sandal) = fsuc:SHOES(Running)

= fsuc:SHOES(Pump) = 0.5.

Definition 3 (Soft Binary Constraint, SBC) A Soft Binary
Constraint (SBC) is a function

fsc:Cij
: Cij → A

where Cij is the binary constraint between the variables i

and j .

Example 4 The information in 4 and 5, in Example 2 above,
can be formulated with SBCs as they are related to pref-
erences on the constraints (Top,Bottom) and (Set,Shoes)
respectively. The SBC corresponding to 4 is the function
fsbc:(Top,Bottom) defined, for example, as follows.

fsbc:(Top,Bottom)((Blouse,Skirt))

= fsbc:(Top,Bottom)((T -Shirt,Capri))

= fsbc:(Top,Bottom)((Jacket, Jeans))

= 0.9.

For any other possible pair of the constraint (Top,Bottom)

the value of the SBC function is for example equal to
0.6. Similarly, the SBC corresponding to 5 is the function
fsc:(Set,Shoes) defined, for example, as follows.

fsbc:(Set,Shoes)((skirt-suit,boot))

= fsbc:(Set,Shoes)((plant-suit, casual))

= 0.9.

For any other possible pair of the constraint (Set,Shoes)
the value of the SBC function is for example equal to 0.6.

4.2 Composite and conditional preferences

Definition 4 (Composite Preference, CompP) A Composite
Preference (CompP) is a function

fc:X : DX → A

where X is a composite variable and DX its domain of val-
ues (CSP variables).

This function allows us to favor some CSP variables
within the domain of a given composite variable.

A Conditional Preference (CP) allows a preference func-
tion (SUC, SBC and ComP) to be added dynamically to the
CCCSPP when a given condition on CSP or composite vari-
ables is true. The condition corresponds here to the assign-
ment of particular values to variables.

Definition 5 (Conditional Preference, CP)
Given a list of variables (CSP or composites)

X1, . . . ,Xp and Y

and a preference function f ,
then a conditional preference has the following form:

X1 ∧ · · · ∧ Xp
condition→ associate f to Y .

The above conditional preference will associate f to Y

if condition holds on the variables X1, . . . ,Xp . condition
corresponds here to the assignment of particular values to
the variables X1, . . . ,Xp . Note that the variable Y can be
associated to only one conditional preference f .

Example 5 Information 1 in Example 2 is formulated with
the following conditional preference.

1. OCCASION
condition1→ assign the CompP f1 to the com-

posite variable APPAREL

2. OCCASION
condition2→ assign the CompP f2 to the com-

posite variable APPAREL

where:

• condition1 is:

OCCASION = job-interview ∨ OCCASION = party

• condition2 is:

OCCASION = camping ∨ OCCASION = sport

• f1 = {set = 0.9, top = 0.6,bottom = 0.6}
• f2 = {top = 0.9,bottom = 0.9, set = 0.6}
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4.3 Global preferences and optimal solution to the
CCCSPP

In order to define the global preference of a solution
to a CCCSPP, the Consistent Binary Assignment Prefer-
ence (CBAP) is introduced in the following. A solution to
the CCCSPP is an assignment of values to all the CSP vari-
ables of the problem such that all the compatible constraints
are satisfied. The global preference of a solution can be
computed by performing the min operation on all the Con-
sistent Binary Assignment Preferences (CBAPs) defined as
follows.

Definition 6 (Consistent Binary Assignment Preference,
CBAP)
Given two variables xi and xj sharing a constraint

Cij and a consistent binary assignment
c = ([xi = vi], [xj = vj ]) ∈ Cij

where vi ∈ Domain(xi) and vj ∈ Domain(xj ),
αi = fsuc:xi

(vi),
αj = fsuc:xj

(vj ),
and αc = fsc:Cij

(c),
then CBAP(vi, vj ) = min(αi, αj ,αc).

Example 6 Let us assume that during the backtrack search
we have made the following decision (assignment):

– OCCASION = job-interview

According to Example 5 above, assigning job-interview
to OCCASION will activate the composite preference f1

which will favor the value set over top and bottom. set
will then be the first value to assign to APPAREL. Since
there is no SUC preference on the values of SET’s do-
main, the choice for the first value to assign to SET will
be guided by the SBC of the constraint this latter variable
shares with other active variables. Since SBC of the con-
straint (SET,SHOES) favors 2 pairs involving skirt-suit and
plant-suit, these latter are the first two values to choose
for SET . Let us assume that skirt-suit is assigned to SET .
SHOES will then be assigned to boot and the CBAP of
the constraint (SET,SHOES) will then be computed as fol-
lows.

α = min(fsuc:SET(skirt-suit), fsuc:SHOES(boot))

= min(1.0,1.0)

= 1.0,

CBAP((skirt-suit,boot))

= min(α,fsc:(SET,SHOES)((skirt-suit, boot)))

= min(1.0,0.9)

= 0.9.

Definition 7 (Global Preference, GP)
Given a solution s = {v1, v2, . . . , vn} to a CCCSPP,
where n is the number of variables

and each of the vi ’s belongs to the
domain of the corresponding variable xi ;

and a set of consistent assignments ca = {(vi, vj )

where 1 ≤ i, j ≤ n,
vi, vj ∈ s

and such that there is a constraint
between the variables xi and xj },

then GP(s) = min{CBAP(vi, vj ) | (vi, vj ) ∈ ca}.

An Optimal Solution (Opt) of a given CCCSPP P is the
solution having the highest global preference degree.

Definition 8 (Optimal Solution, Opt)
Given A CCCSPP P

and a set of solutions
S = {s1, . . . , sn}

where (vi, vj ) ∈ ca
then Opt(P ) = max {GP(s1), . . . ,GP(sn)}

5 Solving CCCSPPs

The solution method we propose here is based on Branch
and Bound (BnB) and uses constraint propagation in order to
reduce the size of the search space during the resolution pro-
cess. More precisely, our proposed algorithm is described
below with a flow chart presented in Fig. 9.

– Step 1. The method starts with an initial problem contain-
ing a list of initially activated CSP and composite vari-
ables. In order to ensure that domain values are consid-
ered according to their preference functions, all the val-
ues within each domain are sorted in decreasing order of
their SUC or CompP values (depending whether they be-
long to CSP variable or composite variable domains). Arc
consistency is then applied to the initial CSP and compos-
ite variables in order to reduce some inconsistent values
which will reduce the size of the search space. If the initial
CSP is arc inconsistent (in the case of an empty domain)
then the method will stop. The CCCSPP is inconsistent in
this case.

– Step 2. Following the forward check principle [15], pick
an active variable x, assign a value to it and perform AC-
3-CCCSP between this variable and the non assigned ac-
tive variables. If one domain of the non assigned variables
becomes empty then assign another value to x or back-
track to the previously assigned variable if there are no
more values to assign to x. Activate any preference func-
tion (through conditional preference) and any variable x′
(through activity constraint) resulting from this assign-
ment and perform arc consistency between x′ and all the
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Fig. 9 Flow chart of the proposed solving method

active variables. If arc inconsistency is detected then de-
activate x′ and choose another value for x (since the cur-
rent assignment of x leads to an inconsistent CCCSPP).
If x is a composite variable then assign a CSP variable
to it. Basically, this consists of replacing the composite

variable with one variable xi of its domain. We then as-
sign a value to xi and proceed as shown before except
that we do not backtrack in case all values of xi are ex-
plored. Instead, we will choose another CSP variable from
the domain of the composite variable x or backtrack to
the previously assigned variable if all values (CSP vari-
ables) of x have been explored. This process will con-
tinue until all the variables are assigned in which case we
obtain a solution to the CCCSPP. Since we are looking
for the highest global preference degree, the GP value of
this solution will be used as a lower bound (LB) of our
branch and bound algorithm. Note that anytime a pref-
erence function f is activated (added to the CCCSPP)
through a conditional preference, the domain of values
of the variable associated to f is sorted according to this
latter.

– Step 3. The rest of the search space is then systemat-
ically explored as follows. Each time the current vari-
able (CSP variable or composite) is assigned a value, an
overestimation of the GP value of any possible solution
following this decision is computed and used as an up-
per bound (UB). If UB < LB then the current variable
is assigned another value or backtrack to the previous
variable if all the values have been explored. The over-
estimated GP is the minimum of the CBAPs of all the
assigned variables and the estimated CBAPs involving
non assigned variables (including those that can be acti-
vated during the remaining search process). An estimated
CBAP involving a non assigned variable Xi is calculated
as follows.

If the other variable Xj involved by the CBAP is an as-
signed variable then the estimated CBAP is the mini-
mum of the following: the SUC of the value assigned
to Xj , the maximum of the SBCs of all the pairs within
the constraint between Xi and Xj , and the maximum
of the SUCs of all the values belonging to Xi ’s do-
main.

Else (Xj is not assigned yet): the maximum of the SUCs
of all the values belonging to Xj ’s and Xi ’s domains,
and the minimum of the SBCs of all the pairs within the
constraint between Xi and Xj .

Note that, like in the solving method we described in
Sect. 2 we have also used MAC, FC+ and MAC+ instead
of FC in step 2 above. An experimental comparative study
of the four strategies is reported in the following section.

6 Experimentation

To evaluate and study the time performance of the four vari-
ants of the method we propose (namely FC, FC+, MAC and
MAC+), we have performed several experimental tests on
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consistent CCCSPPs randomly generated as shown in the
next section.

The experiments are conducted on a PC Pentium 4 com-
puter running Linux. All the procedures are coded in C/C++.
The tests we have performed compare the four propagation
strategies used in step 2 of our branch and bound based solv-
ing method we described in the previous section.

6.1 CCCSPP instances

CCCSPPs are build from CSPs randomly generated by the
model RB proposed in [37]. The choice of this model is mo-
tivated by the fact that it has exact phase transition and the
ability to generate asymptotically hard instances. More pre-
cisely, we randomly generate each CSP instance as follows
using the parameters n, p, α and r where n is the number
of variables, p (0 < p < 1) is the constraint tightness, and
r and α (0 < α < 1) are two positive constants used by the
model RB [37].

1. Select with repetition rn lnn random constraints. Each
random constraint is formed by selecting without repeti-
tion 2 of n variables.

2. For each constraint we uniformly select without repeti-
tion pdk incompatible pairs of values, where d = nα is
the domain size of each variable.

Each CCCSPP instance is then generated as follows us-
ing the parameters N , D and a respectively corresponding
to the number of composite variables, their domain size and
the number of activity constraints.

1. Randomly generate a CSP with the parameters n, p, α

and r as shown above.
2. Generate N composite variables each containing D sim-

ple variables.
3. Select with repetition r[(n + N) ln(n + N) − n lnn] new

random constraints (between the n + N variables), each
formed by selecting without repetition 2 of the n + N

variables. This will guarantee that the total number of
constraints is r(n+N) ln(n+N) as per the requirements
of the RB model. For each constraint we uniformly select
without repetition pdk incompatible pairs of values.

4. Select I (n+N) initial variables from n+N (0 < I < 1).
5. Select a(nd + ND) activity constraints for each of the

n + N − I (n + N) non initial variables (0 < a < 1).
6. Preference values are finally randomly distributed on the

values of the different CSP and composite variables and
also on the pair of values within each compatibility con-
straint. In addition, conditional preferences are randomly
generated and added to the problem.

As demonstrated in [37], when the number of variables
approaches infinity the phase transition occurs when the
constraint tightness pt = 1 − e− α

r . Thus, the phase transi-
tion is an asymptotic phenomenon since, only for infinite

number of variables, we can have sharp phase transitions.
In addition, the number of variables and constraints of the
possible CSPs, each CCCSPP contains, is slightly different
from the one of the CCCSPP they are generated from.

6.2 Discussion of the experimental results

In order to come up with a complete study, we have con-
ducted three sets of experiments. In each of these cases,
we first fix all the parameters needed to generate the CCC-
SPP instances as follows: n = 50, D = 5, p = 0.5, α = 0.8,
a = 0.2, r = 0.6 and I = 0.8. We then vary one of these pa-
rameters in order to study its influence on the running time
needed to return the optimal solution by each of the four
methods.

According to the parameters we have set, the phase tran-

sition is computed as follows: pt = 1 − e− α
r = 1 − e− 0.8

0.6 =
0.73. Thus, consistent instances are those with the tightness
less than 0.73. The results of the tests are visualized through
charts where the x coordinate represents the values of the
varying parameter while the y coordinate corresponds to the
running time in seconds needed to return the optimal solu-
tion. The time here is averaged over 10 runs.

In the following, we report the experimental results and
discuss them in each of the following three subsections.
Each chart reporting the results of a given test set will have
the varying parameter in the X axis and the running time in
seconds in the Y axis.

6.3 Easy versus hard problems

The goal here is to study the behavior of the four methods
when varying the tightness p. Note that in this particular
case, we changed n to 100 in order to be able to easily dis-
tinguish between the four methods.

Figure 10 presents the results of these comparative tests.
In the case of under constrained problems (corresponding
to low tightness values) FC and FC+ provide better results.
This is due to the fact that there are fewer inconsistent val-
ues to be removed and the extra effort done by MAC and
MAC+ to remove these values does not improve the overall
running time for finding the optimal solution. We also no-
tice that FC+ does better than FC (and the same can be said
for MAC+ over MAC) since the former strategy extends the
propagation to non active variables and there is a consider-
able number of these variables (since I = 0.8 and a = 0.2).
However, when we move toward the phase transition the ex-
tra work performed by MAC and especially MAC+ starts to
pay off. Indeed, in this particular situation fewer consistent
solutions are available in the search space and the FC and
FC+ methods have more difficulties moving from one solu-
tion to another in order to find the optimal one.
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Fig. 10 Comparative tests
when varying the tightness p

Fig. 11 Comparative tests
when varying a (% of possible
activity constraints)

6.4 Less versus more dynamic problems

The idea here is to study the behavior of the four methods
when the problems become more dynamic i.e. by increas-
ing each of the following parameters: a, I,N and D. The
results are reported respectively in Figs. 11, 12, 13 and 14.
In all these four charts we can easily notice that MAC and
MAC+ outperform the other two methods especially when
the problems become more dynamic (corresponding to high
values of a, I,N and D).

Note that in the case of Fig. 12, while MAC+ does more
efforts than MAC when I decreases (since the difference be-
tween the two strategies is that MAC+ does the propagation
to non active variables as well as active variables), this ex-

tra effort is paying off as the total running time of MAC+ is
always better than the MAC’s time.

6.5 Small versus large size problems

In this case we increase the size of the problem by varying
the number of variables from 10 to 150 as shown in Fig. 15.
Here again, MAC and MAC+ are faster than FC and FC+.

7 Conclusion and future work

In this paper we have proposed a unique framework manag-
ing preferences at different levels of the constraint network
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Fig. 12 Comparative tests
when varying I

Fig. 13 Comparative tests
when varying the number of
composite variables

and in a dynamic environment. This framework is very ap-
pealing for a wide variety of real world applications such
as reactive scheduling and planning, logistics and configu-
ration problems. The approach we adopted consists in con-
verting a given constraint problem involving all the possi-
ble change that can occur depending on the validity of cer-
tain conditions into a constraint network where conditional
constraints and composite variables are used to add new
information to the constraint network in a dynamic man-
ner during the resolution process. Preferences are associ-
ated to variable and constraint values as well as composite
variables, in order to favor some solutions of the constraint
problem. Finding the best solution is carried out by a vari-
ant of the branch and bound algorithm we propose. In order
to evaluate the time performance of our solving method, we

conducted experimental tests comparing different propaga-
tion strategies on randomly generated CCCSPPs. The results
favor the MAC principle [9, 15] over the other strategies.

In the near future, we intend to conduct a more experi-
mental study on some real life applications under constraints
and preferences such as those addressed in [17, 20, 30].
This will be done especially when considering approxima-
tion methods such as Stochastic Local Search (SLS) [34],
Genetic Algorithms (GAs) [8] and Ant Colony Algorithms
(ACOs) [35]. While these techniques do not always guaran-
tee an optimal solution to the problem, they are very effi-
cient in time (comparing to branch and bound) and can thus
be useful if we want to trade the optimality of the solution
for the time performance.
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Fig. 14 Comparative tests
when varying the domain size of
the composite variables

Fig. 15 Comparative tests
when varying n the number of
CSP variables
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