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Abstract Optimization plays a critical role in human mod-
ern life. Nowadays, optimization is used in many aspects of
human modern life including engineering, medicine, agri-
culture and economy. Due to the growing number of opti-
mization problems and their growing complexity, we need
to improve and develop theoretical and practical optimiza-
tion methods. Stochastic population based optimization al-
gorithms like genetic algorithms and particle swarm opti-
mization are good candidates for solving complex prob-
lems efficiently. Particle swarm optimization (PSO) is an
optimization algorithm that has received much attention in
recent years. PSO is a simple and computationally inex-
pensive algorithm inspired by the social behavior of bird
flocks and fish schools. However, PSO suffers from pre-
mature convergence, especially in high dimensional multi-
modal functions. In this paper, a new method for improv-
ing PSO has been introduced. The Proposed method which
has been named Light Adaptive Particle Swarm Optimiza-
tion is a novel method that uses a fuzzy control system to
conduct the standard algorithm. The suggested method uses
two adjunct operators along with the fuzzy system in or-
der to improve the base algorithm on global optimization
problems. Our approach is validated using a number of com-
mon complex uni-modal/multi-modal benchmark functions
and results have been compared with the results of Stan-
dard PSO (SPSO2011) and some other methods. The sim-
ulation results demonstrate that results of the proposed ap-
proach is promising for improving the standard PSO algo-
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rithm on global optimization problems and also improving
performance of the algorithm.

Keywords Particle swarm optimization · Fuzzy control ·
Random search · Numerical function optimization ·
Premature convergence

1 Introduction

There exists systems in nature which are composed of sim-
ple agents. Each agent in these systems looks to be simple
and unintelligent but, the behavior of the entire system sur-
prisingly seems intelligent. In such systems, no central con-
trol or other types of coordinators exist but the collective
behavior of the system is purposeful and smart. Scientists
named this behavior as swarm intelligence. In other words,
in a swarm intelligent system each agent does a simple task
and interacts locally with the environment and other agents,
but the collective behavior of the entire system that results
from these simple tasks is intelligent. Many swarm intel-
ligent systems exist in nature, for example ants that allo-
cate their tasks dynamically without any coordinator. As an-
other example birds in a flock and fishes in a school organize
themselves in optimal geometrical patterns.

Computer scientists have been inspired by swarm intelli-
gent systems in nature and have tried to imitate the behav-
ior of such systems by inventing computational swarm in-
telligent models. The aim of such computational models is
making powerful methods for solving problems which com-
posed of simple and computationally inexpensive agents in-
stead of devising complex concentrated systems. Working
with many simple and understandable agents is easier than
working with a very complex system. Particle Swarm Op-
timization (PSO) algorithm is an example of such compu-
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tational models which tries to simulate behavior of the bird
swarms.

PSO is a population based numerical optimization al-
gorithm inspired by the social behavior of bird swarms.
Kennedy and Eberhart first introduced PSO algorithm in
1995 [1]. Like evolutionary algorithms, PSO maintains a
group of candidate solutions. In PSO each candidate’s so-
lutions is called particle and the entire population is called
swarm. In order to simulating the behavior of natural bird
swarms, each particle within PSO swarm does two simple
tasks. First, it constantly desires to come back to its own
previous best position and second, it follows its successful
neighbors by flying to their successful positions. The overall
behavior of the swarm results from these two simple tasks is
swarm’s rapid focusing on promising areas of search space.

Although PSO is a speedy and robust optimization al-
gorithm, it suffers from premature convergence especially
in problems with many variables. Premature convergence is
defined as converging of the algorithm to a suboptimal so-
lution rather than locating the global optimum solution. To
date, many researchers have examined various approaches to
solve this problem. We will discuss this in some important
previous works on this paper.

To avoid converging to local optima in PSO, an idea of
conducting the base algorithm by a fuzzy control system and
also utilizing exploration ability of random search and diver-
sification of a type of mutation operator is addressed in this
paper.

This paper is organized as follows. In Sect. 2, we have
talked about the basic PSO algorithm. In Sect. 3, we have
reviewed previous attempts for improving PSO algorithm
on global optimization problems. In Sect. 4, we have intro-
duced our method and have described it in detail. In Sect. 5,
we have explained benchmark functions and their settings
then we have compared the simulation results with those of
standard PSO, and some other methods. Finally, Sect. 6 is
the conclusion and suggestion for some future works.

2 Particle swarm optimization

Particle swarm optimization is a stochastic optimization tool
that stores a population of possible solutions to solve prob-
lems. The current solution of each particle is called posi-
tion of the particle. The population initialized by randomly
generated particles. The historical PSO algorithm uses uni-
form random numbers for initialization. During each iter-
ation, particles within the swarm update their position in
search space based on two types of knowledge. First their
own personal experiences and second the experiences of
their neighbors. It means that in each iteration of the algo-
rithm, each particle flies to the direction of the best position
of itself and the best position of its neighbors. The neighbors

of each particle are usually determined before the start of the
algorithm, basic PSO algorithm could be classified as local
best PSO or global best PSO base on social structure of the
swarm. In PSO algorithm, positions of particles are updated
by their velocity vectors. It means that the position of each
particle in the next iteration is calculated by adding its veloc-
ity vector to its current position (1). Consider that we have
an optimization problem in a d-dimensional search space.
Let Xi = (xi1, xi2, . . . , xid) and Vi = (vi1, vi2, . . . , vid) are
the ith particle’s position vector and velocity vector re-
spectively. Also suppose that Pi = (pi1,pi2, . . . , pid) repre-
sents best previously visited position of the ith particle and
Pgi = (pg1,pg2, . . . , pgd) represents the global best posi-
tion of the swarm. In PSO algorithm, optimization is done by
the velocity equation. The velocity of each particle is com-
puted according to (2).

Xt+1
i = Xt

i + V t
i (1)

V t+1
i = wV t

i + c1r1(P
t
i − Xt

i ) + c2r2(P
t
g − Xt

i ) (2)

where d ∈ {1,2, . . . ,D}, i ∈ {1,2, . . . ,N} and N is the
swarm size and the superscript t is the iteration number.
In (2) w is the inertia weight which prevents particles to
suddenly change their directions, r1 and r2 are two random
vectors with values in the range [0,1] used to keep some
diversity and c1 and c2 are the cognitive and social scaling
parameters which are positive constants. The proportion of
c1 and c2 determine how much each particle relies on its
experience and how much it relies on others experiences.
Usually c1 and c2 are equal and set to about 2.

Empirical simulations showed that in basic PSO, if we
do not limit the amount of velocity to some predeter-
mined value, then the magnitude of velocity of particles
increase rapidly. In such conditions particles locations in-
crease rapidly too and therefore the swarms is unable to do
optimization [2]. Constriction coefficient model [3] is an-
other popular model of PSO algorithm which does not need
velocity clamping. Moreover if certain conditions are met,
the constriction coefficient model could guarantee conver-
gence of the swarm. In constriction coefficient model the
velocity equation change to (3). Where χ called the con-
striction factor.

V t+1
i = χ[V t

i + ϕ1(P
t
i − Xt

i ) + ϕ2(P
t
g − Xt

i )] (3)

where

χ = 2k

|2 − ϕ − √
ϕ(ϕ − 4)| ,

ϕ = ϕ1 + ϕ2, ϕ1 = c1r1, ϕ2 = c2r2 and k ∈ [0,1]
The parameter k, in (3) controls the exploration and ex-
ploitation abilities of the swarm. For k ≈ 0, fast convergence
is obtained with local exploitation. The swarm exhibits an
almost hill-climbing behavior. On the other hand, k ≈ 1 re-
sults in slow convergence with a high degree of exploration.
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Usually, k is set to a constant value. However it can be de-
creased during the execution of algorithm.

In this paper, we have used the current standard version
of the PSO (SPSO-2011 [12]) as the base algorithm for our
method. SPSO is a standard version of PSO approved by
researchers of the field, as a base method for comparison of
variations of the algorithm.

3 Related works

In optimization theory we are looking for an optimization
algorithm that can locate the global optimum point on ev-
ery problem regardless of its difficulty and algorithm’s start-
ing point. In 1997 Wolpert and Macready [4] proved that
“averaged over all possible problems or cost functions, the
performance of all search algorithms is exactly the same”.
This means that no algorithm is better on average than other
algorithms. Although reaching to the most excellent algo-
rithm for all problems is impossible, we are not coping with
all possible problems or cost functions, therefore we are still
looking for an algorithm with high accuracy on common and
useful problems.

Any optimization algorithm must do two tasks, explo-
ration and exploitation. Exploration means that searching re-
gions of search space to find promising regions and exploita-
tion means that concentrating on a promising area to refine
the solution. Some problems needs more exploration and
less exploitation while other problems needs more exploita-
tion and less exploration. Every good optimization method
must be able to balance these two contradictive tasks. Usu-
ally algorithms are trying to explore search space in early
steps and then they try to exploit hopeful areas.

Up to now many attempts have been made to deal with
PSO algorithm’s premature convergence. Some of these at-
tempts were successful to improve PSO algorithm on global
optimization problems. Previous works have tried different
approaches for improving basic PSO algorithm. In this sec-
tion we introduce studies about important previous attempts
and classify them according to the changes made on the ba-
sic algorithm. In this section we have examined seven types
of approaches for dealing with premature convergence.

3.1 Changing the initialization method of the algorithm

Some methods have tried to improve the initialization
method of the PSO in order to have a better exploration
in early iterations of the algorithms. Pant et al. [5] have
used different probability distributions for initializing the
swarm. In another work Pant et al. utilized low discrep-
ancy sequences (discrepancy is deviation of the random se-
quence from the true uniform distribution, low discrepancy

sequences are less random but more uniform than pseudo-
random numbers) for better initializing particles [6]. Plow-
ing PSO is another approach for initializing PSO effectively,
which uses a kind of random search for improving initializa-
tion [7].

3.2 Changing the neighborhood pattern of the swarm

Some other methods have changed the neighborhood struc-
ture of the swarm in order to get to a compromise be-
tween exploration and exploitation. Whatever neighborhood
of particles in swarm is more coupled, the flow of experi-
ences between particles become faster and therefore prema-
ture convergence is more probable. Various methods have
been suggested for changing the neighborhood structure. For
example in fully informed PSO [8] each particle not only
impressed by best of its neighbor but also impressed by all
of its neighbors. Suganthan have used Euclidian distance for
selecting neighbors [9]. Kennedy and Mendes in [10] have
examined the impact of various social topology graphs on
PSO performance. In basic PSO algorithm each particle con-
verges to median of its own and its neighbor’s best position,
Kennedy in barebones PSO [11] has used randomly gen-
erated positions around the middle of these two positions
instead of particle’s best position and best swarm position
in velocity equation. Standard PSO (SPSO-07, SPSO-2011)
[12] is an improved version and current standard of PSO
which uses a random topology for choosing the local best
particles adaptively.

3.3 Adjustment of basic algorithm parameters

Some researchers have tried to achieve a compromise be-
tween exploration and exploitation by adjusting historical
PSO algorithm parameters [13–16]. For example whatever
the value of inertia weight is greater, the exploration ability
of the swarm is more and vice versa. So some methods ad-
just inertia weight so that exploration in early steps is high
and decrease it during running of algorithm. Constriction co-
efficient model [3] itself is another method that tries to adjust
historical PSO parameters for improving it.

3.4 Hybrid methods

There exists various studies that have mixed PSO algorithm
by other optimization methods [17–19] or other method’s
heuristics and concepts. For example Chen et al. have mixed
PSO with Extremal optimization [17]. Angeline [20] has
hybridized PSO with the selection operator of genetic al-
gorithm and some other methods have combined PSO with
crossover and mutation operators of the genetic algorithm
[21–25]. The proposed method in this paper could be classi-
fied as hybrid method because it uses the mutation concept
from genetic algorithms to improve the PSO algorithm.
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3.5 Multi-swarm methods

Some techniques have tried the idea of utilizing more than
one swarm for doing optimization. These swarms may co-
operate or compete for doing their tasks. For example co-
operative split PSO [26] has a number of sub-swarms that
each one is responsible for optimization of a subset of the
solution. In predator-prey PSO [27], Silva has inspired by
predator-prey relationship in nature and introduced predator
swarm to PSO which is useful for keeping diversity within
the swarm. The predator swarm follows global best position
of the (prey) swarm so the preys fear and do not get close
to global best position very much so the swarm keeps its
diversity.

3.6 Multi-start methods

One of the main reasons of premature convergence is the
lack of diversity within the swarm. In PSO when a parti-
cle reaches to an optima, it rapidly attracts its neighbors
and therefore, the swarm concentrates on the founded op-
timum. Many techniques [28–30] have been suggested for
keeping diversity within swarm by injecting diversity to the
swarm by reinitializing particles or their velocities. These
techniques are differ based on when they inject diversity
to the swarm and how they do diversification. For example
some methods randomize velocity vectors while the others
randomize the position of the particles. We utilized random
restart technique in our proposed algorithm for injecting di-
versity to the swarm.

3.7 Other methods

Several methods exist that cannot simply be classified as
above types. For example Blackwell et al. [31] have intro-
duced charged PSO in which repulsion force has been in-
troduced to PSO. In charged PSO each particle has an elec-
trostatic charge that has impact on the behavior of the parti-
cle. Particles with the same electrostatic charge repulse each
other and so we can ensure of the existence of diversity in
the swarm.

4 The proposed method

Our proposed algorithm is based on the Standard PSO al-
gorithm. It means that our suggested algorithm does all of
Standard PSO computations in every iterations, moreover
we have utilized two operators and a simple fuzzy con-
trol system in order to improve Standard PSO algorithm on
global optimization problems. The first operator or plow op-
erator is used for efficient initializing of the algorithm. The
second operator or mutation operator is used for escaping

Fig. 1 Pseudo code of plow operator

from local optima and finally the fuzzy control system is
used for conducting the search and effectively using the mu-
tation operator, with the aim of facilitating exploration and
exploitation. We will explain details of these operators and
control system in addition to description of our algorithm
which we named Light Adaptive PSO (LADPSO) in the fol-
lowing sub-sections. Note that all pseudo codes are assum-
ing minimization problems.

4.1 Plow operator

The plow operator has utilized the exploration ability of
blind random search for making initialization of the PSO
more effective [7]. Plow operator performs on one particle
of the swarm. Plow operator tries to reach a better solution
by iteratively changing the variable of one dimension in a
candidate solution by uniform random numbers while other
dimensions remain fixed. If the new generated position is
better than the previous one, then it keeps the new position
and drops it otherwise. This procedure gets done for each di-
mension k times. Since this process is like plowing in agri-
culture and prepares the algorithm to reach to a better solu-
tion, this process has been named as plow. The pseudo code
of plow operator is represented in Fig. 1.

As we mentioned earlier, plow operator changes the value
of each dimension k times. The original paper [7] uses the
plow operator only for global best location of the swarm
with k = 50, but we use the plow operator for all particles
once at the beginning of the algorithm with k = 20. How-
ever plow operator may be used several times during execu-
tion of the algorithm for various reasons. For example plow
operator may be used to facilitate exploration, helping the
algorithm to escape from local optima or even injecting di-
versity to the swarm. Usefulness of the plow operator has
been reported on [7].

4.2 Mutation operator

Up to now mutation has been combined with PSO in many
previous works. We have referenced to some of them in pre-
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Fig. 2 Pseudo code of the adaptive mutation operator

vious section. Several methods including uniform mutation,
Gaussian mutation, Levy mutation and adaptive mutation
which choose the type of mutation based on problems condi-
tions have been suggested for performing mutation in PSO.
In our work, we have added a Gaussian mutation to the par-
ticles. The amplitude of the Gaussian mutation is controlled
by the fuzzy system. The control strategy designed so that
the amplitude of the Gaussian noise is high in the early steps
to help the algorithm to explore more effectively and it will
be decreased to facilitate exploitation in the last phases.

Like the plow operator, mutation operator changes the
value of one dimension k times while other variables remain
constant. This change is performed by replacing the value of
the variable by a random number with normal distribution
with average of variable’s old value and a determined vari-
ance. The value of variance and k is set automatically by the
fuzzy control system. Mutation operator acts on global best
location of the entire swarm. Like multi restart techniques,
in our algorithm after each application of mutation operator,
we have reinitialized some of population randomly (except
the global best particle) to inject diversity to the swarm; the
number of particles to reinitialize is determined by fuzzy
control system too.

The pseudo code of the mutation operator has been de-
picted in Fig. 2 where “randn” indicates a normal random
number with zero mean and unity standard deviation.

4.3 Proposed algorithm (LADPSO)

We have utilized two above operators in order to improv-
ing standard PSO algorithm. As we mentioned earlier the
plowing operator has been used for effective initialization
and the mutation operator has been used for escaping from
local optima. In LADPSO algorithm plowing is used only
once at beginning of the algorithm, on the other hand the
mutation operator acts when a fuzzy control system triggers
it. We have used control system with the aim of helping the
algorithm to converge to global optimum and optimal use
of computational resources. Usually on similar works ad-
junct operators have been used regularly for example one
time on every few iterations. This approach does not seem
efficient because on some conditions the algorithm uses op-
erators unduly or the algorithm could not use them when it

Fig. 3 Pseudo code of the LADPSO algorithm

needs to use them. In this paper, we have used a compu-
tationally inexpensive fuzzy control system for determining
the exact timing of operator’s usage and configuration of the
operator. This control system specifies whether we must use
or not use the mutation operator based on swarm’s condi-
tions. Also the fuzzy system specifies the type of mutation
operator. The details of our control system will be explained
in next section.

In LADPSO, in each iteration, if the control system de-
cides that we need to perform the mutation operator, then
it will be done. When the swarm starts to converge we use
the mutation operator to help the swarm to escape from lo-
cal optima. The proposed algorithm first tries to reach to a
good start point by performing the plow operator on the en-
tire swarm. In consequent iterations, if the swarm starts to
converge then the fuzzy control system decides to do muta-
tion, during the mutation the algorithm tries to escape from
local optimum and to inject some diversity to the swarm. If
after some mutations the swarm was unable to get better re-
sult, the amplitude of Gaussian mutation is decreased to help
the algorithm to do more exploitation. In fact the aim of the
fuzzy system is to help both the exploration and exploitation
when the algorithm needs to them.

Pseudo code and the flowchart of the LADPSO are shown
in Figs. 3 and 6.

4.4 Fuzzy control system

We have used a fuzzy approach to cope with premature con-
vergence in this paper. Our fuzzy control system tries to de-
tect premature convergence by examining swarm conditions
and use necessary reaction (mutation operator timing and
settings) to deal with it. In this section we will explain the
details of our fuzzy control. Our control system has been
designed based on fuzzy approach; we have defined two in-
put variables for our system. The first one is swarm radius;
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Fig. 4 Membership function of swarm radius

Fig. 5 Membership of stagnation

swarm radius is mean of the standard deviations of the di-
mensions of particles within swarm. The swarm radius has
been computed based on following equations (4) and (5).
The second input variable is the number of iterations which
the swarm does not success to improve the solution or the
number of stagnant iterations.

radius(D) = STD(D) (4)

Swarm_Radius =
∑dim

D=1 STD(D)

dim
(5)

To deal with normal variables for all problems we have de-
fined the membership functions of input variables as showed
on Figs. 4 and 5.

We have designed a table-based inference engine for our
proposed fuzzy system. The inference table which defines
our system strategy is depicted on Table 1. We have planned
two setting for the mutation operator. These setting are de-
signed so that it could help exploration in early phases and
also assist exploitation on the last phases. The details of
these settings are shown on Table 2, where k is the k param-
eter on the mutation operator, sigma is multiplied to search
space boundaries (upper limit-lower limit) and produces the
variance of the Gaussian mutation. The reinitialize propor-
tion is the proportion of the swarm that must be randomly
reinitialized. Our suggested algorithm does not have any ex-
tra parameters for setting by user. The values of decision
table and membership functions of fuzzy variables are de-
termined based on our experimental simulations. We have
tried to tune these parameters accurately, but by using more

Table 1 Decision table of fuzzy controller

Stagnation Swarm radius

Very low Low Mid High

Low M1 M1 NOP NOP

Mid M2 M1 M1 NOP

High M2 M2 M1 M1

Table 2 Parameters of mutation

k Sigma Reinitialize proportion

M1 10 0.05 0.05

M2 10 0.01 0.00

computational resources it is possible to do a Comprehen-
sive experimental simulation to set these parameters more
accurately. Note that in Table 1, NOP means that do not any
operation; just leave the standard PSO to go further.

5 Results and discussion

We have organized our simulations in two sections. On
the first section we have evaluated the algorithm on first
ten functions designed for the special session on real opti-
mization of CEC 2005 [32]. These benchmark functions are
largely used and result of many various algorithm are avail-
able for them. Also we have compared the results with the
results of standard PSO 2011. On the second section we have
applied our algorithm on a real life optimization problem
and compared it with results of some other methods. Note
that all simulations of the proposed algorithm were run on
Intel Pentium Dual core with 1.7 GHz CPU and 2 GB of
memory.

5.1 CEC 2005 functions

For this section, we have set the number of dimensions to
(D =)10 and (D =)30, the swarm size is set to 40, and
maximum function evaluation number is set to 10000 ∗ D,
the other parameters of algorithm is like standard PSO
algorithm[12]. We have reported the results of standard PSO
algorithm on Tables 4 and 5. Also we have shown the results
of our method on Tables 6 and 7. We have reported the result
based on settings suggested by [32]. Our results are compet-
itive with some other algorithms which they tested on these
benchmark functions for example [33–35] we have quoted
results of [33] as an example for comparison on Tables 8
and 9. Also we have reported Algorithm Complexity based
on [32] in Table 8, where T0 is the Computing time for the
code on Fig. 7, T1 is computing time of the function 3 for
200000 evaluations and T̂2 is the average of the complete
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Fig. 6 Flowchart of LADPSO
algorithm

Fig. 7 The code for evaluating T0

computing time for the algorithm with 200000 evaluations
for 5 times.

From the results above, it could be said that, our method
is promising for improving the standard algorithm, and it
was able to locate the global minimum on most of problems,
with acceptable accuracy. Also from the results of Table 3 it
is clear that our algorithm is more computationally efficient
than its standard version

5.2 Real life problem

In this section we have reported the results of applying
our algorithm to the Lennard-Jones potential problem. The
Lennard-Jones potential (L-J potential or 6-12 potential) is a
mathematically simple model that describes the interaction
between a pair of neutral atoms or molecules. Minimizing
the Lennard-Jones potential is an unconstrained global opti-

mization problem with many local optimum points. Because
of its many local optimums the results of algorithms on min-
imizing this function is very discriminant for comparison of
algorithms. In minimizing this function we are seeking to a
geometrical arrangement of n atoms with the lowest poten-
tial energy. We have reported the average results of our al-
gorithm for 5 to 15 atoms on Table 10 along with the results
of some other methods like [36] and its global minimum for
comparison. The swarm size is 40 and the function evalua-
tion count is set to 5000 + 3000 ∗ n ∗ (n − 1). We have re-
ported the average of results for running the test for 20 times.

Also in Table 11 we have compared the results of our
algorithm to one of the most comprehensive studies about
Lennard-Jones function optimization [37]. In Table 11 the
best value achieved over 10 runs, for various number of
atoms has been reported. As we could see, our method has a
good performance on Lennard-Jones potential problem.

5.3 Analyzing the results

We have used Mann–Whitney–Wilcoxon (MWW) method
[38, 39] to compare the results of SPSO and LADPSO al-
gorithms. MWW is a non-parametric statistical analysis for
examining whether one of two samples of independent ob-
servations have a tendency to have smaller values than the
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Table 8 Error values of [32] for problems 1-10 (10D)

FES Prob. 1 2 3 4 5 6 7 8 9 10

103 min 1.88E-3 6.22E+00 1.07E+06 8.86E+01 6.71E+00 1.12E+01 6.51E-1 2.05E+01 5.02E+00 6.11E+00

7th 7.56E-3 2.40E+01 5.73E+06 5.81E+02 1.25E+01 1.27E+02 7.28E-1 2.07E+01 1.43E+01 3.63E+01

med. 1.34E-2 4.35E+01 1.14E+07 1.58E+03 2.16E+01 1.91E+03 9.06E-1 2.08E+01 2.75E+01 4.56E+01

19th 2.46E-2 8.36E+01 2.39E+07 4.28E+03 3.76E+01 3.15E+03 9.74E-1 2.08E+01 4.70E+01 5.14E+01

max 4.68E-2 1.70E+02 5.67E+07 1.75E+04 6.71E+01 9.89E+05 1.11E+00 2.09E+01 5.91E+01 6.37E+01

mean 1.70E-2 5.83E+01 1.68E+07 3.00E+03 2.81E+01 4.30E+04 8.69E-1 2.08E+01 3.07E+01 4.17E+01

std 1.20E-2 4.74E+01 1.59E+07 3.83E+03 1.85E+01 1.97E+05 1.38E-1 9.93E-2 1.72E+01 1.57E+01

104 min 1.84E-9 2.21E-9 2.21E-9 1.71E-9 2.46E-9 3.29E-9 9.31E-10 2.03E+01 1.99E+00 2.98E+00

7th 3.75E-9 3.27E-9 4.61E-9 3.85E-9 5.02E-9 4.49E-9 2.81E-9 2.05E+01 4.97E+00 4.97E+00

med. 5.65E-9 4.53E-9 5.51E-9 4.78E-9 6.33E-9 7.37E-9 5.46E-9 2.06E+01 5.97E+00 6.96E+00

19th 6.42E-9 5.71E-9 6.58E-9 6.46E-9 8.60E-9 3.99E+00 7.77E-9 2.06E+01 7.96E+00 7.96E+00

max 9.34E-9 7.67E-9 9.66E-9 7.80E-9 9.84E-9 2.63E+02 1.48E-2 2.07E+01 1.09E+01 1.59E+01

mean 5.20E-9 4.70E-9 5.60E-9 5.02E-9 6.58E-9 1.17E+01 2.27E-3 2.05E+01 6.21E+00 7.16E+00

std 1.94E-9 1.56E-9 1.93E-9 1.71E-9 2.17E-9 5.24E+01 4.32E-3 8.62E-2 2.10E+00 3.12E+00

105 min 1.84E-9 2.21E-9 2.21E-9 1.71E-9 2.46E-9 1.44E-9 6.22E-10 2.00E+01 1.52E-10 1.50E-10

7th 3.75E-9 3.27E-9 4.61E-9 3.85E-9 5.02E-9 3.81E-9 1.65E-9 2.00E+01 3.46E-10 3.34E-10

med. 5.65E-9 4.53E-9 5.51E-9 4.78E-9 6.33E-9 4.69E-9 2.84E-9 2.00E+01 6.14E-10 5.64E-10

19th 6.42E-9 5.71E-9 6.58E-9 6.46E-9 8.60E-9 5.67E-9 5.46E-9 2.00E+01 3.50E-9 1.08E-9

max 9.34E-9 7.67E-9 9.66E-9 7.80E-9 9.84E-9 8.13E-9 7.77E-9 2.00E+01 9.95E-1 9.95E-1

mean 5.20E-9 4.70E-9 5.60E-9 5.02E-9 6.58E-9 4.87E-9 3.31E-9 2.00E+01 2.39E-1 7.96E-2

std 1.94E-9 1.56E-9 1.93E-9 1.71E-9 2.17E-9 1.66E-9 2.02E-9 3.89E-3 4.34E-1 2.75E-1

Table 9 Error values of [32] for problems 1-10 (30D)

FES Prob. 1 2 3 4 5 6 7 8 9 10

3 × 103 min 4.49 E+2 1.12 E+5 3.84 E+8 6.13 E+5 6.21 E+3 3.26 E+6 4.10 E+1 2.12 E+1 2.19 E+2 2.43 E+2

7th 5.48 E+2 1.73 E+5 8.00 E+8 1.12 E+6 9.57 E+3 7.31 E+6 9.39 E+1 2.12 E+1 2.45 E+2 2.65 E+2

med. 7.40 E+2 2.35 E+5 1.00 E+9 1.44 E+6 1.09 E+4 1.23 E+7 1.20 E+2 2.12 E+1 2.50 E+2 2.74 E+2

19th 1.04 E+3 2.94 E+5 1.38 E+9 1.87 E+6 1.24 E+4 1.99 E+7 1.59 E+2 2.13 E+1 2.66 E+2 2.88 E+2

max 1.61 E+3 3.83 E+5 2.07 E+9 3.29 E+6 1.42 E+4 6.81 E+7 3.26 E+2 2.13 E+1 2.87 E+2 3.08 E+2

mean 8.16 E+2 2.39 E+5 1.07 E+9 1.55 E+6 1.07 E+4 1.77 E+7 1.39 E+2 2.12 E+1 2.53 E+2 2.77 E+2

std 3.01 E+2 7.80 E+4 4.43 E+8 6.15 E+5 2.13 E+3 1.62 E+7 7.17 E+1 4.35 E-2 1.65 E+1 1.90 E+1

3 × 104 min 3.98 E-9 2.29 E-3 1.24 E+6 4.88 E+2 5.00 E-2 1.77 E+1 3.93 E-9 2.10 E+1 2.39 E+1 3.08 E+1

7th 4.70 E-9 1.60 E-2 3.41 E+6 1.46 E+3 1.00 E+3 2.28 E+1 4.85 E-9 2.11 E+1 4.28 E+1 4.38 E+1

med. 5.20 E-9 2.57 E-2 4.90 E+6 3.51 E+3 1.32 E+3 2.58 E+1 5.69 E-9 2.11 E+1 4.88 E+1 5.27 E+1

19th 6.10 E-9 3.99 E-2 8.21 E+6 5.18 E+4 2.04 E+3 2.22 E+2 6.95 E-9 2.11 E+1 5.47 E+1 5.87 E+1

max 7.51 E-9 7.49 E-2 1.42 E+7 2.88 E+5 3.20 E+3 2.66 E+3 2.46 E-2 2.12 E+1 7.96 E+1 8.26 E+1

mean 5.42 E-9 2.73 E-2 6.11 E+6 4.26 E+4 1.51 E+3 4.60 E+2 1.77 E-3 2.11 E+1 4.78 E+1 5.14 E+1

std 9.80 E−10 1.79 E-2 3.79 E+6 7.43 E+4 8.82 E+2 8.29 E+2 5.52 E-3 4.04 E-2 1.15 E+1 1.25 E+1

3 × 105 min 3.98 E-9 4.48 E-9 4.07 E-9 6.06 E-9 7.15 E-9 4.05 E-9 1.76 E-9 2.00 E+1 2.98 E+0 9.95 E-1

7th 4.70 E-9 5.59 E-9 4.78 E-9 8.75 E-9 8.06 E-9 5.31 E-9 4.59 E-9 2.02 E+1 4.97 E+0 5.97 E+0

med. 5.20 E-9 6.13 E-9 5.44 E-9 1.93 E+1 8.61 E-9 6.32 E-9 5.41 E-9 2.09 E+1 6.96 E+0 6.96 E+0

19th 6.10 E-9 6.85 E-9 6.16 E-9 2.72 E+3 9.34 E-9 7.52 E-9 6.17 E-9 2.10 E+1 8.95 E+0 8.95 E+0

max 7.51 E-9 8.41 E-9 8.66 E-9 1.57 E+5 2.51 E-6 3.99 E+0 7.81 E-9 2.11 E+1 1.19 E+1 1.09 E+1

mean 5.42 E-9 6.22 E-9 5.55 E-9 1.27 E+4 1.08 E-7 4.78 E-1 5.31 E-9 2.07 E+1 6.89 E+0 6.96 E+0

std 9.80 E-10 8.95 E−10 1.09 E-9 3.59 E+4 4.99 E-7 1.32 E+0 1.41 E-9 4.28 E-1 2.22 E+0 2.45 E+0
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Table 3 Computational complexity of LADPSO

Dim T0 T1 T̂2 (T̂2 − T1)/T0

Method – – SPSO LADPSO SPSO LADPSO

10 1.559 40.200 79.056 65.886 24.912 16.468

30 1.559 44.841 146.546 82.844 65.209 24.366

50 1.559 51.661 222.774 92.938 109.711 26.465

Table 10 Results of LADPSO for the Lennard-Jones potential prob-
lem

N/Method LADPSO SPSO Results of [34] Minimum

5 −9.09772 −9.01407 −9.10385 −9.10385

6 −12.5239 −11.811 −12.7121 −12.7121

7 −16.2533 −14.4687 −16.5054 −16.5054

8 −19.4855 −17.1723 −19.2084 −19.8215

9 −23.2127 −19.5568 −22.9690 −24.1134

10 −27.3535 −22.1338 −26.8424 −28.4225

11 −31.6974 −23.8806 −31.5629 −32.7656

12 −36.4019 −24.399 −36.3692 −37.9676

13 −40.9243 −27.2597 −41.1379 −44.3268

14 −45.3636 −29.5903 −44.3883 −47.8452

15 −49.7374 −32.774 −49.7777 −52.3226

other. The test gives a p-value which indicates whether we
could reject the null hypothesis (two samples have equal me-
dians) or not. We have performed MWW for all benchmark
problems separately on significance level of 0.05. The re-
sults of our statistical analysis are shown on Table 12. We
have reported p-value of the test along with rejection or not
rejection of null hypothesis. In Table 12, h = 0 indicates fail-
ure of the rejection and h = 1 indicates rejection of hypoth-
esis on significance level of 0.05.

Based on Table 12, we could see that on most cases the
difference between results is significant and it gets more
tangible when the complexity of problem increased. This
observation suggests that the LADPSO seems promising to
improve the base algorithm especially on high dimensional
problems.

6 Conclusion and future works

In this paper, we proposed a novel extension to PSO opti-
mization method, called LADPSO algorithm, through com-
bining two operators to the standard PSO. The suggested
approach utilizes the fuzzy logic to conduct the standard
PSO on global optimization problems. We also compared
accuracy and robustness of our approach with standard PSO,
and some other methods by using some well-known bench-
mark functions. It has been depicted that our algorithm Ta
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8
1 (LADPSO) has better performance in accuracy, stability and

robustness. The future work includes the research on us-
ing similar approaches for solving multi-objective and dy-
namic optimization problems. Also researching about de-
signing more intelligent systems for controlling the usage of
additional operators within standard algorithm seems to be
fruitful. In this paper we have used a fuzzy control system to
improve standard PSO algorithm with 2 operators, it is pos-
sible to examine this approach for other operators and opti-
mization algorithms. Furthermore it seems that some good
researches could be done about improving the suggested al-
gorithm to solve constrained optimization problems.
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