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Abstract An evolutionary algorithm based approach for se-
lection of topologies in hierarchical fuzzy systems (HFS) is
presented. Coupling fuzzy system with evolutionary algo-
rithm provides a solution to the automated acquisition of the
fuzzy rule base. It is difficult to study the problem of hi-
erarchical decomposition for a large class of fuzzy systems
but it is possible to analyse such architectures on the ex-
ample of a particular fuzzy system, such as inverted pendu-
lum. Topology of the HFS must be selected according to the
physical properties of the dynamical system under consid-
eration. Different HFS topologies for an inverted pendulum
system are investigated and analysed to address the problem
of how input configuration in multi-layered structure affects
the controller performance. The experiments are conducted
to test controller performance for different topologies of the
hierarchical fuzzy system. The impact of different topolo-
gies on control process is discussed. The results from the
case study of inverted pendulum can be extended to other
dynamical systems.

Keywords Fuzzy logic · Evolutionary algorithms ·
Inverted pendulum

1 Introduction

The design of control systems for complex and high dimen-
sional dynamical systems relies on the availability of a sys-
tem model under consideration. It is often difficult to create
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an adequate model of the system or process due to a lim-
ited availability of mathematical theory in case of very com-
plex systems. Approximate models are often employed in
such cases but with growing discrepancy between physical
system and its mathematical (or experimental) model. How-
ever, very complex systems can be controlled by human op-
erators with only a rudimentary knowledge of the dynamic
model. This kind of control problem has given rise to new
intelligent control methods, fuzzy logic and neural networks
being most widely used.

There are two main problems with the design of the in-
telligent control methods. The first is to obtain an adequate
knowledge base for the controller, usually obtained from
expert knowledge, and the second problem is selection of
key parameters defined in the method. Evolutionary algo-
rithms are often used for automated knowledge acquisition
for fuzzy logic controllers [1–3]. However, there are a num-
ber of methods employed in knowledge base acquisition [2]:

• Fuzzy rule base derived from human experts. The expert
specifies the linguistic labels associated with linguistic
variables, structure of the rule base, and the meaning of
each label.

• Fuzzy rule base derived from automated learning meth-
ods.

The most popular application of fuzzy set theory are fuzzy
rule-based systems as they provided the framework for en-
gineering applications. There are three major types of rule-
based systems [4]:

• Linguistic fuzzy model in which both the antecedent
and consequent part of IF-THEN rule are fuzzy propo-
sitions [5].

• Fuzzy relational model in which a particular antecedent
proposition can be associated with several different con-
sequent propositions via a fuzzy relation [6].
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• Takagi-Sugeno fuzzy model in which the consequent is a
crisp function of antecedent variables [7].

In this paper we take classical Zadeh [5] approach to fuzzy
control.

In a hierarchical fuzzy logic structure, typically the most
influential parameters are chosen as the system variables in
the first level, the next most important parameters are cho-
sen as the system variables in the second level, and so on [8].
In this hierarchy, the first level gives an approximate output
which is then modified by the second level rule set, this pro-
cedure can be repeated in succeeding levels of hierarchy.

In general, with n input variables and m fuzzy sets de-
fined for each input variable, there is mn fuzzy rules in
the rule base. In the hierarchical structure, the number of
rules in a complete rule set is so reduced to a linear func-
tion of the number of variables, but this number may still
be high. Increasing the number of input variables or input
fuzzy sets results in an exponential increase in complex-
ity of the rule base. The decomposition of the system into
hierarchical fuzzy system is intended to reduce the size of
the rule base while maintaining an adequate accuracy. Lay-
ered fuzzy logic systems utilize the modularity characteris-
ing many physical systems and their mathematical models.
The output influenced by one closely related group of in-
put variables may be largely independent of the values of
other variables. Therefore, a layered fuzzy logic system can
decompose the rule base along these lines of weak interde-
pendence and still maintain a high level of accuracy.

The combination of fuzzy logic control (FLC) and evolu-
tionary algorithm (EA) provides an efficient method to ex-
amine different control systems for a given control problem.
The FLC approach is used to define the framework used
by solution search method (EA). Determining a particular
HFS, and its encoding method, creates a search space within
which the EA searches for the best solution according to
the predefined performance index, see Sect. 6 for details. In
other words, the fuzzy logic defines the control problem and
the EA is used to find a solution to that problem. Evolution-
ary algorithm is a search technique that mimicks the bio-
logical evolutionary strategies. The search space is initially
filled with an initial population of potential solution, either
randomly generated or initialized by any other mechanism,
and then the population is subjected to evolutionary oper-
ators, such as selection operator (‘survival of the fittest’),
crossover (playing role of sexual reproduction), mutation,
etc. Next population (often called generation) is created and
every individual in the population is assigned a fitness value
according to a predefined fitness function. Fitness value is
used to select the best individuals (potential solutions) for
crossover operator. The process continues until termination
condition is satisfied. If the EA ends successfully the solu-
tion to the control problem is found.

In this paper (extended version of [9, 10]) different
topologies of HFS for a given dynamical system (the in-
verted pendulum system) are investigated and analysed to
address the problem of how input configuration in multi-
layered structure affects the controller performance. The re-
search presented in this paper has originated in research
work by Stonier et al. [11]. Examination of the topologies
gives insight into the workings of the physical system and
its control system. For the inverted pendulum system, a sin-
gle layer, two layers, three layers, and four layers HFS with
different input configurations are examined and controllers’
performances compared. There are various approaches to
building a topology of the HFS and it is area of current re-
search, see the following section.

2 Related work

There is a vast literature on fuzzy control systems, espe-
cially with applications to the inverted pendulum (cart-pole
system) as it is often used as a test system for proposed
methods. However, there are much fewer publications on
hierarchical fuzzy control systems and topology selection.
A large number of control systems (especially from 1980s
and 1990s) rely on local linearization of the dynamical sys-
tem under consideration. Design of the stabilizing fuzzy
logic controllers is achieved via piece-wise linearization of
the non-linear system, especially when authors are imple-
menting Lyapunov direct method. Lyapunov method can be
used not just for stability analysis but also to design fuzzy
controllers, for example [12–14].

It is difficult to study the problem of hierarchical decom-
position for a large class of fuzzy systems but it is possible
to analyse such architectures on the example of a particular
fuzzy system. Obviously, topology of the HFS must be se-
lected according to the physical properties of the dynamical
system under consideration. The selection process is sub-
ject to human decision. It might be possible to design the
EA for finding the most suitable (optimal or near-optimal)
topology for any particular problem (hierarchical EA), so
the process can be automated. There is a number of pa-
pers dealing with variable control structures, see for example
[15–19]. Durr and Mattiussi [15] utilise a modular network
architecture for the neural network and introduce its modu-
lar genetic representation that allows evolutionary algorithm
to search for the neural network topology. The methodology
can be implemented in fuzzy logic control where neural net-
work is replaced by hierarchical fuzzy structure. A different
approach is taken by Acampora [16] who designs a fuzzy
controller with a variable configuration (among other char-
acteristics) based on the concept of Timed Automata-based
Fuzzy Controllers. The timed fuzzy controller acts on the
system through a number of time intervals (knows as control
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eras) which are characterized by specific control configura-
tions which in turn are determined by: the number and typol-
ogy of fuzzy variables and also by the number and structure
of relationships between variables [16]. The same concept is
explored in [17] with more specific application to modeling
variable fuzzy structures.

The curse of dimensionality remains an unsolved prob-
lem in fuzzy logic control theory [20]. The problem is sub-
ject of many research papers with some authors focusing on
systematic design of fuzzy logic systems. An automatic de-
sign of Takagi-Sugeno hierarchical fuzzy systems is inves-
tigated in [21]; the algorithm starts with random structures
and rules’ parameters. First, hierarchical structure is modi-
fied to find controller improvement and after completion of
this step the rules’ parameters are fine-tuned. The algorithm
continues until a satisfactory solution (hierarchical TS-FS
model) is found or a time limit is reached. Takagi-Sugeno
approach has advantage of making use of Lyapunow stabil-
ity analysis.

A number of papers investigate construction of hierar-
chical fuzzy systems. Most notably a series of papers in
the special issue of International Journal of Intelligent Sys-
tems on hierarchical fuzzy systems. A review of the con-
struction of hierarchical fuzzy systems is given in Torra pa-
per [22]. Tunstel et al. [23] examines hierarchical control de-
sign and synthesis for the collection of subsystems compris-
ing of fuzzy logic controllers and fuzzy knowledge-based
decision systems. The technique is implemented to hierar-
chical behavior-based controllers for autonomous naviga-
tion of mobile robots. Magdalena [24] in his article analyses
the role of context in hierarchical fuzzy controllers based
on the decomposition of the input space. His aim is to im-
prove the HFS design process by making it easier to in-
troduce the expert knowledge in that process. Tachibana
and Furuhashi [25] use multi-objective genetic algorithm
(MOGA) and human expert intervention to determine hi-
erarchical structure of submodels, select input variables of
each submodel, divide input and output space, tune member-
ship functions, and decide on the inference engine method.
MOGA is used for selecting input variables of submodels.
MOGA finds multiple models with different input variables
and different numbers of fuzzy rules. A human expert de-
cides on the selection of the most suitable model. Kikuchi
et al. [26] investigate partitioning of complex systems into
simpler subsystems. They examined problem of an arbitrary
function being decomposed into several subfunctions with
a non-disjoint partition of variables. This problem corre-
sponds to hierarchical fuzzy system decomposition. Their
investigation established functional incompleteness of joint
expansion which imposes certain limitation on hierarchical
modelling.

Ming-Ling Lee et al. [27] introduces a new mapping rule
base scheme to generate the fuzzy rule-base for the HFS.

Cordon et al. [28] analyses problems related to the inflex-
ibility of the linguistic rule. An extension of the knowl-
edge base of linguistic fuzzy rule-based systems is intro-
duced: the hierarchical knowledge base. Delgado et al. [29]
introduces a hierarchical evolutionary approach to optimize
the parameters of Takagi-Sugeno fuzzy systems. A least-
squares method is sued to determine the parameters of non-
linear consequents. A pruning procedure is implemented to
prevent redundancy in each rule consequent. Their approach
provides structurally simple fuzzy systems with better than
average performance.

Sushmita and Chaudhury [30] designed a case-based rea-
soning system for stock analysis in financial market, see also
[31, 32], using hierarchical structure for case representation.
The developed method also makes use of a multi-criteria
decision-making algorithm which provides the most suit-
able solution with respect to the current market scenario.
Cheong [31] describes a method for building HFS design
with high input dimensions based the MacVicar-Whelan
meta-rules. The method was tested on two applications: the
Mexican and Argentinean currency exchange rates.

Yager [33] examines the basic assumptions in the Mam-
dani model. Fuzzy rules are considered as a partitioning of
the input space. Different representations of the rule conse-
quent are discussed. A new representation of fuzzy rules is
introduced that is called the hierarchical prioritized structure
(HPS). Holve [34] introduces a new method of rule genera-
tion for HFS called a hierarchical fuzzy associative memory
(HIFAM). A HIFAM, structured as a binary tree, overcomes
the curse of dimensionality when the number of inputs in-
creases. Sindelar [35] describes a method for a fuzzy hierar-
chical structure design that uses data to design a structure of
the fuzzy subsystems. The fuzzy structure is designed level
by level from the data and therefore there is no need to de-
velop an initial fuzzy model (single layer) avoiding HFS de-
composition problem.

Mon and Lin [36] proposed a hierarchical fuzzy sliding-
mode control to achieve asymptotic stability of the system.
The nonlinear system is decomposed into several subsys-
tems and the state response of each subsystem can be de-
signed to be governed by a corresponding sliding surface.
The whole system is controlled by a hierarchical sliding-
mode controller. The inverted pendulum system is used to
test the proposed method. Later they improved their hier-
archical fuzzy sliding-mode controller with decoupling of
the nonlinear inverted pendulum system into several subsys-
tems. Yeh and Li [37] proposed a multistage control system
for the inverted pendulum system that reduced the number
of rules. Stonier and Mohammadian [32] presented intro-
duction to hierarchical fuzzy control with the use of evo-
lutionary algorithms on several examples: interest rate pre-
diction, inverted pendulum, collision-avoidance in a robot
system, micro-robot control, and co-evolutionary algorithm.
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Dasgupta [38] was one of the first researchers that explored
evolving neuro-controllers for a dynamic system using ge-
netic algorithms. Wang [39] designed a sliding mode con-
troller for one-input multiple-output system where sliding
surfaces are organized in a cascade thus creating a hierarchi-
cal system. Cheong and Lai [40] addressed problems with
the use of hierarchical fuzzy logic controllers, especially in
the automatic design of controllers. This includes the coordi-
nation of intermediary outputs (approximate controllers) of
sub-controllers at lower levels of the hierarchy. The authors
describe a method for the automatic design of a hierarchical
fuzzy logic controller using an evolutionary algorithm called
differential evolution. The method is developed for a wide
class of control systems and the feasibility of the method
is demonstrated by developing a two-layered HFS for con-
trolling the inverted pendulum system. Other examples of
hierarchical fuzzy control applied to the inverted pendulum
system can be found in [41–47]. Related studies, but not ap-
plied to the inverted pendulum system, can be found in [47–
58].

3 Inverted pendulum system

The inverted pendulum system consists of the cart and a
rigid pole hinged to the top of the cart, see Fig. 1. The cart
moves left or right on a straight bounded track and the pole
swings in the vertical plane determined by the track. The dy-
namics of the system is modeled by the following equations:

ẋ1 = x2

ẋ2 = u + mL(sin(x3)x
2
4 − ẋ4 cos(x3))/(M + m)

ẋ3 = x4

ẋ4 = g sin(x3) + cos(x3)(u − mLx2
4 sin(x3))/(M + m)

L(4/3 − m cos(x3)2/(M + m))

(1)

where x1 is the position of the cart, x2 is the velocity of
the cart, x3 is the angle of the pole, x4 is the angular veloc-
ity of the pole, u is the control force on the cart, m is the
mass of the pole, M is the mass of the cart, L is the length
of the pole, and g is gravitational acceleration. The control
force is applied to the cart to prevent the pole from falling
while keeping the cart within the specified bounds on the
track. The system has the following parameters: m = 0.1 kg,
M = 1 kg, L = 0.5 m, g = 9.81 ms−1, with state variables
restricted by: −1.0 ≤ x1 ≤ 1.0 and −π/6 ≤ x3 ≤ π/6.

Fuzzy controller task is to stabilise the system about the
unstable reference position �x = �0 whilst maintaining the
system within the target region (TR) defined by the follow-
ing bounds: |x1| ≤ 0.1, |x2| ≤ 0.1, |x3| ≤ π/24, |x4| ≤ 3.0.
The fuzzy controller is to ensure the state variables conver-
gence to the TR and to maintain them within the TR for a
prescribed time limit Tf = 20.0.

Fig. 1 Inverted pendulum
system

Each domain region for input variables xi is divided into
five overlapping intervals covered by membership sets Ak

i ,
k = 1, . . . ,5, encoded as integers from 1 to 5. The output
variable u is divided into seven regions covered by member-
ship sets Bk , k = 1, . . . ,7. All fuzzy membership functions
are assumed to be triangular. Given a fuzzy rule base with M

rules and n antecedent variables, a fuzzy controller as given
by (1), with Mamdani product inference engine, uses a sin-
gleton fuzzifier and centre average defuzzifier to determine
output variables:

u =
∑M

l=1 ūl(
∏n

i=1 μAi
l(xi))

∑M
l=1(

∏n
i=1 μAi

l(xi))
(2)

where ūl are centres of the output sets Bl and μAil are mem-
bership functions associated with fuzzy sets Al

i .
The following notation for 2-layered HFS topologies is

used: L2-mn-kl denotes that input variables for layer 1 are
xm,xn and for layer 2: xk, xl , where all integers m,n, k, l ∈
[1,4]. Similarly, for a three-layers HFS the following nota-
tion: L3-mn-k-l denotes that input variables for layer 1 are
xm,xn for layer 2: xk , and for layer 3: xl , where all integers
m,n, k, l ∈ [1,4]. For other 2 and 3-layers HFS the same
notation is used, for example: L3-3-41-2 means that input in
layer 1 is x3, in layer 2: x4, x1, and in layer 3: x2. Generally
speaking, the number after capital letter L defines the num-
ber of layers, followed by groupings of numbers separated
by hyphens representing input variables in every layer.

4 Hierarchical fuzzy system

The structure of the hierarchical fuzzy system for the in-
verted pendulum problem defines the fuzzy controller to be
found (by the EA). This means finding the controller input
configuration and fuzzy rule bases (IF-THEN rules) corre-
sponding to each component of the HFS. In the HFS struc-
ture the single rule base is split into separate rule bases cor-
responding to each layer of the hierarchical structure, see
for example Figs. 2–7. The hierarchical fuzzy structure can
be encoded as a string of integer or real numbers. If binary
approach is used, encoding the HFS by string of 0–1 num-
bers, then well developed theory of genetic algorithms can
be used to find a control problem solution. In this paper we
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use HFS encoding by integer numbers, and the search tech-
nique is called evolutionary algorithm.

In the context of HFS, topology means both structure
(layers) and input configuration of the hierarchical fuzzy
system. In inverted pendulum problem there are four possi-
ble structures: 1-layer, 2-layers, 3-layers, and 4-layers, with
different input configuration (except single layer topology).
The number of rules in the hierarchical fuzzy system is a
linear function of the number of input variables. Let assume
that there are n input variables in a L-layers structure. For
every input variable there are m fuzzy sets associated with
that variable. Assume further that in the first layer there is
n1 input variables, 2 ≤ n1 < n, and ni + 1 in the ith layer,
ni ≥ 1. If n1 = ni + 1 = c is constant for i = 2, . . . ,L, then
the total number of rules in the hierarchical fuzzy system is
given by: M = mc

c−1 (n − 1), If m ≥ 2 the number of rules M

is minimized when c = 2, which means that there are two
input variables in every layer [51]. This input configuration
provides the minimal number of fuzzy rules in the knowl-
edge base but it does not necessarily provide the best con-
figuration from the control system perspective. Often, such
systems do not provide sufficient control performance, es-
pecially in complex high-dimensional systems. The decom-
position needs to be performed along the weak interdepen-
dencies between input variables. Obviously, it requires cer-
tain knowledge of the physical system in the absence of
any automated method of HFS decomposition. Note, that
only L3-mn-k-l configuration satisfies the above condition.
Topologies L2-mn-kl do not provide the minimal size for
the knowledge base.

In general, the first step in establishing the hierarchical
structure for a given dynamical system is to establish the
importance of its input variables and their interactions. If
the character of the dynamical system allows it, the vari-
ables should be grouped according to the degree they influ-
ence the output of the system and their inter-relations. This
allows designing the layered structure and input configura-
tion. The structure can be a combination of strictly hierar-
chical layers and parallel layers with similar input variables
grouped according to their inter-relations, see example of
such a topology in Fig. 2.

4.1 Two layered HFS

There are six different topologies of the 2-layered hierar-
chical fuzzy system in the L2-mn-kl configuration: two in-
put variables in the first layer and two input variables plus
intermediary control variable from layer 1 in layer 2. This
decomposition does not exhaust all possibilities as different
input configurations can be considered, for example: three
input variables in layer 1 and one input variable plus inter-
mediary control from layer 1 in layer 2. Another possibility
is to have one input in layer 1 and three input variables plus

Fig. 2 Example of HFS with two parallel layers

Fig. 3 HFS: 2-layers input configuration

intermediary control in layer 2 which would result in knowl-
edge base consisting of 880 rules which is larger in size than
single layer architecture. The architecture of 2-layered HFS
is shown in Fig. 3.

For the inverted pendulum system the first knowledge
base has the two inputs to produce as output a first approxi-
mation of the control u1. This u1 together with another state
input xi and xj , i, j ∈ [1,4] are used as input in the second
knowledge base to produce the final control output u. In the
first layer there are 25 = 52 rules in the knowledge base. The
lth fuzzy rule for the first layer has the form: If ((xi is Al

i)

and (xj is Al
j )) Then (u1 is Bl), where Al

k , k = 1,2,3,4, are
fuzzy sets for input variables xk, k = 1,2,3,4, respectively,
and where Bl are fuzzy sets for output variable u1. For the
second layer there are 175 = 7(5)2 rules in the knowledge
base. The lth fuzzy rule for the second layer has the form:
If ((u1 is Cl) and (xi is Al

i) and (xj is Al
j )) Then (u is

Bl), where Cl are fuzzy sets for the input control variable u.
There are a total of 200 fuzzy rules in this hierarchical struc-
ture while there are 625 rules in the single layer rule base:
54 = 625.

4.2 Three layered HFS

In L3-mn-k-l configuration there are twelve different topolo-
gies for the 3-layered hierarchical fuzzy system with two in-
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Fig. 4 HFS: 3-layers input configuration

Fig. 5 HFS: 4-layers input configuration

put variables in the first layer, and one input variable plus
intermediatory control in layer 2 and 3. Again, this decom-
position does not exhaust all possibilities, as different in-
put configurations can be considered but with an increased
number of rules in the knowledge base. The architecture of
3-layered HFS is shown in Fig. 4. This input configuration
provides the minimal number of fuzzy rules in the knowl-
edge base.

For this system the first knowledge base has the two in-
puts, xi and xj , i, j ∈ [1,4] to produce as output a first ap-
proximation of the control u1. This u1 together with xk are
used as input in the second knowledge base. Then the second
layer produces another approximation of control u2 which
with xl is used as input to the third (and final) layer to pro-
duce the final control output u. There are a total of 95 fuzzy
rules in this hierarchical structure.

4.3 Four layered HFS

There are twenty four different topologies for the 4-layered
HFS for the inverted pendulum with one input in every layer
plus intermediatory control in layer 2, 3, and 4. The archi-
tecture of 4-layered HFS is shown in Fig. 5.

In the first layer there are only five rules in the knowledge
base. The lth fuzzy rule for the first layer has the form: If (xi

is Al
i) Then (u1 is Bl), where Al

k , k = 1,2,3,4 are fuzzy sets
for input variables xk , k = 1,2,3,4, respectively, and where
Bl are fuzzy sets for output variable u1. For all the other

layers there are 35 = 7 ·5 rules in their respective knowledge
bases. For the second layer the lth fuzzy rule has the form:
If ((u1 is Cl) and (xk is Al

k)) Then (u2 is Bl), where Cl are
fuzzy sets for the input control variable u1. Fuzzy rules for
the third and fourth layer has a similar form. There are a total
of 110 fuzzy rules in the 4-layered hierarchical structure.

5 Alternative topologies

There are other input configurations within two and three
layered hierarchical structures that do not have two inputs in
the first layer (one of the conditions for the minimal size of
the rule base). Two examples of 2-layered alternative input
configurations are shown in Fig. 5. In the first configura-
tion there are three input variables in layer 1 and one input
variable plus intermediary control in layer 2 which results
in 160 rules in the knowledge base. In the second configu-
ration there is one input in layer 1 and three input variables
plus intermediary control in layer 2 which results in a knowl-
edge base of 880 rules—more than in a single layer knowl-
edge base. Two 3-layered alternative topologies are shown
in Fig. 6. Both configurations have 215 rules in their rule
bases.

6 Proposed evolutionary algorithm based approach

The evolutionary algorithm is a heuristic search technique
that maintains a population of individuals. Each individual
can be considered to represent a potential solution to a given
problem. Each individual is assigned a measure of fitness
which determines how accurate it is as a potential solution
to the problem. The new population is obtained from the
old one by the use of genetic operators such as crossover
and mutation. An elitism strategy is used to pass the fittest
individuals to the new population, so that the information
encapsulated in the best individual is not lost and passed to
the next generation.

A selection process is used to obtain parents for mating in
the current generation. The most popular is proportional se-
lection to select randomly two parents based on their fitness
in proportion to the overall total fitness of the population.
Another is tournament selection in which a specified num-
ber of possible parents are selected at random from the pop-
ulation. A tournament is then held to select the two fittest
strings and they are used as parents in the next process of
crossover to generate children to be passed into the next gen-
eration.

In the crossover operation a number of ‘parent’ strings,
typically two, are recombined to create ‘child’ strings. The
most popular crossover operator is the one-point, arithmetic,
and uniform crossover. The crossover operator plays a role
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Fig. 6 HFS: 2-layers
alternative input configurations

Fig. 7 HFS: 3-layers
alternative input configurations

of sexual reproduction in which two individuals exchange
parts of their strings to produce offspring.

With a given probability the mutation operator mutates
elements of the individual in the population. This ensures
satisfactory diversity within the population which is required
for the EA to find better approximate solutions to the prob-
lem.

With an appropriate selection of EA parameters and op-
erators, the algorithm is allowed to evolve. It is terminated
when predefined termination condition is satisfied; usually
at a fixed number of generations or until there is minimal
change or no change to the string which has the best fitness.
The fittest individual is taken as the best possible solution
learnt by the algorithm.

The HFS decomposition is not unique and may give rise
to variables with no physical significance. This can cause
difficulties in obtaining a complete class of rules from hu-
man experts. Therefore, the rules need to be learnt by some
learning algorithm, for example an evolutionary algorithm.
These fuzzy rules are typically evolved with no previous
knowledge other than input-output data, or the physical sys-
tem model.

In the knowledge base of any layer each fuzzy rule is
uniquely defined by the position of the consequent part in the
string. The consequent part is identified by a particular out-
put fuzzy set, for example, Bk . Such a fuzzy set can be iden-
tified by the integer k ∈ [1,7]. For example, 2-layered fuzzy
rule base can be represented as a linear individual string
of M = 25 + 175 = 200 consequents, �pk = (a1, . . . , a200),
where aj is an integer ∈ [1,7] for j = 1, . . . ,200. Other hi-
erarchical fuzzy system structures can be represented in a
similar fashion.

Full replacement policy (constant population size) is used
and tournament selection with size nT = 4. A strong elitism
policy is implemented: four copies of the top five individ-
uals are passed to the next generation. To maintain diver-
sity of the population crossover operators of parent strings to
form two children in the next generation are used. In exam-
ination of different topologies so called random crossover
is implemented. The random crossover procedure creates
child1 from parent2 by copying it, then randomly select-
ing m-genes in the parent1 string to copy them in the cor-
responding positions in the child1 string. The procedure is
repeated for the child2 string with parent strings roles re-
versed. The random crossover operator gives more control
over crossover process as the number of genes subject to
exchange can be arbitrarily determined. Mutation is under-
taken with probability pm whose value is determined by a
mutation schedule that decreases from 0.8 to 0.001 over 300
generations.

if (gen ≥ 0 & gen < 50) pm = 0.8
if (gen ≥ 50 & gen < 100) pm = 0.7
if (gen ≥ 100 & gen < 150) pm = 0.6
if (gen ≥ 150 & gen < 200) pm = 0.3
if (gen ≥ 200 & gen < 250) pm = 0.1
if (gen ≥ 250 & gen < 300) pm = 0.01
if (gen > 300) pm = 0.001

where gen denotes the generation number. The operator is
defined by the following pseudo code:

if (mutate) {
if (ak = 7) ak = ak − rnd(1,3)
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else if (ak = 1) ak = ak
+ rnd(1,3)

else if (flip(0.5)) ak = ak
+ rnd(1,3)

else ak = ak − rnd(1,3)
if (ak > 7) ak = 7
if (ak < 1) ak = 1}

The objective function is evaluated as follows: each string
�pk is decoded into two or more components defining the
fuzzy knowledge base for each layer, then the formula (2) is
used to evaluate u1, u2, and u3 to find the final control to be
applied at each value of the state �x. The system state equa-
tions are integrated by the Runge-Kutta algorithm with step
size 0.02. The fitness fk to be minimised, is then calculated
based on certain measures of the behaviour of the system:
the accumulated sum of normalised absolute deviations of
x1 and x3 from zero, the average deviation from vertical,
the average deviation from the origin or T − TS where TS ,
the survival time, is taken to mean the total time before the
pole and cart break defined bounds. A penalty is added to
the objective if the final state breaks the following bounds:
|x1| ≤ 0.1, |x2| ≤ 0.1, |x3| ≤ π/24, |x4| ≤ 3.0, i.e., leaves
the designated target region. The objective function is de-
fined as: fk = ω1F1 + ω2F2 + ω3F3 + ω4F4 + ω5F5 with:
F1 = 1

N

∑N
1

|x1|
xmax

, F2 = 1
N

∑N
1

|x1|
ẋmax

, F3 = 1
N

∑N
1

|x3|
θmax

,

F4 = 1
N

∑N
1

|x4|
θ̇max

, F5 = 1
N

(T − TS), where xmax = 1.0,

θmax = π/6, ẋmax = 1.0, θ̇max = 3.0. N is the number of
iteration steps. Survival time is defined as: TS = 0.02 · N ,
with T = 0.02 · Nmax, where the max. number of iterations
Nmax = 1000.

7 Experiments and analysis of results

The relatively low number of possible topologies for the
inverted pendulum enables their examination one by one
and finding the topology with the best controller perfor-
mance. The best controller is decided arbitrarily by con-
sidering its performance: time to reach target region, mag-
nitude of control, and oscillations. For each topology ten
simulations are run with randomly generated initial popu-
lations. The initial population P(0) = { �pk : k = 1, . . . ,Mp}
is determined by choosing the aj as a random integer in
[1, 7]. Population size is set at Mp = 500. The initial state
is: �x0 = (0.5,0.0,0.01,0.0). The EA is terminated after
300 generations. The following fitness function parameters:
ω1 = 3000, ω2 = 2000, ω3 = 0, ω4 = 0, ω5 = 5000, are se-
lected for all simulations except single layer fuzzy system
with: ω1 = 1000, ω2 = 0, ω3 = 1000, ω4 = 0, ω5 = 5000.
Selecting different weights ω introduces a bias in the EA
towards one or a group of input variables. In most simula-
tion, the most difficult was to control the cart’s position and

Fig. 8 Minimum, average and maximum objective function values
over 300 generations for L2-34-12

therefore ω1 was assigned a larger value than other weights,
except ω5 that corresponds to the survival time. Controller
acts on the system for T = 20.

The minimum, average and maximum of objective func-
tion are examined for every topology over consecutive gen-
erations. The results are fairly similar, both for the 2- and
3-layered HFS. Examples for typical simulations are given
in Fig. 8.

Comparison between controllers with L2-14-23 topology
and L2-23-14 shows that swapping input variables between
layer 1 and layer 2 can have a significant effect on the con-
troller performance. This indicates that the HFS topology is
a decisive factor in the controller performance. This asser-
tion is confirmed by the 3-layered HFS results presented in
the following section.

7.1 One layer topology results

The EA is run ten times for the single layer FS with different
initial random populations. Within around 200 generations
the best fuzzy controller at each generation achieved con-
vergence of state variables to the designated TR and main-
tained it within this region for the remainder of the pre-
scribed time Tf . Typical convergence and controller out-
put values are shown in Fig. 9. As it can be seen from
Fig. 9 the stabilisation is smooth and regular for all state
variables. The controller is ‘frugal’, with values lying in
[−0.83,0.202], the best simulation results in terms of con-
trol magnitude. In ten simulations for L1-1234 there are con-
trollers with faster stabilisation times but with higher control
magnitude.

7.2 Two layers topology results

The EA converged on average to a satisfactory solution
within 100–184 generations, see Table 1. The best result is
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Table 1 Learning speed: 1- and
2-layered topologies Run No L1-1234 L2-12-34 L2-13-24 L2-14-23 L2-23-14 L2-24-13 L2-34-12

1 201 150 119 183 150 201 13

2 181 93 174 204 170 188 160

3 204 139 157 179 167 160 114

4 180 54 111 222 150 152 103

5 202 124 151 161 138 176 154

6 217 126 139 199 7 106 169

7 205 127 211 158 150 153 52

8 201 114 159 188 155 158 150

9 189 30 153 167 112 205 177

10 199 44 169 203 151 227 172

Average 198 100 154 186 135 173 126

Fig. 9 State variables convergence (left) and controller (right) L1-1234

Fig. 10 State variables convergence and controller L2-34-12

shown in Fig. 10, where pole angle x3 and its angular ve-
locity x4 are input to layer 1, and cart position x1 and its
speed x2 as input variables to layer 2. This result demon-
strates that the inverted pendulum system should be decom-
posed into two input variables groupings: cart variables: x1

and x2 (cart’s position and its velocity) and pole variables:
x3 and x4 (pole angle and pole’s angular velocity). Stabili-
sation is very quick and to 5 decimal place accuracy for all
variables, see Table 2. This result gives the first indication
as to which input configuration provides the best controller
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Table 2 Stabilisation times for
1- and 2-layered HFS Run No L1-1234 L2-12-34 L2-13-24 L2-14-23 L2-23-14 L2-24-13 L2-34-12

10 3.92 9.12 4.16 3.1 9.02 9.36 2.74

Fig. 11 State variables convergence and controller L2-14-23

Fig. 12 State variables convergence and controller L2-23-14

performance. Furthermore a small control effort is required
with control values in [−2.0,1.6].

Obviously, if topology L2-34-12 provides good control
structure then L2-12-34 controller is expected to achieve
similar performance as it is decomposed along the same
weak interdependence between input variables only with
pole variables replaced with cart variables as input in the
first layer. Indeed, the L2-12-34 controller performance is
similar in both state variable convergence and controller
magnitude to L2-34-12 controller. However, results for con-
trollers with topology L2-12-34 were much less consistent
in ten simulation runs than for L2-34-12. On average, con-
troller with topology L2-34-12 provides slightly better per-
formance and consistency of the EA solutions.

Comparison between controllers with L2-14-23 topology
and L2-23-14, see Figs. 11 and 12, shows that swapping in-

put variables between layer 1 and layer 2 has a significant ef-
fect on the controller performance, which indicates that the
HFS topology is a decisive factor in the controller perfor-
mance. This assertion is confirmed by the 3-layered HFS re-
sults. The relatively good performance delivered by the con-
troller with topology L2-14-23 is an example of a ‘mixed’
input configuration where decomposition breaks strong in-
terdependence of state variables. A poor controller perfor-
mance can be expected in such cases but if most significant
state variable is an input in the first layer then it has positive
moderating effect on the control process.

7.3 Three layers topology results

For the 3-layers HFS, the evolutionary algorithm converged
to a satisfactory solution within 150–200 generations, see
Table 3. Controller defined by topology L3-34-1-2 achieves



574 J. Zajaczkowski, B. Verma

Table 3 Learning speed:
3-layered HFS

C1 denotes: L3-12-3-4,
C2: L3-12-4-3, C3: L3-13-2-4,
C4: L3-13-4-2, C5: L3-14-2-3,
C6: L3-14-3-2, C7: L3-23-1-4,
C8: L3-23-4-1, C9: L3-24-1-3,
C10: L3-24-3-1,
C11: L3-34-1-2, C12: L3-34-2-1

Run No C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1 28 153 210 166 109 192 144 202 154 204 81 55

2 157 93 181 193 150 188 212 165 3 160 178 57

3 156 103 172 115 4 171 179 153 156 161 157

4 151 119 202 211 154 205 162 163 162 162 143 210

5 164 150 201 176 112 236 167 164 244 68 94

6 133 164 205 185 152 191 209 165 150 200 146 81

7 150 1 206 158 117 169 159 208 23 195 152 27

8 151 151 151 49 10 137 36 145 177 151 204

9 152 62 233 174 145 170 184 157 166 156 150

10 152 142 213 153 152 210 215 123 130 155 207 129

Average 139 114 197 158 111 187 184 159 124 182 144 116

Total Avg 151

Table 4 Stabilisation times for 3-layered HFS

Run C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

No

10 9.18 13.72 2.52 2.54 3.68 3.5 2.14 12.2 6.96 2.9 2.06

C1 denotes: L3-12-3-4, C2: L3-12-4-3, C3: L3-13-2-4, C4: L3-13-4-2, C5: L3-14-2-3, C6: L3-14-3-2, C7: L3-23-1-4, C8: L3-23-4-1, C9: L3-24-
1-3, C10: L3-24-3-1, C11: L3-34-1-2, C12: L3-34-2-1

Fig. 13 State variables convergence and controller L3-34-2-1

all state variables smooth convergence to the origin without
any large oscillations. The magnitude of control is reason-
ably low, within range of [−2.4,1.4]. It is one of the best
controllers among the 3-layers HFS. However, in ten simu-
lations the controllers L3-34-2-1 generally outperformed the
controllers L3-34-1-2 and therefore should be considered as
the best controller amongst the 3-layers HFS, see Fig. 13
and Table 4. Note, that the state variables convergence to
the TR is faster for L2-34-12 than for L3-34-1-2.

As can be seen from comparison of L3-13-2-4 and L3-
13-4-2 controllers, a seemingly insignificant change in input
configuration in layer 2 and layer 3 results in a significant

change in the controller performance, see Figs. 14 and 15.
A similar effect can be seen by in topologies L3-14-2-3 and
L3-14-3-2.

Three-layered topology breaks strong interdependence
between state variables in layers 2 and 3. This does not
have adverse effect on the controller performance for the
‘best’ topologies L3-34-1-2 and L3-34-2-1 because decom-
position reflects physical properties of the system. However,
for L3-12-3-4 or L3-12-4-3 it has slightly detrimental effect
because the HFS decomposition breaks state variables inter-
dependence. In some other cases, for example L3-14-2-3 or
L3-14-3-2 it has a profound effect.
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Fig. 14 State variables convergence and controller L3-13-2-4

Fig. 15 State variables convergence and controller L3-13-4-2

Physical properties of the system under consideration re-
quire grouping of the input variables along weak state vari-
ables interdependence. In case of the inverted pendulum
this grouping corresponds to two subsystems: the cart repre-
sented by x1 and x2, and the pole represented by x3 and x4.
Swapping the input variables between the layers but preserv-
ing to some extent abovementioned groupings has little ef-
fect on the controller performance. When this grouping prin-
ciple is broken, the results are often detrimental (depending
which variables are more influential in the dynamical sys-
tem). In case of L3-14-2-3 and L3-14-3-2 it seems that con-
trolling the angle of the pole is more crucial than controlling
the cart’s velocity as it is reflected in both topologies.

7.4 Four layers topology results

Four variants of the 4-layered topology: L4-3-4-1-2, L4-3-4-
2-1, L4-4-3-1-2, and L4-4-3-2-1 are examined, see Table 5.
The last two topologies produced good controller perfor-
mance. One of the controllers representing topology L4-3-4-

Table 5 Stabilisation times for 4-layered HFS

L4-3-4-1-2 L4-3-4-2-1 L4-4-3-1-2 L4-4-3-2-1

3.22 1.68 2.64 1.82

1-2 produced a low control magnitude in range [−2.0,2.8],
see Fig. 17.

Examination of 4-layered topologies can determine
which input variables are most influential in the inverted
pendulum system. It was found that topologies L2-34-12
and L3-34-2-1 are the best performing controllers. The sim-
ulation results show that the topology L4-4-3-2-1 is the most
consistent in producing well performing controllers for ten
different initial populations with L4-4-3-1-2 close behind.
This clearly indicates that the most influential input variable
is the angular speed of the pole x4, second—the angle of the
pole x3, and then cart’s speed x2 and its position x1.

It is noted that 4-layered topologies are significantly
outperformed by lower layers HFS controllers. This indi-
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Fig. 16 State variables convergence and controller L4-4-3-2-1

Fig. 17 State variables convergence and controller L4-4-3-1-2

cates that for the inverted pendulum problem this ladder-like
structure does not produce well performing controllers.

7.5 Alternative topologies results

Simulations conducted for 2- and 3-layered HFS that do not
have two inputs in the first layer are shown in Figs. 16–20.
Variations on topologies L2-34-12 and L3-34-1-2 were se-
lected for simulations as they were shown to be the best con-
troller candidates. The following input configurations were
considered: L2-3-412 (see Fig. 21), L2-341-2, L3-3-41-2
and L3-3-4-12. The controller performance is better than ex-
pected, especially for topologies L3-3-41-2 and L3-3-4-12,
with smooth control and relatively low control magnitude.

Considering the performance of these controllers they
cannot be ruled out on the basis of their large rule bases. The
large number of rules does not hamper performance even
though it might cause problems in controller application if
controller speed is of critical importance.

8 Controller test

Intermediate variables u1 and u2 may have not any physical
representation. They can be considered as approximations
to the controller action. By testing their performance, with
one or two layers removed from the HFS one can expect
to determine the robustness of the controller. Examining the
approximate control provides insight into ‘working parts’ of
the HFS. When one layer is eliminated it is denoted by L2-
mn or L3-mn-k. In a 3-layered HFS L3-mn denotes elimina-
tion of the two last layers. For controller tests the best con-
trollers for the 2- and 3-layered HFS are selected. The best
2-layered HFS are: L2-34-12, L2-14-23, L2-13-24 and L2-
12-34. The best 3-layered HFS are: L3-34-1-2, L3-14-3-2,
and L3-13-4-2.

8.1 Two layers HFS controller test results

The best performing among the 2-layered HFS is the con-
troller with topology L2-34-12. The controller is tested with
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Fig. 18 State variables convergence and controller L4-3-4-2-1

Fig. 19 State variables convergence and controller L4-3-4-1-2

Fig. 20 State variables convergence and controller L4-4-3-2-1

its last layer removed: topology L2-34. The controller sta-
bilises the system for 1.6 time units before ‘crashing’, i.e.,
until breaking the state bounds: |x1| ≤ 1.0 and | x3| ≤ π/6.
Otherwise the controller exhibits very regular behavior, see

Fig. 22. Then the controller with topology L2-14-23 is
tested with its last layer removed. One layer version L2-24
‘crashed’ at t = 0.8, the angular velocity of the pole x4 ris-
ing steeply, see Fig. 23.
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Fig. 21 State variables convergence and controller L2-3-412

Fig. 22 State variables convergence and controller L2-34

Fig. 23 State variables convergence and controller L2-14

The controller with topology L2-13-24 is tested with its
last layer removed. As can be seen in Fig. 24 the approx-
imate controller with only one layer rule base attempts to
stabilise the system for the whole period of time Tf = 20:

the angle of the pole x3 is stabilised in a narrow band
around the origin, the angular velocity x4 oscillates but
the values of x4 remain within [−1, 1] band. Therefore,
the approximate controller, with second layer removed, per-
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Fig. 24 State variables convergence and controller L2-13

Fig. 25 State variables convergence and controller L2-12

forms well, while the controller with full rule base performs
poorly.

The controller with topology L2-12-34 with its last layer
removed is one of the worst performing controllers, see
Fig. 25. This poor performance comes in spite of relatively
good performance of the controller with the full rule base.
The controller stabilises the system for 3.76 time units until
the angle of the pole x3 breaks the state limits.

8.2 Three layers HFS controller test results

In the 3-layered HFS the controllers are tested by removing
the last layer or the two last layers. The controller with topol-
ogy L3-34-1-2 is analysed first. The simulation results are
shown in Figs. 26–27. The approximate controller u2 main-
tains control of the system for the whole prescribed time
Tf = 20 and exhibits very regular behaviour. The controller
with topology L3-23-4-1 is analysed and simulation results
are shown in Figs. 28–29. The control pattern is regular but

the ‘crash-time’ for this controller is relatively short (1.2 and
0.78 respectively).

The well performing controller L3-14-3-2 is analysed and
simulation results are shown in Figs. 30–31. The additional
rule base in the control system L3-14-3 produces a better
result than smaller rule base in L3-14.

In general, the approximate controller u2 (intermediary
control between layer 2 and layer 3) maintained control of
the system for longer periods of time than approximate con-
troller u1 (intermediate control between layer 1 and layer 2),
which is not surprising as the controller u2 has a larger
knowledge base to rely on.

8.3 Controller remarks

The approximate controllers even from the best performing
topologies did not exhibit the same quality of control as the
final controller u. In some cases, approximate controllers
from the ‘worse’ performing topologies, performed rea-
sonably well. The simulations with removed layers clearly
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Fig. 26 State variables convergence and controller L3-34-1

Fig. 27 State variables convergence and controller L3-34

Fig. 28 State variables convergence and controller L3-23-4

demonstrate that the hierarchical structure cannot be assem-
bled from a well-performing component rule-bases but he
HFS needs to be developed as a complete topology; hierar-
chical structure and input configuration.

9 Comparison of results

The developed controllers (see Tables 1, 4, and 5) compare
favourably with similar control techniques, and [41, 47–51].
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Fig. 29 State variables convergence and controller L3-23

Fig. 30 State variables convergence and controller L3-14-3

Fig. 31 State variables convergence and controller L3-14

The fastest stabilization time 1.68 sec was achieved by con-
troller with topology L4-3-4-2-1. However, the main aim of
this investigation is the impact of HFS topology on con-
troller performance rather than achieving the best controller
performance.

Mon and Lin [36] using hierarchical sliding mode con-
trol achieved inverted pendulum stabilization in about 10 sec

(for initial pole angle x3 = π/3). Considering larger pole
angle this stabilisation time is a good result. Akole and
Tyagi [59] fuzzy controller was tested for small disturbances
and achieved good controller response, better than PID con-
troller, and stabilization in 5–10 sec. One of the fastest sta-
bilization times, about 1–1.5 sec, was achieved by Becerikli
and Celik [60]. Comparison of abovementioned controllers
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is difficult as the system model, system parameters, and ini-
tial conditions were different in each case.

10 Conclusions

In this paper the EA based approach for topology selection
was examined. The EA approach enabled comprehensive
analysis of simulation results and detailed conclusions are
presented below. Fine-tuning of the EA parameters allowed
achieving better controller performance for various topolo-
gies.

It was observed that the performance of the fuzzy con-
troller is not related to the EA learning speed. It has been
shown that it is important to select the correct input vari-
ables into the first layer to achieve effective and accurate
control. Furthermore, structure of the second and third layer
in 3-layered HFS plays a significant role as reversed order
in input in those layers produced dramatically different re-
sults, as shown for example in case of L3-13-2-4 (poor re-
sults) and L3-13-4-2 (good results). Similarly, controller L3-
14-2-3 shows poor results and L3-14-3-2 good results. Both
cases illustrate how intricate interdependencies between in-
put variables can be.

It was shown that the inverted pendulum system should
be decomposed into two input variables groupings:

• Cart variables: x1 and x2 (cart’s position and its velocity).
• Pole variables: x3 and x4 (pole angle and pole’s angular

velocity).

Results from the 4-layered HFS simulations established
that the most influential variable is x4 (angular velocity),
then x3 (pole angle) in the first grouping followed by x2

(cart’s velocity) and x1 (cart’s position) in the second group-
ing. Simulation results obtained for two, three and four lay-
ered HFS confirm that it is important to control the inverted
pendulum, by examining first its angular speed and angular
position then the cart’s speed and position.

Three-layered topology breaks strong interdependence
between state variables in layers 2 and 3 but it does not
have adverse effect on the controller performance for topolo-
gies L3-34-1-2 and L3-34-2-1 as this decomposition reflects
physical properties of the system (ranking of the most in-
fluential variables). For topologies L3-14-2-3 or L3-14-3-2
the difference in decomposition has a profound effect. De-
composition needs to reflect the physical properties of the
system under consideration and it requires grouping of the
input variables along weak interdependences between state
variables. The inverted pendulum can be decomposed into
two subsystems: the cart represented by x1 and x2, and the
pole represented by x3 and x4. Swapping the input variables
between the layers but preserving to some extent above-
mentioned groupings has little effect on the controller per-
formance. When this grouping principle is broken, the re-
sults are often detrimental (depending which variables are

more influential in the dynamical system). The simulation
for 4-layered topologies show that the topology L4-4-3-2-1
is the most consistent controller in ten different simulations
indicating the ranking of the most influential input variables:
first—x4, second—x3, third—x2, and finally x1.

The initial population (randomly generated in the simula-
tions) has significant impact on the evolution of the knowl-
edge base. Some controllers, from ten control systems de-
veloped for each topology, differ considerably in their per-
formance. Therefore a simulation resulting in a single con-
troller should not be regarded as a sufficient representation
of controllers developed for any particular topology. Espe-
cially, if the EA does not produce a relatively uniform pop-
ulation at the end of the algorithm. Developing a relatively
homogenous set of controllers requires careful fine-tuning
of the EA parameters and usually a large number of genera-
tions.

The controller with topology L1-1234 stabilises the sys-
tem relatively well, with no preference given to any input
variable, and interdependence between input variables (be-
ing locked in the fuzzy rules) remains hidden. Only by de-
composition of the HFS (by breaking a single knowledge
base into a hierarchically structured knowledge base) this
interdependence comes into play with dramatic effect.

The topologies analysis shows that the 2-layered HFS
provides a slightly better solution to the control problem of
the inverted pendulum than 3-layered HFS. This result re-
flects the physical nature of the inverted pendulum system
with pole and cart variables grouped in two separate subsys-
tems that are mirrored in the 2-layered HFS. However, the
3-layered HFS significantly reduces the size of the knowl-
edge bases while providing control system of similar perfor-
mance.

The investigation into HFS topologies suggests that the
size of the knowledge base is not an important factor in
controller performance. On one side there is topology L2-3-
412 with 880 fuzzy rules or single layer topology L1-1234
with 625 fuzzy rules, and on the other side 3-layered topol-
ogy with 95 fuzzy rules in its knowledge base, except for
3-layered ‘alternative topologies’, with some of them pro-
viding similar controller performance. However, the topol-
ogy of the HFS seems to be the decisive factor in controller
performance.

Similarly, the HFS topologies investigation shows that
the number of layers is not an important factor in the con-
troller performance (in terms of control magnitude and sta-
bilisation rate of the state variables). This fact allows large
single knowledge base to be replaced with the HFS without
loss of controller performance. In fact, the HFS produced
more efficient controllers (in terms of system stabilisation)
than single layer controller except for control magnitude that
is lowest for a single layer fuzzy system.
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Experiments with the HFS with layers removed show that
the HFS is not a mere sum of its rule bases in the compo-
nent layers. Topology of the HFS is a key factor in the per-
formance of the controller. It has been shown that the HFS
needs to be considered in its entirety, not as an assembly of
the better or worse performing component layers.

The simulation results indicate that a particular input con-
figuration in the HFS layers is more important than the num-
ber of layers as good controller performance was achieved
for L2-34-12, L3-34-2-1, and L4-3-4-2-1. This indicates that
interdependence of variables plays a crucial role in finding
the ‘optimal’ HFS for a particular problem. Examining the
nature of variables interdependence is a key to an automated
determination of the decomposition of the fuzzy model of
control, i.e., selection of the optimal or near-optimal topol-
ogy. The decomposition of the hierarchical fuzzy structure
should be performed along weak interdependency between
input variables. However, with more complex dynamical
systems there might be multiple weak interdependencies in
input configuration. In such cases either expert knowledge
is required to resolve the decomposition problem or an auto-
mated process that finds optimal or near optimal hierarchical
fuzzy topology.
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