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Abstract In this paper, a novel feature selection method
based on the normalization of the well-known mutual in-
formation measurement is presented. Our method is de-
rived from an existing approach, the max-relevance and min-
redundancy (mRMR) approach. We, however, propose to
normalize the mutual information used in the method so
that the domination of the relevance or of the redundancy
can be eliminated. We borrow some commonly used recog-
nition models including Support Vector Machine (SVM),
k-Nearest-Neighbor (kNN), and Linear Discriminant Anal-
ysis (LDA) to compare our algorithm with the original
(mRMR) and a recently improved version of the mRMR, the
Normalized Mutual Information Feature Selection (NMIFS)
algorithm. To avoid data-specific statements, we conduct our
classification experiments using various datasets from the
UCI machine learning repository. The results confirm that
our feature selection method is more robust than the others
with regard to classification accuracy.

Keywords Feature selection · Mutual information ·
Minimal redundancy · Maximal relevance

1 Introduction

Feature selection is a technique for selecting a subset of rele-
vant features, which contain information to help distinguish
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one class from the others, from a large number of features
extracted from the input data. Feature selection is differ-
ent from feature extraction [11], wherein a new set of fea-
tures is formed by projecting the original feature space into
a reduced-dimension space. In the present paper, we focus
only on feature selection methods.

In pattern recognition, the identification of the most dis-
criminative features is an important step [7], since it is com-
mon to have a large number of features, including relevant
as well as irrelevant features, at the beginning of the pattern
recognition process [11, 15]. Feeding a large set of features
into a recognition model not only increases the computation
burden but also causes the problem commonly known as the
curse of dimensionality. Therefore, removing irrelevant fea-
tures helps speed up the learning process and alleviates the
effect of the curse of dimensionality. Due to the capabilities,
feature selection has been largely applied in many applica-
tions, including text classification [6, 12], bio-informatics
[8, 24, 32], intrusion detection [18, 27], and image retrieval
[5, 9]. Furthermore, feature selection facilitates the data vi-
sualization and understanding [14, 17, 31].

So far, there is a great number of methods in the feature
selection research area. Those methods can be categorized
into three main directions namely wrapper, embedded and
filter. Wrapper approaches [25, 29] make use of the clas-
sification accuracy to evaluate the usefulness of features at
each step. However, repeatedly training such classifiers of-
ten requires high computational cost, making the wrapper
based methods impractical with large datasets. Besides, the
performance of wrapper approach may strictly depend on
the classifier being used in the evaluation.

Embedded methods [4, 33] also use particular classifiers
to find feature subsets. They, however, select features in the
training phase of the classifier. Thus, embedded methods can
utilize extra information of the cost function to guide the
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Fig. 1 Different types of the relationship between variables X and Y .
The left figure shows a linear relationship captured by high values of
both the correlation (Corr) and the mutual information (MI). The mid-
dle figure shows a non-linear relationship which is still well described

by the high MI value, but Corr fails to reflect this relationship. The
right figure shows two unrelated variables, hence both Corr and MI
produce very low values

search direction. Embedded approaches are reported to be
much faster than those of wrapper; the performance, how-
ever, also depends on the classifier [24].

Filter algorithms [2, 10, 23] utilize simple measure-
ments such as correlation, mutual information to esti-
mate the goodness of features. As a result, filter methods
are classifier-independent and effective regarding compu-
tational cost. In the following paragraphs, we will provide
more details of the feature evaluation criterion in filter algo-
rithms.

In a correlation-based feature selector, a subset of fea-
tures (S) is selected so that the below potential measurement
is maximized

PS = krcf√
k + k(k − 1)rff

, (1)

where S is a subset of k features, rcf is the mean feature-
class correlation (f ∈ S), and rff is the average feature-
feature inter-correlation. The correlation in (1) is computed
by

rxy = E[(x − μx)(y − μy)]
σxσy

, (2)

where μx,μy,σx , and σy are the mean and standard devi-
ation values of x and y, respectively. However, it is well
known that the correlation is not able to describe non-linear
relationships among variables as depicted in Fig. 1. Further-
more, the computation of (2) requires that all the features
must be numerical variables, it is another weakness of the
correlation-based feature selection method.

The information-based method utilizes a simple measure-
ment, hence it has the advantage of low computation cost.
In addition, as we point out below, the mutual information
is capable of capturing non-linear relationships and is suit-

able for both numerical and categorical data. Therefore, in
our work, we utilize the information measurement to esti-
mate the potential of the features. On the topic of searching
algorithms, since an exhaustive search over a large feature
space is impractical, greedy forward selection and backward
elimination are often used [2, 19, 23, 26]. Here, we exploit
greedy forward selection, wherein each feature is appended
to the feature set based on its quality.

The rest of our paper is organized as the following. In
Sect. 2, we present some existing work in the area of mutual
information based feature selection. Also in this section, we
analyze the limitations of the previous work. After that we
propose our method to overcome the addressed limitations
in Sect. 3. Our experiments and discussions are presented in
Sect. 4. Finally, our conclusions and future works are given
in Sect. 5.

2 Related work

In this section we first present the fundamental background
of mutual information based feature selection methods. Af-
ter that we review some recently proposed methods in that
area, and also point out their improvements as well as their
limitations.

In mutual information based feature selection methods,
mutual information is used to quantitatively analyze the re-
lationship between any two features or between a feature
and a class variable. The mutual information of two random
variables X and Y is defined as

I (X;Y) =
∫

ΩY

∫

ΩX

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
dxdy, (3)

where ΩX and ΩY are the sample spaces of X and Y , p(x),
p(y), and p(x, y) are the probability density functions of
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Fig. 2 Mutual information of
categorical variables. The left
table contains ten objects which
have two categorical attributes
A1 and A2. The right table
shows the joint and marginal
probabilities

X, Y , and (X,Y ), respectively. In the case of discrete vari-
ables, the integration notation is replaced by the summation
notation as

I (X;Y) =
∑

y∈ΩY

∑

x∈ΩX

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
. (4)

Equation (4) computes the mutual information based on
probability distributions of discrete variables, hence we can
apply that to both numerical as well as categorical data. An
example of computing the mutual information of categorical
data is given in Fig. 2. Additionally, Fig. 1 demonstrates that
non-linear relationships can be well described by the mu-
tual information. The mutual information can also be repre-
sented by the entropy as

I (X;Y) = H(X) − H(X|Y), (5)

where

H(X) = −
∑

x∈ΩX

p(x) log2(p(x)) (6)

and

H(X|Y) = −
∑

x∈ΩX

∑

y∈ΩY

p(x, y) log2(p(x|y)) (7)

are entropy functions which measure the uncertainties of
random variables. Based on (5), (6), and (7), we can define
the mutual information as the amount of uncertainty in X

which is removed by knowing Y . Figure 3 illustrates the re-
lationship between the mutual information and the entropy.

In pattern recognition, our target is to determine the class
label from feature values. Therefore, we expect a feature set
that can remove as much of the uncertainty of the class vari-
able as possible. This can be achieved by finding a feature
set Si = {X1,X2, . . . ,Xi} to maximize the following joint
mutual information

I (Si;C) =
∑

c∈ΩC

∑

si

p(si) log2

(
p(si, c)

p(si)p(c)

)
. (8)

Fig. 3 The relationship between the mutual information and the en-
tropy

Hereafter, we use C and X to denote the class and feature
variables, respectively, and ΩC is the set of all possible class
labels.

Methods using (8) are referred as Max-Dependency
(MD) approaches. Regardless of the searching algorithm,
MD faces difficulties in estimating the multivariate density
functions, which requires not only a high computational cost
but also a large number of samples. For example, suppose
that we have K features, each of which has an integer value
from 1 to N . Then, to estimate the mutual information we
have to know the joint density at each of KN combina-
tions. Therefore, an exponential complexity is required for
the computation.

Because of this, Battiti proposed an heuristic approxima-
tion of MD. In his work, only bivariate mutual information
functions were computed, including feature-feature mutual
information I (Xi;Xj) and class-feature mutual information
I (C;Xi) [2]. The selection criterion aimed at maximizing
the class-feature mutual information (CFMI) and minimiz-
ing the feature-feature mutual information (FFMI). Since
the CFMI represents the discrimination ability of a feature
(relevance), while the FFMI contains information about the
redundancy or the similarity among features, the method in
[2] serves as a starting point for the later max-relevance and
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min-redundancy approaches [10, 19, 23]. Battiti’s feature se-
lection algorithm (MIFS) selects a feature (Xi ) at each step
so that the following feature potential measurement is max-
imized

f (Xi) = I (C;Xi) − β
∑

Xs∈Si−1

I (Xs;Xi), (9)

where function f measures the goodness of a feature, Si−1

is the set of selected features in the previous i − 1 steps,
Xi is any non-selected feature, and β is a manually tuned
parameter used to make the left and the right terms in the
subtraction comparable.

In [19], the author analyzed the disadvantages of Battiti’s
criterion and then proposed an improved one, the MIFS-U,
represented by

f (Xi) = I (C;Xi) − β
∑

Xs∈Si−1

I (C;Xs)

H(Xs)
I (Xs;Xi). (10)

Despite the improvement made by the later work, both of
the above methods require a parameter (β) to be estimated
manually. If β is too large, the right term dominates, so both
algorithms tend to select features based on minimum redun-
dancy. In contrast, if β is too small, the algorithms favor
maximum-relevance features. Unfortunately, there is no way
to optimize the value of β .

The authors of [23] presented a parameter-free feature se-
lection algorithm called max-relevance and min-redundancy
(mRMR). In [23], the authors pointed out that (8) can also
be rewritten in the form

I (Si;C) = H(Si,C) − H(Si)

= H(Si−1,Xi,C) − H(Si−1,Xi), (11)

where H is the joint entropy function. From (11), the authors
of [23] showed that if a set of previously selected features
(Si−1) is given, Max-Dependency can be solved by finding
Xi to maximize H(Si−1,Xi,C) and minimize H(Si−1,Xi).
They then proved that the former is equal to maximizing
I (C;Xi), and the latter is corresponding to finding the min-
imum of

∑
Xs∈Si−1

I (Xs;Xi). Hence, they come up with the
below goodness measurement

f (Xi) = I (C;Xi) − 1

|Si−1|
∑

Xs∈Si−1

I (Xs;Xi). (12)

The basic idea in [23] is similar to the one introduced by
Battiti. However, Peng and his colleges provided a solid the-
oretical background of the method and eliminated the manu-
ally tuned parameter by averaging the feature-feature mutual
information in the right term of the subtraction in (9). Al-
though, mRMR does not always produce better results than
do MIFS and MIFS-U [10], it eliminates the difficulty of

parameter selection while producing results comparable to
those of MIFS and MIFS-U.

Recently, the authors of [10] pointed out the drawback
of mRMR, which was still the unbalance between the two
terms of the subtraction. From (5) we can see that

I (C;Xi) = H(C) − H(C|Xi) ≤ H(C)

= −
∑

c∈ΩC

p(c) log2(p(c)), (13)

where ΩC is the sample space of the class variable C. Based
on Jensen’s inequality, it is clear that

I (C;Xi) ≤ log2

(
∑

c∈ΩC

p(c)
1

p(c)

)

= log2(|ΩC |). (14)

Therefore, in a two-class recognition problem (|ΩC | = 2),
I (C;Xi) is bounded in the range [0,1]. By using similar
proof we can conclude that

1

|Si−1|
∑

Xs∈Si−1

I (Xs;Xi) ≤ log2(|ΩX|), (15)

where ΩX is the sample space of the features. Since |ΩX|
can have any arbitrary large value, the right term of the sub-
traction in (12) greatly varies and can dominate the left term
(bounded in [0,1]). In such a case, the algorithm is biased
toward the less redundant features.

Based on the above observation, Pablo et al. introduced
so-called normalized mutual information [10]. The authors
showed that the mutual information between two random
variables should be divided by the minimum value of the en-
tropies in order to produce a normalized value in the range
[0,1]. Then they presented a selection strategy (NMIFS) us-
ing the following feature quality estimation

f (Xi) = I (C;Xi) − 1

|Si−1|
∑

Xs∈Si−1

I (Xs;Xi)

min(H(Xs),H(Xi))
.

(16)

It can be seen from (16) that NMIFS achieves a good bal-
ance between relevance and redundancy in two-class recog-
nition systems, wherein both terms of the subtraction are
within the range [0,1]. Problems may occur when the num-
ber of classes increases [28]. In that case, the left-side mu-
tual information breaks the upper bound and may domi-
nate the right term. Hence, NMIFS may suffer from the
same limitation as that in MIFS and MIFS-U when β is too
small. Furthermore, because NMIFS assigns different nor-
malizing weights to the features, it may select unexpected
features. For example, if Xi and Xj are two features with
the same relevance; Xi , however, is less random than Xj

or 1
H(Xi)

> 1
H(Xj )

. In such a case, Xj may have a smaller



104 L.T. Vinh et al.

weight in the right term of (16), making the overall potential
f (Xj ) bigger than that of Xi ; as a result, the method biases
toward the noisier feature.

To summarize the common problem of the existing
works [2, 10, 19, 23] in mutual information based fea-
ture selection, we reformulate the problem as the follow-
ing: given a dataset with N features X1,X2, . . . ,XN , and
a set of i − 1 selected indexes (Si−1 = {s1, s2, . . . , si−1}),
the next feature (Xsi ) is selected so that the redundancy
(RD(Xsi ) = ∑

s∈Si−1
I (Xs;Xsi )) is minimized and the rel-

evance (RL(Xsi ) = I (C;Xsi )) is maximized. However, be-
cause the two problems may not have a common solution,
we would like to find a scale factor (β) so that a feature Xsi

maximizing RL(Xsi ) − β × RD(Xsi ) will be a feasible so-
lution for the minimization as well as the maximization. The
existing solutions are summarized below

• MIFS and MIFS-U: β is manually selected by experi-
ments,

• mRMR: β = 1
|Si−1| ,

• NMIFS: β(Xs;Xsi ) = 1
|Si−1| × 1

min(H(Xs),H(Xsi
))

.

Although a significant improvement has been made [10],
there are still some limitations of the existing works as we
pointed out. Hence, in the next sections, we propose a new
method to overcome those limitations.

3 The proposed method

As we discuss above, even though Pablo et al. proposed
NMIFS to overcome the limitations of the previous methods
including MIFS, MIFS-U and mRMR, there are still some
situations in which NMIFS may cause unexpected feature
selections. Therefore, in this section, our focus is to resolve
the limitations of NMIFS addressed in Sect. 2.

Before going into the detail of our method, we first con-
sider the upper bound of the mutual information of random
variables. Since any continuous variable can be quantized
into discrete form, we assume that two discrete random vari-
ables X and Y are given along with their marginal and joint
distributions. Hence, the joint mutual information of X and
Y is computed using (4). From (5) and (6), we can see that

I (X;Y) ≤ min(H(X),H(Y )). (17)

Applying Jensen’s inequality to the definition of the entropy,
we have

H(X) ≤ log2

(
∑

x∈ΩX

p(x)
1

p(x)

)

, (18)

H(X) ≤ log2 (|ΩX|) . (19)

Algorithm 1: Quantization algorithm
Input : M—Total number of features

X(1..M)—Training data
ξ—The quantization error

Output: N—Number of quantization levels
Y(1..M)—Quantized data

Quantization
N = 2
while 1 do

MaxError = −1e + 16
for m = 1 to M do

Upper = max(X(m))

Lower = min(X(m))

Step = (Upper − Lower)/N
Partition = [Lower : Step : Upper]
CodeBook = [Lower − Step,Lower : Step :
Upper]
[Y(m),QError] =
Quantiz(X(m),Partition,CodeBook)
if Qerror > MaxError then

MaxError = QError

if MaxError < ξ then
Break;

N = N + 1

end

From (17) and (19), it is obvious that

I (X;Y) ≤ min
(
log2(|ΩX|), log2(|ΩY |)). (20)

In our method, every feature is quantized using the same
number of levels (N), which is decided so that the expected
quantization error is achieved. The quantization algorithm is
depicted in Algorithm 1 below. As can be seen, we gradually
increase the number of quantization levels until the quanti-
zation error is smaller than a predefined small constant ξ , the
expected quantization error. In our experiments, we selected
ξ = 0.01 because smaller values did not make any improve-
ment regarding the accuracy but created extra computation
burden. From the algorithm, we can see that |ΩX| = N for
every feature X. Therefore

I (X;Y) ≤ log2(N). (21)

Obviously, log2(N) is an upper bound of the mutual infor-
mation I (X,Y ) and does not depend on X or Y (hence, we
call log2(N) a feature-independent upper bound).

To eliminate the problem of unequal normalizing weights,
we propose to use the feature-independent upper bound
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in (21) to normalize the mutual information instead of
using (17) as in [10]. Therefore, our normalized feature-
feature mutual information is calculated by

NI (X;Y) = I (X;Y)

log2(N)
. (22)

Clearly, the normalized feature-feature mutual informa-
tion is always within the range [0,1]. Therefore, to achieve
a balance between the relevance and the redundancy, we di-
vide the class-feature mutual information by log2 |ΩC |. The
normalized class-feature mutual information is now defined
as

NI (C;X) = I (C;X)

log2 (|ΩC |) . (23)

Using the normalized mutual information functions defined
in (22) and (23), we measure the potential of a feature as

f 1(Xi) = NI (C;Xi) − 1

|Si−1|
∑

Xs∈Si−1

NI (Xs;Xi). (24)

In order to clarify our improvement, we compare f 1 with
the other two measurements in (12) and (16) in terms of
the classification accuracy, we denote them as f 2 and f 3,
respectively. In addition, to validate the effect of the im-
balance between the relevance and the redundancy that we
point out above, we combine normalized class-feature mu-
tual information with the same feature-feature mutual infor-
mation as in [10]. In this way, the goodness of a feature is
measured by

f 4(Xi) = NI (C;Xi) − 1

|Si−1|
∑

Xs∈Si−1

I (Xs;Xi)

min(H(Xs),H(Xi))
.

(25)

Furthermore, experiments to compare our method with
other common methods such as MIFS [2], MIFS-U [19],
GainRatio [16] and SBMLR (an embedded method using
Bayesian L1 regularization) [4] are presented in the ap-
pendix section to avoid a mess of statistics. The following
pseudo-code in Algorithm 2 illustrates the selection process
using greedy forward searching strategy.

4 Experiments and discussions

For our experiments, we use 12 datasets from the UCI
machine learning repository [1]. Table 1 provides brief in-
formation about these datasets. To ensure objective and ac-
curate comparison results and to avoid data-specific state-

Algorithm 2: Mutual Information-based Feature Selec-
tion Using Greedy Forward Searching

Input : M—Total number of features
N—Total number of data samples
K—Number of features to be selected
Xij —Feature values, where i = 1,2, . . . ,M

and j = 1,2, . . . ,N

Cj —Class labels of the data samples, where
j = 1,2, . . . ,N

a—Index of the selected measurement
Output: Sk—The selected feature index, where

k = 1,2, . . . ,K

Forward
S = ∅

//Normalize the features
for m = 1 to M do

μm = Mean value of Xm

σ = Standard deviation of Xm

Xm = Xm − μm

Xm = Xm/σm

//Convert features into discrete form using linear
quantization
X = Quantiz(X)

//Start selecting features
for k = 1 to K do

for i = 1 to M do
Compute f a(Xi)

s = argmaxi �∈S(f a(Xi))

S = S ∪ s

end

ments, we select datasets of different class number, sample
number, and feature type, as depicted in Table 1.

Regarding classification methods, we propose to use
k-Nearest-Neighbor (kNN, k = 3), Support Vector Machine
(SVM) and Linear Discriminant Analysis (LDA). We uti-
lize MatlabArsenal toolbox [30] with WEKA [16] integrated
to implement our recognition experiments. The accuracy
is measured using the ten-fold cross validation rule. Ta-
bles 2, 3, and 4 summarize the classification rates of the
three classifiers in the 12 datasets. Each sub-table contains
the number of features in the first column and the recogni-
tion accuracies in columns 2 to 5, which correspond to the
four feature potential measurements f 1, f 2, f 3, and f 4.
Besides the average accuracy we also measure the signif-
icance of the difference between our method and the oth-
ers by using paired t-tests [13]. Those t-values are put on
the right side of each accuracy. Although the tables are
convenient for highlighting insignificant differences, they
are limited in representing the overall trend. Therefore,
we provide a more general view of the results in Figs. 5,
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Table 1 Brief information
about the datasets used in the
experiments

Dataset # Class # Samples # Features Type of features

1 Arrhythmia 16 452 279 Continuous, Discrete

2 Hill Valley 2 1212 100 Continuous

3 Image Segmentation 7 2310 18 Continuous

4 Ionosphere 2 351 33 Continuous, Discrete

5 Isolet 26 7797 617 Continuous

6 Libras Movement 15 360 90 Continuous

7 Madelon 2 2600 500 Continuous

8 Multiple Features 10 2000 649 Continuous, Discrete

9 Landsat Satellite 6 6435 36 Discrete

10 (Connectionist Bench) Sonar 2 208 60 Continuous

11 Spambase 2 4601 57 Continuous, Discrete

12 Breast Cancer (Diagnostic) 2 569 31 Continuous

6, and 7. In the following paragraphs, we analyze the re-
sults to show that we can successfully overcome the ad-
dressed limitations of the other methods. The accuracy pro-
duced by our feature selection algorithm is often higher
or at least comparable to those yielded by the other meth-
ods.

Arrhythmia dataset: It can be seen that f 1 produces the
highest accuracy, which is on average about 26% higher than
that of f 2, and the difference in the accuracies increases as
the number of features increases. f 4 shows a slightly better
result than f 3 (about 3–5% higher, especially when com-
bined with an LDA classifier); it, however, is still worse than
f 1, which has the highest results in 15 out of 18 tests with
the Arrhythmia dataset.

Hill Valley dataset: This dataset sees almost the same ac-
curacies in all four selection methods. With kNN and LDA
classifiers, f 2 and f 1, respectively, produce higher results
than do the other methods although the disparity is often not
greater than 2%. As can be seen, t-values are rarely higher
than 2.26 (or p-value < 0.05). It means that the accuracy
differences are not statistically significant.

Image Segmentation dataset: Although the four results
approach to each other as the feature number goes up, f 2

and f 3 are often the lowest accurate methods with high
t-values (high significant differences). On average, f 4 is
slightly better than f 1 (about 1.3% higher accuracies).

Ionosphere dataset: While the four feature selection
methods do not create any significant differences when com-
bined with kNN and SVM classifiers (almost all t-values are
much smaller than 2.26). f 3 and f 4 have about 3% lower
average accuracies than those yielded by f 1 and f 2 in case
of using LDA recognition model.

Isolet dataset: With this dataset, f 3 often produces the
worst results, this significant weakness is also supported by
the very high t-values. f 1 is a little better than f 4 when the

number of features is greater than 5. f 1 and f 2 are almost
similar with only about 0.6% average distance in the accu-
racy.

Libras Movement dataset: It is obvious that f 3’s accu-
racies are often significantly lower than those of the oth-
ers (lower accuracies, high t-values). The differences among
f 1, f 2, and f 4 are insignificant since almost all the t-values
are much smaller than 2.26.

Madelon dataset: No significant disparity is presented
with LDA recognition model; however, when combined
with kNN and SVM, f 1 proves to be the superior measure-
ment, with about 5% higher accuracies than those of the oth-
ers.

Multiple features dataset: f 1 and f 2 are a slightly better
than the other two methods if the number of features is less
than 10. However, with 10 to 15 features, f 3 and f 4 are
better than f 1 and f 2. The four methods approach to similar
results when the number of features keeps increasing.

Landsat Satellite and Breast Cancer datasets: Similar
results are observed in these datasets regardless of the clas-
sifier or the feature selection method. There is no dominant
measurement among the four, and the difference of classi-
fication rates (between any two selection criterions) is ap-
proximately 1–2%.

Sonar dataset: There is no superior among the four meth-
ods when the LDA classifier is used. However, while f 1, f 3,
and f 4 maintain similar accuracies with kNN and SVM, f 2

loses its competitiveness and obviously becomes the weak-
est method (about 10% lower recognition rates in almost all
the kNN tests).

Spambase dataset: When kNN and LDA classifiers are
used, the average accuracies are similar; however, f 3 and
f 4 are significantly better than f 1 because they have small
standard deviations leading to high t-values as can be seen in
Table 2 and 4. Although, f 2’s accuracies are clearly lower
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Table 2 kNN classification accuracies of the 12 datasets. Bold items highlight significant differences in comparison with f 1 (t -value > 2.26
or p-value < 0.05)

k-Nearest-Neighbor (kNN, k = 3)

Arrhythmia Hill Valley

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 51.53 47.99/0.57 55.17/1.66 54.22/1.24 5 53.47 53.40/0.04 52.31/0.54 52.31/0.54

10 60.00 58.21/0.85 55.52/2.35 57.98/1.41 10 55.20 52.48/2.69 54.05/0.62 54.05/0.62

15 60.63 51.53/1.49 54.60/2.91 60.60/0.02 15 53.63 54.29/0.62 54.13/0.33 54.13/0.33

20 63.99 50.29/3.60 56.17/3.90 60.38/2.24 20 53.72 51.82/1.58 54.46/0.39 54.46/0.39

25 64.19 54.24/5.30 56.84/4.15 63.30/0.52 25 53.88 53.39/0.54 53.96/0.05 53.96/0.05

30 65.24 30.58/4.79 57.06/4.67 61.11/1.74 30 53.14 53.80/1.06 53.39/0.16 53.39/0.16

Image Segmentation Ionosphere

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

3 92.81 83.77/5.38 88.35/2.70 96.71/2.97 5 89.18 90.30/0.93 88.32/0.99 88.32/0.99

6 96.19 95.11/2.26 93.68/2.41 96.02/0.58 10 87.13 88.27/1.06 87.18/0.03 87.18/0.03

9 95.84 95.41/0.87 95.89/0.40 95.76/1.50 15 87.98 88.03/0.04 85.69/1.81 85.69/1.81

12 95.84 94.55/3.30 95.58/1.20 95.58/1.20 20 85.99 85.47/0.39 84.84/1.32 84.84/1.32

15 94.98 94.33/2.57 96.10/2.65 96.10/2.65 25 83.40 85.16/1.17 84.27/1.17 84.27/1.17

18 95.50 95.50/0.00 95.50/0.00 95.50/0.00 30 84.32 84.89/0.69 84.32/0.00 84.32/0.00

Isolet Libras Movement

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 48.67 49.02/1.80 41.12/9.58 51.84/5.96 5 63.43 63.91/0.24 47.17/7.16 61.66/0.72

10 64.22 61.40/7.14 51.71/17.07 61.86/4.39 10 69.77 72.13/1.14 56.58/4.97 71.00/0.53

15 70.55 70.75/0.54 59.31/20.52 64.92/6.46 15 69.84 72.41/2.07 64.28/1.95 70.40/0.28

20 72.98 72.18/1.42 64.41/17.74 71.73/1.77 20 71.85 72.96/0.64 66.52/1.55 72.72/0.47

25 75.05 73.44/4.20 65.35/14.76 73.22/2.79 25 73.72 73.54/0.11 66.51/2.82 73.25/0.20

30 76.07 74.89/5.21 65.77/19.22 73.99/4.09 30 74.10 74.89/0.58 72.16/1.14 75.36/0.77

Madelon Multiple Features

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 59.92 54.96/3.65 56.08/2.70 56.19/2.56 5 89.35 90.65/1.72 86.25/3.18 87.45/2.71
10 58.77 54.08/5.27 52.38/6.29 52.38/6.29 10 93.60 94.60/1.96 94.35/1.39 96.60/6.80
15 58.00 52.50/3.34 51.19/4.86 51.19/4.86 15 96.95 95.35/2.42 98.00/5.55 97.45/1.50

20 56.00 52.38/5.34 53.42/2.93 53.42/2.93 20 97.95 97.05/3.67 98.05/0.30 98.20/1.34

25 55.81 51.77/3.51 54.00/2.07 54.00/2.07 25 97.85 97.35/1.79 98.35/2.12 98.20/1.91

30 55.73 51.08/5.94 52.42/3.99 52.42/3.99 30 98.25 97.35/2.86 97.90/1.48 97.95/1.11

Landsat Satellite Sonar

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 85.76 85.97/0.54 86.03/0.49 85.95/0.37 5 74.04 70.65/1.42 75.51/0.78 75.51/0.78

10 88.70 89.40/1.52 88.28/2.18 88.83/0.35 10 79.84 70.65/2.99 85.45/1.81 85.45/1.81

15 89.77 90.85/3.77 89.70/0.29 89.62/1.07 15 83.18 72.68/2.61 85.13/0.75 85.13/0.75

20 90.19 90.94/2.10 89.93/1.30 90.50/1.57 20 85.07 70.73/6.89 86.13/0.46 86.13/0.46

25 90.74 90.67/0.25 90.27/2.13 90.86/1.10 25 87.49 76.01/5.75 87.47/0.02 87.47/0.02

30 90.89 90.85/0.27 90.78/1.17 91.03/1.49 30 86.09 75.10/3.29 87.04/0.51 87.04/0.51

Spambase Breast Cancer

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 86.63 80.92/1.66 79.18/1.85 79.18/1.85 5 94.02 91.22/2.58 95.07/1.96 95.07/1.96

10 89.91 88.29/2.93 89.13/0.69 89.09/0.74 10 93.84 90.68/2.43 93.84/0.00 93.84/0.00

15 90.46 89.57/1.94 90.59/0.34 90.57/0.28 15 93.50 94.36/1.15 93.14/0.80 93.14/0.80

20 89.59 90.24/1.34 91.65/3.54 91.63/3.57 20 96.32 95.25/0.85 96.32/0.00 96.32/0.00

25 90.13 90.46/0.64 91.04/1.01 91.57/2.36 25 97.36 96.48/1.17 97.19/1.00 97.19/1.00

30 90.26 90.59/0.80 91.05/3.63 91.05/3.63 30 96.83 97.01/0.27 96.83/0.00 96.83/0.00
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Table 3 SVM classification accuracies of the 12 datasets. Bold items highlight significant differences in comparison with f 1 (t -value > 2.26 or
p-value < 0.05)

Support Vector Machine (SVM)

Arrhythmia Hill Valley

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 60.52 46.94/1.57 56.73/2.72 57.87/1.35 5 50.49 51.07/0.96 51.24/1.79 50.58/0.19

10 65.55 42.38/2.40 58.26/7.35 59.17/4.36 10 51.15 51.32/0.25 51.15/0.00 50.74/1.10

15 64.65 25.93/4.29 60.23/2.45 63.37/0.61 15 51.15 50.49/1.50 51.32/0.52 50.66/1.20

20 67.27 9.78/37.30 60.67/5.74 64.08/1.43 20 50.74 50.74/0.00 51.81/2.90 50.99/0.61

25 67.28 10.63/45.53 60.47/4.45 64.73/1.07 25 51.15 50.99/0.51 51.15/0.01 51.40/0.58

30 68.18 10.41/44.36 60.07/3.88 66.11/0.71 30 51.32 51.48/0.42 50.82/1.40 50.91/0.96

Image Segmentation Ionosphere

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

3 77.97 75.19/1.54 75.19/1.60 88.35/5.97 5 88.27 89.69/1.12 90.02/1.55 90.02/1.55

6 90.00 87.32/9.34 84.42/4.41 91.77/3.46 10 92.28 92.02/0.39 90.84/3.00 91.14/2.45
9 92.64 87.58/12.41 92.38/1.51 92.77/1.41 15 93.16 92.86/0.45 94.60/2.21 94.60/2.21

12 93.29 91.47/4.92 93.29/0.00 93.33/1.00 20 94.89 94.00/1.04 93.77/1.82 93.77/1.82

15 93.38 92.42/4.14 94.24/2.33 94.24/2.37 25 94.88 94.85/0.04 95.19/0.47 95.19/0.47

18 93.90 93.90/0.00 93.85/0.55 93.90/0.00 30 95.16 95.14/0.04 95.73/1.50 95.73/1.50

Isolet Libras Movement

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 53.24 52.69/0.68 46.70/6.39 56.28/3.99 5 47.54 51.96/1.63 40.77/2.34 44.77/2.37
10 68.90 65.56/6.72 57.12/17.58 66.14/6.48 10 61.68 64.05/0.72 51.63/4.78 64.86/1.44

15 73.66 74.70/2.65 64.35/20.25 70.99/3.69 15 72.19 71.70/0.30 57.46/5.36 71.02/0.67

20 76.40 76.14/0.57 70.19/18.47 77.02/1.19 20 75.65 77.04/0.92 63.49/4.33 75.39/0.16

25 78.81 78.50/0.74 71.04/17.15 78.62/0.40 25 77.30 80.05/1.80 72.29/2.38 77.34/0.05

30 80.11 80.12/0.03 71.99/19.72 79.83/0.58 30 77.57 81.93/2.14 74.84/1.67 79.33/1.47

Madelon Multiple Features

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 61.65 53.42/8.52 53.73/6.80 54.12/6.87 5 90.10 91.65/1.85 86.85/3.33 86.60/3.68
10 64.00 53.81/9.37 56.62/6.27 56.69/6.90 10 93.65 94.45/1.65 94.95/5.46 96.80/7.47
15 62.35 53.85/5.69 55.31/5.50 55.12/5.77 15 97.85 95.85/4.67 97.85/0.00 97.65/0.65

20 61.92 53.50/5.74 57.73/5.59 57.46/6.14 20 98.20 97.95/0.86 98.45/0.96 98.45/0.83

25 61.31 54.12/8.29 57.23/6.87 57.31/5.68 25 98.65 98.10/2.40 98.55/0.69 98.25/1.56

30 61.54 53.35/8.27 55.73/5.55 55.96/5.65 30 98.75 98.35/1.50 98.35/2.45 98.45/1.41

Landsat Satellite Sonar

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 85.50 84.82/2.02 85.56/0.17 85.27/1.24 5 73.67 75.94/0.98 72.67/0.47 73.17/0.28

10 87.19 87.72/1.53 87.27/0.36 87.13/0.27 10 76.06 75.94/0.05 76.46/0.14 77.37/0.42

15 88.94 88.94/0.01 88.38/2.93 88.75/1.10 15 78.44 75.53/1.32 80.30/1.05 80.77/1.22

20 89.17 89.90/3.84 89.32/0.80 89.36/1.65 20 81.77 75.53/2.20 81.82/0.04 82.75/0.82

25 89.79 89.95/1.93 89.98/0.87 90.01/2.95 25 83.18 75.51/2.74 83.75/0.35 84.25/0.51

30 90.35 90.23/0.69 90.33/0.44 90.35/0.02 30 82.25 74.10/3.59 85.63/3.30 85.63/3.30

Spambase Breast Cancer

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 88.22 87.31/2.11 87.87/0.75 87.78/0.93 5 95.42 92.60/2.75 94.54/1.62 94.54/1.62

10 90.85 85.57/1.79 89.83/2.80 89.87/2.64 10 95.78 92.42/3.36 95.60/1.00 95.78/0.00

15 90.94 85.78/1.67 90.72/0.69 90.74/0.63 15 95.25 94.36/0.96 94.72/1.96 94.89/1.01

20 91.46 86.81/1.49 91.59/0.63 91.57/0.46 20 97.00 96.29/0.85 97.18/0.42 97.18/0.54

25 92.09 86.22/1.96 91.55/1.65 91.52/1.71 25 97.53 97.36/0.36 97.53/0.00 97.36/1.00

30 92.02 86.33/1.95 91.72/1.14 91.72/1.08 30 97.53 97.88/0.79 97.53/0.00 97.53/0.00
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Table 4 LDA classification accuracies of the 12 datasets. Bold items highlight significant differences in comparison with f 1 (t -value > 2.26 or
p-value < 0.05)

Linear Discriminant Analysis (LDA)

Arrhythmia Hill Valley

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 24.17 21.92/0.44 14.41/2.80 22.75/0.40 5 51.32 50.91/1.62 51.07/1.00 51.07/1.00

10 33.96 25.04/1.54 27.28/3.06 35.83/0.78 10 51.40 51.15/1.15 51.57/0.61 51.57/0.61

15 44.74 27.04/3.14 34.63/4.44 38.90/1.74 15 51.57 51.07/1.33 51.40/0.40 51.40/0.40

20 50.89 7.00/11.68 39.99/4.07 41.34/2.53 20 51.65 51.15/1.97 51.48/0.56 51.48/0.56

25 55.22 10.27/11.47 39.41/5.14 45.32/2.64 25 51.57 51.24/1.31 51.65/0.36 51.65/0.36

30 55.30 15.54/8.90 41.40/5.13 49.10/2.16 30 51.49 50.66/2.74 51.90/1.47 51.90/1.47

Image Segmentation Ionosphere

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

3 78.14 68.14/5.01 73.03/3.13 81.65/2.31 5 84.29 84.29/0.01 80.56/2.51 80.56/2.51
6 84.59 73.16/14.71 78.18/4.76 87.32/5.81 10 84.83 85.72/0.74 81.44/2.55 81.44/2.55
9 87.92 81.77/8.70 87.62/1.00 87.97/0.22 15 83.67 85.11/1.89 81.11/3.23 81.11/3.23

12 89.87 88.23/2.98 89.78/1.00 89.87/0.00 20 85.68 86.55/1.01 81.70/2.03 81.70/2.03

15 89.09 88.66/2.38 88.57/0.87 88.57/0.87 25 86.85 87.71/1.96 84.82/1.17 84.82/1.17

18 88.79 88.79/0.00 88.79/0.00 88.79/0.00 30 85.99 87.70/2.71 84.23/0.91 84.23/0.91

Isolet Libras Movement

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 48.31 47.86/1.00 41.07/8.55 49.99/2.10 5 46.21 46.81/0.28 39.18/2.62 44.62/0.82

10 61.25 57.37/7.10 48.04/15.71 58.05/5.19 10 54.37 54.94/0.32 46.06/2.86 52.62/1.45

15 63.68 65.55/3.76 54.14/14.40 61.70/2.64 15 59.30 60.98/0.88 47.77/6.65 58.72/0.70

20 65.27 66.90/3.70 60.83/10.63 66.60/2.63 20 60.43 65.09/2.37 52.01/4.85 62.77/1.74

25 67.31 66.27/1.72 60.81/9.52 67.82/0.68 25 64.54 67.58/1.80 56.84/4.76 63.61/0.64

30 68.21 68.05/0.27 62.18/13.03 69.31/1.84 30 65.01 67.55/2.13 58.33/4.58 64.81/0.23

Madelon Multiple Features

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 60.62 60.04/0.56 60.19/0.42 60.19/0.42 5 88.35 87.50/1.08 81.75/8.45 81.95/6.59
10 60.42 59.62/0.65 59.88/0.43 59.88/0.43 10 90.30 90.90/1.05 90.20/0.26 91.70/2.35
15 60.69 59.81/0.72 59.58/1.34 59.58/1.34 15 94.55 92.40/2.90 95.90/2.61 94.60/0.18

20 60.54 60.08/0.53 60.08/0.61 60.08/0.61 20 95.30 94.95/0.70 95.80/1.63 95.00/0.97

25 60.92 59.38/2.08 59.54/1.96 59.54/1.96 25 95.75 95.85/0.19 96.10/1.41 95.95/0.45

30 60.15 59.08/1.05 59.46/1.19 59.46/1.19 30 96.15 95.75/0.95 96.35/0.69 96.75/1.86

Landsat Satellite Sonar

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 81.03 80.22/2.11 81.38/1.36 80.98/0.19 5 69.72 68.27/0.54 71.22/0.59 71.22/0.59

10 82.33 81.94/1.42 82.14/1.09 81.99/1.13 10 70.65 67.77/0.93 72.58/1.29 72.58/1.29

15 82.64 82.39/0.94 82.50/0.59 82.41/1.60 15 75.05 69.32/1.59 75.94/0.51 75.94/0.51

20 82.44 82.38/0.28 82.60/0.83 82.60/1.63 20 77.39 72.54/2.18 78.01/0.28 78.01/0.28

25 82.13 82.24/0.63 82.33/1.17 82.27/0.93 25 76.96 73.47/1.13 78.39/0.82 78.39/0.82

30 82.38 82.38/0.01 82.33/1.00 82.55/1.94 30 78.05 73.51/1.39 77.96/0.05 77.96/0.05

Spambase Breast Cancer

# Fea f 1 f 2/t f 3/t f 4/t # Fea f 1 f 2/t f 3/t f 4/t

5 83.48 83.63/0.30 84.57/2.24 84.57/2.24 5 94.03 91.04/3.79 94.20/0.54 94.20/0.54

10 86.57 85.89/1.05 87.92/4.35 87.92/4.35 10 94.56 91.56/3.43 94.56/0.00 94.56/0.00

15 87.00 87.48/0.69 87.42/1.19 87.42/1.19 15 94.38 94.20/0.42 94.02/1.50 94.02/1.50

20 87.42 87.57/0.28 88.37/3.00 88.37/3.00 20 95.96 95.25/1.21 95.96/0.00 95.96/0.00

25 87.94 88.07/0.25 89.13/4.50 89.13/4.50 25 96.49 95.60/3.00 96.67/1.00 96.67/1.00

30 88.70 88.59/0.27 89.81/4.02 89.81/4.02 30 96.67 96.14/1.41 96.67/0.00 96.67/0.00
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Fig. 4 Redundancy and
relevancy of the selected
features

than those of f 1 when they are used with SVM, the dif-
ferences are not statistically significant because of the low
t-values.

Overall, we can see that f 2 is often the worst criterion;
f 1, in contrast, is often one of the two best measurements.
Even if it does not have the highest result (for example with
the Sonar dataset), the difference between f 1 and the best
method is not significant. It is also worth noting that f 4 of-
ten produces better results than does f 3. Furthermore, from
Tables 2, 3, and 4, we summarize the number of times that
each feature selection method produces the highest results
and show the statistics in Fig. 8. It is obvious that f 1 proves
to be the most outstanding method. Among the other three
selection criterions, f 4, in general, is a little better than f 2

and f 3. Hence, the statistics provide another reason for us
to conclude that f 1 is the most superior method with f 4

occupying the second position, f 2 and f 3 competing for
the lowest rank. Since f 4 differs from f 3 only in the class-
feature normalization, it is clear that the normalization of
class-feature mutual information has a positive effect on the
quality of the selected feature set. The superiority of f 1 il-
lustrates the efficiency of the constant normalizing weights
in our methods because f 1 and f 4 are different only in these
weights.

In addition, Fig. 4 shows an analysis of the redundancy
(RD) and relevancy (RL) of the selected features. Those two

quantities are computed as below (derived from the method
in [34]).

RD(X1,X2, . . . ,XN) = 1

N(N − 1)

∑

i �=j

I (Xi;Xj) (26)

RL(X1,X2, . . . ,XN) = 1

N

∑

i

I (C;Xi) (27)

As can be seen, MIFS is biased toward the less redundant
features. As a result, the classification accuracy is low be-
cause of less relevant features. It is also clear that our method
gives higher priority to selecting the relevant features in
case of low-redundancy dataset (Madelon). Whereas, it pays
more attention to selecting the less redundant features if the
dataset has high redundancy (Arrhythmia). In other words,
our method is less prone to a specific kind of feature than
the others.

So far, we have proven that our method not only inherits
the advantages of the parameter-free methods like mRMR
and NMIFS but also overcomes their limitations. By propos-
ing to normalize the class-feature mutual information, we
are able to avoid the imbalance between the relevance and
the redundancy, which can be seen in mRMR and NMIFS, as
we pointed out in Sect. 2. To resolve the problem of unequal
normalizing weights, we present a feature-independent up-
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Fig. 5 kNN classification accuracies of the 12 datasets
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Fig. 6 SVM classification accuracies of the 12 datasets
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Fig. 7 LDA classification accuracies of the 12 datasets
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Fig. 8 Number of times each
method achieves the highest
accuracy. The rightmost group
shows the average number of all
the three classifiers. There are
12 × 6 = 72 tests for each
classifier and a total of
72 × 3 = 216 tests for all three
classifiers. The results of those
tests are presented in Tables 2,
3, and 4

per bound of the mutual information, which then acts as the
normalizing factor.

5 Conclusion

In conclusion, we have reviewed some recently developed
algorithms for mutual information-based feature selection.
We discussed the limitations of each method, and based on
our observations, we proposed our own method derived from
the NMIFS with two improvements, the normalization of the
mutual information and the feature-independent normaliz-
ing weights. To clarify these improvements, we conducted
comprehensive experiments using 12 datasets of different
characteristics from the UCI machine learning repository.
The experimental results confirmed our analysis and pro-
vided obvious evidences, allowing us to conclude that our
method achieves a better feature set in terms of classifica-
tion accuracy.

In the present paper, we limited our scope to the selection
criterion only, since this is an important basis on which to
develop different searching algorithms. For our future work,
we are going to integrate our selection criterion into more
advanced searching strategies such as branch and bound
[21], genetic search [3, 20, 22]. Another problem that should
be considered is the quantization process. Currently, a very
simple linear quantization method is utilized; we expect that
a better quantization algorithm may bring higher quality to
the feature selection method.
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Appendix A: Accuracies of kNN using our method (f 1), MIFS [2], MIFSU [19], and Gain Ratio (GR) [16]

Arrhythmia Hill Valley

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 50.43 52.01/0.72 47.46/0.41 50.71/0.12 5 51.98 51.73/0.30 52.31/0.21 52.39/0.26

10 60.98 51.58/5.11 44.73/2.54 55.64/2.76 10 52.72 53.05/0.43 52.63/0.10 50.33/2.35

15 63.36 47.06/4.21 50.06/3.37 53.72/4.37 15 52.47 52.56/0.08 53.79/1.42 52.63/0.15

20 62.32 41.78/3.18 45.21/2.50 54.90/5.00 20 53.21 52.97/0.23 53.30/0.11 52.72/0.43

25 64.05 30.55/3.77 49.28/3.26 54.39/1.64 25 53.29 52.88/0.54 52.80/0.98 52.30/1.12

30 65.47 54.28/8.49 41.00/3.49 59.12/2.51 30 52.88 52.30/0.59 53.30/0.65 52.31/0.32

Image Segmentation Ionosphere

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

3 92.64 62.34/21.99 88.61/2.74 88.14/2.86 5 87.43 87.44/0.01 87.15/0.22 84.26/1.78

6 96.10 84.76/13.01 94.33/1.60 88.79/11.67 10 85.42 85.43/0.01 85.98/0.98 87.13/1.76

9 95.97 92.55/3.86 92.55/3.86 93.81/2.07 15 82.17 84.56/0.69 84.86/0.84 85.69/1.11

12 95.76 93.51/4.62 93.55/3.39 95.58/0.94 20 79.62 83.12/1.09 83.70/1.37 83.44/1.15

15 94.33 95.02/1.40 93.64/2.84 94.72/1.40 25 80.86 82.27/1.04 81.99/0.71 82.85/1.76

18 95.06 95.06/0.00 95.06/0.00 95.06/0.00 30 81.14 81.97/0.69 81.97/0.79 81.40/0.28

Isolet Libras Movement

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 49.16 36.89/13.61 49.15/0.03 12.08/73.07 5 62.97 58.27/2.01 58.10/2.84 46.06/4.84

10 64.67 43.81/14.35 52.20/15.81 19.99/44.03 10 69.43 69.73/0.12 71.75/1.20 50.79/4.98

15 70.72 45.53/38.02 57.52/21.87 28.56/37.62 15 69.75 73.52/2.31 73.46/1.94 53.13/6.89

20 72.72 47.98/60.18 57.88/26.20 32.99/43.25 20 70.91 73.01/1.08 74.04/2.00 56.20/6.83

25 74.87 49.71/38.95 57.33/23.66 34.73/25.93 25 72.84 74.70/1.09 76.65/2.15 66.15/2.31

30 75.70 51.44/51.21 57.80/27.50 40.08/16.89 30 73.43 76.09/1.73 77.21/2.34 68.68/3.04

Madelon Multiple Features

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 61.00 53.35/10.69 72.12/4.47 59.19/1.21 5 89.25 87.75/1.13 87.10/2.14 77.85/4.15

10 58.54 52.00/4.94 62.19/2.78 73.65/9.52 10 93.95 89.65/5.02 92.05/1.91 89.10/5.99

15 58.42 51.15/8.28 57.81/0.55 80.42/12.86 15 97.25 92.40/7.83 94.40/5.90 93.40/7.61

20 56.69 51.96/3.16 56.81/0.14 76.12/20.03 20 97.85 94.45/5.35 95.20/3.57 93.65/8.78

25 56.88 51.50/4.38 55.12/2.25 71.46/13.26 25 98.15 95.25/6.50 95.85/4.64 95.30/5.57

30 56.46 51.00/4.85 53.42/2.79 67.58/7.83 30 98.35 95.65/4.10 95.70/3.40 95.60/6.40

Landsat Satellite Sonar

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 86.31 86.11/0.48 86.22/0.22 82.45/1.70 5 73.88 74.37/0.23 72.97/0.41 70.04/3.22

10 88.95 89.06/0.33 89.76/3.12 87.93/3.58 10 80.78 72.15/2.30 67.68/3.43 74.49/1.84

15 90.33 90.12/0.57 90.40/0.14 89.39/2.06 15 80.23 71.14/2.54 79.23/0.29 76.90/0.95

20 90.38 90.47/0.24 90.74/1.06 90.19/0.71 20 85.11 74.97/5.14 75.33/3.21 81.18/1.69

25 90.99 90.63/0.94 90.69/1.10 90.82/0.87 25 85.57 73.02/4.03 75.87/3.94 85.09/0.16

30 90.77 90.88/0.31 90.97/0.65 90.72/0.40 30 88.47 77.90/4.27 76.92/3.96 84.57/1.44

Spambase Breast Cancer

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 86.74 73.59/3.10 83.81/0.94 86.20/0.54 5 93.83 90.85/2.69 92.09/1.32 94.38/0.45

10 89.20 78.13/3.82 88.46/0.62 88.44/0.63 10 94.38 91.36/1.60 92.61/1.41 94.56/0.58

15 89.66 78.37/3.90 88.65/1.00 89.33/0.37 15 93.31 92.96/0.43 95.07/2.72 94.02/1.50

20 89.57 81.53/3.68 89.07/0.38 88.57/0.68 20 95.77 95.08/1.49 95.07/1.06 95.42/0.48

25 89.55 86.15/2.20 88.68/0.68 89.18/0.29 25 97.00 96.48/0.66 95.61/2.05 95.76/3.29

30 89.63 87.39/1.97 89.59/0.06 90.16/1.31 30 97.18 97.36/0.31 97.18/0.00 97.01/1.00
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Appendix B: Accuracies of SVM using our method (f 1), MIFS [2], MIFSU [19], and Gain Ratio (GR) [16]

Arrhythmia Hill Valley

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 58.20 39.66/2.45 33.19/2.92 58.64/0.34 5 50.00 50.00/0.01 51.65/1.21 50.17/0.13

10 63.53 39.22/2.95 8.86/44.01 60.20/2.23 10 50.33 50.25/0.23 51.57/1.65 50.49/0.32

15 63.73 39.23/3.11 10.18/56.01 60.20/2.13 15 50.66 50.41/0.51 50.66/0.01 49.92/1.07

20 65.05 34.11/3.92 10.41/40.70 60.87/2.20 20 51.07 50.99/0.18 51.15/0.20 50.09/1.33

25 66.58 14.42/8.18 7.78/24.51 50.10/1.94 25 51.07 50.58/0.94 50.99/0.28 49.59/1.63

30 67.92 18.15/8.36 8.65/36.23 43.59/2.70 30 50.58 51.32/1.44 50.58/0.01 51.15/1.35

Image Segmentation Ionosphere

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

3 78.79 53.16/11.03 79.09/0.17 75.54/1.67 5 83.92 84.48/0.98 85.61/1.74 84.45/0.37

6 89.70 75.84/14.04 86.93/5.58 74.81/22.40 10 87.59 87.31/0.32 88.43/1.15 87.86/0.30

9 92.60 86.67/6.79 87.53/8.92 83.72/6.31 15 89.29 88.72/0.56 89.01/0.42 88.14/0.95

12 93.16 93.29/0.44 92.21/4.30 93.29/0.57 20 90.71 89.30/2.22 88.45/2.44 89.86/1.96

15 93.38 93.98/2.09 93.16/1.10 93.64/2.70 25 90.72 89.88/1.96 89.87/1.96 90.13/1.03

18 94.11 94.20/1.01 94.11/0.02 94.29/2.45 30 89.58 90.16/1.50 90.15/0.99 90.43/1.14

Isolet Libras Movement

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 53.26 42.12/9.66 52.66/1.42 13.15/42.09 5 53.31 52.85/0.13 54.27/0.30 33.59/4.39

10 69.14 49.56/14.06 58.15/16.21 23.74/29.65 10 63.64 69.36/2.10 66.00/1.14 40.16/9.26

15 74.00 53.29/22.51 64.13/21.82 32.86/36.84 15 67.99 75.55/3.18 72.77/1.58 46.58/8.31

20 76.77 57.46/24.99 66.17/18.52 37.84/44.69 20 71.42 76.45/2.77 76.62/2.47 54.23/6.21

25 78.85 59.07/27.46 66.97/23.07 38.98/44.86 25 79.22 80.60/0.77 81.38/1.17 63.90/5.79

30 80.15 61.63/40.87 68.05/25.39 43.85/20.25 30 80.25 82.77/2.15 83.42/2.18 67.03/6.04

Madelon Multiple Features

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 61.54 52.77/12.21 66.69/5.56 57.54/4.38 5 90.00 87.85/3.17 85.95/3.28 77.15/4.72

10 64.19 53.12/21.65 65.19/1.21 71.15/8.75 10 93.95 92.65/1.57 94.85/1.43 89.75/5.23

15 63.46 52.12/13.40 62.58/1.74 77.15/10.66 15 97.80 94.55/5.57 96.50/2.62 94.05/5.76

20 62.42 53.31/10.82 60.85/1.96 77.77/16.59 20 98.35 96.35/4.82 97.30/2.40 95.60/5.55

25 61.96 53.54/10.11 60.31/2.65 74.58/14.84 25 98.65 96.85/3.55 97.40/2.95 96.30/5.48

30 60.23 53.19/5.81 59.08/3.26 72.65/14.94 30 98.70 97.35/3.95 97.50/2.98 96.95/3.80

Landsat Satellite Sonar

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 85.05 84.83/0.57 85.27/0.73 83.95/2.84 5 69.56 68.13/0.51 69.52/0.01 62.48/1.22

10 87.21 87.91/1.96 87.66/2.58 86.85/1.55 10 75.87 74.13/0.40 70.68/1.61 69.25/2.24

15 88.80 88.79/0.01 88.97/0.70 88.41/1.88 15 79.69 74.63/1.19 72.70/2.13 75.40/2.05

20 89.34 89.63/1.23 89.73/1.64 89.31/0.14 20 74.94 74.05/0.32 73.60/0.56 77.37/1.63

25 89.81 90.27/1.90 90.15/1.68 89.99/1.60 25 77.89 76.46/0.76 74.03/1.57 78.89/0.62

30 90.36 90.43/0.30 90.46/0.38 90.36/0.01 30 79.80 73.06/3.08 74.01/1.95 79.85/0.02

Spambase Breast Cancer

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 87.98 74.48/6.34 87.65/0.91 86.37/2.32 5 94.56 92.11/2.32 93.15/2.24 94.38/0.37

10 90.65 71.75/7.02 88.42/4.32 89.52/3.69 10 94.73 92.47/2.05 93.16/1.40 94.20/1.01

15 91.33 77.09/5.31 86.24/2.28 90.91/1.33 15 94.56 95.08/0.51 94.74/0.17 94.91/1.50

20 91.70 78.05/5.41 86.44/1.83 89.35/1.29 20 97.01 96.13/1.24 96.67/0.42 97.37/0.62

25 92.44 84.16/3.12 86.29/2.17 89.70/1.71 25 97.37 97.02/1.00 97.19/0.44 97.20/0.55

30 92.59 85.18/2.69 86.81/2.22 90.31/1.39 30 97.55 97.37/1.00 97.37/1.00 97.37/1.00
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Appendix C: Accuracies of LDA using our method (f 1), MIFS [2], MIFSU [19], and Gain Ratio (GR) [16]

Arrhythmia Hill Valley

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 21.24 21.92/0.09 13.22/2.35 16.16/1.36 5 50.90 50.99/0.29 51.40/1.96 51.07/0.68

10 32.34 22.58/1.27 43.27/1.74 25.41/1.68 10 50.99 50.99/0.00 51.40/1.86 51.15/0.69

15 42.97 21.92/2.55 39.92/0.50 33.16/1.92 15 51.40 51.23/0.52 51.56/0.80 51.23/0.81

20 52.33 27.03/3.22 31.19/2.60 33.90/3.85 20 51.15 50.99/0.61 51.15/0.01 51.07/0.23

25 54.19 43.63/1.57 28.61/3.42 35.82/2.72 25 51.40 51.15/0.63 51.23/0.80 50.74/2.07

30 58.07 46.68/1.90 30.79/4.03 26.23/4.42 30 51.57 51.23/0.72 51.48/0.37 52.80/1.74

Image Segmentation Ionosphere

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

3 76.71 42.25/22.53 70.48/3.55 73.68/2.00 5 84.30 83.45/0.99 84.03/0.27 82.31/1.76

6 84.33 60.91/22.98 72.16/6.78 75.02/22.47 10 84.01 84.85/1.39 84.85/1.15 83.43/0.63

9 87.53 72.03/12.73 71.47/22.13 82.51/2.91 15 84.01 84.58/0.61 85.15/1.49 83.70/0.31

12 89.78 89.57/0.51 87.23/6.74 89.65/1.00 20 84.30 84.56/0.27 84.57/0.28 83.99/0.46

15 89.26 89.18/0.21 89.57/1.65 89.48/0.99 25 83.97 85.44/1.21 84.88/0.72 83.68/0.29

18 89.05 89.05/0.00 89.05/0.00 89.05/0.00 30 83.40 85.13/1.53 84.84/1.19 83.68/0.36

Isolet Libras Movement

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 48.15 35.42/9.90 47.89/0.77 10.57/42.96 5 48.17 46.14/0.98 46.47/1.85 37.23/3.53

10 61.52 41.12/18.83 48.72/29.10 19.20/31.87 10 51.57 58.99/2.39 60.36/4.65 45.65/2.28

15 64.01 43.91/20.84 53.85/22.05 27.57/33.54 15 57.68 62.23/1.35 63.48/2.24 48.15/3.85

20 65.44 47.24/18.25 56.38/14.76 32.26/36.08 20 60.83 63.08/0.64 64.50/1.28 49.13/3.33

25 67.27 49.19/19.32 57.39/10.84 33.22/32.61 25 63.83 63.28/0.19 65.02/0.50 50.90/4.69

30 68.35 51.62/23.51 58.63/14.80 36.32/19.85 30 66.31 63.46/1.08 66.23/0.04 53.26/4.64

Madelon Multiple Features

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 60.62 61.04/2.08 60.38/0.60 60.08/0.47 5 88.65 82.90/3.83 78.95/10.58 74.55/6.69

10 60.62 60.65/0.08 59.96/1.95 61.08/1.02 10 89.60 88.25/1.09 88.85/0.63 84.90/3.84

15 60.27 60.81/1.06 60.04/0.52 61.38/1.62 15 94.60 90.35/3.49 90.75/5.27 88.20/10.06

20 60.00 60.12/0.31 59.92/0.43 60.38/0.47 20 95.30 92.35/2.93 92.50/3.32 90.25/9.27

25 60.15 60.15/0.00 59.77/1.23 60.69/0.84 25 95.80 93.60/2.63 93.65/3.17 91.75/8.06

30 60.08 59.62/0.82 59.50/1.53 60.19/0.13 30 96.50 94.70/2.59 94.00/3.90 92.75/8.36

Landsat Satellite Sonar

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 80.84 79.92/2.01 81.21/1.19 78.35/4.45 5 72.38 72.48/0.03 70.02/1.32 69.05/0.98

10 82.36 81.09/3.99 81.32/2.77 80.89/3.05 10 74.93 71.43/1.07 69.10/2.46 70.50/1.21

15 82.77 82.22/1.96 82.07/2.40 82.35/1.60 15 78.21 74.38/2.46 74.88/2.09 71.98/2.76

20 82.38 82.28/0.23 82.24/0.46 82.39/0.05 20 78.24 70.55/6.04 74.83/1.29 74.90/1.33

25 82.25 82.27/0.04 82.19/0.17 81.99/2.01 25 75.40 70.90/1.12 74.33/0.47 74.43/0.63

30 82.45 82.10/1.21 82.03/1.67 82.58/1.93 30 77.81 74.36/1.23 74.83/1.09 77.33/0.32

Spambase Breast Cancer

# Fea f 1 MIFS/t MIFSU/t GR/t # Fea f 1 MIFS/t MIFSU/t GR/t

5 83.16 77.07/2.84 85.72/5.10 83.18/0.03 5 93.85 91.21/3.50 92.45/2.45 93.67/0.43

10 86.74 78.25/4.92 86.42/0.90 85.70/2.57 10 94.38 92.97/1.35 92.80/2.38 94.38/0.00

15 87.18 80.92/3.15 86.11/0.82 86.55/1.76 15 94.91 95.08/0.44 94.72/0.33 94.91/0.00

20 87.03 82.33/2.46 87.83/0.65 87.07/0.15 20 96.14 95.26/1.86 95.08/1.77 95.96/0.30

25 88.18 84.42/3.49 87.57/0.48 86.70/1.89 25 96.66 96.14/0.65 95.61/1.60 96.66/0.00

30 88.79 85.61/3.35 87.96/0.83 87.74/1.69 30 96.84 96.84/0.02 96.49/0.79 96.66/0.55
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Appendix D: Accuracies of our method (f 1), and SBMLR [4]

Fig. 9 Classification accuracies of our method and SBMLR. In this
experiment, we first used SBMLR to select a subset of features, then
our method was executed to select the same number of features. As

can be seen, our accuracies are higher than those of SBMLR in all the
cases in which significant differences are observed (p-value < 0.05)
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