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Abstract The advantage of efficient searches belonging to
ant-miner over several other approaches leads to prominent
achievements on rules mining. Fuzzy ant-miner, an exten-
sion of the ant-miner provides a fuzzy mining framework
for the automatic extraction of fuzzy rules from labeled nu-
merical data. However, it is easily trapped in local optimal,
especially when it applies to medical cases, where real world
accuracy is elusive; and the interpretation and integration of
medical knowledge is necessary. In order to relieve such a
local optimal difficulty, this paper proposes OMFAM which
applies simulated annealing to optimize fuzzy set parame-
ters associated with a modified fuzzy ant-miner (MFAM).
MFAM employs attributes and training case weighting. The
proposed method, OMFAM was experimented with six criti-
cal medical cases for developing efficient medical diagnosis
systems. The performance measurement relates to accuracy
as well as interpretability of the mined rules. The perfor-
mance of the OMFAM is compared with such references
as MFAM, fuzzy ant-miner (FAM), and other classification
methods. At last, it indicates the superiority of the OMFAM
algorithm over the others.
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1 Introduction

Early detection of life applications regarding medical prob-
lems, is important to increase the chance of successful treat-
ment. Such detection is often formulated as a classifica-
tion problem. The aim of the classification task is to as-
sign the sample cases to related classes, out of a set of
predefined classes, based on the values of some attributes
for the cases [1]. One of the successful methods is multi-
class support vector machine (SVMmulticlass) [2]. Such a
Multi-class SVM generates a hyperplane to separate sev-
eral classes of data sets. It derives a class decision by de-
termining the separate boundary with maximum distance to
the closest points, namely support vectors, of the training
dataset. Similar to the weights derived by neural learning,
such extracted support vectors represent a cryptic form of
knowledge; therefore, are incomprehensible. SVMmulticlass

is also used in such medical applications [3–5]. Fuzzy ap-
proaches have become one of the well-known solutions for
classification problems. Fuzzy logic [6] improves classifica-
tion [7] and decision support systems by allowing the pow-
erful use of overlapping class definitions. This efficiently
handles uncertainty and vagueness, especially consisted in
medical diagnosis applications [8]. Furthermore, the use of
fuzzy IF-THEN rules is represented in linguistic forms that
are easily interpreted and examined by humans [9]. Not
only improving the interpretability of the classification re-
sults, fuzzy rules also provide more insight into the classifier
structure and decision making process [10, 11]. A sample
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case can be assigned to several classes with different de-
grees of membership. A well-known adaptive neuro-fuzzy
inference system (ANFIS) [12] is a specific approach that
combines neural learning and fuzzy systems. The striking
characteristics of ANFIS are its ability to represent fuzzy
rules in a form of IF-THEN that remedies incomprehensi-
bility problems, as well as its hybrid learning of the gra-
dient method, and the least squares estimate (LSE). Suc-
cessful implementations of ANFIS in several data mining
researches including biomedical areas have been reported
[13, 14]. However, some disadvantages of ANFIS such as
local optimal trap emerged by gradient descent method
are unavoidable; besides, it is also tediously complicated
to make modification or variation apart from both gradi-
ent descent and LSE learning, since they are embedded in
the network. In addition, the works belonging to [15, 16]
also produced fuzzy IF-THEN rules. A GA-based algorithm
was introduced for selecting a small number of significant
fuzzy rules from a larger candidate rule set. The aim was
to construct a fuzzy classification system with high accu-
racy. Later, a powerful fuzzy modeling scheme was pro-
posed in [17] for complexity reduction. The multiple GA-
based algorithms were used to produce fuzzy rules [18–21].
They applied Ant Colony Optimization (ACO) algorithm as
a local search procedure and improved the performance of
their final classification system. ACO introduced by [22],
is a heuristic algorithm with efficient local search for com-
binatorial problems [23–25]. ACO imitates the behavior of
real ant colonies in nature to search for food and to connect
to one another by pheromones laid on paths traveled [26].
This algorithm has been developed significantly as a prob-
abilistic search algorithm for large scale optimization prob-
lems, and its use arises frequently in real applications [23].
The research [27] introduced ACO to classification task for
the first time and called it ANTMINER. The ANTMINER
deployed artificial ants to construct a set of classification
rules. The results were promising. A simpler function in-
stead of entropy was used in [28] as heuristic information
in order to reduce the computation overhead. They called
their algorithm ANTMINER2. Also, [29] introduced an-
other version of ANTMINER (named ANTMINER3). More
exploration was encouraged by means of a different transi-
tion rule in this version. After that, ANTMINER+ was pre-
sented by [30]. It was a classification technique based on
a MAX-MIN ant system. ANTMINER+ achieved an aver-
age accuracy that was significantly better than the previous
ANTMINER, ANTMINER2 and ANTMINER3 in most of
the data sets. Fuzzy rules from ANT-inspired computation—
simultaneous rule learning (FRANTIC-SRL) was presented
by [31]. It used a concept of ant-miner for mining fuzzy
rules. Several fuzzy ant-miner algorithm instances were ex-
ecuted in parallel, where each instance generated rules for
a particular class. Fc-AntMiner was proposed by [32]. Arti-
ficial ants were employed to explore the search space and

gradually construct candidate fuzzy rules. The algorithm
concerned with balancing the cooperation and competition
between the ants. This was done so that the ants were en-
couraged to find more accurate rules. A correlation-based
ant miner (AntMiner-C) [33] was proposed for classifica-
tion rule discovery. Its main feature related to the use of a
heuristic function based on the correlation between the re-
cently added term, and the term to be added in the rule. In
addition, the weight of a training case and that of an attribute
were introduced in FCACO, which represented the fuzzy
classification rules mining algorithm with ACO [34]. Such
weights were applied for improving classification accuracy.
FCACO demonstrated the integration of ACO for search
strategy, and fuzzy set for representation of the rule terms
to cope with continuous values. The modification of fuzzy
ant-miner (FAM), based on the aforementioned weight of a
training case, and that of an attribute gives motivation to our
research. Such a modified FAM is named here, MFAM.

Importantly, the considerable factor, which usually causes
local optimal in the fuzzy ant-miner instances, comes from
the lack of a structural method for efficiently confirming the
competent selection of fuzzy parameters. Simulated Anneal-
ing (SA), introduced by [35] is a global optimization method
that distinguishes between different local optima. It provides
a framework for optimization of the parameters of very large
and complex systems. By using SA for optimizing the selec-
tion of fuzzy set parameters, powerful classification would
be granted to MFAM.

This paper proposes a such powerful classification method,
using SA for optimizing the modified fuzzy ant-miner. Such
proposed method is named here OMFAM. OMFAM, opti-
mized by SA has a capability to avoid local optima, and at-
tain global optimal solution. Through SA optimization, OM-
FAM is brought to achieve better quality, and more accurate
rule results. OMFAM is applied with six critical medical di-
agnosis data sets from UCI repository [36], for assessing the
classification mining methods. The rest of this paper is orga-
nized as follows. In Sect. 2, related works on classification
mining methods as well as their effectiveness are mentioned.
The detail of MFAM is explained in Sect. 3. Then, OMFAM
is explained in Sect. 4. The results are shown in Sect. 5.
In this section, the performance measurement according to
rules accuracy as well as interpretability is declared; and the
comparison study is done among OMFAM and the others in-
cluding MFAM, FAM, SVM and ANFIS. Discussion section
concerns with the description of OMFAM accomplishment
compared to other authors’ work. Finally, the overall con-
clusion is drawn in the last section to show the credibility of
using SA optimization regarding OMFAM.

2 Related works

There have been a lot of studies, reported in the literature in
which the researchers have used medical data sets to evalu-
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ate their classification works. First, Wisconsin breast cancer
dataset was used for classification performance evaluation.
ANTMINER was an algorithm for data mining. 93.84% ac-
curacy was reported for such cancer data set [27]. The accu-
racy of 97.17% was obtained in [37] with the use of the mu-
tual correlation-based feature selection and fuzzy k-nearest
neighbor (KNN). ANTMINER+ completed 96.40% [30].
Such accurateness was competitive or even better than SVM,
Neural Network, C4.5, KNN and Naive Bayes. FCACO [34]
and Fc-AntMiner [32] were employed to mine fuzzy rule set.
They sequentially achieved 95.26% and 97.51% classifica-
tion accuracy. AntMiner-C was also assessed; and achieved
97.54% accurate rate, using the breast cancer data [33].
Another medical diagnosis data, thyroid gland was utilized
for estimating the quality of classification as well. The
Probabilistic Neural Network (PNN) performed a compar-
ative study on an thyroid dataset [38]. The result shows
94.81% classification accuracy. In [39], the fuzzy rules
were found by Expert System for Thyroid Disease Diagno-
sis (ESTDD), using neuro-fuzzy method. Thyroid diseases
could be detected with 95.33% accuracy by the expert sys-
tem. GDA_WSVM represented a generalized discriminant
analysis and wavelet support vector machine system [40].
91.86% classification accuracy was obtained for diagnos-
ing thyroid disease. SIM, a fuzzy similar model was another
classification method that was evaluated using thyroid gland
data set [41]. It applied generalized mean to the thyroid data;
and received 96.86% accuracy. Echocardiogram dataset was
also employed to estimate the quality of classification min-
ing methods. TACO-miner obtained 96.40% accuracy for
echocardiogram data by using a rule extraction from neu-
ral networks, via ant colony algorithm for data mining ap-
plications [42]. The classification method proposed a rule
extraction from trained adaptive neural networks using arti-
ficial immune systems (AIS) [43]. The accuracy of 94.59%
was obtained for echocardiogram dataset. FDSVM [44] used
support vector machine incorporated with feature discrimi-
nation. Classification accuracy of 87.69% was achieved for
the same data.

3 The modified fuzzy ant-miner (MFAM)

A traditional ant-miner, ANTMINER is applied for mining
classification crisp rules. The rules are generated based on
a set of N training cases T r = {(x1, c1), . . . , (xn, cn), . . . ,

(xN, cN)}, where xn = {xn
1 , . . . , xn

d , . . . , xn
D}; xn

D specifies
attribute xD of case n; cn is a class label corresponding to xn.
Fuzzy ant-miner (FAM) [31], an extension of the ant-miner
generates fuzzy rule mining instead of crisp rule mining. Ri

is the label of the ith fuzzy if-then rule, constructed by FAM.

Ri : IF x1 is A1j and . . . xd is Adj . . . and xD is ADj

THEN class = cn

Fig. 1 Data fuzzification

where ‘x1 is A1j and . . . xd , is Adj . . . and xD is ADj ’ refers
to the condition or antecedent part; a single term ‘xd is Adj ’
could be represented by termdj ; ‘class = cn’ is specified in
the consequent part. In accordance with fuzzy classification
rule, termdj is referenced by a linguistic term. The possi-
ble linguistic termdj here is defined as one of the following:
‘xd is S’, ‘xd is M’ or ‘xd is L’, where S, M and L abbre-
viate for ‘Small’, ‘Medium’ and ‘Large’ sequentially. Such
three linguistic values are delineated by fuzzy sets on the
unit interval [0,1] as shown in Fig. 1. The membership func-
tion of each linguistic value in Fig. 1 is specified by homo-
geneously partitioning the domain of each value of termdj

into Gaussian function. Figure 1 gives an example of degree
of membership or degree of matching between the value of
termdj and Gaussian fuzzy sets S, M and L in the condition
part. In Fig. 1, case is assumed to contain 2 attributes, (4.3,
8.2). The value 4.3 of first term is fuzzified into fuzzy sets S,
M and L with membership or matching degree μn

11 ≈ 0.63,
μn

12 ≈ 0.74 and μn
13 ≈ 0.0 consecutively; likewise, the value

8.2 of the second term is also fuzzified into the same sets of
fuzzy function with membership of μn

21 ≈ 0.0, μn
22 ≈ 0.36

and μn
23 ≈ 0.79.

However, according to FAM, the sample cases that are
correctly classified by or matched with the mined rule are
removed from the training set. Rules mined in later stages
are unaware of the previously removed cases and there-
fore might be in conflict with rules mined earlier. Unex-
pected interactions between rules can appear when a case
is covered by several rules of different classes. In order
to relieve such conflict problem, the modified fuzzy ant-
miner (MFAM) is presented. MFAM employs two concepts
in FCACO, which are the training case, weighing, and at-
tributes weighing. These two types of weighing concepts
are applied in the fuzzy rule construction process. Unlike
FAM that immediately cut off the training case that matches
the best constructed rule, MFAM utilizes the training case
weight, wxn . Instead of instantly removing the matched case
xn, in MFAM the weight of that case is reduced. By this
manner, the rules mined in later stage would be given some
chance to become aware of the matched cases, existing in
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Fig. 2 Framework of an
MFAM

previous stage. This lessens the conflict between the current
mined rule and the rules mined earlier. The other concept
is denoted as the weight of termdj , which is referenced as
wTermdj . In MFAM, wTermdj contained in the mined rule
is reduced whenever the rule is defined as the best rule, and
is inserted into rule list. The purpose of such weight reduc-
tion is for avoiding from mining the same rule. Thus, the
unexplored rules would have better chance to be mined.

Figure 2 displays the steps of rule construction process
in MFAM, which is similar to those in classic ANTMINER.
At the beginning, the related parameters are initialized. The
number of ants is assigned; and the rule sets are initialized
to empty. In MFAM, the weights of all training cases as well
as the weights of all attributes are set to 1.0. Each ant, while
it is walking, deposits a chemical substance on the passed
termdj called pheromone, τdj . Such pheromone encourages
the following ants to stay close to the previous best ant.
All single termdj in the condition part are initialized with
the same amount of pheromone. The initialized amount of
pheromone is inversely proportional to the number of values
of all attributes. This means that all terms of attributes in
the condition part have the same probability of being chosen
by an ant. After initialization, the value of each termdj , con-
tained in each training case is fuzzified; and the membership

degree of each termdj with fuzzy set S, M and L is obtained.
Then, each ant constructs the condition and consequent part
of a single rule. A condition part is constructed by select-
ing termdj with local best quality. An amount of probabil-
ity Pdj , computed mainly influents the selection of the local
best quality term. Pdj is computed by (1). Such probabil-
ity relies on the normalization of the amount of pheromone
τdj and a problem dependent heuristic value ηdj , associated
with each termdj .

Pdj = τdj ηdj
∑D

d=1
∑Jd

j=1 τdj ηdj

(1)

Heuristic value, ηdj is taken to be an information theo-
retic measure for quality of termdj to be selected and added
to rule condition. The heuristic value is measured by the fol-
lowing (2):

ηdj = logM M − entropy(termij )
∑

∀d

∑
∀j (logM M − entropy(termij ))

(2)

where M is the number of possible classes. The quality of
termdj is measured with regard to the entropy (termdj ) or
amount of information of termdj . Such entropy is defined
in (3).
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Fig. 3 A visual view of rule
construction according to
MFAM where S, M and L are
linguistic values associated with
each termdj

entropy(termdj )

= −
M∑

m=1

(
AllCases_WtermDM_Cm

AllCases_WtermDM

)

× logM

(
AllCases_WtermDM_Cm

AllCases_WtermDM

)

(3)

The entropy of termdj is represented by entropy (termdj )
for all classes. AllCases_WtermDM_Cm is identified by
summation of degree of matching between the value of
termdj and fuzzy set j for all cases in class cm, where j is
specified as one of the fuzzy sets S, M or L) in the rule,
being constructed. AllCases_WtermDM has similar defini-
tion as AllCases_WtermDM_Cm, except all cases for entire
number of classes are taken into account. However, the pro-
portion AllCases_WtermDM_Cm to AllCases_WtermDM

is normalized by log base M of such proportion itself. It is
also notable that the degree of matching is computed with
some weight. That weight is equivalent to weight of termdj ,
wTermdj . Such weight is taken into account with entropy for
avoiding mining the same rule. The weight is reduced by 1%
whenever the rule is inserted to the rule list. Considering (2)
and (3), the higher the entropy, the less the heuristic value is.
The high entropy as well as the less heuristic value signifies
the high degree of uniformly distributed to the classes and
the low classifying power of termdj , and vice versa. There-
fore, selecting termdj with the highest heuristic value, ηdj

would improve the quality of rule classification. As men-
tioned before, the pheromone τdj encourages the following
ants to stay close to previous ants. It means the previous ant
suggests the following ant the best termdj to select. At this
point, one would say the higher amount of pheromone and
heuristic value, the higher probability Pdj , that the termdj

would be selected. However, such manner of term selection
tends to exploitation, that possibly leads to local optima.

A certain regulation may be set up for the sake of balanc-
ing between the exploration and exploitation. The highest
probability is chosen to use in term selection, if exploita-
tion Pdj is decided. The average of Pdj for all related fuzzy
sets j would be used, if the decision is made on exploration.
The choice between those two depends on a specific uniform
random number.

Figure 3 delineates a visual view of constructing the con-
dition part of a rule. Each node represents an individual
termdj ; possibly selected by the ant. For each termdj , one of
the possible values of fuzzy set S, M and L is to be selected.
A certain termdj is selected and added into the condition part
one-term-at-a-time.

Following the construction of the condition part of the
rule, the consequent part is determined to complete the rule
construction. The consequent class is decided by calculat-
ing the matching degree of each training cases xn with the
fuzzy rule Ri . The calculation is done by the product op-
eration: μn

Ri = μ
Ri

1
(xn

1 ) × · · · × μ
Ri

d

(xn
d ) × · · · × μ

Ri
D

(xn
D).

As stated earlier, ‘xd is Adj ’ has corresponded to termdj .
By such correspondence, μ

Ri
d

(xn
d ) is equivalent to matching

degree of termdj , belonging to case xn and the correspond-
ing term, belonged to rule Ri . Each possible classes Cm

accumulates the degree of activation of fuzzy rule Ri with
a matching consequence ci = Cm. The consequent class to
which the case xn is classified is the majority class, Cn

major .
Such decision making is shown in (4).

Cn
major = arg max

Cm

∑

Ri |ci=Cm

μn
Ri (4)

Immediately after the ant has completed a rule construc-
tion, pruning is undertaken to increase the interpretability
and accuracy of the mined rule. Local heuristic function con-
siders only one-term-at-a-time, ignoring term interactions.
By this reason, irrelevant terms may have been included in
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the rule due to stochastic variations in the term selection pro-
cedure or due to the use of a shortsighted selection. The ba-
sic idea is to iteratively remove one-term-at-a-time from the
mined rule, while the pruning process improves the qual-
ity of the rule [27]. After the pruning step, the rule may be
assigned a different consequent class based on the majority
class in the cases, covered by the rule condition. The rule
pruning procedure iteratively removes the term whose re-
moval will cause a maximum increase in the quality of the
rule. The quality of a mined rule, Q is measured by (5)

Q = Q1 + 0.005Q2 (5)

From (5), the quality Q of the rule relies on 100% of cor-
rectness estimation, represented by Q1 and 0.5% of inter-
pretability, represented by Q2. The correctness of the rule,
Q1 depends on sensitivity, specificity along with 1% of ac-
curacy. Sensitivity relates to the accuracy among positive
samples; specificity concerns the accuracy among negative
samples. Accuracy indicates all correct results in the popu-
lation. Q1 is defined in (6)

sensitivity × specificity + 0.01 × accuracy

1 + 0.01
(6)

where sensitivity = TP
TP+FN , specificity = TN

TN+FP and

accuracy = TP+TN
TP+TN+FP+FN . In case of crisp data mining,

sensitivity denotes the proportion of cases covered by the
mined rule, having the same class as that rule (true positive)
to all cases, having the same class as that rule (all of true
positive and false negative). On the other side, specificity is
defined as the proportion of cases that are not covered by the
mined rule, having a different class from that rule (true neg-
ative) to all cases, having a different class from that rule (all
true negative and false positive). Accuracy rate is defined
by the proportion of the total of cases covered by the mined
rule, having the same class as that rule (true positive) and
cases that are not covered by the mined rule, having a differ-
ent class from that rule (true negative) to the whole number
of cases (TP, TN, FP and FN). Instead of crisp rules min-
ing rules, the fuzzy mining is taken into account in MFAM.
A case can be covered by a rule condition to a membership
degree of that case in that rule condition. The sensitivity,
specificity and accuracy computed in fuzzy rules mining are
based on the same idea as what is done in crisp rules mining
one. The denotation of sensitivity, specificity and accuracy
are consecutively illustrated in (7)

sensitivity = AllCases_WcaseDM_CR

AllCases_CR
specificity

= AllCases_NotWcaseDM_NotCR

AllCases_NotCR (7)
accuracy

= AllCases_WcaseDM_CRAllCases_NotWcaseDM_NotCR

AllCases

AllCases_WcaseDM_CR is identified by summation of de-
gree of matching between case xn and the mined rule R,
having the same class as rule R. AllCases_NotWcaseDM_
NotCR is denoted as summation of negated degree of match-
ing between case xn and the mined rule R, having a differ-
ent class from rule R. AllCases_CR refers to all cases, hav-
ing the same class as rule R. Vice versa, AllCases_NotCR

is all cases, having a different class from rule R. In tra-
ditional ANTMINER, the matched cases in previous-stage
has not had the opportunity to get into account of determin-
ing quality of rule R in later-stage. This leads to the conflict
between the current mined rule and the rules mined earlier.
Due to such difficulties, the weight of training case xn, wxn

would be used. The weight wxn where xn matches the best
rule, with matching degree μn

Rbest ≥ 0.8 would be reduced
by an amount of matching degree of xn and the best rule,
μn

Rbest , wxn(new) = wxn(old)(1 − μn
Rbest). By such a reduc-

tion manner, one would say the stronger the matching degree
is, the more reduction rate the weight wxn would have. This
would give little chance for a strongly matched case to exist
in the later stage; would give rather moderate or high chance
for a weakly matched case to do so. However, there is a cer-
tain time that the training case xn is absolutely cut off. That
is when the corresponding wxn is less than a threshold 0.2.

Apart from the correctness of the mined rules measured
by Q1, the rules interpretability is measured by Q2. Here the
quality, concerning with length of the rule is approximated
by (8).

Q2 = 1 − NumberOfTerms

NumberOfAllTerms
(8)

From (8), NumberOfTerms denotes number of terms, used
in the mined rule; and NumberOfAllTerms is all possible
number of all terms. If the ratio of NumberOfTerms to
NumberOfAllTerms is small, then the small length of the rule
is indicated, and vice versa. This points out the conciseness
of the rule. A concise rule denotes the good quality Q2.

After the ant has completed a one rule construction and
rule pruning, the pheromone is accumulated for all termdj in
the condition part of the just-mined rule; and is evaporated in
unused term. The highest amount of pheromone points to the
termdj of the rule, constructed by the previous ant. The high
amount of pheromone would encourage the following ants
to stay close to the previous ant. This possibly leads to the
better quality mined rule in the next generation of ant colony.
The pheromone accumulation depends on the quality of the
just-constructed rule as shown in (9)

τdj (new) = τdj (old) + τdj (old) ∗ Q (9)

On the other side, the pheromone evaporation is achieved
by dividing the value of pheromone on each unused term
by the summation of the pheromone in all terms. The end
of rule construction is accomplished by a single ant at this
point.
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Then, the next ant would repeat the rule construction pro-
cess. Such repetition is processed until one of the follow-
ing two criteria is met. First, a predefined Max_No_Ants
is attained, that means all ants in the colony accom-
plish the rule construction. Second criteria is when the
constructed rules have not changed throughout a pre-
defined value, Max_Rule_Converged. After all ants ac-
complish on mining rules, the best rule with the high-
est quality Q is selected; and is added to the best rule
list.

The moment that one ant colony completes rule construc-
tion, the next colony of ants is going to iterate the pro-
cess of rule mining. The parameters such as wTermdj and
wxn are initialized to 1.0. wTermdj is reset for allowing the
new colony of ants to select condition terms in a full search
space. wxn is reset as well to permit a full chance for all
cases to be counted in rule construction process. The rule
mining process is iterated until one of these three events oc-
cur: one is when the number of cases in the training set,
that are left unweighted is less than Max_Case_Unweighted;
another one, when the current ant has constructed a rule
that is exactly the same as the rule constructed by the two
previous ants; the last one is when Max_Iterations is met.
With a final set of the mined rules, fuzzy rule inference
can be done for a new unknown case, xnew. The consequent
class of that xnew would be predicted by such inference just
like that, predicted in the consequent part or rule construc-
tion.

It is noticeable that the fuzzy sets, used for rule construc-
tion in MFAM are fixed through the whole process. The
fixed fuzzy sets are delineated based on Gaussian member-
ship function, a universal approximator. Generically, the un-
derlying data is modeled by such Gaussian function. The
knowledge about data set to be fuzzified is necessary in
order to define parameters appropriately; it applies sim-
ply generic parameters such as mean and standard devi-
ation, based on attributes of such data set. Nevertheless,
it may be possible that setting fuzzy sets in such man-
ner yields unsatisfied results. The fixed parameters of all
fuzzy sets may not be suitable for several situations. In-
appropriate fuzzy set parameters would lead to local opti-
mal trap. The proper selection of means as well as standard
deviations for fuzzy set function is important to the accu-
racy of MFAM classification. In accordance with MFAM,
structural methods for efficiently confirming the effective
selection of parameters are lacking. Simulated Annealing
(SA) is a generic probabilistic metaheuristic for global op-
timization problem of locating a good approximation to
the global optimum of a given function in a large search
space [35]. To confirm the productive selection of fuzzy set
parameters, the SA is used to globally optimize such pa-
rameters selection in the proposed mining model. The opti-
mization of MFAM, using SA is described in the next sec-
tion.

4 Optimizing the modified fuzzy ant-miner by using
simulated annealing (OMFAM)

As aforementioned, the quality of rule construction in
MFAM may be destroyed by improper fuzzy set parame-
ters that are fixed through the whole execution. In order to
improve MFAM to avoid from local optimal problem, the
proposed method utilizes Simulated Annealing (SA) for dy-
namically finding the optimized fuzzy set parameters within
MFAM. Such a method is called here, OMFAM. SA is an
optimization technique, analogous to the annealing process
of material physics. Boltzmann pointed out [45] if the sys-
tem is in thermal equilibrium at a temperature T , then the
probability PB(S) of the system being in a given state s is
given by the Boltzmann distribution:

PB(s) = exp(−E(s)/kT )
∑

w∈S exp(−E(w)/kT )
(10)

where E(s) denotes the energy or fitness of state s; and S

is the set of all possible states. However, (10) does not con-
tain information on how a fluid reaches thermal equilibrium
at a given temperature. Metropolis algorithm [46] is devel-
oped for simulating the process of Boltzmann. The Metropo-
lis algorithm is summarized as follows. When the system
is in original state old with energy E(sold) a randomly se-
lected atom is perturbed, resulting in a state snew with en-
ergy E(snew). This new state is either accepted or rejected
depending on the Metropolis criterion: if E(snew) ≤ E(sold)

then the new state is automatically accepted, in contrast, if
E(snew) > E(sold) then the probability of accepting the new
state is given by the following probability function.

P(accept snew) = exp

(

−E(sold) − E(snew)

T

)

(11)

The Metropolis approach is conducted for each tempera-
ture on the annealing schedule until thermal equilibrium is
reached. Additionally, a prerequisite for applying SA is that
a given set of the multiple variables defines a unique system
state, for which the objective function can be calculated. The
SA algorithm which is applied for optimizing MFAM is de-
scribed as follows.

Step 1: Initialization
Here, a Gaussian membership function Gdj is utilized as

a fuzzy set, S,M ,L.

Gdj = exp

{

−
(

xj − mdj

vdj

)2}

(12)

where mdj and vdj the center (mean) and width (standard
deviation) of fuzzy set, associated with termdj . The initial
value of the fuzzy set parameters is generated by center and
width, based on attributes of such data set, as mentioned
before; and they are fed into MFAM model in a following
form.
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Fig. 4 Framework of an
OMFAM

s = [m1S,m1M,m1L, v1S, v1M,v1L, . . . ,mdS,mdM,mdL,

vdS, vdM,vdL, . . . ,mDS,mDM,mDL,vDS, vDM,vDL]
(13)

The positive classification error is defined as E(s), the fit-
ness of state s. Here, the initial state s is equivalent to initial
fuzzy set parameters.

Step 2: Calculate new state, snew

A new state, snew is a solution nearby the current state,
sold; it is generated by a few random moves from the old
state in a certain range. The ranges of [−0.5,0.5] and
[−0.1,0.1] respectively applied for the move of center (mdj )
and width (vdj ) of sold . Such a move of mold and vold con-
sisted in sold is illustrated by (14).

mnew = mold + Random(−0.5,0.5) ∗ mold

vnew = vold + Random(−0.1,0.1) ∗ vold

(14)

Step 3: Make acceptance tests
To determine the acceptance or rejection of new state,

(15) is employed
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Accept the new state, if E(snew) > E(sold), and

random(0,1) < P (accept snew)

Accept the new state, if E(snew) ≤ E(sold)

Re ject the new state, otherwise

(15)

If the new state is accepted, then set the new state would be
set as the current state.

Step 4 : Find better solutions
If the new state is not accepted, then steps 2 and 3 are

repeated until the snew is superior to sold , or a certain criteria
is met. Then, snew is set as the current state.

Step 5 : Reduce temperature
After the new system state is obtained, the temperature

is reduced by one. If the zero temperature is reached, then

the algorithm stops, and the latest state is an approximate
optimal solution. Otherwise, go to step 2. In the optimiza-
tion, the values of the mean of square errors (MSE), shown
as (16) serve as the criterion for identifying suitable fuzzy
set parameters for OMFAM model

MSE =
∑N

n=1 Class_Error

N

Class_Error =
{

0, if cActual
n = cn

1, if cActual
n �= cn

(16)

where N is the number of training cases ; cActual
n the ac-

tual class predicted for training case xn; and cn the class
predicted by the rule value for the same training case xn.
Figure 4 illustrates the framework of the proposed OMFAM
model. The SA algorithm is used to seek a better combina-
tion of the fuzzy set parameters in MFAM model. When a
new state, snew of SA algorithms is determined, the values
of fuzzy parameters in s are evaluated on MFAM. Then, a
classification process is conducted, and a classification er-
ror, MSE is obtained. Finally, if the zero temperature is at-
tained, then the algorithm stops, and the latest solution, s is
an approximate optimal solution. Later on, this optimal so-
lution set of fuzzy parameters would be applied in OMFAM
to classify the test or unseen cases.

Although the optimization exists in the mining process,
O(N) or O(Max_Iterations) still represents the worst-case
complexity for OMFAM. The SA-related parameters are
counted as small value constants.

5 Experimental results

Comparative evaluation is carried among fuzzy ants clas-
sification approaches, OMFAM, MFAM and FAM as well
as those of effective neural miners such as SVM and
ANFIS. The performance assessment is done based on two
main criteria: accurateness and interpretability of the classi-
fication results of the mined rules. Here, the accuracy of the
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Table 1 Parameters used in the
mining methods Parameters Mining methods Value

Max_No_Ants OMFAM, MFAM, FAM 5

Max_Rules_Converge OMFAM, MFAM, FAM 3

Max_Case_Unweighted OMFAM, MFAM 5% of training cases

Max_Iterations MFAM, FAM, ANFIS 200

Max_Iterations × Max_Temperature OMFAM 10 × 20

mined rules is evaluated by average accuracy of classifica-
tion on the account of training and testing cases as well as
overfitting, and yielded by the mining methods. Addition-
ally, sensitivity, specificity and area under the receiver op-
erating characteristics curve (AUC) [47] are reported also,
the deviation from the accuracy median is determined; and
is displayed in a boxplot graph. The other criterion, inter-
pretability of the rules is estimated by the number of resulted
mined rules, number of terms per rule, as well as percentage
of attribute terms that are included in the mined rule.

Table 1 defines a set of parameters, associated with the
mining methods. Number of iteration runs is one of the fac-
tors that affect the effectiveness of mining methods. How-
ever, explicit distinction of algorithm structures is notable
between the two types of mining approaches, fuzzy ant clas-
sification methods, and those concerning neural classifiers.
Fuzzy ant-miner approaches apply multi-agent concepts to
achieve classified mined rules. With respect to these ant
miner methods, the termination of iterative runs depends
upon any of the following factors, predefined maximum
number of iterations; represented by Max_Iterations, max-
imum number of ants, number of rule convergence tests,
and maximum number of remaining unweighted cases in
the training set as well. The maximum number of ants, ref-
erenced by Max_no_Ants in Table 1 denotes the number of
ants at maximum, employed within rule construction in each
iterative run. Assigning too many ants would consume too
much runtime, however, too small number of them may not
produce good results. The next two parameters, that have
influence on the number of iterative runs are the number of
rule convergence tests and maximum number of remaining
unweighted cases in the training set respectively represented
by Max_Rules_Converege and Max_case_Unweighted. The
first parameter is assigned the largest number of repetition of
mined rules, allowed in a session of an ant run. An appropri-
ate parameter assignment lessens a chance to produce the re-
peated mined rules. The other one, Max_case_Unweighted
represents the threshold number of remaining unweighted
training cases allowed for termination. Such unweighted
training cases indicate the cases that have never matched any
constructed rules. Too high value of the threshold may re-
duce opportunity to explore the new or better rules; too low
of that may cause rule overfitting. Besides the fuzzy ant-
mining approaches, the other type of mining methods, re-
ferred in Table 1 are effective neural-based classifiers. This

type of classifier mines data by finding the optimized model
of weight set. The weight set model yields minimum learn-
ing error less than a very small amount of threshold. AN-
FIS optimizes such neural weights to achieve the mined best
rules; whilst SVM uses the optimal set of support vectors
to do the same things. Table 1 points out the same maxi-
mum iterations, Max_Iterations which is consumed by the
related mining methods, except OMFAM. A few numbers
of ants, used by MFAM and FAM gives very little effect,
compared to 200 maximum iterations. The 10 maximum it-
erations is run by MFAM part, consisted in OMFAM. In
addition, 20 maximum iterations of SA is also counted in
OMFAM. Therefore, the total of 200 maximum runs is reg-
ulated with respect to OMFAM. Thereby, one would say all
comparative mining methods have about the same maximum
iteration runs, nevertheless some method may get converged
before the specified maximum iterations, by the reason ear-
lier described.

To evaluate all related mining methods, six bench-
mark medical data sets obtained from the UCI repository
databases [36] are considered. The major characteristics of
those data sets are summarized in Table 2.

From Table 2, Among the related data sets, the number
of attribute (#Attri.) terms varies in rather wide range. The
real and nominal types of attribute term are pointed out. The
number of cases, scattered in each class is implied by the de-
viation of class distribution which is represented by Dev.Cla.
in Table 2. One would see the explicit difference of such de-
viation between the first three data sets and those of latter
three. Such difference relates to the distinction between the
percentages of majority class (Maj.Cla.) and those of minor-
ity class sample cases (Min.Cla.). For each dataset, the en-
tire data is randomized; and then is used to prepare ten sets
of 80%—training and 20%—testing cases, according to the
stratified 10-fold cross validation sampling scheme. Each set
of training cases is used to construct classification rules for
each mining method.

In Table 3, using test data sets, the average accuracy re-
sults of each mining method, yielded by experimentation are
presented. Such accuracy results are computed by 1.0 mi-
nus mean of square error (MSE). All the mining methods
generate over 95% accuracy rates on the Wisconsin breast
cancer (WBC) data set. This is due to the simple charac-
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Table 2 Characteristics of
considered medical data sets Dataset #Cases #Attri. #Real #Nominal #Class Dev. Maj. Min.

Cla. Cla. Cla.

(%) (%) (%)

WBC 699 9 – 9 2 21.95 65.52 34.48

ECHO 131 11 8 3 2 24.29 67.18 32.82

PIMA 768 8 2 6 2 21.36 65.10 34.90

PKS 132 22 22 – 2 35.90 69.77 13.95

TG 215 5 4 1 3 39.47 69.77 13.95

LYMPH 148 18 – 18 4 37.74 54.73 1.35

Table 3 The average accuracy yielded by the five mining methods

Dataset Method Average accuracy

WBC OMFAM 96.86

MFAM 95.57

FAM 93.71

SVM 96.21

ANFIS 94.57

ECHO OMFAM 93.85

MFAM 87.31

FAM 82.31

SVM 84.62

ANFIS 79.23

PIMA OMFAM 75.78

MFAM 72.14

FAM 72.86

SVM 63.05

ANFIS 75.4

PKS OMFAM 89.49

MFAM 83.33

FAM 82.05

SVM 70.77

ANFIS 87.18

TG OMFAM 93.49

MFAM 88.37

FAM 56.05

SVM 93.26

ANFIS 90.23

LYMPH OMFAM 81.33

MFAM 72.00

FAM 70.33

SVM 80.33

ANFIS 68.00

teristics of WBC, having only nominal attribute terms, 2
classes and low class distribution deviation as well. Con-
trarily, all those methods show the low efficiency on Pima
Indians (PIMA) data set. This may be caused by the diffi-

culty of diagnosis of diabetes. Diabetes patients show many
symptoms and some of these symptoms appear in the other
types of diseases, i.e. many diseases share symptoms. Ac-
cording to the Lymphography (LYMPH) data set, the best
accuracy of only 81.33% is produced by OMFAM; whilst
the near best, 80.33% is resulted by SVM. In accordance
with LYMPH, one would see the high deviation of class dis-
tribution among four classes; consistently, the high ratio of
approximately 54.73 : 1.35 which is equivalent to 41 : 1 is
indicated for the majority and minority class sample cases.
OMFAM obtains the highest accurate rate (89.49%) on
Parkinson (PKS) data set, although PKS has similar diffi-
culties to LYMPH. However, the higher number of classes,
the higher difference between majority and minority class
sample cases are distinct between those two data sets. By
the criteria based on average accuracy, the superiority of
OMFAM over MFAM and the others is evidence of the su-
periority of SA optimization over the modified fuzzy ant-
miner. In addition, for most data sets, MFAM denotes better
quality than FAM. This emphasizes the benefits of the mod-
ification of FAM by means of applying weights of cases and
terms of attribute. According to the results shown in Table 3,
SVM seems to generate competitive results with OMFAM
regarding Thyroid Gland (TG) and LYMPH. Even so, there
would be further performance assessment criteria that needs
to be taken into account. Figure 5 denotes the best accu-
racy rate, yielded by OMFAM with a few deviations from
median values. The figure remarks the higher accuracy of
OMFAM over all the related methods. Besides, it is seen
the superiority of OMFAM over MFAM for all data sets.
Such a predomination of OMFAM, once again denotes the
benefit of SA optimization model. Figure 6 illustrates the
estimation of the overfitting property for each mining meth-
ods. The overfitting of each method is evaluated by compar-
ing the classification precision of training and testing cases.
A pair of black and white consecutively represents the ac-
curacy of those training and testing. The figure points out
the large overfitting of SVM in many circumstances. That
means efficiency of SVM is mainly determined based on the
training data set. In contrast with SVM, OMFAM yields very
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Fig. 5 Range of rule accuracy
for different mining algorithms
on six medical data

close training and testing results. According to most relevant
cases, OMFAM remarkably shows the least overfitting.

In addition, Table 4 reports sensitivity and specificity of
the mining methods, where the definition of those measure-
ments has been described in Sect. 2. One could say sensi-
tivity and specificity consecutively reflect the accuracy of
positive and negative classes. Another precision measure-
ment, area under the receiver operating characteristics curve
(AUC) represents how well the method separates the tested
data set into positive and negative classes. According to
AUC, an area of 1.0 represents a perfect test; whilst 0.5
represents a worthless one. Table 4 shows SVM, having
the prominent correctness of positive class identification; in
contrast, having inconspicuous and low correctness of nega-
tive one. Based on AUC measure, OMFAM performed best

on WBC, ECHO and PIMA, of which class distribution de-
viation are not extensive. It is noticeable that TG has the
highest degree of class distribution deviation as well as the
amount of difference between the majority class and minor-
ity class sample cases. However, OMFAM and ANFIS yield
the same high level of 0.91 AUC with respect to TG. Results
on PKS data set show the AUC rate of OMFAM stands on
second rank after ANFIS. This is due to about 9% higher
accuracy of positive class, produced by ANFIS than OM-
FAM; while around 3% lower accuracy of negative class
than OMFAM. LYMPH has the high deviation of class dis-
tribution among four classes; and has high level of distinc-
tion between the majority and minority class sample cases.
Although it indicates the best AUC rate yielded by SVM,
the rival specificity rate is denoted on SVM and OMFAM.
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Fig. 6 Comparison of rules
accuracy based on training and
the corresponding testing

However, the whole results regarding Lymph data, the low
degree of sensitivity along with AUC is produced by all the
miners. The overall results regarding specificity and AUC
results, OMFAM, FAM and ANFIS are competitive; whilst
most data sets show SVM obtains the best sensitivity degree.

Besides the accuracy, the other performance assessment
for the mining methods refers to rules interpretability. The
measurement of the rule interpretability is shown in Table 5.
According to the best rule set, generated by each classifica-
tion method, the number of rules and the average number of
attribute terms (‘xdisAdj ’, represented by termdj ) per rule
are estimated for measuring the rule interpretability. The

median of classification accuracy is simultaneously consid-
ered in the same table. Wilcoxon’s rank sum test is utilized
for comparing a pair of the mining methods one-at-a-time:
OMFAM-MFAM, MFAM-FAM and OMFAM-FAM. Such
comparison test reports none of significant difference among
those three mining methods in terms of the average terms
per rule. However, a significant difference between OMFAM
and FAM in terms of the number of rules is pointed out.
The reason behind such difference is relevant to the use of
the reduction of the weight of training cases in OMFAM;
whereas the immediate termination of the matched case is
executed in FAM. The weights reduction provides better
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Table 4 Sensitivity, specificity and AUC resulted by five methods

Dataset Method Sensitivity (%) Specificity (%) AUC

WBC OMFAM 96.89 96.58 0.97

MFAM 96.48 93.88 0.95

FAM 97.77 85.78 0.92

SVM 98.10 92.40 0.95

ANFIS 97.35 91.21 0.94

ECHO OMFAM 98.82 79.73 0.89

MFAM 93.21 72.05 0.83

FAM 85.15 70.80 0.78

SVM 100.00 60.00 0.80

ANFIS 84.70 74.88 0.78

PIMA OMFAM 90.55 48.51 0.70

MFAM 88.77 42.67 0.66

FAM 82.24 56.03 0.69

SVM 93.54 8.91 0.51

ANFIS 88.91 52.59 0.67

PKS OMFAM 70.16 94.36 0.82

MFAM 35 93.28 0.64

FAM 21.25 95.20 0.58

SVM 92.44 65.73 0.79

ANFIS 79.07 91.25 0.88

TG OMFAM 99.01 80.88 0.91

MFAM 52.74 75.38 0.64

FAM 51.60 72.52 0.62

SVM 84.21 92.97 0.89

ANFIS 84.83 94.89 0.91

LYMPH OMFAM 45.45 90.58 0.67

MFAM 42.28 87.78 0.64

FAM 41.41 86.34 0.63

SVM 59.47 90.41 0.75

ANFIS 52.80 86.12 0.68

chance for OMFAM to remain more cases for construct-
ing the rules than immediate cases termination in FAM. Al-
though OMFAM may have some irrelevant terms resided in
the best mined rules, the better median of accuracy with re-
gard to OMFAM than that of FAM indicates the merit of
SA optimization on OMFAM. In Table 5, neither resulted
rules of ANFIS nor SVM are not applicable. The reason is
that SVM does not yield interpretable rule-based output; in-
stead, it generates incomprehensible support vectors as clas-
sification boundaries. Similar to ANFIS, a fixed number of
rules as well as number of attribute terms per rule is pre-
specified; and is never changed during the rules generation
process.

In addition, the details of the mined rules yielded by OM-
FAM are displayed in Table 6. The elements of the best rule
sets along with the percentages of the used attribute terms
are revealed for each data set. Four of the six medical data

Table 5 Number of rules and average number of terms per rule

Dataset Method Median of No. of Terms/rule

classification rules/rule

accuracy set

WBC OMFAM 97.14 3 1.67

MFAM 95.36 2 2

FAM 93.57 2 1.5

ECHO OMFAM 92.31 3 2.67

MFAM 88.46 3 1.67

FAM 80.77 4 1.5

PIMA OMFAM 75.97 3 2

MFAM 72.08 3 2

FAM 73.05 2 1.5

PKS OMFAM 89.74 3 1.33

MFAM 84.62 5 1.2

FAM 83.33 2 1

TG OMFAM 94.19 3.6 2.16

MFAM 87.21 3 2.33

FAM 68.60 3 1.33

LYMPH OMFAM 83.33 4.5 2.37

MFAM 71.67 8 2.13

FAM 71.67 2 2.5

sets, WBC, ECHO, PKS and LYMPH show that the lower
than half of the number of the attribute terms in the rule set is
in used. It has been demonstrated that a few number of data
set is obtained by rule pruning. Such rule pruning is gained
by the influence of rule quality outcome. The successfulness
of the OMFAM in terms of high quality of the mined rules
mostly depends on SA optimization.

Figures 7, 8, 9–12 express diagrams, representing the
changes in fuzzy set functions of all used attributes before
and after the SA optimization. Such changes are the con-
sequences of the adaptation of fuzzy set parameters (center
and standard deviations), caused by SA optimization. The
diagrams are employed for perceiving the effect of SA op-
timization on fuzzy parameters within OMFAM compared
to the non-optimized approach MFAM. Such SA optimiza-
tion on the fuzzy set parameters can be determined against
the fixed fuzzy sets consecutively in left and right diagrams
contained in each figure. One could find in Table 3 the per-
centages of the increase of accuracy rate made by SA op-
timization on OMFAM. The relationship analysis should
be considered between the diagrams in Figs. 7–9, 10, 11,
12 and such increase percentages of accuracy rate of OM-
FAM over MFAM in Table 3. In WBC data set, the SA op-
timization causes the variation of fuzzy set functions, ap-
pearing in all attributes in the rule set. Even so, a few dif-
ferences of accuracy rate between OMFAM and MFAM is
reported, it is obvious that most of classification methods
can obtain near-optimal solutions for WBC. Approximately,
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Table 6 The best rule sets as
well as attributes and their
percentage used in regard to
OMFAM

Dataset Best rules Attributes used in Percentages

the best rules of attributes

used (%)

WBC IF x2 = ‘S’ and x4 = ‘S’ and x1: Clump Thickness 33.33

x6 = ‘S’ THEN class = 0 x2: Uniformity of

IF x6 = ‘L’ THEN class = 1 Cell Size

IF x1 = ‘L’ THEN class = 1 x4: Marginal Adhesion

x6: Bare Nuclei

ECHO IF x3 = ‘S’ and x8 = ‘M’ and x1: survival 45.45

x9 = ‘M’ and x11 = ‘S’ x3: age-at-heart-attack

THEN class = 0 x8: wall-motion-score

IF x8 = ‘M’ and x9 = ‘M’ and x9: wall-motion-index

x11 = ‘S’ THEN class = 0 x11: group

IF x1 = ‘S’ THEN class = 1

PIMA IF x2 = ‘M’ and x5 = ‘S’ and x1: Number of times 75.00

x7 = ‘S’ THEN class = 0 pregnant

IF x1 = ‘S’ and x3 = ‘M’ and x2: Plasma glucose

x5 = ‘S’ THEN class = 0 concentration a 2

IF x7 = ‘S’ and x8 = ‘S’ hours in an oral

THEN class = 0 glucose tolerance

IF x8 = ‘M’ THEN class = 1 test

IF x2 = ‘L’ THEN class = 1 x3: Diastolic blood

pressure (mm Hg)

x5: 2-Hour serum

insulin (mu U/ml)

x7: Diabetes pedigree

function

x8: Age (years)

PKS IF x20 = ‘S’ THEN class = 0 x1: MDVP:Fo(Hz) 18.18

IF x1 = ‘S’ THEN class = 1 x2: MDVP:Fhi(Hz)

IF x2 = ‘S’ and x16 = ‘M’ x16: HNR

THEN class = 1 x20: spread1

TG IF x3 = ‘S’ and x4 = ‘S’ and x1: T3-resin uptake test 100.00

x5 = ‘S’ THEN class = 0 x2: Total serum

IF x2 = ‘L’ THEN class = 1 thyroxin

IF x1 = ‘S’ and x4 = ‘S’ and x3: Total serum

x5 = ‘S’ THEN class = 1 triiodothyronine

IF x2 = ‘S’ THEN class = 2 x4: basal thyroid-

stimulating hormone

(TSH)

x5: Maximal absolute

difference of TSH value

after injection of 200

micro grams of

thyrotropin-releasing

hormone

LYMPH IF x18 = ‘S’ THEN class = 1 x8: early uptake 33.33

IF x13 = ‘M’ THEN class = 1 x9: lym.nodes dimin

IF x8 = ‘L’ and x9 = ‘S’ and x11: changes in lym

x17 = ‘M’ THEN class = 2 x13: changes in node

IF x8 = ‘M’ and x15 = ‘L’ and x15: special forms

x18 = ‘L’ THEN class = 3 x17: dislocation

IF x11 = ‘S’ THEN class = 3 x18: no. of nodes
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Fig. 7 The effect of SA optimization on fuzzy parameters in OMFAM, using Wisconsin breast cancer data set

Fig. 8 The effect of SA optimization on fuzzy parameters in OMFAM, using echocardiogram data set
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Fig. 9 The effect of SA optimization on fuzzy parameters in OMFAM, using Pima Indians diabetes data set

Fig. 10 The effect of SA optimization on fuzzy parameters in OMFAM, using Parkinson data set
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Fig. 11 The effect of SA optimization on fuzzy parameters in OMFAM, using Thyroid data set

7.49% accuracy improvement is produced by using OM-
FAM, instead of MFAM with respect to ECHO data set.
Four out of five fuzzy sets alter from those of originals as
seen in the diagram. Only x1: survival that seems to be un-
changed. This is one of the evidences of the advantage be-
longing to SA optimization. For PIMA data set, even if a
few amount of fuzzy set’s modification, caused by the opti-
mization is appears, about 5.05% better quality than MFAM
is produced by OMFAM. In TG, the effect of the optimiza-
tion lies on only x1: T3-resin uptake test; even so, 5.79%
superior quality of OMFAM than MFAM is reported. A cer-
tain degree of alteration is pointed out for all attributes in
PKS and almost all in LYMPH; about 7.39% and 12.96%
of higher quality, sequentially yielded by OMFAM than
those of MFAM emphasize the goodness of SA optimiza-
tion.

6 Discussion

The computational study, conducted in this work relies on
two main performance measurements; accurateness and in-
terpretability. The results, in terms of accurateness indicate
the credibility of OMFAM that uses the merit of SA for opti-
mizing modified fuzzy ant miner. Such credibility is pointed
out by the higher quality of OMFAM than MFAM and
FAM as well as the efficient neural classifiers i.e., SVM and
ANFIS. This section concerns with the comparison of
OMFAM against other methods in the literature that earlier
mentioned in the related work section. For Wisconsin breast
cancer, Fc-AntMiner [32] and AntMiner-C [33] reported the
better results than that of OMFAM. However, Fc-AntMiner
employed 30 number of ants and 6 fuzzy sets for each at-
tribute term achieved 97.51% accuracy, whereas AntMiner-
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Fig. 12 The effect of SA optimization on fuzzy parameters in OMFAM, using Lymphography data set

C used 1,000 ants obtained 97.54%; whilst OMFAM uses
only 5 ants and 3 fuzzy sets. For the mining method, the
parameter setting is considered as the major cause of the
outcome. By this reason, the additional experiment, using
30 number of ants but only 3 fuzzy sets in OMFAM is exe-
cuted for the same data set. The result shows 98.39% degree
of accuracy which is higher than or comparable to those
of the two literatures. Similarly, as per Thyroid gland data
set, the powerful classifiers in the literature e.g., SIM [41],
ESTDD [39] and PNN [38] sequentially reached 96.86%,
95.33% and 94.81% of accuracy degree. OMFAM with only

5 ants obtains 93.44%; however, using 30 ants, it achieves
96.92%. Therefore, OMFAM indicates better quality than
or comparable performance to those three effective classi-
fication methods. Additionally, three efficient methods in
literature i.e., TACO-miner [42], adaptive ANN using arti-
ficial immune system (ANN-AIS) [43] and also SVM in-
corporated with feature discrimination (FDSVM) [44] are
considered here for Echocardiogram data set. The outcome,
using Echocardiogram data set is like the one, using Thy-
roid gland. TACO-miner, using 100 number of ants pre-
sented 96.4% degree of quality; ANN-AIS, executed within
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5,000 maximum iterations reported 94.59%; whilst FDSVM
yielded 87.69% accuracy. Whereas OMFAM, using 30 ants
produces 96.92%.

The results of OMFAM, stated above manifest the impor-
tance of assigning different number of ants (5 or 30 ants).
It is notable that fuzzy ant-mining approaches in literature,
even those recent ones have employed a large number of ants
to mine the rules. OMFAM, utilizing SA for optimizing the
modified fuzzy ant-miner shows the effective results even if
the small number of 30 ants is used for extracting the rules. It
is rather unnecessary to directly compare OMFAM method
with other existing classification methods. This is because
the works in the literature, just-earlier compared to OM-
FAM have reported an extensive comparison study against
other proficient classification methods. Fc-AntMiner as well
as AntMiner-C, executed for Wisconsin breast cancer data
set declared better classification quality than several suc-
cessful classifiers e.g., SVM, C4.5, Naive Bayes, Neural net-
work, KNN and Bayesian network as well as ANTMINER,
RIPPER and Logistic regression. SIM, ESTDD and PNN
classification methods were employed for Thyroid data set.
The quality of their results outperformed the competent min-
ing methods e.g., Multi-layer perceptron (MLP) with back
propagation, RBF neural network, Learning vector quanti-
zation (LVQ), linear discriminant analysis (LDA) and C4.5.
Furthermore, TACO-miner and ANN-AIS illustrated better
accuracy against the C5.0 and GANN-C [42]. The latter
method combines chaotic dynamics, genetic algorithm, and
neural network. Thus, by indirect induction, it is reasonable
to conclude that the OMFAM will compare favorably with
several existing fuzzy ant classifiers.

7 Conclusion

The objective of this paper is to illustrate the ability of sim-
ulates annealing (SA) to develop an accurate modified fuzzy
ant classifier. Employing SA for classification tasks gains
effective exploration and exploitation in the large search
space. SA optimization is also used to find the global op-
timum set of fuzzy if-then rules, usually utilized in medical
applications. Experiments are performed with six UCI med-
ical data sets. The comparison tests are executed on fuzzy
ant-mining approaches, modified fuzzy ant-miner (MFAM)
and traditional fuzzy ant-miner (FAM) as well as efficient
neural networks, SVM and ANFIS. The performance mea-
surements concern with accurateness and interpretability of
the resulted mined rules. Contribution in terms of accurate-
ness of OMFAM, optimized by SA is confirmed by such
evidences as the best average and median of accuracy with
low standard deviation, the highest AUC for five out of six
data sets and the least overfitting of classification as well.

On the other side, OMFAM, MFAM and FAM yield com-
parable results with regard to the degree of interpretabil-
ity, concerning number of resulted rules. Although the high
quality, regarding the terms per rules is indicated by FAM,
the results indicate that the proposed OMFAM with SA op-
timization achieves competitive results in comparison with
several well-known classification algorithms. Nonetheless,
OMFAM consumes high training time. This problem could
be addressed according to intelligently adjusting cooling
rate or decrease rate of temperature in SA. Even so, if the
training process leads to a better classification, it is still prac-
tically important since the training is only required to be per-
formed once.

In the future, some other factors which affect the accu-
rateness and interpretability of the mined rules can be con-
sidered in OMFAM. Moreover, other advanced searching
technique for determining suitable fuzzy set parameters can
be used to improve classification accuracy.
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