
Appl Intell (2012) 36:932–959
DOI 10.1007/s10489-011-0306-z

A universal planning system for hybrid domains

Giuseppe Della Penna · Daniele Magazzeni ·
Fabio Mercorio

Published online: 29 June 2011
© Springer Science+Business Media, LLC 2011

Abstract Many real world problems involve hybrid sys-
tems, subject to (continuous) physical effects and controlled
by (discrete) digital equipments. Indeed, many efforts are
being made to extend the current planning systems and mod-
elling languages to support such kind of domains. However,
hybrid systems often present also a nonlinear behaviour and
planning with continuous nonlinear change that is still a
challenging issue.

In this paper we present the UPMurphi tool, a univer-
sal planner based on the discretise and validate approach
that is capable of reasoning with mixed discrete/continuous
domains, fully respecting the semantics of PDDL+. Given
an initial discretisation, the hybrid system is discretised and
given as input to UPMurphi, which performs universal plan-
ning on such an approximated model and checks the cor-
rectness of the results. If the validation fails, the approach is
repeated by appropriately refining the discretisation.

A preliminary version of this paper appears in G. Della Penna, B.
Intrigila, D. Magazzeni, F. Mercorio, UPMurphi: a Tool for Universal
Planning on PDDL+ Problems, in: Proceedings of the 19th
International Conference on Automated Planning and Scheduling
(ICAPS 2009), pp. 106–113.

G. Della Penna (�) · F. Mercorio
Department of Computer Science, University of L’Aquila,
L’Aquila, Italy
e-mail: giuseppe.dellapenna@univaq.it

F. Mercorio
e-mail: fabio.mercorio@univaq.it

D. Magazzeni
Department of Sciences, University of Chieti-Pescara, Pescara,
Italy
e-mail: magazzeni@sci.unich.it

To show the effectiveness of our approach, the paper
presents two real hybrid domains where universal planning
has been successfully performed using the UPMurphi tool.

Keywords Universal planning · Hybrid systems · PDDL+

1 Introduction

Many real-world problems involve complex hybrid systems,
where the state is described by both discrete and continuous
components and the time-dependent dynamics is governed
by differential equations. Indeed, in the past years, a rele-
vant effort has been made to extend PDDL [44, 46], the stan-
dard modelling language for planning problems, in order to
model mixed discrete/continuous domains with continuous
resource consumption. This effort has lead to the definition
of PDDL+ [29] that makes it possible to capture continuous
processes and events.

In particular, the main contribution made by PDDL+ is
the ability to model continuous change through the initiation
and termination of processes which continuously modify the
value of the numeric components of the state. For example,
if a pump is switched on, then a filling process starts that
continuously increases the water level in a tank and termi-
nates when the pump is switched off. Moreover, PDDL+ al-
lows the modelling of predictable exogenous events that oc-
cur as a consequence of some process. For example, a tank
will eventually overflow if the pump is left switched on. Pro-
cesses and events allow one to model in a more realistic way
the behaviour of continuous systems, and this represents a
further step in applying planning technology to real world
problems.

The planning systems have been also improved to deal
with numeric and temporal constraints (see, e.g.

mailto:giuseppe.dellapenna@univaq.it
mailto:fabio.mercorio@univaq.it
mailto:magazzeni@sci.unich.it

A universal planning system for hybrid domains 933

[17, 22, 31, 57] or [52]), and they have been proved very
useful to perform planning w.r.t. such problems. However,
developing planners able to deal with PDDL+ domains is
still an open issue.

In this paper we present a new planning methodology im-
plemented into the UPMurphi tool, a universal planner ca-
pable of reasoning with mixed discrete continuous domains,
fully respecting the semantics of PDDL+.

1.1 Motivation

A growing number of motivating applications shows the
importance of dealing with mixed discrete continuous do-
mains. Some examples are: product processing in a plant [1],
activity management of an autonomous vehicle [41], volt-
age regulation planning [3], solar array operations on the In-
ternational Space Station [51], oil refinery operations plan-
ning [7], planning for an airport control system [33], or slag
foaming control [60].

These problems are described by hybrid systems where
continuous physical rules are managed by discrete digital
equipments. In such a context, it is crucial to reason about
continuous change during the planning process [29]. To this
aim, when the problems have a linear dynamics, it is possi-
ble to use planners such as COLIN [17] or TM-LPSAT [57]
that make use of a hybrid approach combining planning
techniques and linear programming.

However, several real world planning problems present
complex nonlinear behaviours which are difficult to han-
dle by any analytical method (see, e.g., [6, 9, 58]) or hybrid
reasoning approach. Nonlinearity can arise from the intrin-
sic dynamics of the system (e.g., the regulation of a steer-
ing antenna, which leads to an inverted pendulum problem),
or the saturation of actuators (e.g., valves that cannot open
more than a certain limit, control surfaces in an aircraft that
cannot be deflected more than a certain angle, etc.). Indeed,
the behaviour of nonlinear systems can be so complex to be
completely unpredictable after a small interval of time (see,
e.g., [56]).

Thus, planning with continuous nonlinear change is a
challenging issue.

1.2 Contribution

In this paper, we propose the discretise and validate ap-
proach to deal with PDDL+ domains having complex non-
linear dynamics. In this approach, the continuous problem
is relaxed into a discretised one using rounded values and
uniform discrete time steps. A forward reachability analysis
based on model checking algorithms is then used to solve
the relaxed problem, and the solutions are validated against
the continuous problem using the validator VAL [36].

This approach has been implemented in the UPMurphi
tool, which performs universal planning [55] on PDDL+

problems, i.e., it generates a set of policies for all states
reachable from the initial ones.

In particular, by exploiting the discretisation, UPMurphi
is able to build and analyse the transition graph for a large
class of systems, including systems whose dynamics is non-
linear and hard to be inverted. Obviously, in order to have
a precise analysis of a hybrid domain, a suitable discretisa-
tion of the continuous behaviour is required. On the other
hand, the finer is the discretisation used to round the con-
tinuous component of the state, the bigger is the resulting
state space. To this aim, model checking algorithms offer
powerful compression techniques and very effective com-
pact encodings [11, 18], that make UPMurphi able to deal
with huge state spaces.

Moreover, discretising the continuous behaviour of a sys-
tem involves a discretisation of the timeline, where the time
flow is modelled using uniform discrete time steps. This, in
turn, requires to encode the PDDL+ description of the do-
main into such a discretised setting. To this aim, we designed
and implemented a compilation process which takes in input
a domain/problem pair written in PDDL+ and generates the
corresponding discretised model to be used by UPMurphi.
This completely eliminates the need of learning any planner-
specific language and manually re-encoding domains with
different formalisms.

Therefore, the presented tool aims to offer a fully PDDL+
compliant universal planner that is able to cope with prob-
lems that are very hard to handle by the current state-of-the-
art tools. To support this claim, the paper presents a set of
case studies where UPMurphi was successfully applied to
perform universal planning: two benchmark planning prob-
lems, i.e., a nonlinear variant of Generators and Cooling
System, and two real world applications, namely the Plan-
etary Lander, and the Batch Chemical Plant.

The paper is organised as follows. In Sect. 2 we provide
a brief survey of related work, focusing on planners for hy-
brid domains and planning systems based on model check-
ing techniques.

In Sect. 3 we present the discretise and validate approach,
providing a schematic view of the overall process and de-
scribing a compilation procedure which takes a PDDL+ do-
main/problem pair and generates a corresponding discre-
tised model. We consider a detailed example of a domain,
the Satellite domain, and show how each PDDL+ element is
mapped into the new discretised setting.

In Sect. 4 we describe the UPMurphi universal planner. In
particular, we provide a formal description of the universal
planning task on finite state systems which represent the for-
mal model underlying the UPMurphi engine, then describe
the model checking based algorithm used by the tool and
give some details about its implementation.

In Sect. 5 we consider four case studies, with increasing
complexity, and show how UPMurphi was successfully ap-
plied to their universal planning.

934 G. Della Penna et al.

Finally, some concluding remarks are outlined in Sect. 6.

2 Related work

A great effort has been made to develop algorithms and tools
able to deal with hybrid planning domains. The early work
was [50], where the authors presented the partial-order plan-
ner Zeno, which uses differential equations to describe con-
tinuous processes. However, Zeno cannot cope with concur-
rent processes and does not scale well to large problems.
More recent works include the OPTOP planner [45] that
deals with linear continuous domains where concurrent pro-
cesses do not affect the same variable.

The TM-LPSAT system, developed by Shin and Davis
[57], combines SAT and LP solvers. The former is used to
deal with the discrete component of the domain while the
latter is used to handle the continuous one. TM-LPSAT can
deal with processes modelled in PDDL2.1, however, it is
limited to small linear problems.

Kongming [41, 42], thanks to the concept of Flow Tubes,
is able to compactly represent hybrid plans and encode hy-
brid flow graphs as a mixed logic linear/nonlinear program,
solvable using an off-the-shelf solver. However, it can only
address planning problems with constant action duration.

COLIN [17] is a powerful tool for planning in domains
with linear continuous processes. It extends the forward
chaining temporal planner CRIKEY3 [16], making it able to
reason with actions with continuous linear effects. COLIN

integrates a guided state space search with linear program-
ming, and supports duration-dependent effects, durative ac-
tions with continuous change and concurrent continuous
change.

However, none of the approaches above can handle
PDDL+ domains, which represent the target of the approach
proposed in the present paper.

Finally, [47] deals with nonlinear continuous effects writ-
ten in PDDL+, using a state projection algorithm imple-
mented into a Hierarchical Task Network planner. The ap-
proach is very interesting and effective, however, no infor-
mation about the optimality of the synthesised solutions is
given in the paper and, as the authors argue, the scalability
of their approach has not yet been evaluated on more com-
plex case studies.

Our methodology has been implemented in a model
checking based tool. Planning-as-model-checking has a
strong heritage (see, e.g., [32]), since proving states reach-
ability can be viewed as finding plans. In particular, in [13]
the authors use a symbolic approach based on OBDDs,
which allow a very compact encoding of the state space.
Indeed, symbolic algorithms have been successfully applied
to classical planning. On the other hand, they do not work
well on hybrid systems with nonlinear dynamics, due to the
complexity of the state transition function.

The Model Checking Integrated System (MIPS) [21, 22]
is a very powerful and complex framework that makes use of
a combination of both explicit and symbolic model checking
based heuristic search. The MIPS performed very well in
different planning competitions, however it is restricted to
PDDL2.1 while the extended version MIPS-XXL [25] deals
with PDDL3.

The UPPAAL/TIGA tool [2] is built on top of UPPAAL
which allows the use of real variables only as clocks, thus
excluding systems with nonlinear dynamics.

Other examples of model checking based determinis-
tic planners include, among others, ProPlan [26] and BD-
DPlan [34], while the Model Based Planner (MBP) [4] uses
symbolic model checking for non-deterministic domains.

Finally, in this paper we deal with universal planning,
which has been introduced by [55] (see also, e.g., [8, 43]).
Cimatti et al. [15] and Jensen and Veloso [38] use a sym-
bolic (OBDD-based) model checking approach to synthe-
sise optimal universal plans for non-deterministic plants. On
the other hand, the DPlan [53] and FPlan [54] tools use an
explicit state-based representation instead of OBDDs. How-
ever, they both require the explicit definition of an inverse
function for each operator used in the domain, and thus their
application is hard when dealing with systems whose dy-
namics is difficult to invert (the typical situation for hybrid
and/or nonlinear systems).

3 The discretise and validate approach

In order to handle continuous domains, possibly having non-
linear dynamics, in this paper we propose the discretise and
validate approach. The basic idea is to make a complex con-
tinuous problem much simpler by exploiting the discreti-
sation, then perform planning on this simplified problem,
and finally validate the plans with respect to the continuous
model.

However, in a general setting, finding a suitable discreti-
sation for a continuous system is a hard and challenging
task, since it can affect the plan generation speed, the preci-
sion of the solution and, sometimes, its correctness. To this
aim, the discretise and validate approach works using iter-
ative refinement of an initially coarse discretisation of the
continuous values. Indeed, the validation phase may state
that either the discretised solutions are valid for the original
continuous problem, or that a refinement of the discretisa-
tion is required. In the latter case, the current discretisation
is refined and the process restarts.

A schematic view of the approach is shown in Fig. 1.
Given a first discretisation, the continuous model is relaxed
into a discretised one. Then, a forward reachability analy-
sis is used to perform universal planning on the discretised
model. The generated plans are validated against the contin-
uous model using the VAL [36] plan validator. Since VAL

A universal planning system for hybrid domains 935

Fig. 1 The discretise and
validate approach

Fig. 2 Plan with discretised
timeline

computes analytic solutions to the differential equations de-
scribing the system dynamics, its use is effective to prove the
soundness of the discretised solutions. Moreover, the output
of VAL is also used to determine whether a finer discreti-
sation is required. The process loops until the validation re-
turns a satisfying result.

In general, finding a suitable discretisation (i.e., a dis-
cretisation that gives rise to an approximation error which
is less than a given threshold) is a hard and challenging task,
which is out of the scope of the present paper. Therefore, in
the following, we will always assume an initial coarse dis-
cretisation to be given: indeed, in many practical cases, it is
easy to find out a suitable discretisation, or the discretisa-
tion itself is directly implied by the system specification (by
means of hardware/mechanic limitations, etc.), as shown in
the case studies (Sect. 5). However, in order to have an ac-
ceptable approximation of the continuous behaviour, a finer
discretisation is often required. Since the finer is the dis-
cretisation, the bigger is the resulting state space, when the
model is not trivial, the discretisation may result in a state
space that is unavoidably huge, up to millions of states. To
cope with this problem, the discretised problem is solved
using a model checking based technique, which provides a
very compact encoding of the state space, as described in
Sect. 4.

Another important issue involved in the discretisation of
a continuous domain is the discretisation of time. Indeed,
in addition to continuous variables, also the dynamic be-
haviour of the model is discretised. When dealing with such

a model, the planner should work on a discretisation of the
timeline where events, actions, etc. can only happen (and are
checked) at the beginning of each clock tick.

As shown in Fig. 2, where each clock tick is marked by
T , in our framework we consider a discretised timeline using
uniform discrete time steps. It is worth noting that the length
of the clock tick is an important point, since it must be fine-
tuned in order to avoid “hiding” or “stretching” happenings
that may have a shorter length. Also in this case, the valida-
tion is used to detect if the clock tick must be shortened, for
example by checking if all the events and processes captured
by VAL are correctly handled also by the discretised model.

From a theoretical point of view, discretising the contin-
uous dynamics of hybrid plants corresponds to moving from
the hybrid automata semantics (which underlies the PDDL+
semantics) towards finite state systems semantics (which can
be analysed through symbolic or explicit techniques such as
model checking). From a practical point of view, this trans-
lation requires an encoding of the PDDL+ domain, as de-
scribed in the rest of this section.

3.1 Discretisation of PDDL+ domains

One of the most important features provided by PDDL+ is
the ability to model temporal behaviour through the use of
processes which modify numeric values continuously. This
allows modelling of domains involving continuous change.
On the other hand, the discretised setting proposed in this
paper requires a discrete modelling of time, where happen-
ings are checked at the beginning of each discrete clock tick.

936 G. Della Penna et al.

Note that the setting we are considering here goes beyond
the capability of PDDL2.1, that is limited to time points as-
sociated with the start and end points of actions chosen by
the planner. Instead, we consider time steps that do not de-
pend on actions. In fact, we use a discretised timeline us-
ing uniform clock ticks that, if sufficiently short, provide
a valid approximation of the continuous behaviour as ex-
pressed in PDDL+. Moreover, PDDL2.1 cannot handle ex-
ogenous events, while we want to take into account the
PDDL+ events in order to model realistic problems.

To this aim, we designed and implemented the PDDL+
to UPMurphi compiler, which takes a PDDL+ domain/prob-
lem pair and generates a corresponding discretised model,
that we refer to as UPMurphi model. The rest of this sec-
tion describes the PDDL+ to UPMurphi model compilation
process. In particular, for each main PDDL+ syntactic con-
struct, we give the (possibly simplified) EBNF grammar, as
reported in [29, 46], and the EBNF structure of the cor-
responding UPMurphi statements, highlighting similarities
and differences. Examples of actual mappings are also given
for each syntactic construct, using the well-known Satellite
domain (described by Fox and Long [27]).

3.1.1 Notation

The UPMurphi tool and its input language, which is used
to describe the discretised models, are deeply described in
Sect. 4.

In the grammar notation, angle brackets are used to in-
dicate the name of grammar nonterminal symbols, such as
〈nonterminal〉, and grammar rules have the form
〈nonterminal〉 ::= expansion. It is worth noting that we in-
dicate with the “upm_” prefix the nonterminals belonging to
the UPMurphi grammar only (such as 〈upm_nonterminal〉).
All the other nonterminals are present, with the same mean-
ing (but possibly with different expansions), in both PDDL+
and UPMurphi grammars.

We tried to maintain the highest possible similarity be-
tween the PDDL+ structures and the corresponding UPMur-
phi ones, to ease understanding the translation process and

rule "time_passing"
(true) ==> -- always executable
begin
apply_continuous_change();
T := T + 1; -- let time flow
end;

Fig. 3 time_passing rule in the UPMurphi model

its correctness. However, since PDDL+ is a higher level lan-
guage than the UPMurphi description language, the latter
descriptions are naturally more complex than the former,
and must explicitly implement some PDDL+ semantic rules.
On the other hand, some trivial translation details will be
omitted, such as the mapping of the PDDL+ (event, action)
effects. Indeed, in this case, the expressive power of the cor-
responding sub-language (that includes arithmetic, assign-
ments, function calls, etc.) is clearly comparable between
PDDL+ and UPMurphi, so the translation description would
reduce to a technical documentation of a cross-compilation
process.

Moreover, both the grammars and the examples con-
tained in this Section show a plain translation, whereas the
implemented translator actually performs a variety of opti-
misations in order to create a model that is as much compact
(and efficient) as possible. Some of these optimisations are
automatic, whereas others can be manually enabled.

3.1.2 Timeline discretisation

Each UPMurphi model contains a special rule called
time_passing, which makes the time flow up to the next
clock tick, as shown in Fig. 3. Moreover, the rule calls the
apply_ continuous_change function, which is re-
sponsible of executing process updates, as discussed later in
Sect. 3.1.7.

In this way, each clock tick in our plans is actually
marked by the execution of a time_passing, as depicted
in Fig. 4.

3.1.3 Types and objects

The :types keyword allows one to declare new types (in ad-
dition to the built-in ones), to be later used in the declaration
of typed objects.

In the UPMurphi language, PDDL types become user-
defined enumerative types, whose possible values are the
names of all the declared objects of the corresponding type,
as shown in Fig. 5.

As an example, Fig. 6 shows a fragment of the Satel-
lite domain declaring the four types satellite, direction, in-
strument and mode and then using them to declare several
objects. The UPMurphi equivalent of this fragment is also
shown in Fig. 6: each type becomes an Enum construct hav-
ing the corresponding objects as members.

Fig. 4 Plan timeline discretised
through the time_passing
rule

A universal planning system for hybrid domains 937

PDDL+ Grammar UPMurphi Grammar

〈types-def 〉 ::=
:types 〈typed-list (name)〉

〈typed-list(x)〉 ::=
x∗ | x+ - 〈type〉〈typed-list(x)〉

〈type〉 ::= 〈name〉 | (either 〈type〉+)

〈types-def 〉 ::=
type 〈typed-list (name)〉

〈typed-list(x)〉 ::= x :〈type〉 ;

〈type〉 ::= Enum {
〈upm_typed-obj-list (name)〉 };
| 〈upm_fixed-type-def 〉 ;

〈upm_fixed-type-def 〉 ::=
real_type(〈integer〉, 〈integer〉);

〈upm_typed-obj-list(x)〉 ::=
x∗ | x+ , 〈upm_typed-obj-list(x)〉

Fig. 5 Comparison between PDDL+ and UPMurphi grammars for
type definitions

PDDL+ UPMurphi

(define (domain satellite)
(:requirements :typing)
(:types satellite
direction instrument mode)

...
(define (problem
satellite_prob)
(:domain satellite)
(:objects
image1,spectrograph2,
thermograph0 - mode
star0,groundstation1,
groundstation2,
phenomenon3,phenomenon4,
star5,phenomenon6
- direction
satellite0 - satellite
instrument0,instrument1,
instrument2 - instrument)

...

type
mode : Enum {
image1,
spectrograph2,
thermograph0};

direction : Enum {
star0,
groundstation1,
groundstation2,
phenomenon3,
phenomenon4,
star5,
phenomenon6};

satellite : Enum{
satellite0};
instrument : Enum {
instrument0,
instrument1,
instrument2};

Fig. 6 Example of mapping for PDDL+ types

3.1.4 Predicates and functions

Model checking requires an explicit representation of the
state in terms of state variables. On the other hand, the state
of a PDDL+ domain is given by the current value of each
function and predicate. Therefore, it is natural to map each
PDDL+ function and predicate in an appropriately defined
and typed (state) variable of the UPMurphi model.

In particular, each PDDL predicate (as declared by
the :predicates keyword) is mapped on a global boolean
variable of the UPMurphi model, which can be modified
through appropriate (automatically generated) get/set
helper functions. On the other hand, PDDL+ functions are
mapped to real-typed variables, each with its own (private)
type (x_real_type), which can be also bounded, if the
user provides the translator with suitable bounds for the cor-
responding real number ranges.

Moreover, both predicates and functions can be parame-
trised. In this case, the translation process generates an array
of boolean or real variables, indexed by the parameter type,
as defined in Sect. 3.1.3. Predicates or functions with more
than one parameter are mapped to multi-dimensional arrays.

PDDL+ Grammar UPMurphi Grammar

〈predicate-def 〉 ::= (:predicates
〈atomic-formula-skeleton〉+

〈atomic-formula-skeleton〉 ::=
〈predicate〉 〈typed-list(variable)〉

〈functions-def 〉 ::= (:functions
〈atomic-function-skeleton〉+

〈atomic-function-skeleton〉 ::=
〈function-symbol〉
〈typed-list(variable)〉

〈predicate-def 〉 ::= 〈predicate〉 :
〈upm_typed-arg-list (name)〉∗ ;

〈upm_typed-arg-list(x)〉 ::=
Array [x] of
〈upm_typed-arg-list(x)〉 | boolean |
x_real_type

〈function-def 〉 ::= 〈function〉 :
〈upm_typed-arg-list (type_name)〉∗ ;

Fig. 7 Comparison between PDDL+ and UPMurphi grammars for
predicate and function definitions

Figure 7 shows the grammar comparison between PDDL+
and UPMurphi for predicate and function definitions. It is
worth noting how the PDDL+ parameter declarations, hav-
ing the form variable - type, are mapped to subsequent Ar-
ray[type] of ... expressions in the corresponding
UPMurphi declaration. Thanks to the definition of types as
enumerations discussed in Sect. 3.1.3, this actually creates
an instance of the predicate/function for each possible com-
bination of the given type values. The translation of predi-
cate (and function) references within the domain is naturally
implied by their definition.

As an example, in Fig. 8 we have a on_board predi-
cate with two parameters of type instrument and satellite,
respectively, and a slew_time function with two parameters
both of type direction. The mapping of the three cited types
has been already shown in Fig. 6. The UPMurphi equiva-
lent declares a two-dimensional array of booleans to repre-
sent the on_board predicate, whose dimensions are indexed
by the instrument and satellite enumerations, re-
spectively. Thus, the first array dimension can have one
of the values {instrument0, instrument1, in-
strument2}, whereas the second has satellite0 as
the only admissible value. On the other hand, the (not
parametrised) data_stored function is declared as a real vari-
able, with type data-stored-real-type.

3.1.5 Actions

PDDL+ actions are the only explicit elements of a plan, and
are mapped on UPMurphi rules, which are used by the tool
to perform the forward reachability analysis. In particular,
the action precondition becomes the rule guard and the ac-
tion effect is encoded in the rule code. Parametric actions are
mapped into parametric rules using the ruleset construct.

Figure 9 compares the action grammars in PDDL+ and
UPMurphi. It is worth noting that, since actions can modify
the discrete component of the system state, possibly trigger-
ing an event in the same time instant, we place a call to the
special procedure event_check after the effect code of
all the action-rules, to check and trigger the event firing, as
we will discuss in Sect. 3.1.6.

Actions are instantaneous, thus we allow more than one
action to be performed at the same clock tick, i.e., time does

938 G. Della Penna et al.

PDDL+ UPMurphi

(define
(domain satellite)
(:predicates
(on_board ?i - instrument

?s - satellite)
(canincrease))
(:functions
(slew_time ?a ?b - direction)
(power_avail ?s - satellite)
(data-stored))

var
-- predicates
on_board : Array [instrument] of Array [satellite] of boolean;
canincrease : boolean;
-- functions
slew_time : Array [direction] of Array [direction] of real_type;
power_avail : Array [satellite] of slew_time_real_type;
data_stored : data_stored_real_type;

Fig. 8 Example of mapping for PDDL+ predicates and functions

PDDL+ Grammar UPMurphi Grammar

〈action-def 〉 ::=
(:action 〈name〉 :parameters
(〈typed list (variable)〉)
:precondition 〈GD〉
:effect 〈effect〉)

〈action-def 〉 ::= rule 〈GD〉 ⇒
begin
〈effect〉
event_check();
end;

Fig. 9 Comparison between PDDL+ and UPMurphi grammars for the
action construct

PDDL+ UPMurphi

(:action heat
:parameters (?s -
satellite)
:precondition (and

(> (energy ?s) 0)
(heaterOff ?s))

:effect (and
(heaterOn ?s)
(not (heaterOff ?s))
)

)

ruleset s:satellite do
rule "heat"
(energy[s] > 0 &
heaterOff[s]) ==>

begin
set_heaterOn(s,true);
set_heaterOff(s,false);
event_check();

end;
end;

Fig. 10 Example of mapping for a PDDL+ action

not advance due to the execution of an action-rule. As an
example, Fig. 11 shows actions placed in the discretised plan
timeline.

Figure 10 shows the action heat from the Satellite do-
main and the homonymous UPMurphi rule. Since the action
has a parameter s of type satellite, the rule is enclosed in
a corresponding ruleset. The rule guard (i.e., the action
precondition) is given before the ==> symbol, and the rule

body changes the values of two predicates using the corre-
sponding set support functions.

3.1.6 Events

PDDL+ events are used to model exogenous changes in
the domain. Differently from processes, events are instan-
taneous and may affect only discrete variables. However, an
event may trigger at the same time point the activation of
a process or a cascading sequence of other events [30]. In
the mapping, this behaviour is restricted according to the
no moving target definition given by [28], i.e., we suppose
that no event can affect the parts of the state relevant to the
preconditions of other events. This also implies that the ex-
ecution of events is mutually-exclusive, and their order of
execution is not relevant to the final outcome of the plan.
Moreover, we impose that, at each clock tick, any event can
be fired at most once, according to Howey et al. [37].

Figure 12 compares the event grammars in PDDL+ and
UPMurphi. Basically, each event is mapped to a boolean
function which returns true if the event was triggered.

As an example, Fig. 13 shows the UPMurphi mapping of
the freeze event from the Satellite domain. The event param-
eters, preconditions and effects are trivially mapped in the
corresponding function parameters and code.

The tool also generates an event_check procedure, that is
called by the model whenever events may occur (e.g., after
the execution of an action). The function tries to call all the
possible instances of the available events (only one in the

Fig. 11 Actions in the
discretised plan timeline

A universal planning system for hybrid domains 939

example of Fig. 13), and continues until no event can be
further triggered, avoiding multiple firing of the same event.
Therefore, in the plan timeline, events are points (i.e., have
zero duration) that appear as depicted in Fig. 14.

PDDL+ Grammar UPMurphi Grammar

〈event-def 〉 ::= (:event 〈name〉
:parameters (〈typed-list〉)
:precondition 〈GD〉
:effect 〈effect〉)

〈event-def 〉 ::= function event_ 〈name〉
(〈typed-list〉)) : boolean ;
begin
if(〈GD〉) then 〈effect〉
return true;
else return false;
endif ;
end ;

Fig. 12 Comparison between PDDL+ and UPMurphi grammars for
the event construct

3.1.7 Processes

A PDDL+ :process is used to model continuous change and
can be triggered by an event, an action or a durative action,
based on its nature. In UPMurphi, processes become pro-
cedures that encode their behaviour. Process parameters are
trivially mapped to procedure parameters.

Figure 15 shows a comparison between the procedure
grammars in PDDL+ and UPMurphi. It is worth noting that
in PDDL+ process effects contain continuous update expres-
sions that refer to the special variable #t (time), and this is
rendered in UPMurphi through the global constant T which
defines the sampling time. Note that, in order to model such
nontrivial continuous update expressions, the translator del-
egates them to external C language functions (see Sect. 4.3),

PDDL+ UPMurphi

(:event freeze
:parameters (?s - satellite

?i - instrument)
:precondition (and
(functional ?i)
(onBoard ?s ?i)
(<(temperature ?s)(safeValue ?i))
)

:effect (not (functional ?i))
)

function event_freeze(s:satellite; i:instrument) : boolean;
begin
if (functional[i] & onBoard[s][i] & (temperature[s] < safeValue[i])) then
set_functional(i,false);
return true;
else return false;
endif;

procedure event_check();
var
freeze_event_triggered : Array[satellite] of Array[instrument] of boolean;
event_triggered : boolean;

begin
event_triggered := true;
for s:satellite do
for i:instrument do
freeze_event_triggered[s,i]:=false;

end;
end;
while(event_triggered) do
event_triggered := false;
for s:satellite do
for i:instrument do
if (!freeze_event_triggered[s,i]) then
begin
freeze_event_triggered[s,i] := event_freeze(s,i);
event_triggered := event_triggered | freeze_event_triggered[s,i];
endif;
end;

end;
done;

end;

Fig. 13 Example of mapping for a PDDL+ event

Fig. 14 Events in the
discretised plan timeline

940 G. Della Penna et al.

which allow to exploit the full power of the language and its
math libraries to write the update code.

The process-procedures must be invoked at each clock
tick, in order to approximate the continuous change in the
discretised setting. Process updates may also trigger events,

PDDL+ Grammar UPMurphi Grammar

〈process-def 〉 ::= (:process 〈name〉
:parameters (〈typed-list〉)
:precondition 〈GD〉
:effect 〈effect〉)

〈process-def 〉 ::=
procedure process_ 〈name〉
(〈typed-list〉) ;
begin
if(〈GD〉) then 〈effect〉
endif ;
end ;

Fig. 15 Comparison between PDDL+ and UPMurphi grammars for
the process construct

which in turn may activate other processes. To model this
behaviour, the tool generates a support procedure, called
apply_continuous_change which is executed atom-
ically (w.r.t. a clock tick) within the time_passing rule
(as described at the beginning of Sect. 3.1). Basically, this
procedure works as follows: first, it calls all the process-
procedures whose execution is currently enabled, then it
checks if new events have been triggered and fires them. If
some event firing occurred, the procedure checks the precon-
ditions of all the processes to see if some new process has
been enabled: if so, it repeats the whole sequence, otherwise
it ends. Figure 17 shows how this technique allows to cor-
rectly represent the process behaviour across the plan time-
line. In particular, in the figure, process P1, after three clock
ticks, triggers event E3, which in turn activates process P2.

PDDL+ UPMurphi

(:process warming
:parameters (?s - satellite)
:precondition (and (heaterOn ?s)

(> (energy ?s) 0))
:effect (and

(increase (temperature ?s)
(* #t (heatRate ?s)))

(decrease (energy ?s)
(* #t (heaterConsumption ?s)))
)

)
(:process cooling
:parameters (?s - satellite)
:precondition (inShade ?s)
:effect (decrease (temperature ?s)

(* #t (F(temperature ?s))))
)

procedure process_warming(s:satellite);
begin
if (heaterOn[s] & energy[s] > 0) then
temperature[s] := temperature_update_warming(temperature[s],heaterRate[s
]);
energy[s] := energy_update_warming(energy[s],heaterConsumption[s]);
endif;

end;
procedure process_cooling(s:satellite);
begin
if (inShade[s]) then
temperature[s] := temperature_update_cooling(temperature[s]);
endif;

end;
-- Extra procedure for process invocation
procedure apply_continuous_changes();
var
process_warming_enabled : Array[satellite] of boolean;
process_cooling_enabled : Array[satellite] of boolean;
process_updated : boolean;

begin
process_updated := false;
for s:satellite do
begin
process_warming_enabled[s]=false;
process_cooling_enabled[s]=false;
end;
while(true)
for s:satellite do

if (heaterOn[s] & energy[s] > 0 & process_warming_enabled[s]=false) then
begin
process_warming_enabled[s] := true;
process_warming(s);
process_updated := true;
endif;
if (inShade[s] & process_cooling_enabled[s]=false) then
begin
process_cooling_enabled[s] := true;
process_cooling(s);
process_updated := true;
endif;

end;
if (!process_updated) then
begin
-- event checking code as in event_check
-- breaks the loop if no event fired

end;
end;

end;

Fig. 16 Example of mapping for two PDDL+ processes

A universal planning system for hybrid domains 941

Fig. 17 Processes in the
discretised plan timeline

Figure 16 shows the warming and cooling processes from
the Satellite domain mapped in the UPMurphi model. The
process preconditions become if guards on the effect code,
which in turn delegates the continuous updates of tempera-
ture and energy to external functions.

It is worth noting that this translation setting makes also
the modelling of concurrent processes easy. Indeed, in the
given example both the warming and cooling processes
could run in parallel and concurrently update the tem-
perature variable. In particular, concurrent processes are
treated as described by Fox and Long [29], that is all the
continuous effects affecting the rate of change of a variable
are combined by summing the contributions of the processes
that are active in a clock tick.

3.1.8 Durative actions

The durative actions of PDDL+ offer an alternative to the
continuous durative action model of PDDL 2.1 [28]. Basi-
cally, durative actions allow to represent periods of continu-
ous change through a three-part structure, namely the start-
process-stop model [29].

In this model, the continuous change is encoded in a pro-
cess enabled by a special action, whose preconditions are
the durative action’s at-start conditions. The execution of
such process can be later stopped by the effect of another
special action, which becomes active after the durative ac-
tion duration is reached, or by a failure event, which is trig-
gered by the violation of the durative action’s over-all con-
dition.

The start-process-stop model can be easily implemented
in UPMurphi using actions, events and processes, mapped
as described in the previous sections. For example, Fig. 20
shows how a durative action is executed by means of a pro-
cess P3, that could possibly run in parallel with other pro-
cesses, triggered by an action A3 and stopped by another
action A4.

Figure 18 shows the durative action grammars in PDDL+
and UPMurphi. Note that, to better compare the two rep-
resentations of the durative action, in the left column of

Fig. 18 we also report a possible grammar for the PDDL+
durative action described according to the start-process-
stop model. In particular, the 〈durative-action-def 〉 is split
into several sub-declarations, according to the start-process-
stop model. We also need to split the conditions 〈da-GD〉
and effects 〈da-effect〉 to extract the start, end and over-
all conditions and effects, respectively. Moreover, according
to the start-process-stop model, we introduce the variables
〈name〉_clock, 〈name〉_clock_started and clock_count
which are used, respectively, to signal the activation of the
durative action 〈name〉 (enabling the corresponding pro-
cess), count the number of clock ticks passed from its ac-
tivation (to calculate the time-dependant updates in the pro-
cess), and count the total number of active durative ac-
tions.

In particular, at start conditions are mapped by the
〈upm_durative-action-def-start〉 nonterminal as a (paramet-
ric) action (see Sect. 3.1.5) that sets the <name>_clock_
started variable to true, to enable the execution of
a process which encodes the durative action effect and is
mapped consequently (see Sect. 3.1.7) by the 〈upm_durative-
action-def-process〉 nonterminal.

On the other hand, the duration is mapped in an-
other action, which stops the process execution, through
the 〈upm_durative-action-def-end〉 nonterminal. Finally,
the failure of the over all conditions is checked by an
event that is mapped (see Sect. 3.1.6) to the function
event_<name>_failure, which terminates the dura-
tive action by resetting the <name>_clock_started
variable.

Figure 19 shows an example of an UPMurphi mapping
for a durative action extracted from the Planetary Lander
case study described in Sect. 5.3. In the example, the du-
rative action observe is mapped as follows: at-start condi-
tions become the guard of a parametric (i.e., enclosed in
one or more ruleset constructs) rule observe_start,
which sets observe_clock_started to true to mark
the beginning of the durative action. This enables the exe-
cution of the process_observe procedure, which maps
the effect part of the durative action. After the given duration

942 G. Della Penna et al.

PDDL+ Grammar UPMurphi Grammar

〈durative-action-def 〉 ::=
(:durative-action 〈name〉
:parameters (〈typed-list〉)
:duration 〈duration-constraints〉
:condition 〈da-GD〉
:effect 〈da-effect〉)

〈action-defat start〉 ::=
(:durative-action 〈name〉-start
:parameters (〈typed-list〉)
:precondition (and 〈da-GDat start〉
(not(〈name〉-clock-started 〈typed-list〉)))
:effect (and 〈name〉-clock-started 〈typed-list〉
(assign (〈name〉-clock) 〈typed-list〉 0)
(assign (〈name〉-duration) 〈typed-list〉 〈number〉)
(increase (〈name〉-clock-count) 1)
〈da-effectat start〉))

〈action-defat end〉 ::=
(:action 〈name〉-at end
:parameters (〈typed-list〉)
:precondition (and 〈da-GDat end〉
(〈name〉-clock-started 〈typed-list〉)
(= (〈name〉-clock 〈typed-list〉) (〈name〉-duration〈typed-list〉))
:effect (and not(〈name〉-clock-started 〈typed-list〉)
(decrease (〈name〉-clock-count) 1)
〈da-effectat end〉))

〈event-defoverall〉 ::=
(:event 〈name〉-failure
:parameters (〈typed-list〉)
:precondition (and
(〈name〉-clock-started 〈typed-list〉)
not(= (〈name〉-clock 〈typed-list〉) (〈name〉-duration〈typed-list〉))
not(〈da-GDoverall〉))
:effect (and (assign (〈name〉-clock) 〈typed-list〉 + (〈name〉-duration〈typed-
list〉 1)
)

〈process-defoverall〉 ::=
(:process 〈name〉
:parameters (〈typed-list〉)
:precondition (〈name〉-clock-started 〈typed-list〉)
:effect
(increase (〈name〉-clock) 〈typed-list〉 (* #t 1))
)

〈durative-action-def 〉
〈upm_durative-action-def-start〉
〈upm_durative-action-def-end〉
〈upm_durative-action-def-overall〉
〈upm_durative-action-def-process〉

〈upm_durative-action-def-start〉 ::=
〈upm_structure-param-def 〉∗
rule
〈upm_da-GD-start〉 ⇒
begin
〈name〉_clock_started 〈typed-statement(args)〉∗ := true ;
〈name〉_clock 〈typed-statement(args)〉∗ := 0 ;
clock_count := clock_count +1 ;
〈upm_da-effect-start(x)〉
end;

〈upm_durative-action-def-end〉 ::=
〈upm_structure-param-def 〉∗
rule
〈upm_da-GD-end〉 ⇒
begin
〈name〉_clock_started 〈typed-statement(args)〉∗ := false ;
〈name〉_clock 〈typed-statement(args)〉∗ := 0 ;
clock_count := clock_count -1 ;
〈upm_da-effect-end〉
end;

〈upm_durative-action-def-overall〉 ::=
function event_〈name〉_failure
〈upm_procedure-param-def 〉
: boolean ;
begin
if(not 〈upm_da-GD-overall〉) then
〈name〉_clock_started 〈typed-statement(args)〉∗ := false ;
〈name〉_clock 〈typed-statement(args)〉∗ := 0 ;
clock_count := clock_count -1 ;
return true;
else
return false;
endif ;
end ;

〈upm_durative-action-def-process〉 ::=
procedure process_〈name〉 (〈typed-list〉)
begin
if(〈name〉_clock_started 〈typed-statement(args)〉∗) then
〈upm_da-effect-process〉
endif ;
end ;

Fig. 18 Comparison between PDDL+ and UPMurphi grammars for the durative-action construct

(observationTime), the process execution is stopped
by the observe_end rule. Finally, if some over all condi-
tion fails, the checks in event_observe_failure im-
mediately stop the process.

3.1.9 Problem

In PDDL+ a problem defines an instance of the domain,
represented by an initial condition and a goal definition.
These two elements simply become the startstate and
the goal in the UPMurphi model, respectively. The corre-
sponding grammars are shown in Fig. 21, and an example of
a mapping is shown in Fig. 22.

4 The UPMurphi universal planner

The UPMurphi tool exploits model checking algorithms
to perform universal planning. Model checking algorithms
are typically divided in two categories: symbolic algorithms
(e.g., [11]) and explicit algorithms (e.g., [24]). Symbolic al-
gorithms have been successfully applied to classical plan-
ning [14, 23], however they do not work well on hybrid sys-
tems with nonlinear dynamics, due to the complexity of the
state transition function. Therefore, explicit model checking
performs better with the kind of systems we intend to ap-
proach. Also these algorithms are subject to the state explo-
sion problem: however, the ability to build the system transi-
tion graph on demand and generate only the reachable states

A universal planning system for hybrid domains 943

PDDL+ UPMurphi

(:durative-action observe
:parameters (?r - recorder

?i - instrument
?o - observation)

:duration (= ?duration (
observationTime ?i ?o))
:condition (and

(at start (targetted ?i ?o))
(over all (targetted ?i ?o))
(over all (<= (data ?r)

(capacity ?r))))
:effect (increase (data ?r)

(* #t (dataRate ?i)))
)

-- START --
ruleset r:recorder do
ruleset i:instrument do
ruleset o:observation do
rule "observe_start"
(!observe_clock_started[r][i][o]) & (targetted[i][o]) ==>

begin
observe_clock_started[r][i][o] := true;
observe_clock[r][i][o] := 0.0;
clock_count := clock_count +1;

end;
end;

end;
end;
-- END --
ruleset r:recorder do
ruleset i:instrument do
ruleset o:observation do
rule "observe_end"
(observe_clock_started[r][i][o]) &
(observe_clock[r][i][o] = observationTime[i][o]) ==>

begin
observe_clock_started[r][i][o] := false;
observe_clock[r][i][o] := 0.0;
clock_count := clock_count -1;

end;
end;

end;
end;
-- PROCESS --
procedure process_observe (r:recorder;i:instrument;o:observation);
begin
if (observe_clock_started[r][i][o]) then
data[r] := update_data(dataRate);
end;
-- FAILURE --
function event_observe_failure(r:recorder;i:instrument;o:observation) :
Boolean;
begin
if (observe_clock_started[r][i][o] &
!(targetted[i][o] & data[r] <= capacity[r])) then

observe_clock_started[r][i][o] := false;
observe_clock[r][i][o] := 0.0;
clock_count := clock_count -1;
return true;

else
return false;

endif;
end;

Fig. 19 Example of mapping for a PDDL+ durative action

Fig. 20 Durative actions in the
discretised plan timeline

of the system (through the reachability analysis), together
with many space saving techniques (see, e.g., [18]), help to
mitigate it.

Generally speaking, given a set E of error states, a model
checker looks, via an exhaustive search, for a sequence of
actions leading to an error state e ∈ E. If we look at error

944 G. Della Penna et al.

PDDL+ Grammar UPMurphi Grammar

〈init〉 ::= (:init 〈init-el*〉)

〈goal〉 ::= (:goal 〈GD〉)

〈init〉 ::= startstate 〈upm_name〉
begin 〈init-el*〉 end ;

〈goal〉 ::= goal 〈upm_name〉 〈GD〉

Fig. 21 Comparison between PDDL+ and UPMurphi grammars for
the init and goal constructs

PDDL+ UPMurphi

(define (problem sat1)
(:domain satellite)
(...)
(:init
(canincrease)
(not-decreasing)
(not-increasing)
(not-flat)
(=(powered) 0)
(=(costof image1) 1)
(=(costof spectrograph2
) 2.4)
(=(costof thermograph1)
3)

(...)
)
(:goal (and
(have_image Phenomenon1
thermograph1)

(have_image Star5
spectrograph2)
(have_image
GroundStation1 image1)
(have_image
GroundStation2 image1)

))
(...)
)

startstate "start"
begin
set_canincrease(true);
set_not_decreasing(true);
set_not_increasing(true);
set_not_flat(true);
set_powered(0);
set_costof(image1,1);
set_costof(spectrograph2
,2.4);
set_costof(thermograph1
,3);
(...)

end;
goal "enjoy"
((have_image[Phenomenon1
][thermograph0]) &
(have_image[star5][
spectrograph2]) &
(have_image[
GroundStation1][image1]
&
(have_image[
GroundStation2][image1])
);

Fig. 22 Example of mapping of PDDL+ init and goal constructs

states as goal states, and collect all the error sequences in-
stead of the first one, we can use a model checker as a uni-
versal planner. This very simple fact allows one to use the
model checking technology to automatically synthesise uni-
versal plans for complex systems.

4.1 Universal planning on finite state systems

In the following we formally define the universal planning
problem on finite state systems, and we show an algorithm
that solves this problem by means of a model checking de-
rived algorithm.

Definition 1 (Finite state system) A Finite State System
(FSS) S is a 4-tuple (S,I ,A,F), where: S is a finite set of
states, I ⊆ S is a finite set of initial states, A is a finite set
of actions and F : S × A → S is the transition function, i.e.
F(s, a) = s′ iff the system from state s can reach state s′ via
action a.

In order to define the universal planning problem for such
a system, we assume that a set of goal states G ⊆ S has been

specified. Moreover, to have a finite state system, we fix a fi-
nite temporal horizon T and we require each plan to reach
the goal in at most T actions. Note that, in most practical
applications, we always have a maximum time allowed to
complete the execution of a plan, thus this restriction, al-
though theoretically quite relevant, has a limited practical
impact.

Now we are in position to state the universal planning
problem for finite state systems.

Definition 2 (Universal planning problem on FSS) Let S
= (S, I,A,F) be an FSS. Then, a universal planning prob-
lem (UPP in the following) is a quadruple P = (S,G,C,T)

where G ⊆ S is the set of the goal states, C : S × A → R
+

is the cost function and T is the finite temporal horizon.

Intuitively, a solution to an UPP is a set of policies, that
is a set of minimal cost paths in the system transition graph,
starting from any reachable system state and ending in a goal
state. More formally, we have the following.

Definition 3 (Trajectory) A trajectory in the FSS S =
(S, I,A,F) is a sequence π = s0a0s1a1s2a2 . . . an−1sn
where, ∀i ∈ [0, n − 1], si ∈ S is a state, ai ∈ A is an ac-
tion and F(si, ai, si+1) = 1. If π is a trajectory, we write
πs(k) (resp. πa(k)) to denote the state sk (resp. the action
ak). Finally, we denote with |π | the length of π , given by
the number of actions.

By abuse of language we denote with C(π) the cost of a
trajectory π = s0a0s1a1 . . . sk , i.e., C(π) = ∑k−1

i=0 C(si, ai).

Definition 4 (Reachable states) Let sI ∈ I be an initial state
of the FSS S = (S, I,A,F). Then, we say that a state s′ is
reachable from sI iff there exists a trajectory π in S such
that πs(0) = sI and πs(k) = s′ for some k >= 0. We de-
note with Reach(s) the set of states reachable from s. Anal-
ogously, we denote with Reach−1(s) the set of states from
which it is possible to reach the state s, that is Reach−1(s) =
{s′ ∈ S|s ∈ Reach(s′)}.

Definition 5 (Solution for UPPs) Let S = (S, I,A,F) be an
FSS and let P = (S,G,C,T) be an UPP. Moreover, let Ω =⋃

sI ∈I Reach(sI)∩⋃
sG∈G Reach−1(sG). Then a solution for

P is a map K from Ω to A s.t. ∀s ∈ Ω there exist k ≤ T and
a trajectory π∗ in S s.t.: π∗

s (0) = s, ∀t < k : π∗
s (t + 1) =

F(π∗
s (t), K(π∗

s (t))) and π∗
s (k) ∈ G. We denote with Kπ (s)

the trajectory π∗ generated by K and s.t. π∗
s (0) = s.

An optimal solution is a solution K s.t. for all other so-
lutions K′ the following holds: for all s ∈ S s.t. Kπ (s) and
K′

π (s) are defined, then C(Kπ (s)) ≤ C(K′
π (s)).

In the next section, we present an algorithm which takes
as input an UPP and outputs an optimal solution for it.

A universal planning system for hybrid domains 945

Algorithm 1 BUILD_GRAPH(UPP P = (S,G,C,T))
1: let S ← (S, I , A, F)
2: for all s ∈ I do
3: Enqueue(QS , s)
4: Insert(HT, s)
5: if (s ∈ G) then
6: Enqueue(QG, s)
7: HT[s].cost ← 0
8: end if
9: while ((QS �= ∅) ∧ (current_BFS_level ≤ T)) do

10: s ← Dequeue(QS)
11: for all s′ ∈ {F(s, a) | (a) ∈ A} do
12: if (s′ /∈ HT) then
13: Insert(HT, s′)
14: if (s′ ∈ G) then
15: Enqueue(QG, s′)
16: HT[s′].cost ← 0
17: else
18: Enqueue(QS , s′)
19: end if
20: end if
21: PT[s′] ← PT[s′] ∪ {s};
22: end for
23: end while
24: end for

4.2 Universal planning algorithm

Given a UPP, we solve it by means of an explicit algorithm,
organised in two phases.

In the first phase, we exploit reachability analysis in or-
der to build a representation of the system dynamics that can
be later easily analysed during the universal plan generation.
The corresponding BUILD_GRAPH procedure, whose pseu-
docode is given in Algorithm 1, can be seen as an extension
of the common breadth-first visit performed by classical ex-
plicit model checking algorithms.

Note that, in the general theory of universal planning, the
concept of start state is not present [55]. However, in the
practice, the concept of reachable state implies such a start
state. In other words, we need to start-up the universal plan-
ning with a set of start states, that we call a start state cloud.
These states should be distributed in the system state space
so that all the interesting states are reachable from at least
one of them. However, a start state cloud can be also suitably
prepared to concentrate the planning process on the most in-
teresting state space regions, or to exclude hardly reachable
states from the universal plan. Indeed, a complete universal
plan could generally contain many rarely-used plans, whose
computation requires however time and space. Therefore, an
appropriate formulation of the start state cloud may help to
minimise the universal plan generation effort and maximise
its usefulness.

The procedure uses the hash table HT to store already vis-
ited states, while the queues Q_S and Q_G store the states
to be expanded and the reached goal states (to be used in
the next phase), respectively. This information is also used

Algorithm 2 UPLAN_GENERATION
1: UPLAN ← ∅
2: QS ← QG {this erases the previous content of Q}
3: while QS �= ∅ do
4: s ←Dequeue(QS)
5: prev_cost ← HT[s].cost {0 if s ∈ G}
6: for all (s ∈ PT[s]) {s is a predecessor of s} do
7: local_cost ← min

(a)∈A | F(s,a)=(s)
C(s, a)

8: U ← {a ∈ A | F(s, a) = s ∧ C(s, a) = local_cost}
9: local_action ← pick an action in U

10: if (UPLAN[s]= ∅ ∨HT[s].cost > prev_cost+local_cost)
then

11: UPLAN[s] ← local_action
12: HT[s].cost ← prev_cost + local_cost
13: Enqueue_in_Order(QS , s)
14: end if
15: end for
16: end while
17: return UPLAN

to detect and exploit trajectories intersections, so avoiding
work duplication. Note that the computation of the successor
states involves discretised values, i.e., continuous compo-
nents of both s and s′ in line 11 of Algorithm 1 are rounded
according to the chosen discretisation. Finally, the predeces-
sor table PT contains the immediate predecessors of each
visited state. This structure is at the heart of the second phase
of the algorithm, represented by the UPLAN_GENERATION
procedure, whose pseudocode is given in Algorithm 2.

The UPLAN_GENERATION procedure performs another
breadth first visit, this time on the inverted transition graph,
starting from the reached goal states. To this end, the proce-
dure uses the information in Q_G, HT and PT prepared by
BUILD_GRAPH. The output is the table UPLAN, contain-
ing (state,action) pairs that represent the map K described
in Definition 5.

In particular, the check on line 10 of Algorithm 2, which
updates the action associated to a state only if either no ac-
tion has been defined yet or the current action leads to a bet-
ter result, together with the ordered insertion in the queue
Q_S, guarantee that the algorithm returns an optimal solu-
tion according to Definition 5.

Note that, since our approach rebuilds the system transi-
tion graph by a forward analysis of its dynamics, the system
fed to the planning algorithm can be of any complexity, and
in particular its transition function can be also very difficult
to invert.

4.3 The UPMurphi implementation

The UPMurphi tool is built on top of the CMurphi [12]
model checker. In particular, UPMurphi consists of two
main modules: the PDDL+ to UPMurphi compiler, illus-
trated in Sect. 3.1, which automatically discretises PDDL+
domains and problems and translates them into models writ-
ten in the UPMurphi description language, and the UP-

946 G. Della Penna et al.

Murphi engine, which is the core of the tool and imple-
ments the BUILD_GRAPH and UPLAN_GENERATION al-
gorithms on the top of the CMurphi algorithms and data
structures. Thanks to this, the universal planning algorithm
presented in Sect. 4.2 can exploit all the CMurphi built-in
state space optimisation techniques (such as bit compres-
sion [48], hash compaction [59], symmetry reduction [49],
secondary memory storage and state space caching [18]) to
handle large systems with huge state spaces.

The UPMurphi input consists of a description of the do-
main, modelled as a finite state system, and a definition of
the goal to be achieved, both described in the UPMurphi de-
scription language, a high-level programming language for
finite state asynchronous concurrent systems, which offers
many features found in common high-level programming
languages such as Pascal or C, like user-defined data types,
functions and procedures.

In particular, the system state is defined in the UPMurphi
through a set of state variables, which are suitably declared
at the beginning of the model description. To this aim, the
user can exploit the built-in data types provided by the tool
or declare new user-defined types using data definition prim-
itives such as arrays, structures and ranges.

The behavioural part of a UPMurphi model is a collec-
tion of transition rules. Each transition rule is a guarded
command which consists of a condition (a boolean expres-
sion on global variables) and an action (a statement that can
modify the variable values). It is also possible to write sup-
port functions and procedures and call them in the rule code
to further modularise the specification.

The system initial states are declared through the start-
state construct, which requires the user to suitably ini-
tialise all the model state variables. On the other hand, the
goal construct is used to define the properties that a goal
state must satisfy.

It is worth noting that UPMurphi provides two im-
portant features to ease the modelling activity: the type
real(m,n) of real numbers (with m digits for the man-
tissa and n digits for the exponent), and the use of externally
defined C/C++ functions in the modelling language. In this
way, for example, one can use the C/C++ language con-
structs and library functions to model complex dynamics.

5 Case studies

In this section we show a number of PDDL+ case studies on
which we applied the discretise and validate approach using
UPMurphi to synthesise the universal plan.

We first present some experimental results for two bench-
mark domains, i.e., the continuous version of the well-
known Generator domain as well as the Cooling System do-
main. Then, we present two significant case studies inspired

Table 1 Universal Plan statistics for the generator domain with time
discretisation from 5.0 down to 1.0 seconds

Time discretisation (sec) 5.0 2.5 1.0

State space size 1015 1016 1018

Reachable states 26,276 399,189 29,119,047

Generated plans 0 10,015 126,553

Total synthesis time 3.7 20.71 1,430.11

Valid NO NO YES

by the real world specifications of complex systems, namely
the Planetary Lander and the Batch Chemical Plant. Com-
plete details on these case studies, including the UPMurphi
code generated from the PDDL+ domains, can be found on
the UPMurphi web site [40], together with more complete
experiment results.

5.1 Continuous generator domain

As a first example, we consider the continuous model of
the Generator domain [35]. A generator is powered by a
fuel tank with a limited capacity of 60 fuel units and con-
sumes one fuel unit per second. During the generator ac-
tivity (modelled by the consume durative action), two fuel
tanks of 25 fuel units each can be used to refuel it (through
the refuel durative action). The refuelling process has a vari-
able duration (i.e., its duration must be decided by the plan-
ner) and is described by the Torricelli’s law, which makes
the system dynamics nonlinear. Moreover, the domain also
involves concurrency, since the consume and refuel actions
take place continuously and concurrently, and are modelled
through continuous processes. The goal is to make the gen-
erator run for 100 seconds.

We defined a PDDL+ model of the generator and given
it as input to UPMurphi. Table 1 summarises the results of
the universal planning process: according to the discretise
and validate approach, we first considered a time discreti-
sation of 5.0 seconds, which resulted in an invalid solution,
and then we iteratively refined it until we found a valid solu-
tion using a discretisation of 1.0 second. The final universal
plan contains 126,553 plans, which is a small fraction of the
near 30 million states that the system can reach, showing
that there are many situations in which the goal cannot be
achieved (i.e., a plan cannot be devised by the planner).

An example of VAL validation report for one of the gen-
erated plans is shown in Fig. 23. Here, we note that during
the first 59 seconds the fuel level decreases linearly since no
refuel action is performed. Then the generator is refuelled
using tank 1 in the time interval [59,84] and tank 2 in the
time interval [75,87] (thus in the time interval [75,84] the
generator is refuelled using both tanks). Finally, the genera-
tor uses the remaining fuel to complete the task.

A universal planning system for hybrid domains 947

Fig. 23 Validation report for a single plan execution of the generator
domain

5.2 Cooling system domain

In this case study we considered a classical open thermo-
dynamic system that generates energy, part of which is lost
in friction and hydraulic losses and transformed into heat.
The system shown in Fig. 24 is composed by an external
part, where a pump pours water continuously at a given
rate into two hoses, and an internal part, composed by three
water tanks which leak water at constant rate. The water
passes through the pump and is poured by the hoses into
two of the tanks at a time. We assume that hoses can be in-
stantaneously repositioned on any tank. Moreover, we also
consider that the water temperature raises when it passes
through the pump, since it is heated by the pump engine.

Table 2 Cooling system constants

q volume flow through the pump (m3/s) 0.0006

Ps brake power (kW) 0.095

μ pump efficiency 0.05

cp specific heat capacity of the fluid (kJ/kg °C) 4.2

ρ fluid density (kg/m3) 1,000

The goal is to keep the amount of water in each of the
three tanks above r1, r2 and r3 liters, respectively, for 60
seconds. Moreover, we want the temperature T of the water
passing through the pump to stay below 65 degrees.

Let vi , with i ∈ W = {1,2,3}, denote the volume of water
in Tank i and vout

i > 0 denote the flow of water out of Tank
i. Moreover, let vin

j , with j ∈ H = {1,2}, denote the flow
of water introduced into the system through hose j , where
vtotal = vin

1 +vin
2 denotes the water flow that passes through

the pump.
The system is equipped with a controller that switches

an hose to Tank i whenever vi ≤ ri . The boolean variable
fillingi,j is true when tank i is filled through hose j . There-
fore, the variation of the volume of the water in tank i is
given by the following equation:

dvi

dt
=

{
vin
j − vout

i if ∃j ∈ H |fillingi,j = 1
vout
i otherwise

Finally, the water temperature rising can be computed as
follows:

dT

dt
= Ps(1 − μ)/cpqρ

where the constant values are given in Table 2.
In the initial state of the system, the tanks are correctly

filled and the water temperature respects the given con-
straint. However, the pump takes time to operate at full ca-
pacity, thus during the plan execution it increases its power
by Δpower , generating more heat. In this case, the plan-
ner may decide to increase the pump flow vtotal by Δrate

in order to mitigate the temperature rising (since the water
flow cools down the pump), thus increasing also each vin

i by
vin
i

vtotal
· Δrate, which may violate the constraint on the tank

water level. On the other hand, the planner may leave vtotal

unchanged, risking to violate the maximum water tempera-
ture constraint.

Figure 25 shows the PDDL+ model of the cooling system
domain, composed by a durative action fill that, given a tank
?t and hose ?h, starts the filling action of ?t through ?h,
which is performed by the process fill_tank. Similarly, the
tank leaking is modelled through process leak_tank. Note
that the two processes may affect concurrently the same
tank.

The event over-range is used to invalidate plans in which
exists at least one tank where vi < ri or vi > ci , while event

948 G. Della Penna et al.

Fig. 24 A graphical
representation of the cooling
system domain

Table 3 Cooling system universal plan generation statistics with con-
tinuous variable rounding and time discretisation from 5.0 down to 1.0
seconds

Time discretisation (sec)

5.0 2.5 1.0

State space size 1020 2 · 1020 1021

Reachable states 32 47,968 33,059,357

Generated plans 0 15,329 17,188,665

Total synthesis time 0.7 4.9 1,430.11

Valid NO NO YES

overflow invalidates all plans for which a hose does not fill
any tank. The event pump-danger is triggered when the tem-
perature of the water passing through the pump is greater
than the danger_level.

The process system_activity is used to measure the time
elapsed since the beginning of the first fill action. Indeed, af-
ter a given amount of execution, the event power-increasing
is triggered, increasing the pump’s power consumption ps

by Δpower . The effect of such event is to allow the execu-
tion of the action increase_rate, which in turn increases the
pump flow vtotal by Δrate, modifying the water flow in the
hoses and changing the dynamics of the system from linear
to nonlinear.

We used UPMurphi to generate the universal plan that
controls the system activity for exactly one minute, starting
from the initial condition shown in Fig. 26. The results in
Table 3 show that, with a discretisation of 5.0, no plan was
produced, whereas with 2.5 the generated plans were not

valid. The valid universal plan was finally devised with a
discretisation of 1.0.

In Fig. 27 we show an example of validation report for a
complete plan starting from the start state given in Fig. 26.
In particular, Figs. 27(a), 27(b), 27(c) describe the amount
of water vi in each tank i, Fig. 27(d) shows the evolution
of vin

j for each hose j , and Fig. 27(e) the water temperature
rise.

5.3 The planetary lander

The planetary lander domain and problem are inspired by
the specifications of the “Beagle 2” Mars probe [5], designed
to operate on the Mars surface with tight resource con-
straints. In particular, we use the PDDL+ domain presented
by [29], based on a simplified model of a solar-powered lan-
der, the Planetary Lander. Table 4 shows an overview of the
main domain elements with their preconditions.

Basically, the lander must perform two observation ac-
tions, called Observe1 and Observe2. However, before mak-
ing each observation, it must perform the corresponding
preparation task, called prepareObs1 and prepareObs2, re-
spectively. Alternatively, the probe may choose to perform
a cumulative preparation task for both observations by exe-
cuting the single long action fullPrepare. The shorter actions
have higher power requirements than the single preparation
action.

The power needed to perform these operations comes
from the probe solar panels. The energy generated by the
panels (through the generating process) is influenced by the
position of the sun, i.e., it is zero at night, rises until midday

A universal planning system for hybrid domains 949

PDDL+ durative action PDDL+ processes and events

(define (domain
cooling_system)
(:types tank hose pump)
(:predicates (fail)

(system_start)
(filling ?t - tank ?h -
hose)
(busy ?h - hose)
(warning))

(:functions (v ?t - tank)
(v_out ?t - tank)
(c ?t - tank)
(v_in ?h - hose)
(r ?t - tank)
(system_counter)
(temp ?p - pump)
(p_s) (mu) (c_p) (q)
(rho)
(delta_rate)
(delta_power)
(plan_length)
(danger_level))

(:durative-action fill
:parameters (?t - tank ?h
- hose)

:duration (>= ?duration
0)
:condition (at start (
not(busy ?h)))
:effect (and
(at start (busy ?h))
(at start (syste_start))
(at start (filling ?t ?h
))
(at end (not(filling ?t
?h)))
(at end (not(busy ?h)))

)
)
(:action increase_rate
:parameters (?h1 ?h2 -
hose)
:precondition (warning)
:effect (and
(increase (v_in ?h1)
(* 1000 (* (delta_rate)
(/(v_in ?h1)(q)))))
(increase (v_in ?h2)
(* 1000 (* (delta_rate)
(/(v_in ?h2)(q)))))
(increase (q)

(delta_rate)))
)

(:event over-range
:parameters (?t - tank)
:precondition (or
(< (v ?t) (r ?t))
(> (v ?t) (c ?t)))
:effect (fail)

)
(:event overflow
:parameters (?h1 ?h2 -
hose)
:precondition (and
(system_start)
(or (not (busy ?h1))
(not (busy ?h2))))
:effect (fail)

)
(:event pump-danger
:parameters (?p - pump)
:precondition
(> (temp ?p)
(danger_level))
:effect (fail)

)
(:event power-increasing
:parameters ()
:precondition (and
(>= (system_counter)
(/ (plan_length) 2))
(not(warning)))
:effect (and (warning)
(increase (p_s) (
delta_power)))

)
(:process fill_tank
:parameters (?t - tank
?h - hose)
:precondition (and
(filling ?t ?h)
(system_start))
:effect (increase
(v ?t) (* #t (v_in ?h)
))

)
(:process leak_tank
:parameters (?t - tank)
:precondition (and (
system_start))
:effect (decrease (v ?t
)
(* #t (v_out ?t)))

)
(:process
system_activity
:parameters ()
:precondition (
system_start)
:effect (increase (
system_counter)
(* #t 1))

)

Fig. 25 The cooling system domain

and then returns to zero at dusk. Power coming from the so-
lar panels is also used to charge a battery (the charging pro-
cess), which is then discharged to give power to the lander
(the discharging process) when the panels do not produce
enough energy (e.g., at night). Moreover, the probe must al-
ways ensure a minimum battery level to keep its instruments
warm.

PDDL+ problem PDDL+ plan

(define (problem
cooling_system_1)
(:domain cooling_system)
(:objects tank1 tank2 tank3
- tank
hose1 hose2 - hose pump1
- pump)

(:init
(= (v tank1) 0.2) ;liters
(= (v tank2) 0.6)
(= (v tank3) 0.9)
(= (c tank1) 1.5) ;liters
(= (c tank2) 1.5)
(= (c tank3) 1.5)
(= (r tank1) 0.1) ;liters
(= (r tank2) 0.2)
(= (r tank3) 0.2)
(= (v_out tank1) 0.1) ;
liters
(= (v_out tank2) 0.3)
(= (v_out tank3) 0.2)
(= (v_in hose1) 0.3) ;
liters
(= (v_in hose2) 0.3)
(= (system_counter) 0)
(= (q) 0.0006) ; the sum
of v_in in m^3
(= (p_s) 0.13) ; kW
(= (mu) 0.05)
(= (c_p) 4.2) ; kJ/kg◦C
(= (rho) 1000) ; Kg/m^3
(= (delta_power) 0.19) ;
kW
(= (delta_rate) 0.00005)
; in m^3
(= (temp pump1) 60)
(= (plan_length) 60)
(= (danger_level) 65)
(system_start)
(not(fail))

)
(:goal (and

(not(fail))
(= (system_counter) (
plan_length))))

(:metric minimize (
total-time)))

000:(fill tank1 hose1)
[001]
000:(fill tank1 hose2)
[003]
001:(fill tank2 hose1)
[059]
003:(fill tank3 hose2)
[010]
013:(fill tank1 hose2)
[005]
018:(fill tank3 hose2)
[010]
028:(fill tank1 hose2)
[005]
033:(fill tank3 hose2)
[010]
043:(fill tank1 hose2)
[005]

048:(increase_rate
hose1 hose2)
048:(fill tank3 hose2)
[008]

056:(fill tank1 hose2)
[004]

Fig. 26 The cooling system problem and one of the devised plans

The state of charge of the battery is therefore an impor-
tant variable to monitor. Unfortunately, it follows a complex
curve, since the charge/discharge process is nonlinear, and
has several discontinuities, caused by the initiation and ter-
mination of the actions. Indeed, Table 5 shows the set of
ordinary differential equations that are used to recalculate
the values of the state variables soc (state of charge) and
supply (solar panel generation). The symbols used in the
equations have the following meaning: s = soc, h = supply,
d = demand, r = charge_rate, sc = solar_const and D =
daytime. The equations clearly show the nonlinear dynam-
ics of the system.

Obviously, the problem here is to find the best correct se-
quence of actions to achieve the probe goal in the shortest
time possible, starting from any reasonable initial configu-
ration. For sake of brevity, here we do not show the PDDL+
problem domain, which can be read in [29].

950 G. Della Penna et al.

Table 4 A snapshot of the main PDDL+ domain elements for the plan-
etary lander case study

Name Type Precondition

nightfall Event (daytime >= dusktime) & day

daybreak Event (daytime >= 0) & ¬day

charging Process (supply >= demand) & day

discharging Process (supply < demand)

generating Process (day)

night-operation Process (¬day)

fullprepare & Durative action ∀t ∈ ActionDuration

prepareObs1 (battery >= safelevel)

prepareObs2

Observe1 Durative action readyForObs1 &

∀t ∈ ActionDuration

(battery >= safelevel)

Observe2 Durative action readyForObs2 &

∀t ∈ ActionDuration

(battery >= safelevel)

Table 5 PDDL+ events and processes for the planetary lander case
study, with associated ordinary differential equations

Name ODE

charging ds(t)
dt

= [h(t) − d(t)] · r · (100 − s(t))

discharging ds(t)
dt

= −[d(t) − h(t)]
generating dh(t)

dt
= [sc · D(t)]·

·[(D(t) · ((4 · D(t)) − 90))] + 450

5.3.1 Domain discretisation

The generation of the discretised UPMurphi model was
initially performed rounding the continuous values to 0.5,
whereas time was discretised to 0.5 time units (a Martian
day is composed by 10 time units).

The start state cloud for the universal planning algorithm
was selected by taking into account a set of reasonable con-
figurations of the state variables soc and daytime. Note that
it is realistic to consider only these parameters, since they
define the environmental conditions to which the lander will
be subject at the beginning of its mission. All the other do-
main parameters were fixed to the values inferred by looking
at [5].

In particular, we suppose that the rover landing hour may
be between 0 and 8, that corresponds to the central day-
light hours in Martian time (the rover is supposed to land
in this range of hours, since they offer the best possible
starting conditions). On the other hand, since the battery is
not used before landing, and its self-discharge rate is min-
imal, we can safely suppose that the initial battery state of
charge will be between 90% and 100% with steps of 1%.

Table 6 Planetary lander universal plan generation statistics with con-
tinuous variable rounding and time discretisation to 0.5

State space size 1016

Search depth limit 200 BFS levels

Reachable states 2,793,620

States to goal (generated plans) 699,595

Total synthesis time 82.32 seconds

Table 7 Planetary lander universal plan generation statistics with con-
tinuous variable rounding and time discretisation to 0.1

State space size 1024

Search depth limit 200 BFS levels

First goal reached after 174 BFS levels

Reachable states 31,965,220

Start states to goal 100%

States to goal (generated plans) 5,309,514

Forward analysis time 1,969.3 seconds

Plan generation time 296.51 seconds

Total synthesis time 2,265.81 seconds

Peak memory requirements 1800 MB

Therefore, the start state cloud will be defined as the set
{(s, d)|s ∈ [90%,100%] ∧ d ∈ [0,8]}.
5.3.2 Universal planning

Given the domain variables and their ranges, we can easily
calculate the state space size of the system, which is about
of 1016 states. Thanks to the reachability analysis, UPMur-
phi generated an optimal solution for the universal planning
problem, starting from the given start state cloud, and visit-
ing only 2,793,620 reachable states, in 82.32 seconds on a
2.2 GHz CPU with 2 GB of RAM. The synthesis statistics
are in Table 6.

However, the validation process revealed that the com-
puted solutions were not valid for the original problem. In-
deed, VAL did not validate the plans against the continu-
ous domain. Thus, following the discretise and validate ap-
proach, the discretisation was iteratively refined, eventually
rounding the continuous variables up to the first decimal and
discretising the time to 0.1 time units, which produced a
valid solution. With this approximation, the state space size
of the system grows up to about 1024 states. Again, to gen-
erate the universal plan, UPMurphi visited only a small frac-
tion of the state space, i.e., 31 million of reachable states, in
less than 40 minutes. The synthesis statistics are in Table 7.

Note that the first goal was found after 174 steps, but the
synthesis was performed up to the fixed horizon of 200 steps,
which is a reasonable upper bound for the lander activity
completion (it represents about two Martian days).

The generated solution contains more than 5 million
plans, and thus it is able to bring to the goal more than

A universal planning system for hybrid domains 951

Fig. 27 Validation report for a single plan execution of the cooler system domain

Table 8 Normalised root mean squared error for variables soc and
supply in the planetary lander case study, with continuous variable
rounding and time discretisation to 0.1

Min Max Avg

soc 0% 0.625392% 0.179329%

supply 0% 2.060061% 0.742575%

16% of the reachable states. Due to the exhaustive search
performed by the tool, we can safely assert that, in the re-
maining 84% of the states, the lander could not complete its

tasks and should therefore quit its mission or delay its initi-
ation.

The solution passed the validation process (i.e., VAL val-
idated the plans), thus the universal plan is correct and does
not need any further discretisation refinement. However, to
further estimate the precision of the plans, we compared the
variable values computed by VAL during the validation pro-
cess with the corresponding values output by the UPMurphi
plan synthesis process, computing the normalised root mean
squared error (NRMSE), as shown in Table 8. The NRMSE
is at most 2% in all the generated plans for the nonlinear

952 G. Della Penna et al.

variable soc, at most 0.6% for nonlinear variable supply and
always zero for the linear variable daytime (not shown in the
table). Nevertheless, the average NRMSE is small: 0.179%
for soc and 0.742% for supply, respectively.

5.4 The Batch chemical plant

The purpose of the batch chemical plant is to produce saline
solution with a given concentration. If part of the product is
not used, the plant can recycle it to restart another produc-
tion cycle.

The plant (shown in Fig. 28) is composed of 7 tanks con-
nected through a complex pipeline, whose flow is regulated
by 26 valves and two pumps. In particular, tank 5 is provided
with a heater, whereas tank 6 is connected to a condenser. Fi-
nally, tanks 6 and 7 are surrounded by a cooling circuit. A set
of sensors provide information to the plant controller about
the filling level of tanks 1, 2, 3 and 5, the pump pressure and
the condenser status.

In the plant initial state, all the valves are closed, and the
pumps, heaters and coolers are switched off. Tank 1 contains
saline solution at a high concentration chigh, whereas tank 2
contains water.

If tank 1 does not contain enough solution, the plant en-
ters the startup phase: water from tank 2 is moved to tank 3,
where a suitable amount of salt is added manually to reach
the required concentration, and finally pumped to tank 1.
Note that tank 2 can be refilled with water at any time by
opening the appropriate input valve.

When tanks 1 and 2 are appropriately filled, the plant can
start the production phase. Tank 3 is partially filled with the
solution from tank 1, which is then diluted using the water
from tank 2 up to the requested concentration.

The resulting saline solution can be taken from the output
valve of tank 3. If the product is not completely used, the
plant recycles it in the next production cycle. To this aim,
the solution in tank 3 is moved to tank 4 and then to tank 5.
Here, the solution is boiled by the heater until it reaches the
concentration chigh, and then moved to tank 7. The steam
produced by this process is piped to the condenser that fills
tank 6 with the resulting water. Finally, tanks 6 and 7 are
cooled and their contents are pumped to tanks 2 and 1, re-
spectively.

During the startup and production cycles the plant must
obey some safety rules:

• pumps can be switched on only if all the valves in their
pipeline are open,

• the heater cannot be switched on if tank 5 is empty, or the
condenser is switched off, or if the valves involved in the
heating/condensation process are closed,

• only two cooling circuits (including the one used by the
condenser) can be switched on at the same time,

• tanks cannot be filled and emptied at the same time,

Table 9 Batch chemical plant constants

Ak cross section of tank k

ck saline concentration in tank k

cp,j heat capacity of solution in tank j

Δhvap,s vaporisation enthalpy of solution s

hk filling level of tank k

Kk,l volume flow from tank k to tank l

Pheat heating power

Pcool,k cooling power for tank k

ρj density of solution in tank j

Tk temperature of solution in tank k

V̇i volume flow through valve i

V̇pk,l volume flow through pump from tank k to tank l

ak,l section of pipe between tanks k and l

Hk,l length of pipe between tanks k and l

ζk,l resistance of pipe between tanks k and l

• the content of each tank must not exceed the correspond-
ing capacity limitations [39], which are lower than the
tank volume.

The plant dynamics is described by Deparade [20]
through a set of differential equations. In particular, given
the constants and variables shown in Table 9, the follow-
ing equations describe the variation of the filling level for
tanks directly connected by a pipe with an open valve (and
possibly a pump switched on) during the startup phase:

A2
dh2

dt
= V̇7

A2
dh2

dt
= −V̇9 = −K2,3x; x ∈ [1;x2,max]

A3
dh3

dt
= V̇9 = K2,3x; x ∈ [1;x2,max]

A3
dh3

dt
= −V̇p3,1

A1
dh1

dt
= V̇p3,1

whereas the following equations describe the same variation
for tanks involved in the production phase:

A1
dh1

dt
= −V̇8 = −K1,3x; x ∈ [1;x1,max]

A3
dh3

dt
= V̇8 = K1,3x; x ∈ [1;x1,max]

A2
dh2

dt
= −V̇9 = K2,3x; x ∈ [1;x2,max]

A3
dh3

dt
= V̇9 = K2,3x; x ∈ [1;x2,max]

A universal planning system for hybrid domains 953

Fig. 28 Overall structure of the batch chemical plant

954 G. Della Penna et al.

A3
dh3

dt
= −V̇11 = −K3,4x; x ∈ [1;x3,max]

A4
dh4

dt
= V̇11 = K3,4x; x ∈ [1;x3,max]

A4
dh4

dt
= −V̇12 = −K4,5x; x ∈ [1;x4,max]

A5
dh5

dt
= V̇12 = K4,5x; x ∈ [1;x4,max]

A5
dh5

dt
= −V̇12 = −K5,7x; x ∈ [1;x5,max]

A7
dh7

dt
= V̇12 = K5,7x; x ∈ [1;x5,max]

here, Kk,l =
√

2ga2
k,lHk,l

1+ζk,l
and x =

√
hk

Hk,l
+ 1.

The variation of the filling level in tanks 5 and 6 is ex-
pressed differently, due to the effects of evaporation and con-
densation, respectively:

A5
dh5

dt
= ṁvap

−ρsol

A6
dh6

dt
= ṁvap

ρw

Equations are also given to calculate the variation of con-
centration and temperature in the tanks. The following equa-
tions compute the solution concentration in tanks 3 and 5:

A3

(

c3
dh3

dt
+ h3

dc3

dt

)

= V̇9c2

A5

(

c5
dh5

dt
+ h5

dc5

dt

)

= −ṁvapc5

similarly, the temperature of tanks 5, 6, 7 is computed by the
following equations:

cp,solρsolA5h5
dhT5

dt
= Pel

T5cp,solρsolA5
dhT5

dt
= Pel − ṁvap(cp,solT5 + Δhvap)

cp,loρloA7h7
dT7

dt
= −Pcool

cp,wρwA6h6
dT6

dt
= −Pcool

5.4.1 PDDL+ modelling

The most challenging and interesting aspect of the chemical
plant specification is the production phase, so in the follow-
ing we will focus only on the modelling of this phase.

This continuous, time-dependant domain is mainly mod-
elled using processes, events and (flexible) durative actions.

; filling durative action (for tank 3)
(:durative-action B3_fill
:parameters ()
:duration (>= ?duration 0)
:condition (and
(at start (not (V8))) (at start (= (B3_l) 0))
(at start (>= (B1_l) 0)) (at start (not (V3)))
(at start (not (V10))) (at start (not (V11)))
(at start (not (B3_filled))) (at end (V8))
(over all (>=(B1_l) 0)))

:effect (and
(at start (B3_filling)) (at start (V8))
(at end (not (V8))) (at end (B3_filled))
(at end (not (B3_filling)))))

; filling process (for tank 3)
(:process B3_fill_process
:parameters ()
:precondition (B3_filling)
:effect (and
(decrease (B1_l) (* #t (* (C_5_2) (sqrt (+ (/ (
B1_l) (C_h_1_3)) 1)))))
(increase (B3_l) (* #t (* (C_5_2) (sqrt (+ (/ (
B1_l) (C_h_1_3)) 1)))))))

Fig. 29 Examples of durative actions and processes modelling the pro-
duction phase of the batch chemical plant

(:process B3_fill_process
:parameters ()
:precondition (B3_filling)
:effect (and
(decrease (B1_l)

(* #t (* (C_5_2)(+ (* -0.000415797 (* (B1_l) (
B1_l))) (+ (* (B1_l) 0.0424115) 1.00597))))
)

(increase (B3_l)
(* #t (* (C_5_2)(+ (* -0.000415797 (* (B1_l) (
B1_l))) (+ (* (B1_l) 0.0424115) 1.00597))))
))

)

Fig. 30 B3_fill_process with approximated square root

Indeed, Figs. 29, 31 and 32 show representative examples of
such constructs extracted from the model (whose full source
is available online in [19]), which contains a total of 59 pred-
icates, 55 functions (14 of which represent real values), 19
events, 10 durative actions and 11 processes. In the figures,
Bx_l, Bx_c, Bx_t indicate the filling level, solution concentra-
tion and temperature for tank x, respectively, whereas Vy,
Py and Hy indicate valve, pump and heater y, respectively.
Finally, the value of a constant k taken from the problem
specification is indicated with C_k.

In the following we describe the main elements of the
PDDL+ model for the chemical plant production phase,
highlighting their most interesting features. It is worth not-
ing that the model has been written to adhere as much as
possible to the formal specification given by Deparade [20].
However, to further check its correctness, we extracted from
the universal plan generated by UPMurphi the single pro-
duction policy corresponding to the initial conditions de-
scribed by Kowalewski [39] and we verified that it was iden-
tical to the one (manually) devised by Kowalewski [39].

A universal planning system for hybrid domains 955

; pipeline flow failure (during B3 filling process)
(:event B3_flow_failure
:parameters ()
:precondition (and (or (V11) (V10)) (or (V8) (V9)))
:effect (not (correct_operation)))
; heater failure (on tank 5)
(:event H5_failure
:parameters ()
:precondition (or

(and (H5) (or (V12) (V15) (V16)))
(and (H5) (not(V13)))
(and (H5) (not (>= (B5_l) (B5_l_safe)))))

:effect (not (correct_operation)))
; tank filling limit failure (on tank 3)
(:event B3_l_failure
:parameters ()
:precondition (or (< (B3_l) 0) (> (B3_l) (B3_l_max)
))
:effect (not (correct_operation)))
; pump (2) failure
(:event P2_failure
:parameters ()
:precondition (and (P2) (not(or

(and (V25) (V28))
(and (V25) (V5) (V6))
(and (V25) (V5) (V4) (V2) (V1) (V3)))))

:effect (not (correct_operation)))

Fig. 31 Examples of failure events of the batch chemical plant

Production activities. The production activities, such as
moving the solution from a tank to another, cool it down,
etc., some of which can possibly be executed in parallel, are
modelled using durative actions. However, the duration of
these activities is not known a priori, thus the planner should
determine the time point at which the tank capacity (or re-
quired concentration, or temperature) is reached. To achieve
this, we use duration inequalities in the durative actions. On
the other hand, continuous change to solution level, con-
centration and temperature in tanks are modelled through
PDDL+ processes that update the corresponding model vari-
ables following the functions described by Deparade [20].
This modelling schema guarantees an immediate detection
(i.e., triggering of failure events) of safety violations.

As an example, when tank 1 is nonempty, tank 3 is
empty and some other conditions hold, the durative action
B3_fill shown in Fig. 29 moves the solution from tank 1 to
tank 3. The continuous update to the solution level in these
tanks due to the durative action is performed by the pro-
cess B3_fill_process, which is enabled by the durative ac-
tion by setting to true the predicate B3_filling. The execu-
tion of this process may in turn trigger some events [28],
e.g., B3_l_failure (shown in Fig. 31) that would invalidate
the plan. At the end of the durative action (as chosen by
the planner), B3_filling is set to false, and the filling process
ends.

It is worth noting that the effects of B3_fill_process in-
volve the calculation of a square root, which is currently
not supported by PDDL+. Therefore, we have also created
and tested an approximated model (available in [19]), where
the square root is substituted by the second degree polyno-
mial on the variable B1_l that best fits such function within

(:event production_end
:parameters ()
:precondition (and
(B1_filled) (>= (B1_l) (B1_l_target_min))
(< (B1_l) (B1_l_target_max))
(= (B1_c) (B1_c_target)) (not(production_ended)))

:effect (and (production_complete)
(production_ended)))

(:event production_success
:parameters ()
:precondition (and (not(success))
(production_complete) (correct_operation)
(not (or (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) (
V9) (V10) (V11) (V12) (V13) (V14) (V15) (V16) (
V17) (V18) (V19) (V20) (V21) (V22) (V23) (V24) (
V25) (V26) (V27) (V28) (V29) (P1) (P2))))

:effect (success))

Fig. 32 Cascading events triggering the goal of the batch chemical
plant

the bounds deducible from the model dynamics. The corre-
sponding approximated B3_fill_process is shown in Fig. 30.

Production events. The violation of one of the safety con-
straints listed in Sect. 5.4 should trigger an instantaneous
change that invalidates the plan. Therefore, such failures
have been modelled through PDDL+ events, whose effect
is to falsify the invariant predicate correct_operation.

It is worth noting that, in the chemical plant model, dis-
crete and continuous change are combined in the activa-
tion conditions of several events [37], making their check-
ing more complex, but still very important since they may
invalidate the plan [30]. As an example, event H5_failure
in Fig. 31 shows the PDDL+ model of an exogenous event.
Such event is activated when the heater is switched on (H5
is true) and one of the valves 12, 15 or 16 is open (or V12
V15 V16), or valve 13 is closed (not V3), or the level of tank
5 is lower than the security level (not (>= B5_l B5_l_safe)).

Finally, the two events shown in Fig. 32 are used to trig-
ger the end of the plan. In particular, event production_end
is triggered when tank 1 contains a sufficient amount of so-
lution with the required concentration, and its effect is to set
the production_complete predicate to true. This, in turn, trig-
gers a cascading event production_success that, if the plant
has operated correctly (i.e., without violating any safety con-
straint) and all the valves and pumps have been correctly
closed, sets the success predicate to true to indicate that the
goal has been reached.

Production problem. The PDDL+ definition of the prob-
lem for the batch chemical plant production phase is quite
straightforward. The domain is initialised by setting the
function and predicate values to the ones obtained after the
startup phase (see [20]), and the goal is to set the success
predicate to true, minimising the total-time.

956 G. Della Penna et al.

Table 10 Batch chemical plant startup phase universal plan generation
statistics

State space size 1029

Start state cloud size 81

Reachable states 3,092,112

States to goal (generated plans) 679,193

Synthesis time 530 sec

Peak of memory required 61 MB

5.4.2 Domain discretisation

We want to use UPMurphi to automatically perform univer-
sal planning on the startup and production phases, in order
to generate a set of policies for the system.

To this aim, we fist discretise the PDDL+ model, as sug-
gested by Brinksma and Mader [10], by rounding up the
continuous variables up to the first decimal, and the time in
steps of 10 seconds. Then, to generate the start state clouds
used to initialise our universal planning engine, we proceed
as follows.

As described in Sect. 5.4, the startup phase is triggered
before a new production cycle if tank B1 is empty or does
not contain enough saline solution at concentration chigh

(possibly recycled from the previous production phase). In
this case, the startup phase must fill B1 up to B1_l_max.
Thus, the start state cloud for this phase considers all the
values for B1_l in the range [0,B1_l_max] with B1_l_max
= 8 liters (as specified by Kowalewski [39]) and steps of 0.1
liters, i.e., 81 different start states.

On the other hand, the production phase, thanks to the
startup postconditions, always starts working on a plant
where B1 and B2 are completely filled. Here, the only pa-
rameter used to define the start state cloud is the amount of
solution to be produced, that is B3_l_target. We vary this
value in the range [1.5,3.7] liters with steps of 0.1, obtain-
ing 23 different start states.

5.4.3 Universal planning

Table 10 shows the generation statistics for the startup phase
universal plan. The plant state space is 1017, however, start-
ing from the given start state cloud, the planner found that
only about 3 million of such states were actually reachable,
and only for 22% of them is was possible to calculate a (op-
timal) policy to reach the goal.

On the other hand, the whole universal plan for the more
complex production phase took about 6000 seconds to be
generated, as shown in Table 11. Indeed, in this case there
were about 30 million of reachable states (which are still
sensibly less than the state space size), and for 24% of them
UPMurphi was able to generate an optimal plan to the goal.

Table 11 Batch chemical plant production phase universal plan gen-
eration statistics

State space size 1029

Start state cloud size 23

Reachable states 29,968,861

States to goal (generated plans) 7,154,464

Synthesis time 6,319.8 sec

Peak of memory required 630 MB

0.0: (B3_fill) [250]
260.0: (B3_dilution) [130]
400.0: (B4_fill) [290]
700.0: (B5_fill) [180]
890.0: (B5_evaporate) [750]
1650.0: (B7_fill) [130]
1790.0: (B7_cool) [270]
1800.0: (B6_cool) [160]
1970: (B2_fill) [120]
2070: (B1_fill) [80]

Fig. 33 A planned production policy for the batch chemical plant

The validation of the generated plans confirmed that the
initial discretisation was fine enough to obtain correct re-
sults.

As an example, Fig. 33 shows one of the generated pro-
duction policies, where B3_level_target = 3 liters. Figure 34
graphically shows the variation of B1_l, B2_l, B3_l and
B3_c, respectively, as calculated by VAL during the valida-
tion of this plan. In particular, in the figure, letters A-F are
used to indicate the time spans where the plant is performing
particular tasks, i.e., A, B, C correspond to the activation of
B3_fill, B3_dilution and B4_fill, respectively, D indicates the
recycle phase, and E, F the activation of B2_fill and B1_fill,
respectively.

We see that the filling level of the first two tanks initially
decreases due to the execution of the B3_fill (span A) and
B3_dilution (span B) processes, respectively, while B3 gets
filled. On the other hand, the concentration B3_c remains
stable on cmax during B3_fill, and rapidly decreases during
the dilution (B3_dilution) up to ctarget . Finally, part of the
product is manually drained from B3, and the remaining so-
lution is moved to other tanks (i.e., B3_l reaches zero, span
C), where it is recycled (span D) and finally pumped back to
B1 (span E) and B2 (span F).

6 Conclusions

In this paper we presented the UPMurphi tool, a universal
planner based on the discretise and validate approach which
is able to deal with PDDL+ domains modelling real world
systems having a hybrid, nonlinear behaviour.

Indeed, planning with continuous nonlinear change is
still an issue that is difficult to handle by the current state-
of-the-art planners. However, thanks to an iteratively-refined

A universal planning system for hybrid domains 957

Fig. 34 Variation of filling
levels computed by VAL for
tanks B1, B2, B3 and solution
concentration in tank B3 during
the batch chemical plant
production cycle described in
Fig. 33

discretisation, our approach is able to relax a hybrid, nonlin-
ear domain to obtain a finite state system, where universal
planning can be performed by the UPMurphi tool. UPMur-
phi reads PDDL+ domain and problem specifications, gen-
erates their discretised model, and produces an optimal uni-
versal plan, which is validated against the original domain
using VAL.

Moreover, UPMurphi exploits enhanced reachability
analysis and state space compression algorithms, derived
from model checking, to handle the huge number of states
resulting from the approximation of the continuous part of
the system dynamics.

The technique and the tool are being extensively exper-
imented, and this paper presents a number of representa-
tive case studies, ranging from benchmark planning prob-
lems to realistic hybrid systems, namely a Martian lander
and a chemical production plant, whose activities were suc-
cessfully planned with UPMurphi. We feel that these case
studies show that the discretise and validate approach, sup-
ported by UPMurphi, can be an effective and valuable uni-
versal planning technique for complex application domains.

The further development of UPMurphi will include the
adoption of a new, more precise mathematical engine, to
better process the complex dynamics of hybrid systems, and
a tighter integration with VAL, to obtain more information
from the validation process and use it as a guide to fully
automatise the discretisation refinement.

Finally, since the complexity of hybrid systems could
lead to state spaces which cannot be handled by UPMurphi,
even with the help of reachability analysis and state space
compression, we are developing new disk-based algorithms
which, by making an intelligent use of secondary storage,
could ensure a virtually unlimited space to store the state
space, at the cost of a reasonable time penalty.

References

1. Aylett R, Soutter JK, Petley GJ, Chung PWH (1998) AI planning
in a chemical plant domain. In: Prade H (ed) 13th European con-
ference on artificial intelligence (ECAI), Brighton, UK, August
23–28. Wiley, New York, pp 622–626

2. Behrmann G, Cougnard A, David A, Fleury E, Larsen KG, Lime
D (2007) UPPAAL-TIGA: Time for playing games! In: Damm
W, Hermanns H (eds) 19th international conference on computer
aided verification (CAV), July 3–7. Lecture notes in computer sci-
ence, vol 4590. Springer, Berlin, pp 121–125

3. Bell KRW, Coles AJ, Coles AI, Fox M, Long D (2009) The role of
AI planning as a decision support tool in power substation man-
agement. AI Commun 22(1):37–57

4. Bertoli P, Cimatti A, Pistore M, Roveri M, Traverso P (2001)
MBP: a model based planner. In: Seventeenth international joint
conference on artificial intelligence (IJCAI), workshop on plan-
ning under uncertainty and incomplete information (PRO-2). Seat-
tle, Washington

5. Blake O, Bridges J, Chester E, Clemmet J, Hall S, Han-
nington M, Hurst S, Johnson G, Lewis S, Malin M, Mori-
son I, Northey D, Pullan D, Rennie G, Richter L, Roth-
ery D, Shaughnessy B, Sims M, Smith A, Townend M,

958 G. Della Penna et al.

Waugh L (2004) Beagle2 Mars: mission report. Lander Op-
erations Control Centre, National Space Centre, University of
Leicester. http://www2.le.ac.uk/departments/physics/research/src/
downloads/B2-Report.zip/at_download/file

6. Blondel VD, Tsitsiklis JN (2000) A survey of computational com-
plexity results in systems and control. Automatica 36(9):1249–
1274

7. Boddy MS, Johnson DP (2002) A new method for the global so-
lution of large systems of continuous constraints. In: Global opti-
mization and constraint satisfaction, first international workshop
global constraint optimization and constraint satisfaction (CO-
COS). Lecture Notes in Computer Science, vol 2861. Springer,
Berlin, pp 142–156

8. Bonet B, Geffner H (2001) Planning and control in artificial
intelligence: A unifying perspective. Appl Intell 14:237–252.
doi:10.1023/A:1011286518035

9. Borrelli F (2003) Constrained optimal control for hybrid systems.
In: Constrained optimal control of linear and hybrid systems. Lec-
ture notes in control and information sciences, vol 290. Springer,
Berlin, pp 143–171. doi:10.1007/3-540-36225-8_8

10. Brinksma E, Mader A (2000) Verification and optimization of a
PLC control schedule. In: 7th international SPIN workshop. Lec-
ture notes in computer science, vol 1885. Springer, Stanford, pp
73–92

11. Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ (1992)
Symbolic model checking: 1020 states and beyond. Inf Comput
98(2):142–170

12. Cached Murphi Web Page (2006) http://www.dsi.uniroma1.it/
~tronci/cached.murphi.html

13. Cimatti A, Roveri M, Traverso P (1998a) Strong planning in non-
deterministic domains via model checking. In: Simmons Reid G,
Manuela SS, Veloso M (eds) Fourth international conference on
artificial intelligence planning systems (AIPS). AAAI Press, Pitts-
burgh, pp 36–43

14. Cimatti A, Pistore M, Roveri M, Traverso P (2003) Weak, strong,
and strong cyclic planning via symbolic model checking. Artif In-
tell 147(1):35–84

15. Cimatti R, Roveri M, Traverso P (1998b) Automatic OBDD-
based generation of universal plans in non-deterministic domains.
In: Fifteenth national conference on artificial intelligence and
tenth innovative applications of artificial intelligence conference
(AAAI). AAAI Press / MIT Press, Madison, pp 875–881

16. Coles AI, Fox M, Long D, Smith AJ (2007) Planning with prob-
lems requiring temporal coordination. In: Twenty-second AAAI
conference on artificial intelligence. AAAI Press, Vancouver, pp
415–420

17. Coles AJ, Coles AI, Fox M, Long D (2009) Temporal planning
in domains with linear processes. In: Boutilier C (ed) 21st interna-
tional joint conference on artificial intelligence (IJCAI), Pasadena,
California, USA. pp 1671–1676

18. Della Penna G, Intrigila B, Melatti I, Tronci E, Venturini Zilli M
(2004) Exploiting transition locality in automatic verification of
finite state concurrent systems. Int J Softw Tools Technol Transf
6(4):320–341

19. Della Penna G, Intrigila B, Magazzeni D, Mercorio F (2009)
Batch chemical plant PDDL+ model. http://www.di.univaq.it/
gdellape/lamoka/go/?page=chemical

20. Deparade A (1999) A switched continuous model of VHS case
study 1, draft. University of Dortmund. http://www-verimag.imag.
fr/VHS/year1/cs11c.ps

21. Edelkamp S (2002) Mixed propositional and numeric planning in
the model checking integrated planning system. In: Fox M, Cod-
dington AM (eds) AIPS workshop on planning for temporal do-
mains, Toulous, France, pp 47–55

22. Edelkamp S (2003) Taming numbers and durations in the model
checking integrated planning system. J Artif Intell Res 20:195–
238

23. Edelkamp S, Helmert M (2001) MIPS: The model-checking inte-
grated planning system. AI Mag 22(3):67–72

24. Edelkamp S, Lafuente AL, Leue S (2001) Directed explicit model
checking with HSF-SPIN. In: 8th international SPIN workshop on
model checking of software. Springer, New York, pp 57–79

25. Edelkamp S, Jabbar S, Nazih M (2006) Large-scale optimal
PDDL3 planning with MIPS-XXL. In: 5th international planning
competition booklet. International conference on automated plan-
ning and scheduling, The English Lake District, Cumbria, UK, pp
28–31

26. Fourman M (2000) Propositional planning. In: Fifth international
conference on artificial intelligence planning and scheduling—
workshop on model theoretic approaches to planning (AIPS),
Breckenridge, CO, USA, pp 10–17

27. Fox M, Long D (2002) PDDL+: modelling continuous time-
dependent effects. In: 3rd international NASA workshop on plan-
ning and scheduling for space, Houston, Texas

28. Fox M, Long D (2003) PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains. J Artif Intell Res 20:61–124

29. Fox M, Long D (2006) Modelling mixed discrete-continuous do-
mains for planning. J Artif Intell Res 27:235–297

30. Fox M, Howey R, Long D (2005) Validating plans in the con-
text of processes and exogenous events. In: The twentieth national
conference on artificial intelligence and the seventeenth innovative
applications of artificial intelligence conference (AAAI/IAAI).
AAAI Press / The MIT Press, Pittsburgh, pp 1151–1156

31. Gerevini A, Saetti A, Serina I (2004) Planning with numerical ex-
pressions in LPG. In: de Mántaras RL, Saitta L (eds) 16th Euro-
pean conference on artificial intelligence (ECAI). IOS Press, Va-
lencia, pp 667–671

32. Giunchiglia F, Traverso P (2000) Planning as model checking. In:
5th European conference on planning: recent advances in AI plan-
ning. Springer, London, pp 1–20

33. Herrero J, Berlanga A, Molina J, Casar J (2005) Methods for op-
erations planning in airport decision support systems. Appl Intell
22:183–206. doi:10.1007/s10791-005-6618-z

34. Holldobler S, Stor H (2000) Solving the entailment problem in
the fluent calculus using binary decision diagrams. In: Chien S,
Kambhampati S, Knoblock CA (eds) Fifth international confer-
ence on artificial intelligence planning systems (AIPS). AAAI
Press, Breckenridge, pp 32–39

35. Howey R, Long D (2003) VAL’s progress: the automatic validation
tool for PDDL2.1 used in the international planning competition.
Strathprints: The University of Strathclyde Institutional Reposi-
tory [http://eprintscdlrstrathacuk/perl/oai2] (United Kingdom)

36. Howey R, Long D, Fox M (2004a) VAL: Automatic plan val-
idation, continuous effects and mixed initiative planning using
PDDL. In: 16th IEEE international conference on tools with arti-
ficial intelligence (ICTAI). IEEE Computer Society, Boca Raton,
pp 294–301

37. Howey R, Long D, Fox M (2004b) Validating plans with exoge-
nous events. In: 23rd workshop of the UK planning and scheduling
special interest group. University College Cork, Ireland, pp 78–87

38. Jensen R, Veloso M (1999) OBDD-based universal planning:
Specifying and solving planning problems for synchronized
agents in non-deterministic domains. Artifi Intell Today, Recent
Trends Dev 1600:213–248

39. Kowalewski S (1998) Description of VHS case study 1:
“Experimental Batch Plant”. http://astwww.chemietechnik.uni-
dortmund.de/~vhs/cs1descr.zip

40. L’Aquila Model Checking Group (2010) UPMurphi web page.
http://www.di.univaq.it/gdellape/lamoka/upmurphi

41. Léauté T, Williams BC (2005) Coordinating agile systems through
the model-based execution of temporal plans. In: Veloso MM,
Kambhampati S (eds) Twentieth national conference on artificial

http://www2.le.ac.uk/departments/physics/research/src/downloads/B2-Report.zip/at_download/file
http://www2.le.ac.uk/departments/physics/research/src/downloads/B2-Report.zip/at_download/file
http://dx.doi.org/10.1023/A:1011286518035
http://dx.doi.org/10.1007/3-540-36225-8_8
http://www.dsi.uniroma1.it/~tronci/cached.murphi.html
http://www.dsi.uniroma1.it/~tronci/cached.murphi.html
http://www.di.univaq.it/gdellape/lamoka/go/?page=chemical
http://www.di.univaq.it/gdellape/lamoka/go/?page=chemical
http://www-verimag.imag.fr/VHS/year1/cs11c.ps
http://www-verimag.imag.fr/VHS/year1/cs11c.ps
http://dx.doi.org/10.1007/s10791-005-6618-z
http://eprintscdlrstrathacuk/perl/oai2
http://astwww.chemietechnik.uni-dortmund.de/~vhs/cs1descr.zip
http://astwww.chemietechnik.uni-dortmund.de/~vhs/cs1descr.zip
http://www.di.univaq.it/gdellape/lamoka/upmurphi

A universal planning system for hybrid domains 959

intelligence and the seventeenth innovative applications of artifi-
cial intelligence conference (AAAI/IAAI). AAAI Press / The MIT
Press, Pittsburgh, pp 114–120

42. Li HX, Williams BC (2008) Generative planning for hybrid sys-
tems based on flow tubes. In: Rintanen J, Nebel B, Beck JC,
Hansen EA (eds) Eighteenth international conference on auto-
mated planning and scheduling (ICAPS). AAAI Press, Sydney, pp
206–213

43. Martin M, Geffner H (2004) Learning generalized policies from
planning examples using concept languages. Appl Intell 20(1):9–
19

44. McDermott D (2000) The 1998 AI planning systems competition.
AI Mag 21(2):33–55

45. McDermott D (2003) Reasoning about autonomous processes in
an estimated regression planner. In: Giunchiglia E, Muscettola N,
Nau DS (eds) Thirteenth international conference on automated
planning and scheduling (ICAPS). AAAI Press, Trento, pp 143–
152

46. McDermott D the AIPS1998 planning competition committee
(1998). PDDL: the planning domain definition language. Tech.
rep., available at: www.cs.yale.edu/homes/dvm

47. Molineaux M, Klenk M, Aha DW (2010) Planning in dynamic en-
vironments: Extending HTNs with nonlinear continuous effects.
In: Fox M, Poole D (eds) Twenty-fourth AAAI conference on ar-
tificial intelligence (AAAI). AAAI Press, Atlanta, pp 1115–1120

48. Murphi Web Page (2004) http://sprout.stanford.edu/dill/murphi.
html

49. Norris-Ip C, Dill DL (1993) Better verification through symmetry.
In: Agnew D, Claesen LJM, Camposano R (eds) Computer hard-
ware description languages and their applications, proceedings of
the 11th IFIP WG10.2 international conference on computer hard-
ware description languages and their applications—CHDL ’93,
sponsored by IFIP WG10.2 and in cooperation with IEEE COMP-
SOC, Ottawa, Ontario, Canada, pp 97–111

50. Penberthy S, Weld D (1994) Temporal planning with continuous
change. In: Twelfth national conference on artificial intelligence
(AAAI). American Association for Artificial Intelligence, Menlo
Park, pp 1010–1015

51. Reddy SY, Iatauro MJ, Kürklü E, Boyce ME, Frank JD, Jónsson
AK (2008) Planning and monitoring solar array operations on the
ISS. In: Eighteenth international conference on automated plan-
ning and scheduling (ICAPS), scheduling and planning applica-
tions workshop (SPARK), Sydney, Australia

52. Sapena O, Onaindía E (2008) Planning in highly dynamic environ-
ments: an anytime approach for planning under time constraints.
Appl Intell 29:90–109. doi:10.1007/s10489-007-0083-x

53. Schmid U (2003) Inductive synthesis of functional programs: uni-
versal planning, folding of finite programs, and schema abstraction
by analogical reasoning. Springer, New York

54. Schmid U, Wysotzki F (2000) Applying inductive program syn-
thesis to macro learning. In: Chien S, Kambhampati S, Knoblock
CA (eds) Fifth international conference on artificial intelligence
planning systems (AIPS). AAAI Press, Breckenridge, pp 371–378

55. Schoppers M (1987) Universal plans of reactive robots in unpre-
dictable environments. In: McDermott JP (ed) 10th international
joint conference on artificial intelligence (IJCAI). Morgan Kauf-
mann, Milan, pp 1039–1046

56. Schuster HG (1988) Deterministic chaos: an introduction. Wein-
heim Physik

57. Shin JA, Davis E (2005) Processes and continuous change in a
SAT-based planner. Artif Intell 166(1–2):194–253

58. Sontag E (1996) Interconnected automata and linear systems: a
theoretical framework in discrete-time. In: Alur R, Henzinger T,
Sontag E (eds) Hybrid systems III. Lecture notes in computer sci-
ence, vol 1066. Springer, Berlin, pp 436–448

59. Stern U, Dill D (1995) Improved probabilistic verification by hash
compaction. In: Camurati P, Eveking H (eds) Correct hardware de-
sign and verification methods. Lecture notes in computer science,
vol 987. Springer, Berlin, pp 206–224

60. Wilson E, Karr C, Bennett J (2004) An adaptive, intelli-
gent control system for slag foaming. Appl Intell 20:165–177.
doi:10.1023/B:APIN.0000013338.39348.46

Giuseppe Della Penna obtained
the master degree in Computer Sci-
ence in 1998 at the University of
L’Aquila, Italy and the Ph.D. in
Computer Science in 2002 at the
University of Rome “La Sapienza”.
He is currently a Researcher in the
Computer Science Department of
the University of L’Aquila, where
he leads the Model Checking and
Applications research group. His
research interests include formal
methods applied to web engineer-
ing, visual languages, and software
systems control and verification. In

these contexts, he published several peer-reviewed articles in interna-
tional journals and conferences.

Daniele Magazzeni received the
master degree in Computer Science
in 2005 and the Ph.D. degree in
Computer Science in 2009 at the
University of L’Aquila, Italy. He
is currently a Research Fellow in
the Department of Sciences at the
University of Chieti-Pescara, Italy.
His research interests include for-
mal methods and artificial intel-
ligence, with particular focus on
planning for temporal and met-
ric domains, continuous planning,
heuristic search and policy learning.

Fabio Mercorio is a third year
Ph.D. student in Computer Science
at the University of L’Aquila, Italy,
where he received the master de-
gree in Computer Science in 2008.
His research interests include for-
mal methods and artificial intelli-
gence, with particular focus on con-
tinuous planning and the analysis
and control of complex nondeter-
ministic systems.

http://www.cs.yale.edu/homes/dvm
http://sprout.stanford.edu/dill/murphi.html
http://sprout.stanford.edu/dill/murphi.html
http://dx.doi.org/10.1007/s10489-007-0083-x
http://dx.doi.org/10.1023/B:APIN.0000013338.39348.46

	A universal planning system for hybrid domains
	Abstract
	Introduction
	Motivation
	Contribution

	Related work
	The discretise and validate approach
	Discretisation of PDDL+ domains
	Notation
	Timeline discretisation
	Types and objects
	Predicates and functions
	Actions
	Events
	Processes
	Durative actions
	Problem

	The UPMurphi universal planner
	Universal planning on finite state systems
	Universal planning algorithm
	The UPMurphi implementation

	Case studies
	Continuous generator domain
	Cooling system domain
	The planetary lander
	Domain discretisation
	Universal planning

	The Batch chemical plant
	PDDL+ modelling
	Production activities.
	Production events.
	Production problem.

	Domain discretisation
	Universal planning

	Conclusions
	References

