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Abstract Because of its unsupervised nature, clustering is
one of the most challenging problems, considered as a NP-
hard grouping problem. Recently, several evolutionary al-
gorithms (EAs) for clustering problems have been presented
because of their efficiency for solving the NP-hard problems
with high degree of complexity. Most previous EA-based
algorithms, however, have dealt with the clustering prob-
lems given the number of clusters (K) in advance. Although
some researchers have suggested the EA-based algorithms
for unknown K clustering, they still have some drawbacks to
search efficiently due to their huge search space. This paper
proposes the two-leveled symbiotic evolutionary clustering
algorithm (TSECA), which is a variant of coevolutionary al-
gorithm for unknown K clustering problems. The clustering
problems considered in this paper can be divided into two
sub-problems: finding the number of clusters and grouping
the data into these clusters. The two-leveled framework of
TSECA and genetic elements suitable for each sub-problem
are proposed. In addition, a neighborhood-based evolution-
ary strategy is employed to maintain the population diver-
sity. The performance of the proposed algorithm is com-
pared with some popular evolutionary algorithms using the
real-life and simulated synthetic data sets. Experimental re-
sults show that TSECA produces more compact clusters as
well as the accurate number of clusters.
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1 Introduction

Clustering is to group objects into subsets that have some
meaning in the context of a particular problem and has been
widely applied in variety of fields such as pattern recogni-
tion, image processing, and biotechnology [20, 51]. The aim
of clustering is to maximize the similarity within the groups
and the dissimilarity between two different groups, respec-
tively. Given N input patterns X = {x1,x2, . . . ,xN } where
xj = (xj1, xj2, . . . , xjp),K clusters are represented by C =
{C1,C2, . . . ,CK} with the following properties [51]:

(1) Ci �= φ for i = 1,2, . . . ,K .
(2) Ci ∩ Cj = φ for i = 1,2, . . . ,K, j = 1,2, . . . ,K and

i �= j .
(3)

⋃K
i=1 Ci = X.

Clustering techniques can be generally divided into two
categories: hierarchical and non-hierarchical [10, 22]. Hier-
archical clustering techniques proceed by either agglomer-
ative hierarchical methods or divisive hierarchical methods.
While the agglomerative hierarchical methods merge each
similar group with initial many groups, the divisive hierar-
chical methods divide an initial single group of objects into
each subgroup so that the objects in one subgroup are dis-
similar to the objects in the other. The simple and popular
methods for agglomerative hierarchical clustering include
single linkage, compete linkage, and average linkage tech-
niques [24].

One of the popular algorithms in non-hierarchical meth-
ods is the K-means algorithm proposed by Tou and Gon-
zalez [46]. This algorithm has been utilized in a variety of

mailto:mjeong@rci.rutgers.edu
mailto:ysjeong@eden.rutgers.edu


A two-leveled symbiotic evolutionary algorithm for clustering problems 789

applications because of its simple implementation and easy
applicability. However, the big drawback of this algorithm
is that it is too sensitive to an initial solution so that it is
highly possible to converge to a local optimal solution [2].
As for searching a global optimal clustering method, there
have been many other techniques such as fuzzy set, neural
networks, genetic algorithm, and ant-based clustering meth-
ods [17, 18, 30, 38, 39, 48]. Please refer to some survey
papers for details [20, 51].

From an optimization perspective, the problem of clus-
tering N objects into K clusters can be viewed as a particu-
lar kind of NP-hard grouping problem [20, 51]. As the size
of data sets with high dimension increases, it is practically
infeasible to find the best number of clusters and the cor-
responding subsets optimizing the given objective function.
Due to this reason, several researches have focused on de-
veloping heuristic algorithms for the near optimal solution
such as simulated annealing [7, 43], tabu search [3, 44], and
evolutionary (genetic) algorithm [20].

Among them, evolutionary algorithm (EA), which is
probabilistic search technique modeled by the principles of
evolution and natural selection, has widely been adopted
to the clustering problems because they are effective on
providing near optimal solutions in acceptable time [20].
To apply EA to a particular problem, some components,
such as solution encoding scheme, selection scheme, and
crossover/mutation methods, should be developed or cho-
sen because the performance of EA depends on these com-
ponents [13]. EA-based clustering approaches differ mainly
in the encoding scheme, representing a potential solution of
the problem as a chromosome, which is a critical part of EA.
Kuncheva and Bezdek [31] proposed an EA-based cluster-
ing with a binary encoding. In this scheme, a clustering solu-
tion (partition) is represented as a binary string of length N ,
where N is the number of input data. If the value of the i-th
gene is 1, then i-th point is the center of a cluster, and then
the other points corresponding to genes with 0 are assigned
to one of the clusters using an appropriate rule. Murthy and
Chowdhury [37] and Lu et al. [32] presented an integer en-
coding scheme. A chromosome by the integer scheme con-
sists of N integer genes. Each gene position corresponds to
a particular point (object) and each gene value indicates the
cluster number to which the point belongs. This scheme is
simple and natural but has a drawback of redundancy. There
could be, that is, many different chromosomes representing
the same solution.

In addition, EA-based methods using the real number
scheme have been suggested [5, 12, 34]. In the real number
scheme, a chromosome contains the coordinates of the clus-
ter centers. Accordingly, for clustering p-dimensional data
into K clusters, the length of a chromosome is pK. Maulik
and Bandyopadhyay [34] proposed an EA-based clustering
algorithm where EA is used to search for the appropriate

cluster centers. They used the sum of the Euclidean dis-
tances of the points from their respective cluster centers as
the clustering metric. Bandyopadhyay and Maulik [5] de-
veloped the KGA-clustering algorithm, which combined EA
with K-means algorithm. In KGA-clustering, EA was used
to search for the initial cluster centers, and then K-means
algorithm exploited optimal clustering centers, avoiding the
major drawback of the K-means algorithm in which the
clustering tends to be dependent on the choice of the initial
cluster centers. Garai and Chaudhuri [12] proposed the two-
phase genetic clustering algorithm. At the first phase, in their
algorithm, the original data set is decomposed into some
number of fragmented clusters and at the second phase,
some of those fragmented clusters are combined into com-
plete K cluster by using an iterative EA process. The advan-
tage of this algorithm is to reduce the complexity of problem
so that overall computational time could be reduced.

Even though previous EA-based clustering algorithms
have showed good performance for clustering, these algo-
rithms are only available when the number of clusters is
known a priori. Unfortunately, however, the number of clus-
ters in general is unknown, and when the number of clus-
ters is not easy to guess, clustering becomes a tedious trial-
and-error work and the clustering result is often not promis-
ing. Several EA-based approaches to handle the unknown K

clustering have been suggested. Tseng and Yang [47] pro-
posed a novel evolutionary clustering algorithm using a bi-
nary representation scheme. In their approach, the nearest-
neighbor algorithm searches for a proper number of clus-
ters and EA classifies the points into these clusters at the
same time. However, this algorithm had a tendency to shrink
the solution space because data points of near distance were
grouped and they were considered as one point for cluster-
ing. Bandyopadhyay and Maulik [6] suggested an EA-based
algorithm that adopted the real number scheme. In the pa-
per, the number of clusters is assumed to be in the range
of the minimum and maximum number of clusters. To fix
the length of a chromosome, a ‘do not care’ symbol # is
used to fill in chromosomes whose K is less than the max-
imum number of clusters. In addition, EA-based clustering
algorithms using integer representation scheme were sug-
gested [8, 21]. However, those conventional representation
schemes and the frameworks of standard EA have a lim-
itation in searching the solution space efficiently because
the integrated problem comprising two sub-problems is very
complex and has huge search space [28].

On the other hand, the clustering problem in the paper
can be viewed as a multi-objective problem. For the clus-
tering objectives, there could be inter-cluster distance, intra-
clustering distance, and the number of clusters, and so on.
One of the most popular methods for dealing with a multi-
objective problem is to transform it into the single-objective
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problem with weighted objective functions such as DB in-
dex [9], considering both inter-cluster distance and intra-
cluster distance.

This paper deals with the clustering problem finding the
number of clusters and grouping the data into the clusters at
the same time while minimizing a particular objective func-
tion. To solve the unknown K clustering problem, we pro-
pose a new efficient algorithm, named Two-leveled Symbi-
otic Evolutionary Clustering Algorithm (TSECA), which is
a variant of coevolutionary algorithm. Coevolutionary algo-
rithm is known as a very efficient tool to solve the integrated
optimization problems with high degree of complexity com-
pared to classical ones [28, 36]. A common hypothesis for
coevolutionary algorithm is that several parallel searches for
different pieces of the solution are more efficient than sin-
gle search for the entire solution. Based on the good prop-
erty of coevolutionary algorithm, TSECA decomposes the
clustering problem into two sub-problems; finding the num-
ber of clusters and grouping the data into these clusters. In
the lower level, there exist two populations for finding the
number of clusters and grouping the data into each cluster,
respectively. The chromosomes in the populations are sep-
arated, but interact with each other while evolving. At the
upper level, the population consists of chromosomes that are
combined with those in the lower level, each of which rep-
resents the complete solution to the entire problem. Since
the good combinations of the chromosomes obtained from
the interaction within the lower level are transmitted to the
upper level, it is highly possible to finally obtain a good solu-
tion (the number of clusters and the data set of each cluster)
in the upper level. To our best knowledge, this is the first
study on considering coevolutionary algorithm with cluster-
ing problems. In addition, a neighborhood-based evolution-
ary strategy is employed to maintain the population diver-
sity. In order to show the effectiveness of the proposed al-
gorithm, we perform some experiments with a real-life ap-
plication, automatic clustering of spatial defects on wafer,
and a variety of synthetic clustering problems with different
number of input variables.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews a conventional evolutionary and coevolution-
ary algorithm. Section 3 presents the concept and the struc-
ture of the proposed algorithm, and the components consist-
ing of the proposed algorithm is described in Section 4. Sec-
tion 5 contains experimental results with real life and sim-
ulated examples. Finally, we present conclusions and some
remarks on the future research in Section 6.

2 Review of evolutionary and coevolutionary algorithm

Evolutionary algorithm (EA) is a stochastic search method
that takes its inspiration from natural selection and survival
of the fittest in the biological world [14, 15, 35]. The origins

of EA can be traced back to the late 1950s, and since the
1970s several evolutionary methodologies have been pro-
posed, mainly genetic algorithms, evolutionary program-
ming, and evolution strategies [1, 4, 11]. All of these ap-
proaches operate on a set of candidate solutions that are rep-
resented by a chromosome, i.e. a solution to the problem.
As in the case of biological evolution, EA has a mechanism
of selecting fitter chromosomes at each generation. To simu-
late the process of evolution, the selected chromosomes un-
dergo genetic operations, such as crossover and mutation.
This evolving process is repeated until a termination condi-
tion is satisfied. EA has received considerable attention and
has been successfully applied in many real-life optimization
problems [13]. The outline of conventional EAs is as fol-
lows;

1. Initialization: Generate a population of chromosomes.
2. Evaluation: Calculate the fitness of each chromosome in

the population.
3. Evolution: Create new chromosomes (offspring) by ap-

plying selection, crossover, and mutation to current chro-
mosomes (parents).

4. Termination condition: If the condition is met, then stop
the algorithm and return the best chromosome. If not, go
to 2.

The process of evolving in conventional EA assumes that
one population of individuals is alone in adapting to a fixed
environment. However, the environment is actually a com-
posite consisting of both the physical environment and other
independently action biological populations of individuals
which are simultaneously actively adapting to their environ-
ment.

Coevolutionary algorithm is a search algorithm that imi-
tates the biological coevolution that is a series of reciprocal
changes in two or more interacting species [29]. In tradi-
tional EA, the individuals evolve while interacting with each
other within a species to which they belong, not consider-
ing adaptation between interacting species. It is reported that
the coevolutionary algorithms offer a prospective alternative
to the standard evolutionary algorithms for problems that
can be decomposed into subtasks [40]. Although there are
many variants of coevolutionary algorithms, they are typ-
ically classified into two main forms: cooperative coevolu-
tionary algorithm and competitive coevolutionary algorithm,
which imitate symbiosis and parasitism, respectively.

Cooperative coevolutionary algorithm [26, 28, 40], also
called symbiotic evolutionary algorithms, is based on posi-
tive fitness interactions between individuals of different pop-
ulations. In the algorithm, a success on one individual im-
proves the chances of survival of the other. The populations
may reciprocally enhance the adaptability to complex en-
vironments by the symbiotic relationships and coevolution.
On the other hand, competitive coevolutionary algorithm
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Fig. 1 The population structure
of TSECA

[19, 41] is based on inverse (negative) fitness interactions
between individuals of the different populations. A success
on one side implies a failure of the other side to which one
must respond in order to maintain one’s chances of survival.
Competing populations may reciprocally drive one another
to increasing levels of complexity by producing an evolu-
tionary arms race.

Based on the advantages of coevolutionary algorithm, in
this research, we propose a two-leveled symbiotic evolution-
ary algorithm for unknown K clustering problems. The spe-
cific description of the proposed algorithm will be given in
the next section.

3 Two-leveled symbiotic evolutionary clustering
algorithm (TSECA)

3.1 The basic concept and structure

In TSECA, a two-leveled structure is maintained throughout
the execution of the algorithm, as shown in Fig. 1. There
are three populations in the algorithm. Each population at
Level 1 and 2 forms a two-dimensional structure of square
lattice. In the symbiotic evolutionary algorithm, each sub-
problem is treated as a distinct species, and a population is
maintained for each of the species.

At Level 1, there exist two populations (N_Pop and
C_Pop) that represent the two sub-problems: finding the
number of clusters and grouping the data into each clus-
ter, respectively. A chromosome in a population at Level 1
represents a partial solution to the entire problem. An en-
tire solution is constructed by combining two partial solu-
tions. Therefore, fitness evaluation of a chromosome in the

populations at Level 1 requires selecting a chromosome in
another population. This chromosome is called as the sym-
biotic partner, which represents a sub-problem solution. The
chromosomes in the populations are separated, but interact
with each other in other populations while evolving. This
process simulates symbiosis in nature [28].

The population, Int_Pop at Level 2, consists of chromo-
somes that are combined with those in the lower level, each
of which represents the complete solution to the entire prob-
lem. The chromosomes in Int_Pop evolve by themselves
while keeping up their combined form within the popula-
tion. Evaluation at Level 2, therefore, is the same as that of
standard evolutionary algorithm. The good combinations of
the chromosomes obtained from the interaction within Level
1 are transmitted to Level 2. The interactions within and be-
tween the levels imitate the natural process of endosymbi-
otic evolution. The theory of endosymbiotic evolution, first
proposed by Margulis [33], explains the evolution process of
eukaryotes from prokaryotes. In this theory, relatively sim-
ple structured prokaryotes enter into a larger host prokary-
ote. Thereafter, they live together in symbiosis and evolve to
a eukaryote [25, 27].

To maintain the diversity of solutions in a population,
a neighborhood-based evolution strategy is adopted. Un-
like a standard EA, which evolves with whole population,
neighborhood-based strategy evolves with parts of popu-
lation. It has been reported that the strategy promotes di-
verse and good chromosomes to form niches, so that it can
lessen premature convergences, facilitating an efficient ex-
ploration of the solution space [26, 28]. The structure and
size of neighborhood can be defined in many different ways.
We use the 3 × 3 structure here. The neighborhood at po-



792 K.S. Shin et al.

Fig. 2 The outline of TSECA

sition (r, s),NP(r, s) denotes the chromosome at (r, s) and
its eight neighbors in a population, as shown in Fig. 1. We
will present in Section 3.2 the detailed explanation of a
neighborhood-based evolution strategy.

In addition, the evolution process for a population is
based on a type of steady-state genetic algorithm in which
one chromosome produced from its parents is updated in
one evolving cycle [45, 50]. The algorithm is known to pro-
vide better performance in solution quality and computa-
tional time than a generational standard EA.

3.2 The procedure of TSECA

In this subsection, we will present the detailed procedure of
the proposed algorithm, TSECA. During one evolution cy-
cle, each population evolves independently, except for the
evaluation of two populations at Level 1. Note that nine
members of each population, not all members, take part
in the evolving process. This evolving process is repeated
until the termination condition is met. Figure 2 shows the
flowchart of the proposed algorithm, and the overall proce-
dure is described below.

Step 1: Initialization and evaluation of initial populations

Step 1.1: Initialize all populations, N_Pop and C_Pop in
Level 1 and Int_Pop in Level 2.

Step 1.2: Evaluate the initial fitness of all chromosomes
in N_Pop and C_Pop. The fitness is calculated using
the combination of chromosomes in the same position in
N_Pop and C_Pop. Set Ind∗ and f ∗ to be the best combi-
nation and its fitness, respectively.

Step 1.3: Evaluate all chromosomes in Int_Pop at Level 2
and set Indbest, fbest to be the best chromosome and its
fitness, respectively. If f ∗ > fbest, then set fbest = f ∗ and
Indbest = Ind∗.

Step 2: Setting up neighborhood
Choose an arbitrary position (r, s) and set up the neigh-
borhoods NPN(r, s),NPC(r, s) of N_Pop, C_Pop and
NPInt(r, s) of Int_Pop.

Step 3: Fitness evaluation and inter-level interaction

Step 3.1: For each neighborhood NPN(r, s),NPC(r, s) in
Level 1,

(a) Evaluate the fitness of chromosomes in NPN(r, s),
NPC(r, s), by combining a symbiotic partner selected
arbitrarily from another population.

(b) Let Ind∗ be the best combination chromosome. Re-
place the worst chromosome in NPInt(r, s) of Int_Pop
at Level 2 with Ind∗.

Step 3.2: Evaluate the fitness of chromosome in NPInt(r, s).
Let Indold and fold be the best chromosome in NPInt(r, s).
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If fold > fbest, then update Indbest and fbest, that is,
fbest = fold and Indbest = Indold.

Step 4: Evolution of neighborhoods

Step 4.1: For each NPN(r, s),NPC(r, s), and NPInt(r, s),

(a) Produce two offspring by applying a crossover oper-
ation to two parent chromosomes which are selected
from the neighborhood based on their fitness.

(b) Replace two chromosomes having the worst fitness
from the neighborhood with the two offspring pro-
duced in (a).

(c) Mutate chromosomes in the neighborhood based on
the mutation rate.

Step 5: Termination condition
If the termination condition is met, then stop the algorithm.
Otherwise, go to Step 2.

The initialization in Step 1 randomly generates chromo-
somes of all populations in each level and computes their
initial fitness. More specific description of the creation and
fitness calculation of initial chromosomes will be given in
the next section.

Step 2 sets up the neighborhood, which is the basic unit
of evolution operations in the algorithm. The neighborhood
NPP (r, s) indicates the chromosomes including one at posi-
tion (r, s) and its eight neighbors in population P .

Fitness evaluation at Level 1 needs a strategy for select-
ing symbiotic partners. Although many strategies are avail-
able, there is no significant difference in the performance of
the algorithms [26]. Therefore, we select randomly the part-
ners (Step 3.1). In Step 3.2, the chromosomes in two levels
interact with each other. Through the harmonic evolution be-
tween standard and coevolutionary mechanism, we expect to
improve the capability of searching diverse and good solu-
tions.

Step 4 evolves the chromosomes in the neighborhood of
every population that has been set up in Step 2. For selec-
tion mechanism, we use binary tournament selection, which
is independent of fitness scaling. In a binary tournament se-
lection process, two individuals are selected at random and
their fitness is compared. The individual with better fitness
is selected as a parent. The other parent is selected in the
same way. Genetic operators (crossover and mutation) used
here are explained in Section 4.3 in detail.

Since TSECA uses a form of steady-state genetic algo-
rithm, it always preserves the best chromosome among those
that have been found (elitism). In addition, other parameters
including the size of populations, the rate of mutation, and
termination condition are explained in Section 5.

4 Evolutionary components for TSECA

As mentioned earlier, TSECA imitates the process of sym-
biotic evolution in nature. To construct it properly, some
components and evolution mechanisms are needed. These
involve the representation scheme of a potential solution,
fitness evaluation, and genetic operators. In this section, we
will present those elements for unknown K clustering prob-
lems in detail.

4.1 Genetic representation and initial populations

To apply a symbiotic evolutionary algorithm to clustering
problems, it is required to represent the solution to the sub-
problems and the entire problem as genetic chromosomes.
It is desirable that the chromosome representation in evo-
lutionary algorithms is natural, clear, and not redundant.
There are two populations, N_Pop and C_Pop in Level 1. For
N_Pop, a chromosome is represented by binary strings with
the length of Kmax where Kmax is the maximum number of
possible clusters. The number of 1-bit in a string means the
number of clusters. On the other hand, a chromosome of
C_Pop is represented by a sequence of real numbers denot-
ing the cluster centers, and appropriately determines cluster
centers. For a P -dimensional space, the length of the chro-
mosome is Kmax × P , where the first P genes represent the
first cluster center with P dimensions, the next P genes rep-
resent those of the second cluster center, and so on. These
representation schemes are clear and natural, therefore it is
easy to decode and apply some genetic operators which are
well known. An example of chromosome representation at
Level 1 is shown in Fig. 3. In Level 2, a chromosome in
Int_Pop consists of the combinations of two different chro-
mosomes of N_pop and C_Pop.

In Level 1, decoding of a chromosome in N_Pop (C_Pop)
is achieved after forming an entire chromosome by combin-
ing a chromosome in C_Pop (N_Pop). The number of 1-bit
in N_Pop chromosome is decoded as the number of clusters,
and the values in the same position as the 1-bit of C_Pop
chromosome are decoded as the centers of the clusters. The
0-bit of N_Pop chromosome and the same position of C_Pop
chromosome are discarded in the decoding process. Cluster-
ing is done by assigning each data point to the closest center
obtained previously. Thus, we can determine the number of
clusters and the cluster to which each data point belongs.
Decoding of a chromosome in Int_Pop at Level 2 is also
achieved in the same way as in Level 1. Each chromosome
in it can be directly decoded because the chromosomes rep-
resent the entire problem. As shown in the example in Fig. 3,
the number of clusters is 4 and their centers are (54.91,
15.97), (17.81, 33.26), (41.83, 70.80), and (32.29, 79.18).

The chromosomes for all initial populations are gener-
ated randomly. For each chromosome in N_Pop, first gen-
erate the random number k in the range of [1, Kmax] and
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(0 1 1 0 0 1 0 1 0)
(a) An example of N_Pop chromosome

{(50.11, 18.62) (54.91, 15.97) (17.81, 33.26) (17.29, 67.71) (29.86, 21.15) (41.83, 70.80) (8.944, 58.71) (32.29, 79.18) (63.88, 75.10)}
(b) An example of C_Pop chromosome

Fig. 3 The chromosome representation of the sub-problems

choose the k genes from a chromosome at random, then set
the value 1 to the chosen genes, 0 to the rest genes. For
C_Pop, the initial chromosomes are created by randomly
generating Kmax of center points which have values ranging
in [xmin

d , xmax
d ], where xmin

d and xmax
d denote the minimum

and maximum value of d-th attribute in data set, respectively.

4.2 Fitness evaluation

In general, the fitness of a chromosome is evaluated us-
ing the objective function of the problem. The objective of
the clustering problem considered in this paper is to max-
imize the similarity within each cluster and the dissimilar-
ity among clusters. Many measures to evaluate the result of
clustering have been suggested [16, 42]. In this paper, the
Davies-Bouldin index (DB) is used to evaluate the fitness of
a chromosome. The DB is used to find clusters which are
compact and well separated by minimizing the intra-cluster
distance while maximizing the inter-cluster distance. This
index (DB) for K clusters is defined as [9]:

DB = 1

K

K∑

i=1

max
j=1,...,K,j �=i

Si + Sj

d(μi ,μj )
(1)

where Si can be computed as

Si = 1

|Ci |
∑

x∈Ci

d(x,μi )

d(a,b) = (aT b)1/2

In (1), Si is the intra-cluster distance, which is the aver-
age distance of all data points within cluster Ci to its cluster
center μi , and d(μi ,μj ) is the inter-cluster distance which
is measured by the distance between the centers of two clus-
ters, i.e. the distance between i-th cluster center μi and j -th
cluster center μj . A cluster with low scatter and high dis-
tance from other clusters has small value of DB. Conse-
quently, DB index will have a small value for a good clus-
tering. The optimal number of clusters can be estimated by
minimizing DB for different values of K . To assign higher
fitness value to better chromosome, we use the inverse of
DB as the fitness for a chromosome. Thus, the fitness value
is defined as follows.

fitness = 1

DB index
(2)

4.3 Genetic operations

Genetic operators are generally divided into two classes:
crossover and mutation [14]. It is important to design ge-
netic operators that are able to extract good genetic infor-
mation from the parents and inherit it to offspring. Since
binary (N_Pop) and real number (C_Pop) representation are
used in our algorithm, existing genetic operators can be ap-
plied without any modifications. For all the populations in
Level 1, we apply a two-point crossover operator [35]. Fig-
ure 4 shows the process in which one child is produced
by two-point crossover for each type of chromosome. At
Level 2, the genetic operators used at Level 1 can be utilized
in the same manner. Recall that a chromosome at Level 2 is
composed of two chromosomes in Level 1.

For each chromosome in N_Pop, the mutation is per-
formed by selecting one or more genes with a probability
equal to the mutation rate and changing the gene value 0 (1)
to 1 (0). For C_Pop representing the center of clusters, we
use the Gaussian mutation as follows [14];

zt+1
kj = zt

kj + N(0,1) (3)

where zt
kj is the j -th attribute of the k-th cluster center at

generation t,N(0,1) is a Gaussian random number with a
mean of zero and standard deviation of 1. For the chromo-
somes in Int_Pop at Level 2, the same operators as in Level 1
are used for each part of a chromosome.

5 Experimental results

This section presents a real-life and simulated synthetic ex-
ample to evaluate the performance of the proposed algo-
rithm. The proposed algorithm, TSECA, is compared to Ge-
netic Clustering Unknown K-clustering (GCUK) [5]. For
the validity index for clustering, we utilize Davies-Bouldin
(DB) index. The algorithms were implemented in JAVA lan-
guage and executed on IBM-PC with a 3.0 GHz Intel Core2
Duo CPU. The computational times are calculated using the
CPU time function in JAVA. In EA-based algorithms, sev-
eral control parameters must be determined. The parameters
are set to those that give good results in preliminary experi-
ments. A 10 × 10 grid structure is established for each pop-
ulation in Level 1 and 2 of TSECA, and thus the population
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(a) Two-point crossover in N_Pop

(b) Two-point crossover in C_Pop

Fig. 4 An example of a crossover process

size is 100 (same to GCUK). In TSECA, the crossover rate is
not required because TSECA uses the steady-state strategy
in the evolution process. The crossover rate for GCUK is set
to 0.7. The mutation rate for both algorithms is set to 0.05.
The total number of reproduced chromosomes is used for
the termination condition. When the number reaches 7,000,
the algorithm is terminated.

5.1 Automatic clustering of spatial defects on wafer

Spatial defects shown on the wafer tend to clusters, which
contain important information that can assist process engi-
neers in their understanding of the ongoing manufacturing
processes [23, 52]. The defects on wafers can be divided into
global defects and local defects. Global defects are gener-
ated by random causes, which are difficult to remove, while
local defects in clusters are produced by assignable causes,
which should be removed to improve yield rates in semicon-
ductor manufacturing. Therefore, it is crucial to automati-
cally identify local defect clusters as well as recognize the
position of clusters because different locations of clustering
can lead to different root causes in manufacturing processes.

Defect recognition on wafers can be considered as a two-
dimensional clustering problem. Given the coordinates of
defects by an automated defect scanning tool, which scans
wafer surfaces to identify the locations of defects, cluster-
ing methods take those coordinates of defects as input vari-
ables, calculate the similarity (e.g., distance) between two
defects, and divide those defects into several groups. For this
experiment, we generated the simulated wafers followed by
the procedure presented by Yuan and Kuo [52]. We have
applied the spatial filtering technique, which is popular for
de-noising [49, 52], to remove the global defects from the
local defects. Among total nine simulated wafers, Fig. 5
shows three representative patterns and clustering results by

TSECA. The black circle, in Fig. 5, indicates the center point
of each cluster.

Table 1 summarizes the number of clusters, DB index,
and computational time obtained by TSECA and GCUK.
The values of DB index in Table 1 are the minimum and av-
erage values of 10 time runs. The result indicates that even
though both TSECA and GCUK successfully find the cor-
rect number of defect clusters on wafers, average DB index
of TSECA is smaller than that of GCUK, implicating that
the clustering results of TSECA are more compact. In addi-
tion, p-value shows that the experimental results are statis-
tically significant.

5.2 Simulated synthetic data set

In this subsection, we explore the effectiveness of the pro-
posed algorithm for synthetic data sets with 3 to 10 dimen-
sions of an input vector. The i-th data set is generated by
normal random number with mean μi and standard devi-
ation σi where 0 ≤ μi ≤ 100 and 0 ≤ σi ≤ 5. The range
of the number of data points in each cluster is [50, 450].
To verify the effectiveness of the two-leveled structure of
TSECA, we compare the result of TSECA with that of
GCUK and Single-leveled Symbiotic Evolutionary Cluster-
ing Algorithm (SSECA), which has a single level structure
with symbiotic processes (Level 1 in TSECA). The control
parameters for SSECA are same as those of TSECA. Ta-
ble 2 shows the performance of each algorithm with diverse
dimensional data set. The values of DB index in Table 2
present the average values of 20 experiments with the same
data set. In Table 2, the improved rate is calculated by

(average DB indexGCUK/SSECA − average DB indexTSECA)

average DB indexGCUK/SSECA
× 100(%).

Table 2 shows that in most of cases, the proposed TSECA
shows the effectiveness for clustering problems compared
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Fig. 5 Performance of TSECA:
(a) two clusters, (b) three
clusters, and (c) four clusters

(a) (i) original defect patterns, (ii) defect patterns after filtering, (iii) clustering by TSECA

(b) (i) original defect patterns, (ii) defect patterns after filtering, (iii) clustering by TSECA

(c) (i) original defect patterns, (ii) defect patterns after filtering, (iii) clustering by TSECA

Table 1 Summary of the defect clustering results on wafer maps

Wafer Actual GCUK TSECA p-value

ID no. of No. of DB index Time No. of DB index Time

clusters clusters* Mean STD+ (s) clusters* Mean STD+ (s)

1 2 2 0.234 0.011 4.4 2 0.243 0.001 7.4 0.026

2 2 2 0.191 0.006 3.9 2 0.189 0.003 6.9 0.022

3 2 2 0.218 0.007 5.3 2 0.216 0.003 9.2 0.018

4 3 3 0.362 0.020 6.6 3 0.349 0.004 11.2 0.002

5 3 3 0.359 0.024 6.4 3 0.326 0.001 11.4 0.013

6 3 3 0.235 0.007 9.0 3 0.234 0.003 15.6 0.034

7 4 4 0.331 0.049 7.4 4 0.281 0.019 12.4 0.013

8 4 4 0.321 0.016 8.1 4 0.303 0.005 14.1 0.005

9 4 4 0.333 0.021 7.5 4 0.283 0.005 12.8 0.000

* The number of clusters at minimum value of DB index
+ STD: standard deviation

with standard GA-based approaches. The reason is that a
symbiotic evolution at Level 1 provides a better diversity of
solutions by increasing the capability of parallel search and
the process at Level 2 speeds up the solution convergence
by utilizing the information of entire solutions. The experi-
mental results implicate that several parallel searches with a
pieces of sub-problems are more efficient than single search
for the entire problem. In Table 2, p-value shows that the
proposed TSECA is a competitive approach for clustering

problems with statistical significance. As an aspect of com-
putational burden, the proposed TSECA takes more time
than SSECA. This is because the TSECA is modeled with
a two-leveled structure and each chromosome in Level 1 is
combined with other chromosomes in other sub-populations
and its fitness is then evaluated. SSECA, meanwhile, re-
quires a little more computational time than TSECA be-
cause SSECA only conducts the process of symbiotic evo-
lution. Note that minimizing the DB index does not always
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Table 2 Performance comparison of each algorithm (standard deviation in parentheses)

Problem DB index Improved rate (%) p-value Computational time (s)

(D, C, N)* GCUK SSECA TSECA vs. GCUK vs. SSECA vs. GCUK vs. SSECA GCUK SSECA TSECA

(3, 3, 759) 0.130 0.130 0.120 7.8 7.8 0.000 0.000 9.4 27.4 20.0

(0.005) (0.005) (0.007)

(3, 5, 1242) 0.332 0.349 0.267 19.5 23.4 0.000 0.000 16.8 46.3 33.3

(0.051) (0.038) (0.023)

(3, 7, 1734) 0.324 0.296 0.296 8.4 0.0 0.084 0.999 25.2 67.3 48.6

(0.056) (0.050) (0.040)

(3, 10, 2725) 0.413 0.427 0.407 1.6 4.8 0.587 0.096 40.2 106.1 76.5

(0.038) (0.040) (0.038)

(5, 3, 990) 0.142 0.142 0.136 4.5 4.5 0.000 0.000 20.6 60.0 45.0

(0.006) (0.006) (0.008)

(5, 5, 1369) 0.243 0.276 0.197 19.1 28.5 0.019 0.000 29.0 86.3 63.9

(0.079) (0.074) (0.018)

(5, 7, 2248) 0.273 0.288 0.203 25.7 29.7 0.002 0.002 51.9 140.5 104.0

(0.078) (0.103) (0.050)

(5, 10, 2197) 0.515 0.466 0.448 13.0 3.9 0.002 0.471 50.4 138.2 101.7

(0.072) (0.095) (0.057)

(7, 3, 592) 0.148 0.165 0.143 3.4 13.1 0.000 0.188 19.9 50.4 35.8

(0.001) (0.073) (0.006)

(7, 5, 1377) 0.267 0.312 0.251 6.1 19.6 0.283 0.029 47.1 123.1 89.2

(0.082) (0.116) (0.033)

(7, 7, 1495) 0.357 0.350 0.306 14.3 12.6 0.017 0.058 50.0 132.8 97.5

(0.079) (0.089) (0.045)

(7, 10, 1991) 0.417 0.459 0.390 6.3 14.9 0.213 0.001 64.1 177.8 129.2

(0.071) (0.063) (0.060)

(10, 3, 1016) 0.194 0.194 0.184 5.1 5.1 0.000 0.000 49.6 121.1 90.0

(0.006) (0.006) (0.009)

(10, 5, 1047) 0.233 0.324 0.213 8.8 34.3 0.300 0.001 47.7 133.1 106.2

(0.081) (0.126) (0.028)

(10, 7, 1581) 0.372 0.391 0.312 16.1 20.4 0.063 0.022 74.0 200.4 148.4

(0.122) (0.131) (0.065)

(10, 10, 2894) 0.488 0.460 0.403 17.4 12.2 0.014 0.089 136.9 360.5 273.1

(0.093) (0.089) (0.113)

* D: number of dimension, C: number of cluster, N: total number of data

guarantee the correct number of clusters and the same num-
ber of clusters on each run because EA-based algorithms
are a kind of the stochastic search method, which takes
their inspiration from natural selection and survival of the
fittest.

Even though we used only datasets that have 3 to 10 di-
mensions of an input vector, similar conclusion can be made
for the high dimensional datasets because the higher dimen-
sion of data does not influence on the effectiveness of chro-
mosome encoding/decoding method in EA algorithms, only
increasing computational times. In summary, based on the
two experimental results, it is concluded that the proposed

TSECA algorithm is a promising alternative for clustering
problems with unknown cluster numbers.

6 Conclusions

This paper proposes a two-leveled symbiotic evolutionary
clustering algorithm (TSECA) for unknown K clustering
problems. Unlike conventional evolutionary algorithms, the
proposed algorithm provides parallel exploring optimal so-
lutions for two sub-problems such as finding the number of
clusters and grouping the data into these clusters. In addi-
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tion, the framework of coevolutionary algorithm and genetic
elements suitable for each sub-problem are proposed. Ex-
perimental results with a real-life application and simulated
synthetic data set demonstrate that TSECA produces more
compact clusters as well as the accurate number of clusters.
This result implicates that the proposed algorithm is a very
promising alternative for unknown K clustering problems.

As for further researches, even though coevolutionary al-
gorithm shows better performance than conventional evolu-
tionary algorithms, much computational time is a drawback
of coevolutionary-based algorithms. Therefore, we need to
develop an efficient genetic representation scheme and fit-
ness evaluation in order to reduce a computational time. In
addition, the clustering problem in the paper can be viewed
as a multi-objective problem. For the clustering objectives,
there could be inter-cluster distance, intra-clustering dis-
tance, and the number of clusters, and so on. Evolution-
ary algorithms (EAs) are known to be promising for find-
ing diverse solutions close to the true Pareto optimal so-
lutions in multiple objective optimization problems since
EAs can search for many solutions in parallel by virtue of
maintaining a population of solutions. This area is another
branch of EA, called Multi-Objective Evolutionary Algo-
rithm (MOEA). There have been a huge number of stud-
ies on MOEA and its applications so far. Therefore, apply-
ing MOEA and the coevolutionary concept to the clustering
problem can be an interesting future research area.
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