
Appl Intell (2012) 36:442–453
DOI 10.1007/s10489-010-0270-z

A pattern recognition based intelligent search method
and two assignment problem case studies

Jingpeng Li · Edmund K. Burke · Rong Qu

Published online: 31 December 2010
© Springer Science+Business Media, LLC 2010

Abstract Numerous papers based on various search meth-
ods across a wide variety of applications have appeared in
the literature over recent years. Most of these methods ap-
ply the following same approach to address the problems at
hand: at each iteration of the search, they first apply their
search methods to generate new solutions, then they cal-
culate the objective values (or costs) by taking some con-
straints into account, and finally they use some strategies
to determine the acceptance or rejection of these solutions
based upon the calculated objective values. However, the
premise of this paper is that calculating the exact objective
value of every resulting solution is not a must, particularly
for highly constrained problems where such a calculation is
costly and the feasible regions are small and disconnected.
Furthermore, we believe that for newly-generated solutions,
evaluating the quality purely by their objective values is
sometimes not the most efficient approach. In many combi-
natorial problems, there are poor-cost solutions where pos-
sibly just one component is misplaced and all others work
well. Although these poor-cost solutions can be the interme-
diate states towards the search of a high quality solution, any
cost-oriented criteria for solution acceptance would deem
them as inferior and consequently probably suggest a re-
jection. To address the above issues, we propose a pattern
recognition-based framework with the target of designing
more intelligent and more flexible search systems. The role
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of pattern recognition is to classify the quality of resulting
solutions, based on the solution structure rather than the so-
lution cost. Hence, the general contributions of this work
are in the line of “insights” and recommendations. Two real-
world cases of the assignment problem, i.e. the hospital per-
sonnel scheduling and educational timetabling, are used as
the case studies. For each case, we apply neural networks
as the tool for pattern recognition. In addition, we present
our theoretical and experimental results in terms of runtime
speedup.

Keywords Neural networks · Assignment problem ·
Personnel scheduling · Exam timetabling · Search method

1 Introduction

The assignment problem is a fundamental combinatorial op-
timization problem. In its most general form, the problem
is to find the best possible way of assigning a number of
tasks (e.g. duties or jobs) to a number of agents (e.g. em-
ployees or machines) such that each task is assigned to ex-
actly one agent, subject to some constraints. Martello and
Toth [28], Cattrysse and Van Wassenhove [11] gave an ex-
tensive review of the problem. Fisher et al. [15] proved that
the problem is NP-hard, and Osman [29] presented a sur-
vey on its many real-life applications, ranging from the well
known staff assignment problem or the assignment of jobs
to parallel machines, to less well known applications, such
as the frequency assignment problem in satellite communi-
cations [37].

Basically, the problem consists of two parts: the under-
lying combinatorial structure of the assignment and an ob-
jective function modeling the “best way”. Due to the NP-
hard nature of the problem, existing exact algorithms are
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only effective in certain instances. For more difficult highly-
constrained problems, exact algorithms can only solve in-
stances with up to a few hundred decision variables be-
fore the search trees grow prohibitively large. Hence, larger-
sized complex problems are often tackled by heuristics and
meta-heuristics, in an effort to obtain near optimal solu-
tions within reasonable time. The newly-emerging hyper-
heuristics [6] are often employed when raising the level of
generality is an aim.

Numerous papers based on various search methods have
appeared in the literature. They are largely characterized by
the following broad approach. Firstly, obtain a solution, then
evaluate the solution quality by an objective function which
may take a variety of constraints into account. Secondly, the
objective value is used to check whether the resulting solu-
tion is improved or not, so that further search directions can
be determined. Most simple heuristics only accept improved
solutions, while some more advanced approaches, such as
tabu search [18] and simulated annealing [20], may accept
non-improved solutions under certain circumstances. An in-
troduction to different search methodologies is given in [5].

Based on our past studies on two types of staff assign-
ment problem, namely transportation driver scheduling [25,
26] and hospital nurse rostering [7, 8], we have noticed that
there might be no need to calculate the objective values for
every resulting solution, particularly for highly-constrained
problems, where calculations of objective values are costly
and the regions containing feasible solutions are scattered
and small. For example, in nurse rostering [8, 24], we found
that the close neighbors of an infeasible solution are mostly
infeasible, while the close neighbors of a feasible solution
are very likely to be feasible. In addition, we have noticed
that for the resulting solutions, there should be alternative
ways to evaluate their quality apart from the conventional
method of calculating the objective values. For example,
when encountering schedules that look obviously infeasible
or inefficient, an experienced human scheduler will never
waste time to evaluate them by calculating the exact objec-
tive values, because human beings have the ability to learn
from experience and make decisions by simply recognizing
patterns hidden in good/bad schedules.

Mimicking the human ability to distinguish patterns, a
pattern recognition system [38] can be applied here to do a
similar thing: it deems a generated solution as a pattern and
each of the solution components as a feature, and then in-
fers whether the quality of this solution is good or not with-
out calculating the detailed objective value. Such a question
with a ‘yes-or-no’ answer, depending on the values of some
input variables, can be regarded as a decision problem. If the
answer is yes, then the resulting solution should be accepted;
otherwise it should be rejected.

Numerous developments in neural networks have demon-
strated that they are good at pattern recognition [2, 22].

Also, because of their potential ability to mimic human in-
telligence, neural networks have represented a popular and
active research area over the past few years, with the aim
that artificial intelligence systems will eventually perform
some of the tasks requiring human intelligence and com-
pensate for some of the human weakness in doing such jobs.
The ability of a neural network to learn from experience
and identify previously learned data, even in the presence
of noise and distortion in the input pattern, has made it an
excellent candidate for pattern recognition study within the
context of the aims of this paper.

In this research, we apply neural networks to recognize
good patterns (or assignmenting) among all the generated
assignments, based on the two case studies of the real-world
assignment problem (i.e. hospital staff assignment and ed-
ucational exam timetable). For each case, we introduce the
methods of applying neural networks, and discuss our theo-
retical and experimental results in terms of runtime speedup.
We finally present a concluding discussion and outline some
future research directions.

2 A case study of staff assignment

2.1 Problem description

The task of assignment, especially when it affects the per-
formance of people, is a very complex endeavor. Satisfy-
ing a variety of needs and requirements while maintaining
high standards for efficiency and effectiveness is often diffi-
cult and challenging. Staff assignment is the process of con-
structing work timetables or duty rosters for an organization.
There are many types of staff assignment, such as nurse ros-
tering [3, 10], audit staff scheduling [35], call center roster-
ing [17], tour scheduling [1], airline crew scheduling [21]
and transportation driver scheduling [23]. In this section, we
implement a case study on nurse rostering to illustrate how
to apply pattern recognition to the decision making of a gen-
eral search system.

Nurse rostering has been a well-studied problem over
the past several decades due to its complexity in scientific
research and its importance in providing healthcare. For a
comprehensive discussion of the various approaches that
have appeared in the literature, see the survey papers by Sit-
ompul and Randhawa [36], Cheang [12], Burke et al. [3]. In
brief, this problem can be regarded as a type of staff assign-
ment problem in which the workload (i.e. shifts of different
types) needs to be assigned to nurses periodically, subject to
a number of constraints. Some constraints are those gener-
ated by physical resource restrictions and legislation which
must be satisfied in order to have a feasible schedule, while
the other constraints represent requirements which are desir-
able but not obligatory. Such requirements are often used to
evaluate the quality of feasible schedules.
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Fig. 1 An example schedule of nurse rostering. ∗ Working hours: 07:00–16:00 (early shift ‘E’), 08:00–17:00 (day shift ‘D’), 14:00–23:00 (late
shift ‘L’), and 23:00–07:00 (night shift ‘N’)

A large collection of test instances for the staff assign-
ment problem are available for public download at http://
www.cs.nott.ac.uk/~tec/NRP/ [8, 13], most of which re-
late to real-world nurse rostering. For each test instance, a
spreadsheet of published results, along with at least one vi-
sualizable schedule, are provided. Figure 1 shows a typical
schedule of nurse rostering. This schedule comes from the
situation of intensive care units in a Dutch hospital (i.e. the
ORTEC01 instance). This problem involves assigning four
types of shifts (i.e. shifts of ‘early’, ‘day’, ‘late’ and ‘night’)
to 16 nurses of different working contracts, within a plan-
ning period of 31 days. For a better visualization, shift types
are differentiated by color, each of which covers a specific
time period. For example, an early shift (displayed in red
rectangles) covers the hours from 7:00 to 16:00.

Although there are a large number of variations on legal
regulations and individual preferences depending on differ-
ent countries and hospitals, typical issues in nurse rostering
concern coverage demand, day-off requirements, weekend-
off requirements, and minimum/maximum workforce re-
quirements [3]. In more detail, Table 1 lists some of the most
commonly-imposed constraints.

Refined heuristics or meta-heuristics are widely em-
ployed on this problem. If using the traditional cost-oriented
search methodology, once a new solution x is obtained, it
needs to be evaluated by taking all the constraints into ac-
count. The overall evaluation function G(x) takes the form
of

G(x) =
c∑

i=1

wigi(x), (1)

where c is the number of constraints considered, wi is the

importance weights of constraint i, and gi(x) is the evalua-

tion function for constraint i.

Among the constraints listed in Table 1, the ones involv-

ing shift sequences or shift type succession need extra com-

putational effort. For the purposes of illumination, we only

give the formulations of a few constraints, and use the fol-

lowing notations:

m = number of days during the planning period;

n = number of nurses;

g = number of nurse grades;

u = number of shift types;

xijk = 1 if nurse i is assigned shift type k on day j , 0

otherwise;

qil = 1 if nurse i is of grade l, 0 otherwise.

The constraint of daily demand (i.e. number of nurses) of

each shift type and each grade can be illustrated as follows

g1(x) =
g∑

l=1

m∑

j=1

u∑

k=1

∣∣∣∣∣

n∑

i=1

xijkqil − djkl

∣∣∣∣∣, (2)

where djkl is the demand of nurses with grade l to cover type

k on day j . The computational complexity of calculating the

satisfaction of this constraint is

C1 = (2n + 2)gmu = O(gmnu). (3)

http://www.cs.nott.ac.uk/~tec/NRP/
http://www.cs.nott.ac.uk/~tec/NRP/
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Table 1 Constraints commonly
imposed in nurse rostering
problems

Constraint Example

Daily demand on shift type and grade 4 ‘D’ shifts of grade-II required on 02/06/2008

Max shifts per day Max 1 shift a day

Max/min total shifts Max 25 and/or min 16 shifts

Max/min total shift of a type Max 10 and/or min 6 ‘N’ shifts

Max/min consecutive shifts Max 6 and/or min 2 consecutive shifts

Max/min consecutive shifts of a type Max 5 and/or min 2 consecutive ‘E’ shifts

Shift type successions Let ‘_’ denote empty day. (1) D: _,D,N ; (2) L:
_,L,E; (3) E: _,E,N ; (4) N : _,N

Min free days after a series of shifts of a type Min 2 free days after a series of ‘N’ shifts

Complete weekends No shift or two shifts in weekends

Max number of working weekends Max 5 working weekends

Max consecutive working weekends Max 3 consecutive working weekends

Max/min working hours between two dates Max 80 and/or min 40 hours between 2/06/2008
and 15/06/2008

Requested shifts on/off No ‘N’ shifts for nurse 6

The constraint of maximizing the number of consecutive
working days can be represented by

g2(x) =
n∑

i=1

m−m1∑

r=1

max

{
0,

r+m1∑

j=r

u∑

k=1

xijk − m1

}
, (4)

where m1 is the upper bound of consecutive working days.
The computational complexity of calculating the satisfaction
of this constraint is

C2 = (m − m1)(m1u + 2)n = O(m1(m − m1)nu). (5)

The constraint of maximizing the number of consecutive
shifts of individual types can be given as

g3(x) =
n∑

i=1

m−ck∑

r=1

u∑

k=1

max

{
0,

r+ck∑

j=r

xijk − ck

}
, (6)

where ck is the upper bound of consecutive shifts of type k.
The computational complexity of calculating the satisfaction
of this constraint is

C3 = (m − m2)(m2 + 2)nu = O(m2(m − m2)nu), (7)

where m2 = ∑u
k=1 ck/u.

The constraint of avoiding certain shift type successions
(e.g. ‘D’ shift followed by ‘E’ shift) can be formulated as

g4(x) =
n∑

i=1

m−1∑

j=1

u∑

k1=1

u∑

k2=1

max{0, xijk1 + xi(j+1)k2 − 1}. (8)

The computational complexity of calculating the satisfaction
of this constraint is

C4 = 3(m − 1)nu2 = O(mnu2). (9)

The calculations of the remaining constraints are relatively
easy, each of which has a computational complexity of
O(mnu). Assuming the number of such constraints we need
to consider is v, the complexity of calculating those easier
constraints is O(mnuv). Hence, the overall computational
complexity for evaluating a schedule under all constraints is

C = gm(2n + 2)u + (m − m1)(m1u + 2)n

+ (m2 + 2)(m − m2)nu + 3(m − 1)nu2 + mnuv

= O((gm + m1(m − m1)

+ m2(m − m2) + mu + mv)nu). (10)

2.2 Pattern recognition by neural networks

The goal of this research is to find an additional way to pre-
dict the quality of solutions without calculating their actual
objective values, whilst making the (meta-)heuristic search
speed up or at least not slow down. We apply neural net-
works to achieve this goal, and in particular, we study the
degree to which the evaluation by pattern recognition could
be speeded up.

We use the nurse rostering problem to implement our
study. A schedule can be regarded as a pattern with m × n

features, where m is the number of days in the planning
period and n is the number of employees to be sched-
uled. Each feature corresponds to a specific assignment at
the i-th ‘day/employee’ slot denoted by a variable xi , i ∈
{1, . . . ,m × n}. A variable y is used to determine whether
the quality of this schedule is ‘good’ or ‘bad’, based on the
value of feature vector (x1, . . . , xm×n) rather than the objec-
tive value G(x) formulated in (1). If the value of y indicates
‘good’, then the schedule should be accepted; otherwise it
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Fig. 2 The understanding of a
schedule from a pattern
recognition point of view

should be rejected. Figure 2 illustrates how to treat a sched-
ule as a pattern from this point of view. For other types of
assignment problems, their solutions could be expressed in
similar ways.

We use neural networks to determine classifications on
the resulting schedules. A neural network consists of some
basic components called neurons [33]. The neurons are
arranged according to a certain model, and are linked to-
gether by interconnections represented by the values of a set
of weights. The network is then trained by a chosen algo-
rithm so that a set of inputs will produce the desired out-
put. During the training process, the weights are adjusted to
better represent the relationship between the inputs and the
final output. When the training is carried out, based on cer-
tain criteria, the training results of a network are represented
by the final values of the weights. Once a network is prop-
erly formed and trained, it has the ability to generalize the
knowledge it has learned and when a similar new instance
is encountered, it can derive the appropriate result. The re-
sponse of a properly trained network has the capacity to be
insensitive to minor noise in its input. This generalization
ability is the key reason why a neural network approach to
pattern-recognition in a (meta-)heuristic search is particu-
larly appropriate.

To develop a pattern recognition system, a set of train-
ing instances (found by whatever search methods) need to
be collected first. Each instance should consist of both the
input and output values. The input values correspond to the
specific arrangements at ‘day/employee’ slots which com-
pose a whole schedule, and the output value corresponds to
the binary outcome about the overall schedule quality. The
binary outcome can be obtained in the following way: com-
paring the objective value of each schedule with a threshold
value, if the objective value is higher than the threshold, the
output is 0 (rejected); otherwise the output is 1 (accepted).

There are many types of neural networks including mul-
tilayer perceptron networks, probabilistic neural networks,
general regression neural networks, radial basis function

networks, cascade correlation network and recurrent net-
work, among which the multilayer perceptron network is
one of the most widely used. Hence, in this paper we apply it
and simply term it “neural network”. The back-propagation
training algorithm is frequently used for supervised learn-
ing, as it has been widely applied in pattern-recognition [16].
Note that the multilayer perception network with a back-
propagation algorithm might not be the best solution.

In more detail, the training processes by a 2-layer neural
network are implemented as follows:

I. Initialization. Set the learning rate α. Randomly initial-
ize vector W comprising weights for all neuron connec-
tions (i.e. wik and wk) and vector θ comprising thresh-
old levels for neurons at the non-input layers.

II. Provision of Training Examples. Provide the network
with an epoch of training examples denoted by {(x, d)},
with the input vector x = (x1, . . . , xm×n) applied to the
input layer of neurons and the desired output d pre-
sented to the output layer consisting of only one neu-
ron. For each training example, perform the sequence
of forward and backward computation as described un-
der points III and IV, respectively.

III. Forward Computation. Assume the use of a learning
function denoted as ϕ.

i. Calculate the actual outputs of p neurons at the mid-
dle layer as

hk = ϕ

(
m×n∑

i=1

wikxi − θk

)
, for k = 1, . . . , p. (11)

ii. Calculate the final output of the neuron at the output
layer as

y = ϕ

(
p∑

k=1

wkhk − θ

)
. (12)

iii. Calculate the error signal as

e = d − y. (13)
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IV. Backward Computation.
i. Calculate the error gradient of the neurons at the

output layer as

δ = eϕ′
(

p∑

k=1

wkhk − θ

)
. (14)

ii. Calculate the error gradients of neurons at the mid-
dle layer as

δk = wkδϕ
′
(

m×n∑

i=1

wikxi − θk

)
. (15)

iii. Modify W and θ of the output layer as

wk = wk + αhkδ, for k = 1, . . . , p. (16)

θ = θ − αδ. (17)

iv. Modify W and θ of the middle layer as

wik = wik + αxiδk. (18)

θk = θk − αδk. (19)

V. Iteration. Iterate the forward computation and backward
computations under points III and IV by providing new
epochs of training examples to the network until a pre-
defined number, s, of iterations is reached.

The computational complexity of an algorithm is usually
measured in terms of the number of multiplications, addi-
tions and the storage requirement involved in its implemen-
tation. A learning algorithm can be thought of as being com-
putationally efficient when its computational complexity is
polynomial in the number of adjustable parameters that are
to be updated from one iteration to the next. On this basis,
we can say that the training process by back-propagation is
computationally efficient. This is particularly the case when
using the algorithm to train a multilayer neural network, its
computational complexity is linear in the total number of
weights contained in the network. This important property
can be verified by examining the computations involved in
the forward and backward passes.

In the forward pass, the only computations involving the
weights are those that relate to calculating the actual outputs
of the various neurons in the network. Here we see in (11)–
(13) that these computations are all linear in the weights of
the network, with the computational complexity being

C∗
11 = 2mnp + 3p + 3 = O(mnp). (20)

In the backward pass, the only computations involving the
weights are those that relate to the local gradient of the out-
put and middle neurons (as shown in (14) and (15)) and
the updating of the weights and thresholds themselves (as

shown in (16)–(19)). We also see that these computations
are all linear in the weights and thresholds of the network.
Here again, the computational complexity of the backward
pass is

C∗
12 = 6mnp + 5p = O(mnp). (21)

For a back-propagation algorithm with s iterations of train-
ing examples, the conclusion is therefore that the computa-
tional complexity is

C∗
1 = (C∗

11 + C∗
12)s = 8mnps + 8ps + 3s = O(mnps). (22)

After the network is trained, the validating processes is given
as follows:

I. To each network, apply its trained values in vectors W

and θ .
II. Input a new pattern, i.e. vector x′ = (x′

1, . . . , x
′
m×n).

III. Calculate the output vector (h′
1, . . . , h

′
k) of the middle

layer as

h′
k = ϕ

(
m×n∑

i=1

wikx
′
i − θk

)
, for k = 1, . . . , p. (23)

IV. Calculate the output y′ of the output layer as

y′ = ϕ

(
p∑

k=1

wkh
′
k − θ

)
. (24)

One might notice that (23) and (24) are very similar to (11)
and (12). In fact, validating on new instances is implemented
in the same way as a forward pass of the back-propagation
algorithm. Hence, if validating t unknown new instances,
the computational complexity is

C∗
2 = 2mnpt + 3pt + 2t = O(mnpt). (25)

Hence, the computational complexity for the entire proc-
esses of training and validating is

C∗ = C∗
1 + C∗

2 = (8s + 2t)mnp + (8s + 3t)p + 3s + 2t

= O(mnp(s + t)). (26)

It has been shown mathematically that a 2-layer neural net-
work can accurately reproduce any differentiable function,
provided the number of neurons in the hidden layer is unlim-
ited. However, increasing the number of neurons increases
the number of weights that must be estimated in the network,
which in turn increases the execution time for the network.
Under the situation where the execution time is an important
consideration factor, a neural network without the hidden
layer is often used. For such a 1-layer neural network, the
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computational complexity for the training and the validating
reduces to

C∗ = C∗
1 + C∗

2 = O(mn(s + t)). (27)

Compared to the cost-oriented evaluation which calculates
the violations of all constraints, the evaluation of t new so-
lutions by a 2-layer or a 1-layer neural network has the fol-
lowing speedup ratio:

r =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

O

(
p(s/t + 1)

(g + m1 + m2 − (m2
1 + m2

2)/m + u + v)u

)
,

if using a 2-layer network;

O

(
s/t + 1

(g + m1 + m2 − (m2
1 + m2

2)/m + u + v)u

)
,

if using a 1-layer network.

(28)

From (28), we can also see that the computational com-
plexity of the cost-oriented evaluation is fixed depending
on the size of the problem, while the complexity of the
structure-oriented evaluation by neural networks is variable
depending on the parameter settings of p, s and t .

2.3 Experimental results

For the case of staff assignment, we show in the above sec-
tions that embedding neural networks, especially 1-layer
neural networks, into the search may achieve runtime im-
provement. The availability of this approach is still based on

the assumption that a neural network could find the hidden
patterns in large datasets and make efficient classifications,
indicated by high classification rates (i.e. the percentages of
the validating samples are correctly classified). To confirm
this assumption, we implement our proposed two types of
neural networks on a large set of intermediate solutions (i.e.
schedules) generated by a hybrid variable neighborhood ap-
proach presented in Burke et al. [8], in which 12 real world
instances of nurse rostering collected from a Dutch hospital
are used.

The large set of intermediate schedules is used as the
sample set for training and validating. The exact objective
values of all those schedules are known, as they have been
calculated in Burke et al. [8]. According to these objective
values, we are able to classify each of the schedules before-
hand into “good” schedule or “bad” schedule corresponding
to accepting the schedule or rejecting the schedule, respec-
tively.

Table 2 lists the size of each instance, with each instance
corresponding to a calendar month from January to Decem-
ber in 2003. The information on problem size includes the
number of constraints and the number of variables appear-
ing in its integer programming formulation. As mentioned
at the beginning, the problem sizes are too large to be solved
efficiently by any existing exact methods.

Table 2 also shows the details of the sample sets for train-
ing and testing, and summarizes the classification rates (i.e.
the percentages of the cases that are correctly classified) for
the neural networks with and without a hidden layer. For

Table 2 Problem sizes and classification results

Data Problem size Sample info Classification rate CPU time (s)

Constraint Variable |Input|a |Sample|b PC#c PC%d 2-layer 1-layer 2-layer 1-layer Normal

Jan 9206 7915 496 4000 89 74.6 88.6% 86.8% 2.86 0.53 3.83

Feb 8437 7316 448 4000 91 73.6 80.7% 79.5% 2.54 0.40 3.66

Mar 9059 7830 496 4000 99 75.5 81.3% 78.8% 2.67 0.58 3.80

Apr 8787 7616 480 4000 80 79.5 90.5% 88.4% 3.83 0.55 3.76

May 9218 7935 496 4000 95 72.4 87.9% 85.9% 5.05 0.61 3.77

Jun 8836 7641 480 4000 102 73.3 84.2% 82.7% 4.67 0.56 3.74

Jul 9090 7831 496 4000 100 74.6 83.6% 82.7% 4.31 0.59 3.78

Aug 9298 8019 496 4000 108 70.0 84.2% 80.2% 4.24 0.63 3.89

Sep 8723 7564 480 4000 83 79.6 82.8% 81.5%. 3.75 0.49 3.75

Oct 9154 7883 496 4000 96 73.6 85.9% 82.8% 4.10 0.62 3.79

Nov 9059 7830 480 4000 89 79.2 85.5% 83.9% 3.81 0.60 3.76

Dec 9026 7805 496 4000 77 78.4 84.9% 83.8% 3.34 0.61 3.73

Ave. 8991 7765 487 4000 92 75.4 85.0% 83.2% 3.76 0.56 3.77

a“|Input|”—the number of input variables (i.e. the number of ‘day/employee’ slots)
b“|Sample|”—the total number of samples used for training and testing
c“PC#”—the number of principal components whose eigenvalues are 1 or greater
d“PC%”—the percent of variance accounted for the number of PC# principal components
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each problem instance, the number of samples for training
and validating is fixed at 4000 (with 2000 “good” solutions
and 2000 “bad” solutions calculated beforehand). For each
neural network, we use a random collection of 30% sam-
ples to train the neural networks, and then use the remaining
70% samples (i.e. t = 2800) to validate the performance of
the trained networks. To investigate the possibility of data
reduction, we present the summary results of principal com-
ponent analysis (see the columns of “PC#” and “PC%”). The
last three columns display the CPU time (in seconds) needed
for the 2-layer neural network, the 1-layer neural network
and the normal method by calculating exact objective val-
ues, respectively. The computer we used for the experiments
was an Intel Core 2 Duo 1.86 GHz PC with 2.0 GB of RAM.

For consistency, the parameter setting of the neural net-
work is the same for each problem instance. For the 2-layer
neural network, a fixed number of 10 neurons (i.e. p = 10)
are set in the hidden layer. Each neural network uses a sig-
moid activation function, and has the same learning rate of
0.4. The threshold for classification (i.e. distinguishing a so-
lution being “good” or “bad”) is 0.50. We set the termination
condition to be a maximum 100 number of data passes of the
training samples (i.e. s = 100×4000×0.30), or a minimum
0.001 relative change in training error ratio. The input vari-
ables that are constant in the training sample are excluded
from the analysis.

The results in columns “PC#” and “PC%” show the po-
tential of data reduction for our future implementation of
feature extraction as, on average, 19% of the variables in the
raw data account for 75% of the total variance. Table 2 also
demonstrates the existence of some global patterns in the
schedules of nurse rostering due to the high classification
rates obtained. In general, the neural network with a hid-
den layer performs slightly better than the neural network
without a hidden layer, with an average classification rate of
85% for the former versus 83% for the latter. Considering
the number of input variables (487 on average) and the size
of the sample set (4000 for all instances), the classification
rate should fluctuate at 50% for all instances if no pattern
could be detected. Note that the classification rates would
differ if using another set for training and testing.

With respect to the CPU time, compared to the traditional
evaluation method, there is no obvious runtime improve-
ment if using the 2-layer neural network. However, there
is a (roughly) 7 times speedup if using the 1-layer neural
network. The experimental runtime results provide a more
straightforward estimation about our theoretical result de-
rived in (28). Of course, the neural networks would further
speed up if we reduce the number of training samples and/or
the number of data passes of those training samples, s. In
addition, the neural network may be even faster if a smaller
set of good features is successfully extracted and is used to
replace the original data set.

3 Case study of educational timetabling

3.1 Problem description

Timetabling has attracted a significant level of research in-
terest since the 1960’s. The general timetabling problem
comes in many different guises such as sports timetabling
[14], transportation timetabling [23] and educational time-
tabling [4, 27, 30–32, 34]. Educational timetabling problems
are probably the most widely studied. This is partly because
it is one of the most important administrative activities that
take place several times a year in all academic institutions.

A general exam timetabling problem can be considered to
be the process of assigning a set of events (i.e. exams) into
a limited number of timeslots subject to a set of constraints.
In doing this, some constraints must be satisfied under any
circumstances (so called hard constraints). A typical exam-
ple is when two exams with common students involved can-
not be scheduled into the same timeslot. In addition, there is
also a set of desirable constraints (so called soft constraints),
which may be violated if necessary. A typical example is
when exams taken by common students should be spread
out over the available timeslots so that students do not have
to sit two exams that are too close to each other. Solutions
with no violations of hard constraints are called feasible so-
lutions. How much the soft constraints are satisfied gives an
indication of how good the solutions (timetables) are.

To facilitate our time complexity analysis on the above
algorithm, we use the following notations:

m—number of exams;
n—number of timeslots for scheduling all exams;
S—number of students;
Si—set of students registered to exam i;
Ek—set of exams to which student k enrolled;
A—an m × m matrix where Ai,j = 1 if exam i conflicts

with exam j , Ai,j = 0 otherwise;
A′—an m × m matrix where A′

i,j = |Si ∩ Sj | if exam i

conflicts with exam j (i.e. the number of students that take
both exam i and exam j ), A′

i,j = 0 otherwise;
α—conflict density of A, calculated as α =∑m
i=1

∑m
j=1 Ai,j /m2 (i.e. the percentage of the non-zero

elements in A);
B—an n × m matrix where Bi,j = 1 if timeslot i is as-

signed to exam j , Bi,j = 0 otherwise. B represents a com-
plete solution, satisfying m = ∑m

i=1
∑n

j=1 Bi,j .
The following objective function is used in Burke et

al. [9] and many other papers in the literature to calculate
the cost of an obtained feasible solution x:

Minimize G(x) =
(

4∑

i=0

wi × Ni

)/
S, (29)

where wi = 24−i |i ∈ {0, . . . ,4} is the weight that represents
the importance of scheduling exams with common students
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of i timeslots away in n,Ni |i ∈ {0, . . . ,4} is the number of
students that sit two exams of i timeslots away.

Deriving the time complexity of evaluating a feasible
candidate solution by (1) is not straightforward. To facili-
tate this, we introduce another ancillary m × m matrix D,
where

Di,j =
{

24−t , if 0 ≤ t ≤ 4;
∞, otherwise.

(30)

t denotes the timeslot distance between exam i and exam j

in matrix B. Then

t = |i1 − i2| − 1, (31)

satisfying Bi1,i = 1 and Bi2,j = 1. Hence, (29) can be rewrit-
ten as

Minimize G′(x) =
m∑

i=1

m∑

j=1

(Di,j × A′
i,j )/S. (32)

Once a new solution is generated, the values in matrix D
(i.e. Di,j ) need to be updated, while the values in matrix A′
are constant which means we can calculate and store these
values in advance. The complexity to calculate the t value
in (30) is determined by the complexity of identifying i and
j in (31), which is between 1 (best case) and n (worst case)
depending on the solutions generated. Hence, in our follow-
ing complexity analysis for the timetabling problem, we do
not calculate the exact number of operations and only dis-
cuss the situation of the average case.

On average, the complexity of finding the t value in (30)
is O(n), and the complexity of (32) is

CS = O(m2n). (33)

However, in most real-world instances, there is a certain
number of elements in matrix A′ with ‘0’-values. Obvi-
ously the density of A′ is α, the same as that of matrix A.
Hence, we only need to calculate the (i, j )-pairs of D, where
A′

i,j �= 0. We can reduce the complexity of evaluating a re-
sulting solution to

CS = O(αm2n). (34)

3.2 Pattern recognition by neural networks

We apply neural networks to study the possibility of predict-
ing the quality of timetabling solutions without calculating
their actual objective values. We also study the degree to
which the evaluation by neural networks could be speeded
up.

For the timetable problem, a schedule can be regarded
as a pattern with m features, where m is the number of ex-
ams to be scheduled. Each feature corresponds to an assign-
ment of exam i at a specific time slot, denoted by a vari-
able xi ∈ {1, . . . , n}|i ∈ {1, . . . ,m} where n is the number of

available time slots. A dependent variable y is used to deter-
mine whether the quality of this schedule is ‘good’ or ‘bad’,
based on the value of feature vector (x1, . . . , xm) rather than
the objective value G(x) formulated in (29). If the value of
y indicates ‘good’, then the schedule should be accepted;
otherwise it should be rejected.

The neural network approach used to classify the time-
tabling solutions is trained via the standard 2-layer back-
propagation algorithm described in Sect. 2.2. For a 2-layer
network with s iterations of training examples, the compu-
tational complexity is

C∗
1 = O(mps), (35)

where p is the number of neurons in the middle layer.
When validating t unknown new instances, the computa-

tional complexity is

C∗
2 = 2mpt + 3pt + 2t = O(mpt). (36)

Hence, the computational complexity for the entire proc-
esses of training and validating is

C∗ = C∗
1 + C∗

2 = O(mp(s + t)). (37)

Obviously, if using a 1-layer neural network, the computa-
tional complexity for the training and the validating reduces
to

C∗ = C∗
1 + C∗

2 = O(m(s + t)). (38)

Compared to the cost-oriented evaluation which calculates
the violations of all constraints, the evaluation of t new so-
lutions by a 2-layer or a 1-layer neural network with s itera-
tions of training samples has the following speedup rate:

r =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(mp(s + t))

O(αm2nt)
= O

(
p(1 + s/t)

αmn

)
,

if using a 2-layer network;

O(m(s + t))

O(αm2nt)
= O

(
1 + s/t

αmn

)
,

if using a 1-layer network.

(39)

From (39), we can still find that the computational com-
plexity of the solution evaluation is fixed depending on the
problem size, while the complexity of the structure-oriented
evaluation by neural networks is variable depending on the
network parameter settings.

3.3 Experimental results

For the exam timetabling problem, we show in (39) that em-
bedding neural networks into the search may achieve signif-
icant runtime improvement, especially for a simple neural
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Table 3 Problem characteristics and classification results

Data Problem size Sample info Classification rate CPU time (s)

Exam Slot Density |Input|a |Sample|b PC#c PC%d 2-layer 1-layer 2-layer 1-layer Normal

car91 682 35 0.13 682 4000 171 62.4 95.9 94.3 52.88 6.87 221.39

car92 543 32 0.14 543 4000 141 60.6 95.8 95.6 40.75 5.37 142.82

ear83 190 24 0.27 190 4000 49 53.8 94.5 93.8 10.07 1.34 22.05

hec92 81 18 0.42 81 4000 20 51.9 96.5 95.2 0.31 0.06 5.20

kfu93 461 20 0.06 461 4000 112 59.6 94.8 96.3 16.75 2.25 27.38

Lse91 381 18 0.06 381 4000 90 58.4 96.0 94.1 12.43 1.28 18.08

sta83 139 13 0.14 139 4000 47 59.1 95.2 94.9 7.91 0.18 5.17

tre92 261 23 0.18 261 4000 53 53.8 91.4 89.6 16.80 0.16 28.72

uta93 622 35 0.13 622 4000 156 61.7 88.9 88.8 47.13 5.46 170.38

ute92 184 10 0.08 184 4000 53 57.9 92.8 92.6 4.08 0.14 5.56

yor83 181 21 0.29 181 4000 35 51.5 94.1 93.9 10.15 1.17 20.62

Ave. 339 23 0.17 339 4000 84 57.3 94.1 93.6 19.93 2.21 60.67

a“|Input|”—the number of independent variables, i.e. the number of exams
b“|Sample|”—the number of samples or cases
c“PC#”—the number of principal components whose eigenvalues are 1 or greater
d“PC%”—the percent of variance accounted for the number of PC# principal components

network without the hidden layer. The availability of this
approach is based on the assumption that neural networks
could find the hidden pattern in the solutions (i.e. the time
tables) and make efficient classifications. In this section,
we verify the above assumption experimentally, based on
the solutions of a set of internationally accepted benchmark
exam timetabling problems. These problems are real-world
problems that have been tested by many approaches in the
literature (see [32]).

Table 3 displays the problem characteristics (including
the number of exams, the number of available time slots and
the problem conflict density) and the classification results by
two types of neural networks (i.e. with and without the hid-
den layer) on 11 exam timetabling problems. The problem
size ranges from 81 to 682 exams and from 10 to 35 time
slots. The density of the conflict matrix, i.e. the ratio of the
number of conflicting exams over the overall number of ex-
ams, ranges from 0.06 to 0.42. For each neural network, the
number of independent variables is equal to the number of
exams, and the number of cases for training and validating
is fixed at 4000 (with 2000 “good” solutions and 2000 “bad”
solutions whose exact objective values are calculated be-
forehand). The last three columns display the CPU time (in
seconds) needed for the 2-layer neural network, the 1-layer
neural network and the normal evaluation method without
the aid of any neural network, respectively. The computer
used for our experiments was an Intel Core 2 Duo 1.86 GHz
PC with 2.0 GB of RAM.

Columns 7 and 8 (i.e. columns “PC#” and “PC%”) dis-
play the summary results of principal component analysis.

On average, 25% of the variables in the raw data account
for 57% of the total variance. Although the results are not as
prominent as the ones in Table 2 for the nurse rostering prob-
lem, they still indicate some potential for implementing a
data reduction process (i.e. feature extraction). Columns 9–
10 list the classification results generated by the two types
of neural networks, and we use the same neural network pa-
rameters as in Sect. 2.3.

In terms of classification rate, the 2-layer neural network
and the 1-layer neural network have similar performance,
and they all have an average rate as high as 94%. The results
show that the neural networks are very efficient in classify-
ing the solutions of exam timetabling problems without un-
dertaking the calculation of exact objective values for every
resulting solution. In terms of the CPU time, evaluation by
the 2-layer neural network is roughly 3 times faster than the
traditional evaluation method, while the 1-layer one is nearly
30 times faster. The experimental runtime results are in line
with our theoretical result derived in (39).

4 Conclusions and future research

For most assignment problems, the solutions are comprised
of components (i.e. unit assignments). This means that pat-
tern recognition could be applied to increase the level of in-
telligence when designing an automatic search system. The
primary goal of pattern recognition is to make supervised
classifications, in which input patterns (i.e. resulting solu-
tions) can be identified as a member of predefined classes
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(i.e. ‘good’ or ‘bad’ in this context). Hence, pattern recog-
nition provides an alternative way to evaluate the quality of
solutions without calculating their exact objective values.

Experimental results on two difficult real-world assign-
ment problems, the hospital personnel scheduling problem
and the educational timetabling problem, demonstrates the
efficiency of the neural network as a pattern recognition tool
to make classifications. Complexity analysis based on the
above two problems confirms that for highly-constrained
problems, pattern recognition by neural networks (espe-
cially the single-layer neural network) could speed up the
search process significantly. It is also suggested that the sup-
position could be extended to other assignment problems,
although the degrees to which patterns could be recognized
would vary depending on the types of considered problem
and the sample set.

The major contribution of our work is that, as far as we
are aware, this is the first time that the idea of using pattern
recognition to evaluate the quality of solutions has been pre-
sented. This idea is problem-independent, and could be in-
corporated to any heuristic, meta-heuristic or hyper-heuristic
search.

Another contribution of our work is that, to deal with the
numerous solutions generated during the search, we propose
a new idea of structure-oriented evaluation as a useful addi-
tion to the traditional cost-oriented evaluation. The idea is
based on the observation that, due to the nature of combi-
natorial problems, there are many poor-cost solutions where
maybe just one component is misplaced and all others work
well. Under these circumstances, the cost-based selection
operators would regard these solutions as inferior and conse-
quently suggest rejecting them even when they contain out-
standing building blocks. Hence, these seemingly inferior
solutions may not have an appropriate chance of surviving
during the search.

Our work opens a wide area for future research. Firstly,
we are looking at the implementation of a feature extraction
phase [19] to further speed up the classification process. Pat-
tern recognition normally consists of two phases of feature
extraction and pattern classification, and in this research we
only consider the latter phase. For large assignment prob-
lems, computational difficulties exist if all possible features
are used for learning directly.

Secondly, this work sheds light on the development of
more flexible and more intelligent decision support systems.
With the aid of pattern recognition, a general search system
could be developed in such a way: once new data (or new
patterns) are accumulated to a certain amount, a “pattern
recognition” processor would be invoked automatically. The
lifecycle of the processor and percentage of patterns entering
the processor could be controlled by a number of parame-
ters, which can be adjusted adaptively or by an evolutionary
approach depending on the changing situations during the

search. With the search in progress, the processor would be
suspended while the search stays in the regions with simi-
lar landscapes. It would be revived when the search enters
the promising regions with different landscapes, and would
be refreshed when the search has obtained some new elite
solutions.
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