
Appl Intell (2012) 36:369–390
DOI 10.1007/s10489-010-0266-8

A planner-based approach to generate and analyze minimal
attack graph

Nirnay Ghosh · S.K. Ghosh

Published online: 25 November 2010
© Springer Science+Business Media, LLC 2010

Abstract In the present scenario, even well administered
networks are susceptible to sophisticated cyber attacks. Such
attack combines vulnerabilities existing on different sys-
tems/services and are potentially more harmful than sin-
gle point attacks. One of the methods for analyzing such
security vulnerabilities in an enterprise network is the use
of attack graph. It is a complete graph which gives a suc-
cinct representation of different attack scenarios, depicted
by attack paths. An attack path is a logical succession of ex-
ploits, where each exploit in the series satisfies the precondi-
tions for subsequent exploits and makes a causal relationship
among them. Thus analysis of the attack graph may help in
assessing network security from hackers’ perspective. One
of the intrinsic problems with the generation and analysis of
such a complete attack graph is its scalability. In this work,
an approach based on Planner, a special purpose search al-
gorithm from artificial intelligence domain, has been pro-
posed for time-efficient, scalable representation of the attack
graphs. Further, customized algorithms have been developed
for automatic generation of attack paths (using Planner as a
low-level module). The analysis shows that generation of at-
tack graph using the customized algorithms can be done in
polynomial time. A case study has also been presented to
demonstrate the efficacy of the proposed methodology.

Keywords Network security · Attack graph · Attack path ·
Exploit · Planner

N. Ghosh · S.K. Ghosh (�)
School of Information Technology, Indian Institute of
Technology, Kharagpur 721302, India
e-mail: skg@iitkgp.ac.in

N. Ghosh
e-mail: nirnay.ghosh@gmail.com

1 Introduction

Today’s enterprise networks are becoming increasingly vul-
nerable against intrusions and sophisticated cyber attacks.
Therefore, a network administrator has to analyze the se-
curity requirements of the network in such a way, that it
becomes sufficiently secure as well as operational. Present
day’s security threats involve multi-stage, multi-host attacks.
In such correlated attacks, vulnerabilities existing in differ-
ent hosts are combined to compromise a target. Network se-
curing technologies include some efficient network scanners
such as Nessus,1 Retina,2 Nmap,3 CyberCop4 and so on.
These scanning tools are useful as far as detecting vulner-
abilities local to a system but do not identify all conditions
for a complete attack, or how different vulnerabilities ex-
isting in different systems are correlated to produce multi-
stage, multi-host attacks. One such tool that gives descrip-
tion about the correlated attacks in a network is the attack
graph. Each node in an attack graph represents an exploit
which an attacker utilizes in various stages of an attack. The
edges constitute the security conditions that are required for
successful execution of an exploit or results obtained after an
exploit is executed. Traditionally, attack graphs are complete
graphs which depict all possible attack scenarios. This in-
cluded both successful attacks as well as those which do not
end up reaching a goal state. Such complete attack graphs
contain redundant nodes and edges and are also difficult
to visually apprehend and analyze. These issues can be ad-
dressed by generating a minimal attack graph. The minimal

1http://www.nesssus.org.
2http://www.eeye.com/html/products/Retina.
3http://www.insecure.org/nmap/index.html.
4http://www.nai.com.

mailto:skg@iitkgp.ac.in
mailto:nirnay.ghosh@gmail.com
http://www.nesssus.org
http://www.eeye.com/html/products/Retina
http://www.insecure.org/nmap/index.html
http://www.nai.com


370 N. Ghosh, S.K. Ghosh

attack graph consists of those edges which terminate to the
goal (or target) node i.e., it consists of only successful attack
scenarios. This paper focusses on generation and analysis
of a minimal attack graph using Planner, an AI technique,
which may facilitate an administrator in securing the enter-
prise network.

A fairly good number of research works have been done
on generation and scalable representation of attack graphs.
Researchers have used either custom algorithms or formal
methods to build attack graphs. In some literatures, attack
graph is also termed as the exploit dependency graph [1].
Different custom algorithms [2–5] that attempt to construct
full attack graphs scale exponentially to the number of hosts
present in the network. Formal methods used in [3, 6–8] for
generation of attack graphs although explore the entire space
of allowable attack paths but do not scale efficiently. More-
over, model checkers used for graph generation have state
space explosion problem and do not handle a realistic set of
exploits even for a moderate sized network. To improve the
complexity of graph generation, some of the approaches [1,
9, 10] introduced an explicit assumption of monotonicity.
This means once an attacker has gained certain level of priv-
ileges on a particular host, he does not have to regain them in
the near future. This removes the concept of back-tracking
from the attack graphs and the complexity is improved from
exponential to polynomial one. However, the attack graph
which is generated based on monotonic assumptions are still
not scalable and also contains a number of redundant paths.
This scalability issue has been addressed in [11–13] where
instead of generating full attack graphs, the concept of min-
imal attack graph has been introduced. It is an attack graph
where all the attack paths terminate to a particular goal node.
But the generation of minimal attack graphs still takes poly-
nomial time (in some literatures [9] it has been specified as
O(n6), where n is the number of hosts). In [14], a multi-
prerequisite graph has been proposed that scales nearly lin-
early with the size of the network.

In the present work, SGPlan, a variant of Planner has
been used to generate minimal attack paths, which are even-
tually collapsed to form a minimal attack graph using cus-
tom algorithms in polynomial time. This paper primarily fo-
cusses on time efficient generation of a minimal attack graph
using a model-checker that removes visualization problems
and avoids state-space explosion.

The organization of the rest of the papers is as follows.
Section 2 gives a brief overview of attack graphs and Plan-
ner. Section 3 describes the proposed methodology along
with a case study. Section 5 analyzes the time complexity of
the proposed approach and a conclusion is drawn in Sect. 6.

Fig. 1 Example network

Table 1 Host description

Host Services Vulnerabilities OS

Host0 ssh ssh buffer overflow Linux

ftp ftp rhost overwrite

rsh

Host1 ftp ftp rhost overwrite Linux

xterm local xterm buffer overflow

rsh

mysqld

Table 2 Connectivity-limiting firewall policies

Relation Host0 Host1 Host2

Host0 localhost ftp, ssh ftp

Host1 Any localhost ftp

Host2 Any ftp localhost

2 Background

In this section, a brief overview of attack graph model has
been presented with the help of an example network. Beside
this, an overview of Planner has also been given to illustrate
how it has been utilized for attack graph generation.

2.1 Attack graph model

Attack graph models different vulnerabilities existing on dif-
ferent hosts and combines them to generate different attack
scenarios. Essentially, an attack graph consists of a number
of attack paths which are logical succession of exploits.5

Each exploit in the series satisfies the pre-conditions for
a subsequent exploit and makes a cause-effect relationship
among each other. A subset of nodes in the attack graph are
termed as the goal nodes. A goal node is typically described
by an exploit which exists on a target machine, execution

5A software code that utilizes an existing vulnerability to make a sys-
tem behave in an unprecedented way.



A planner-based approach to generate and analyze minimal attack graph 371

of which leads to the compromise of a critical resource in
that machine. Two types of attack graphs have been used in
previously reported works which are as follows:

– Complete/Full Attack Graph: In this type of attack
graph, all possible attack scenarios (both successful as
well as unsuccessful) are depicted.

– Minimal Attack Graph: Minimal attack graph consists
of only attack scenarios that terminate to a particular goal
node.

In the present work, the concept of minimal attack graph
has been used. An illustration of attack graph along with
a network configuration is given in Fig. 1 [15]. The net-
work (refer to Fig. 1) consists of two internal hosts viz.
Host1 and Host2, which are separated from the external host
(i.e. Host0) by a firewall. The attacker has compromised
Host0 and aims at compromising the database in Host2.
The host descriptions of the network are given in Table 1.
The connectivity-limiting firewall policy for the given net-
work has been composed in Table 2. The firewall allows
the inbound ftp and ssh packets to communicate with Host1
and Host2 while it blocks other packets. Within the network,
the firewall enables the internal hosts to connect to remote
servers on any port.

Combining the vulnerabilities present in different hosts
(refer to Table 1) using the connectivity-limiting firewall
policies (refer to Table 2), corresponding minimal attack
graph (shown in Fig. 2) is generated. It can be visualized
as a directed graph where the exploits are shown in oval
and the security conditions are shown in plaintext. For ex-
ample, ftp_rhosts(0, 1), an instance of the generic exploit
ftp_rhosts, represents that the attacker on Host0 creates a
“.rhost” file on ftp home directory to establish a remote trust
relationship with Host1. Similarly, trust(0, 1) represents a
security condition where a trust relationship is established
between Host0 and Host1. Generally, a node in the attack
graph represents an exploit and an edge represents either a
condition or an available exploit or the privilege gained af-
ter the application of the exploit. As evident from Fig. 2,
the attack graph consists of three attack paths that termi-
nate to a desired goal node, i.e., local_bof(2, 2). The result
of successfully executing local_bof(2, 2) exploit enables an
attacker to obtain root privilege on Host2.

2.1.1 Formal definitions

In this subsection, a formal definition of attack graph (refer
to Fig. 2) along with its related terminologies are presented.
Formally, an attack graph may be defined following the foot-
steps of [16] as,

Definition 1 Given a set of exploits E, a set of security
conditions C, a relation requireRr ⊆ C × E, and a relation

implyRi ⊆ E × C, an attack graph AG is an acyclic directed
graph AG(E ∪ C,Rr ∪ Ri,C0,Cgoal), where E ∪ C is the
vertex set and Rr ∪ Ri is the edge set, C0 is a set of ini-
tial conditions, Cgoal is a set of goal conditions: C0 ⊆ C and
Cgoal ⊆ C.

An important observation related to attack graph is that
a require relation is always a conjunction of security condi-
tions, whereas an imply relation is always a disjunction of
the same. Therefore, a security condition may be formally
defined as,

Definition 2 A security condition c ∈ C between a source
host hS and a target host hT in an attack graph AG is a
triplet (c,hS,hT ), where c is either a precondition required
for launching an instantiated exploit e ∈ E or a postcondi-
tion resulted after launching.

Any node in an attack graph is essentially an instantiated
exploit which can be launched between a pair of hosts if a set
of security conditions is conjunctively satisfied. Successful
execution of the exploit generates a disjunctive set of results
or effects. Therefore, given a set of instantiated exploits E

and a set of hosts H , and a set of conditions C, formal defi-
nition of a node in an attack graph is given as,

Definition 3 Given security conditions c1, c2, . . . , cn, ∀ci ∈
C, a node v ∈ V in an attack graph AG is a triplet (e,hS,hT ),
where e ∈ E is an instantiated exploit, hS is the source host,
hT is the target host and exploit e can be launched iff the
relation c1 ∧ c2 ∧ · · · ∧ cn is satisfied.

An edge in an attack graph is either a transition between
a pair of instantiated exploits or between an instantiated ex-
ploit and a security condition or vice-versa or it may be the
privilege gained after the application of the exploit. Formal
definition of an edge in an attack graph is as follows,

Definition 4 An edge e ∈ E in an attack graph AG is a di-
rected arc either between a pair of nodes or between a node
and a security condition or vice versa.

2.1.2 Motivation behind efficient attack graph generation

As network of hosts continues to grow in number and com-
plexity, they are becoming more and more vulnerable to
sophisticated attacks. Such attacks combine vulnerabilities
existing on different machines to compromise a critical re-
source in the network. Therefore, protecting network re-
sources from such correlated, multi-stage, multi-host attacks
has become an area of active research. Attack graph can be
visualized as a tool that provides a succinct representation



372 N. Ghosh, S.K. Ghosh

Fig. 2 Attack graph for
example network

of different attack scenarios for a particular network. Tra-
ditionally it is a complete graph that has an inherent scala-
bility problem and requires exponential time for generation.
Moreover, complete attack graphs have redundant nodes and
edges and have problems related to understandability and
visual presentation. The problem of scalability and visual-
ization have been removed with the introduction of minimal
attack graphs which considers only those attack scenarios
which terminate to a particular goal.

Various model-checkers and custom algorithms have
been used to generate minimal attack graphs in polynomial
time. But these model-checkers have the problem of state
space explosion and are not efficient as far as representing
exploits in realistic networks. Hence, the motivation of this
paper is to propose a methodology to automatically gener-
ate minimal attack graphs using a model-checker from ar-
tificial intelligence domain, that does not suffer from state

space explosion or combinatorial explosion problem. The
complexity of generating minimal attack graph using the
proposed methodology has been compared with previously
reported works and has been found out to be efficient under
some special cases.

In the present work, a methodology based on a technique
from artificial intelligence, Planner, has been proposed to
generate minimal attack graph. A detailed analysis of the
time complexity of generating minimal attack graph using
the proposed approach is also presented.

2.2 Planner

Artificial Intelligence has a major impact on the definition
and development of most of the present day Environment
Decision Support Systems (EDSS). The present work on
generation minimal attack graphs require making a number



A planner-based approach to generate and analyze minimal attack graph 373

of decisions before its construction. Hence it is natural to
attempt to integrate and enhance these decision outcomes
using artificial intelligence.

Planner [17, 18] is a special purpose search algorithm
in artificial intelligence domain for finding out a solution
within a large state space. In this work, a variant of Plan-
ner, called SGPlan, is used for finding the attack paths. Ini-
tial state, goal state and the state transition operators are
provided as input to the Planner. The input specifications
are written in PDDL [19] (Planning Domain Definition Lan-
guage) in two files viz. domain.pddl and fact.pddl. The do-
main.pddl contains un-instantiated predicates and state tran-
sition operators. These un-instantiated predicates are initial-
ized by real world entities using a number of objects and
STRIPS operators [19] to represent initial state and goal state
in the fact.pddl. Appropriate changes in the fact.pddl enables
the Planner to discard the previous plan and search for the
new plan.

The Planner begins its execution from the initial state
with a graph based representation called plangraph. The
plangraph is generated starting from the initial state and suc-
cessive application of state transition operators. It operates
over all instances in the domain and maps states and goals
into actions [20]. The generation of plangraph consumes the
major amount of time in the entire attack path identification
process. With n number of objects, m number of STRIPS
operators each having maximum k number of constant for-
mal parameters, the generation time for a t-level plangraph
will be polynomial as maximum generated nodes in any ac-
tion level will be O(mnk) [17]. The motivation behind se-
lecting Planner as a technique for generating attack paths
are due to the following advantages it provides:

– Prunes unnecessary actions from the system and finds the
shortest path.

– Allows addition of actions to the plan where ever and
whenever they are required.

– Uses richer input language, PDDL, to express complex
state space domains relatively easier than custom-built
analysis engines.

– Allows modeling of network, host, vulnerability, exploits,
and connectivity relationships in a more realistic fashion.

3 Generation of minimal attack graph using planner

In this section, an approach to generate minimal attack graph
using Planner has been proposed. The reasons behind pre-
ferring generation of minimal attack graph over complete
attack graph are as follows:

– Minimal attack graph does not contain redundant nodes
and edges; this enables the network administrators to have
a better visualization and understanding of different at-
tack scenarios for a network.

Fig. 3 Flow chart showing Planner actions

– It is based on explicit assumption of monotonicity which
removes backtracking from attack graph and reduces the
generation time from exponential to polynomial.

– Planner generates acyclic paths, combining which gives
a minimal attack graph.

In the present work, the functional mechanism for Planner
has been depicted in Fig. 3. It starts with the assumption
that the initial network configuration and the vulnerability
analysis have been done apriori and are input to the Plan-
ner in form of domain and fact files written in PDDL [19].
With the initial network configurations, connectivity rela-
tionships, and vulnerability descriptions, a shortest attack
path is generated. To generate other shortest attack paths,
the fact.pddl file has to be properly modified. Finally, when
all the attack paths are generated, they are collapsed to form
a minimal attack graph. In nutshell, the overall mechanism
is given below:

1. Initial network configuration and description of the ex-
ploits (in form of domain and fact files) are input to Plan-
ner to generate a shortest attack path.

2. Customized attack path enumeration algorithm does au-
tomatic modification of fact.pddl to generate the next
shortest attack path or no path.



374 N. Ghosh, S.K. Ghosh

Table 3 System characteristics

Host Services Ports Vulnerabilities CVE-IDs Operating System

H0 IIS Web Service 80 IIS buffer overflow CVE-2002-0364 Windows NT 4.0

H1 ftp 21 ftp rhost overwrite CVE-2008-1396

ssh 22 ssh buffer overflow CVE-1999-1455 Windows 2000 SP1

rsh 514 rsh login CVE-1999-0180

H2 Netbios-ssn 139 Netbios-ssn nullsession CVE-2003-0661 Windows XP SP2

rsh 514 rsh login CVE-1999-0180

H3 LICQ 5190 LICQ-remote-to-user CVE-2001-0439

Squid Proxy 80 squid-port-scan CVE-2001-1030 Red Hat Linux 7.0

Mysql DB 3306 local-setuid-bof CVE-2006-3368

3. Customized attack graph building algorithm collapses
the generated shortest attack paths to generate a minimal
attack graph.

Scaling of attack graphs for large network has been a prob-
lem reported in a number of literature surveys [11–13]. Most
of the authors claim that present techniques of attack graph
generation will encounter serious scalability issues once the
number of hosts in a network increases to the order of thou-
sand. But, if we observe the problem from a practical enter-
prise or academic network point-of-view, we will find that
it is typically divided into zones, subzones and so on, each
with different firewall and access policies forming separate
administrative domains. Theoretically, we may have a net-
work zone that consists of thousands of hosts, but in reality,
we will hardly find one such. These network zones consist
of a finite number of hosts and also the number of vulner-
abilities existing on them is upper-bounded by a constant.
Therefore, time required for encoding the domain file for
a particular zone will be proportional to the number of ex-
isting generic vulnerabilities. If new vulnerabilities are de-
tected, they can be formally encoded into the domain file in
a linearly incremental fashion. Even for encoding the fact
file, we do not have to enter N2 number of connectivity re-
lationships (where N is the number of hosts in the zone)
due to restrictive firewall policies. Hence, generating attack
graphs for network zones or subzones will not generate too
many state variables to cause combinatorial explosion prob-
lem. Therefore, if separate attack graphs are generated for
each zone and finally they are merged by some heuristics,
by modifying the state variables appropriately, a large cu-
mulative attack graph may be obtained. Hence, the present
approach may be perceived as a methodology to efficiently
generate attack graphs for a network zone in which the num-
ber of hosts is bounded by some constant.

In the following Section, the proposed methodology has
been explained with the help of a case study.

Fig. 4 Test network (TEST-NET)

Table 4 Connectivity-limiting firewall policies

Host Attacker H0 H1 H2 H3

Attacker All Yes None None None

H0 None All All All All

H1 None Yes All All All

H2 None Yes All All All

H3 None Yes All All All

3.1 Case study

A network similar to [21] has been considered (refer to
Fig. 4) as the test network (TEST-NET) which consists of
four hosts viz. Host0 (H0), Host1 (H1), Host2 (H2), and
Host3 (H3). H3 is taken as the target machine or goal
and the MySQL6 database running on that machine is the
critical resource. The system characteristics of the hosts in
TEST-NET are composed in Table 3. These data are avail-
able in Nessus, NVD,7 Bugtraq.8 Each generic vulnerability
present in Table 3 has a set of preconditions and effects [21,

6http://www.mysql.com.
7http://nvd.nist.gov/.
8http://www.securityfocus.com/archive/.

http://www.mysql.com
http://nvd.nist.gov/
http://www.securityfocus.com/archive/


A planner-based approach to generate and analyze minimal attack graph 375

22]. The preconditions and effects of one of the generic vul-
nerabilities viz. IIS buffer overflow is given below:

– Preconditions:

1. IIS Web Service running on target
2. IIS buffer overflow vulnerability exists
3. Attacker’s privilege on target >= user
4. Attacker is able to access some services (in transport

layer) running on target.

– Effects:

1. IIS Web Service is disabled on target
2. Attacker gains root level privilege on target

The firewall in TEST-NET (refer to Fig. 4) allows external
hosts to connect to IIS web service running on port 80 on
H0. The connection to all other ports are blocked. The inter-
nal hosts are allowed to connect on any port within the net-
work. The connectivity limiting firewall policy is presented
in Table 4. In Table 4, All indicates that a source host may
connect to any port on a destination host and None signi-
fies that the source machine is prevented from accessing any
port on the destination machine. Depending upon connectiv-
ity limiting firewall policies, each generic exploit has some
instances which are referred to as instantiated exploits [9].
Some of the instantiated exploits are as follows:

– IIS_bof(0,0)—IIS-buffer-overflow exploited from Host0
on Host0.

– ftp_rhosts (0,1)—rsh trust from Host0 to Host1.
– squid_port_scan (1,3)—squid-port-scan done from Host1

on Host3.
– LICQ_remote_to_user (1,3)—LICQ-remote-to-user ex-

ploit is used by Host1 to obtain user level privilege on
Host3.

– local_setuid_bof (3,3)—Root privilege is obtained on
Host3 by exploiting local buffer overflow exploit.

– netbios_ssn_nullsession (1,2)—User level privilege is ob-
tained on Host2 from Host1 by executing netbios-ssn-
nullsession exploit.

3.2 Identification of attack path using GraphPlan

GraphPlan, a variant of Planner, is a search algorithm
which finds out solution within a large state space. Initial
network configuration, attacker’s objective, and exploits are
considered as inputs to the GraphPlan. In this work, SG-
Plan 5.2.2,9 a variant of GraphPlan, is used as an attack
path identification component. SGPlan has been preferred
to other variants of GraphPlan viz. LPG-td,10 Metric-FF,11

9http://manip.crhc.uiuc.edu/programs/SGPlan/sgplan5.html.
10http://www.zeus.ing.unibs.it/lpg/.
11http://www.members.deri.at/~joergh/metric-ff.html.

as it supports numeric predicates or fluents, derivative pred-
icates, and durative predicates [23].

3.2.1 Domain and fact files

As mentioned in Sect. 2.2, Planner requires two files viz.
domain.pddl and fact.pddl for its operation. An instance of
domain.pddl [24, 25] for the test network (refer to Fig. 4) is
given in Table 5. The domain.pddl encodes the following:

– Network configurations—depicting the services running
on hosts, for e.g. ftp ?H etc.

– Vulnerability instances—indicating the type of vulnera-
bilities present, for e.g. ftp_rhost_overwrite ?H etc.

– Functions—e.g. has_priv to assign privilege levels.
– Exploit descriptions—encoding done in terms of action

rule specification that has four components: intruder pre-
condition, intruder effect, network preconditions, and net-
work effects

The fact.pddl encodes various network objects that includes
the hosts, the attacker, the firewall etc. An instance of the
fact.pddl [24, 25] is given in Table 6. The fact.pddl encodes
the following attributes:

– Objects—includes different network objects viz. hosts,
firewall etc.

– Numerical predicates—with respect to the functions de-
fined in domain.pddl, e.g. (=(root_priv) 3) which means
root privilege has been assigned a value of 3.

– Initial network configuration—includes services run-
ning on hosts ((IIS_web_service Host0), transport layer
connectivities (ssh_port_connectivity Host2 Host1), and
application layer connectivities (netbios_apps_connectiv-
ity Host1 Host2)

– Goal condition—given as (:goal (and (= (has_priv At-
tacker Host3) 3))).

SGPlan uses domain.pddl and fact.pddl to generate single
shortest attack path. Systematic modification of fact.pddl en-
ables SGPlan to identify alternate shortest attack paths. It
depends on the administrator’s discretion about which net-
work configurations should be changed to generate newer
attack paths. Modification of fact.pddl is done by disabling
a service running in one of the hosts, or a connectivity
between a pair of hosts by placing a double-semicolon
(;;) before that predicate. From the given domain.pddl and
fact.pddl, the shortest attack path generated by SGPlan is as
follows.
; Time 0.00 ; ParsingTime 0.00 ; NrActions 4

;MakeSpan ; MetricValue ; PlanningTechnique

Modified-FF(enforced hill-climbing search)
as the subplanner

0.001:(IIS-BUFFOVFLW ATTACKER ATTACKER
HOST0)[1]

http://manip.crhc.uiuc.edu/programs/SGPlan/sgplan5.html
http://www.zeus.ing.unibs.it/lpg/
http://www.members.deri.at/~joergh/metric-ff.html


376 N. Ghosh, S.K. Ghosh

Table 5 Domain.pddl for
TEST-NET (define(domain attackgraph) (IIS_apps_connectivity ?S ?T)

(:requirements :strips :fluents :equality) (ftp_apps_connectivity ?S ?T)

(:predicates (IIS_web_service ?H) (ssh_port_connectivity ?S ?T)

(ftp ?H) (squid_port_connectivity ?S ?T)

(ssh ?H) (LICQ_apps_connectivity?S?T)

(rsh ?H) (rsh_apps_connectivity ?S?T)

(netbios_ssn ?H) (netbios_apps_connectivity?S?T))

(LICQ_chat_service ?H) (:functions (has_priv ?A ?H)

(squid_proxy ?H) (root_priv)

(IIS_bof ?H) (user_priv)

(ftp_rhost_overwrite ?H) (none_priv))

(rsh_login ?H) (:functions

(ssh_bof ?H) (port_scan ?A ?H)

(netbios_ssn_nullsession ?H) (port_scan_not_done))

(LICQ_remote_to_user ?H) (port_scan_done)

(local_setuid_bof ?H) (:action IIS-buffovflw

(IIS_port_connectivity ?S ?T) :parameters

(ftp_port_connectivity ?S ?T) (?A

(ssh_port_connectivity ?S ?T) ?S

(squid_port_connectivity ?S ?T) ?T)

(LICQ_port_connectivity ?S ?T) :precondition

(rsh_port_connectivity ?S ?T) (and (>=(has_priv ?A?S)(user_priv))(IIS_web_service?T)

(netbios_port_connectivity ?S?T) (IIS_port_connectivity ?S ?T) (IIS_bof?T(<(has_priv ?A?T)

(IIS_apps_connectivity ?S ?T (root_priv))))

(ftp_apps_connectivity ?S ?T) :effect

(ssh_apps_connectivity ?S?T) (and (not(IIS_bof ?T)) (assign (has_priv ?A?T)(root_priv))

(squid_apps_connectivity?S?T) (not (IIS_web_service ?T)))

(LICQ_apps_connectivity?S?T) )

(rsh_apps_connectivity?S ?T)

(netbios_apps_connectivity?S?T))

1.002:(SQUID-PORT-SCAN ATTACKER HOST0
HOST3)[1]

2.003:(LICQ-REMOTE-TO-USER ATTACKER HOST0
HOST3)[1]

3.004:(LOCAL-SETUID-BUFFOVRFLW ATTACKER
HOST3)[1]

SGPlan generated attack path may be represented in the fol-
lowing way:

Attacker → IIS_bof (Att,H0)

→ squid_port_scan(H0,H3)

→ LICQ_remote_to_user(H0,H3)

→ local_setuid_bof (H3,H3).

For generating an alternate attack path, the transport layer
connectivity between Host0 and Host3 on Squid_proxy ser-
vice is disabled (refer to Table 7). This is done by placing a

double-semicolon (;;) before the predicate squid_port_con-

nectivity (Host0, Host3).
SGPlan will discard the previous solution and generate

the following shortest attack path.
; Time 0.00 ; ParsingTime 0.00

; NrActions 5 ;

MakeSpan ;MetricValue ; PlanningTechnique

Modified-FF(enforced hill-climbing search)

as the subplanner

0.001:(IIS-BUFFOVFLW ATTACKER ATTACKER

HOST0)[1]

1.002:(SSH-BUFFOVFLW ATTACKER HOST0

HOST1)[1]

2.003:(SQUID-PORT-SCAN ATTACKER HOST1

HOST3)[1]



A planner-based approach to generate and analyze minimal attack graph 377

Table 6 Fact.pddl for
TEST-NET (define (problem Attack) (IIS_bof Host0)

(:domain attackgraph) (ssh_bof Host1)

(:objects (ftp_rhost_overwrite Host1)

Host0 (rsh_login Host1)

Host1 (netbios_ssn_nullsession Host2)

Host2 (LICQ_remote_to_user Host3)

Host3 (local_setuid_bof Host3)

Attacker (IIS_port_connectivity Attacker Host0)

) (ssh_port_connectivity Host0 Host1)

(:init (ssh_apps_connectivity Host0 Host1)

(= (has_priv Attacker Attacker) 3) (ssh_port_connectivity Host2 Host1)

(= (has_priv Attacker Host0) 1) (ssh_apps_connectivity Host2 Host1)

(= (has_priv Attacker Host1) 1) (ssh_port_connectivity Host3 Host1)

(= (has_priv Attacker Host2) 1) (ssh_apps_connectivity Host3 Host1)

(= (has_priv Attacker Host3) 1) (ftp_port_connectivity Host0 Host1)

(= (root_priv) 3) (ftp_apps_connectivity Host0 Host1)

(= (user_priv) 2) (ftp_port_connectivity Host2 Host1)

(= (none_priv) 1) (ftp_apps_connectivity Host2 Host1)

(= (port_scan Attacker Host3) 0) (ftp_port_connectivity Host3 Host1)

(= (port_scan_not_done) 0) (ftp_apps_connectivity Host3 Host1)

(= (port_scan_done) 1) (netbios_port_connectivity Host0 Host2)

(IIS_web_service Host0) (netbios_apps_connectivity Host0 Host2)

(ssh Host1) (netbios_port_connectivity Host1 Host2)

(ftp Host1) (netbios_port_connectivity Host1 Host2)

(rsh Host1) (netbios_port_connectivity Host1 Host2)

(netbios_ssn Host2) (squid_port_connectivity Host0 Host3)

(squid_proxy Host3) (squid_port_connectivity Host1 Host3)

(LICQ_chat_service Host3) (squid_port_connectivity Host2 Host3)

(LICQ_port_connectivity Host0 Host3)

(LICQ_port_connectivity Host1 Host3)

(LICQ_port_connectivity Host2 Host3))

(:goal (and(= (has_priv Attacker Host3) 3))))

3.004:(LICQ-REMOTE-TO-USER ATTACKER HOST1
HOST3)[1]

4.005:(LOCAL-SETUID-BUFFOVRFLW ATTACKER
HOST3)[1]

SGPlan generated attack path may be represented in the
following way:

Attacker → IIS_bof (Att,H0)

→ ssh_bof (H0,H1)

→ squid_port_scan(H1,H3)

→ LICQ_remote_to_user(H1,H3)

→ local_setuid_bof (H3,H3).

In the following section, a customized algorithm is pre-
sented which enumerates all possible acyclic attack paths by
automatically modifying fact.pddl.

3.3 Attack path enumeration algorithm

Planner requires a domain and a fact file to generate short-
est paths. The domain.pddl file (refer to Table 5) encodes
network configurations, vulnerability instances, functions,
and exploit descriptions. The fact.pddl encodes network ob-
jects, numerical predicates, initial network configuration,
and goal condition. Planner generates single shortest path
on each run if fact.pddl is properly modified. However, to
generate all possible solutions (shortest paths), there is a
need for a customized algorithm that will use Planner as a
lower level module. Since each solution is an attack path, a
set of all acyclic paths may be obtained. A customized attack
path enumeration algorithm (refer to Algorithm 1) given
in [26] is used in this paper. It executes Planner at the low-
level by performing automatic modification of fact.pddl.
In [26], the authors have defined various data structures used
in these algorithms. A brief description of the algorithms has



378 N. Ghosh, S.K. Ghosh

Table 7 Modified Fact.pddl
(define (problem Attack) (IIS_bof Host0)

(:domain attackgraph) (ssh_bof Host1)

(:objects (ftp_rhost_overwrite Host1)

Host0 (rsh_login Host1)

Host1 (netbios_ssn_nullsession Host2)

Host2 (LICQ_remote_to_user Host3)

Host3 (local_setuid_bof Host3)

Attacker (IIS_port_connectivity Attacker Host0)

) (ssh_port_connectivity Host0 Host1)

(:init (ssh_apps_connectivity Host0 Host1)

(= (has_priv Attacker Attacker) 3) (ssh_port_connectivity Host2 Host1)

(= (has_priv Attacker Host0) 1) (ssh_apps_connectivity Host2 Host1)

(= (has_priv Attacker Host1) 1) (ssh_port_connectivity Host3 Host1)

(= (has_priv Attacker Host2) 1) (ssh_apps_connectivity Host3 Host1)

(= (has_priv Attacker Host3) 1) (ftp_port_connectivity Host0 Host1)

(= (root_priv) 3) (ftp_apps_connectivity Host0 Host1)

(= (user_priv) 2) (ftp_port_connectivity Host2 Host1)

(= (none_priv) 1) (ftp_apps_connectivity Host2 Host1)

(= (port_scan Attacker Host3) 0) (ftp_port_connectivity Host3 Host1)

(= (port_scan_not_done) 0) (ftp_apps_connectivity Host3 Host1)

(= (port_scan_done) 1) (netbios_port_connectivity Host0 Host2)

(IIS_web_service Host0) (netbios_apps_connectivity Host0 Host2)

(ssh Host1) (netbios_port_connectivity Host1 Host2)

(ftp Host1) (netbios_port_connectivity Host1 Host2)

(rsh Host1) (netbios_port_connectivity Host1 Host2)

(netbios_ssn Host2) ;;(squid_port_connectivity Host0 Host3)

(squid_proxy Host3) (squid_port_connectivity Host1 Host3)

(LICQ_chat_service Host3) (squid_port_connectivity Host2 Host3)

(LICQ_port_connectivity Host0 Host3)

(LICQ_port_connectivity Host1 Host3)

(LICQ_port_connectivity Host2 Host3))

(:goal (and(= (has_priv Attacker Host3) 3))))

also been given. In the present work, a detailed description
of the working of the algorithms and their complexity analy-
sis have been presented.

3.3.1 Description of the algorithm

The attack path enumeration algorithm automatically runs
Planner in each iteration to generate either a new path, or
repeats a previously generated path, or generates no path. Its
major function includes automatic modification of fact.pddl
files. In the process, it blocks one or more service(s) so that
a new solution (attack path) gets generated.

The inputs to this attack path enumeration algorithm are
domain.pddl, and fact.pddl. A 2-D array, Path, has been de-
clared to store newly generated attack paths in form of an
adjacency matrix. Each action defined in domain.pddl is de-
clared as a structure (called node). Within a node structure,

one of the fields is Critical (type Boolean). Depending upon
whether a node is critical or not, 1 or 0 is assigned respec-
tively. The definition for critical and non-critical node are
as follows:

– Critical nodes: Nodes in an attack path which need to be
blocked invariably to generate another attack path.

– Non-Critical nodes: Nodes which are dependent on one
or more critical nodes’ effect such that if they are not exe-
cuted, the corresponding preconditions are not generated.

From the exploit descriptions given in [21, 22], it may
be observed that LICQ_remote_to_user exploit is only ap-
plicable if an attacker has the port number on which this
application is running. This will be possible if he suc-
cessfully executes the exploit squid_port_scan to obtain
the port numbers of different applications. Therefore, exe-
cution of LICQ_remote_to_user exploit must be preceded



A planner-based approach to generate and analyze minimal attack graph 379

Input: Domain.pddl, Fact.pddl
Output: An exhaustive set of attack paths Path
while true do1

run planner to obtain path i;2

if no path found then3

while Stopped is not empty do4

service ← Pop(Stopped);5

restart service corresponding to service;6

idx1 ← path to which service belongs;7

idx2 ← index in Criticalidx1 of service;8

if idx2 is not the last index in Criticalidx19

then
idx2 ← idx2 + 1;10

service ← Criticalidx1[idx2];11

stop service corresponding to service;12

Push(service, Stopped);13

end14

end15

if Stopped is empty then16

false_run ← false_run + 1;17

if false_run = 2 then18

print paths from Path;19

Exit;20

end21

end22

end23

if path i already exists then24

service ← Criticali[0];25

stop service corresponding to service;26

Push(service, Stopped);27

end28

if path i is new then29

add path i to Path;30

restart all stopped services;31

Stopped ← �;32

foreach node in path i do33

if service of node is critical & flag == 034

then
Enqueue(node, Marker);35

add node to Criticali ;36

f lag = 1;37

end38

end39

if Marker is not empty then40

node ← Dequeue(Marker);41

stop service of node;42

Push(service, Stopped);43

end44

end45

end46

Algorithm 1: Attack path enumeration algorithm

Table 8 Critical and non-critical exploits

Critical Non-Critical

IIS_bof rsh_login

ssh_bof LICQ_remote_to_user

ftp_rhost_overwrite local_setuid_bof

netbios_ssn_nullsession squid_port_scan

by squid_port_scan which implies that the former is non-
critical.

Similarly, the exploit description of local_setuid_bof re-
quires only user level privilege as its precondition and
gives the root privilege once it is successfully executed.
Now, there are a number of exploits which generate user
level privilege as their effects viz. netbios_ssn_nullsession,
LICQ_remote_to_user, rsh_login and so on. Therefore, ex-
ecution of local_setuid_bof must be preceded by all these
exploits, which implies that the former is not critical i.e. this
node cannot be reached unless its preceding exploits are suc-
cessfully executed. Depending upon the set of exploits used
in the present work, the critical and non-critical ones may
be composed in Table 8.

The remaining fields of a node structure are as follows:

– name (character array): Contains the name of the node
(i.e. an exploit or a service);

– source (integer): Host IDs viz. 0 for Host0, 1 for Host1;
– target (integer): Host IDs;
– flag (boolean): To track whether a node(or service) has

already been blocked. If blocked, the value is 1, otherwise
it is 0.

Data structures The following data structures have been
used by attack path enumeration algorithm:

Marker (type: Queue): The Marker data structure is
used to store the nodes of a particular attack graph. When
a new attack path is generated, depending upon the value
of the critical and flag fields, the nodes are inserted into
this queue. Once the nodes are inserted, they are marked
by means of the flag field so that the same node is not in-
serted again. To generate the next attack path, the service
corresponding to the first element in the queue is dequeued
and blocked. Here, blocked implies disabling the service
by placing double-semicolon (;;) before the corresponding
predicate in fact.pddl file. It is the top-level service which is
required to be blocked for generation of a new attack path.
This service is pushed in to a stack.

Stopped (type: Stack): This data structure maintains in-
formation about which services under a top-level service
have been blocked. Top-level service implies a node which
is hierarchically above a subset of nodes in an attack path.
It keeps track of the services that are being stopped when



380 N. Ghosh, S.K. Ghosh

a repeat path or no path is found. In such situations, the al-
gorithm backtracks to a previous state by popping elements
from Stopped.

Critical (type: 2-D Array): It maps the critical services
corresponding to the generated paths. The algorithm checks
the critical fields of the nodes that constitute a new attack
path and then inserts them into the array. It comes into use
when no path is generated. The path number of a previ-
ously repeated path is used as an index to access the critical
services. These critical services are blocked one by one by
pushing into Stopped.

false_run (type: Integer): Used as a flag to identify con-
ditions when no path is generated even after a complete
iteration of all necessary network modifications have been
done. This condition occurs when the top-level service from
Stopped has been popped and no path is still obtained. Un-
der this scenario, the value of false_run is incremented to
1. The top level service is popped to allow the algorithm to
search for any alternate path that includes the top-level ser-
vice. If no such path is found, then false_run is incremented
and the algorithm terminates by concluding no more unique
path can be obtained.

Path (type: 2-D Array): This 2-D array is used to store
the generated attack paths in an adjacency matrix format.
The columns of the matrix contain the path number while the
rows depict the nodes which are included in a particular at-
tack path. A different data structure, such as, adjacency list,
may also have been used if there exists space constraints.
However, the underlying philosophy would have remain the
same.

Logic used Customized attack path enumeration algo-
rithm works on the logic that there might be some exploits
which have the same immediate predecessor exploit as an-
other exploit in another path. Such a scenario is illustrated in
Fig. 5 from which the following observations can be drawn:

– Exploit A which depends on some other exploit (Immedi-
ate predecessor) which has other dependent exploits (Ex-
ploit B).

– If the basic network conditions for Exploit A are blocked,
Planner will attempt to output a path that does not include
A. This corresponds to pushing Exploit A into Stopped.

– This would generate a newer path since the preceding ex-
ploit (Immediate predecessor) on which some other ex-
ploit (corresponds to Exploit B) could depend is still ac-
tive.

– Each such exploit should be blocked in an iterative fash-
ion to open possibilities of finding newer paths. This
would lead to a state where all the attack paths for the
network have been enumerated.

However, the assumption, that blocking an exploit will al-
ways result in a new attack path, is not right. This is due

Fig. 5 Attack path generation logic

to the fact that Planner will always output the shortest path
based on its algorithm. This may result in a repeat path in-
stead of being a new path. If a repeat path is found, other
exploits constituting the repeat path needs to be blocked so
that the algorithm can proceed. This resorts to a form of
controlled brute force method. There could also be scenar-
ios where no path is found. This is possible if exploits have
been blocked in some wrong order. This requires restating of
blocked services (corresponding to the exploit) in the reverse
order of their stopping. This in essence is a backtracking al-
gorithm, which helps in escaping from infeasible solutions
that might occur as the algorithm proceeds.

In the following subsection, an instance of execution
of attack path enumeration algorithm has been presented
which shows how the values of different data structures
change with each run.

3.4 Execution of attack path enumeration algorithm

As stated in Sect. 3.2.1, the first minimal attack path that
Planner outputs when the fact.pddl file is not modified is
given by Path0.

Path 0:
Attacker → IIS_bof (Att,H0)

→ squid_port_scan(H0,H3)

→ LICQ_remote_to_user(H0,H3)

→ local_setuid_bof (H3,H3)

Since the generated minimal attack path is new, it has to
be inserted into the 2-D array Path in form of an adjacency
matrix. This is shown in Table 9. As the attack path enumer-
ation algorithm proceeds to generate the next minimal attack



A planner-based approach to generate and analyze minimal attack graph 381

Table 9 2-D array representation of generated attack path

Nodes/Paths IIS(0,0) squid(0,3) LICQ(0,3) local_bof(3,3)

0 1 1 1 1

paths, the changes in the values of different data structures
take place in the following way:

1. Stopped← φ [refer to Line-32 in Algorithm 1]
2. Marker←{IIS_bof (0,0),squid_port_scan(0,3)} [refer

to Line-35 in Algorithm 1]
3. Critical [idx1][idx2] [refer to Line-36 in Algorithm 1]

idx1/idx2 0 1

0 IIS_bof(0,0) squid_port_scan(0,3)

4. Dequeue(Marker)⇒Dequeue←{IIS_bof (0,0)} [refer to
Line-41 in Algorithm 1]

5. Block←{IIS_bof (0,0)} [corresponds to blocking
“IIS_port_connectivity Attacker Host0” in fact. pddl (re-
fer to Table 6)].

6. Marker←{squid_port_scan(0,3)}
7. Stopped←{IIS_bof (0,0)} [refer to Line-43 in Algo-

rithm 1]

With the current set of values, attack path enumeration al-
gorithm makes necessary modifications in fact.pddl file and
runs Planner. This results in no path.

To generate a path (either a new path or a repeat path),
the algorithm performs the following operations:

1. Service← Pop(Stopped) ⇒ Pop(IIS_bof (0,0)) [refer to
Line-5 in Algorithm 1]

2. Restart(IIS_bof (0,0)) [corresponds to unblocking
“IIS_port_connectivity Attacker Host0” in fact.pddl (re-
fer to Table 6)]

3. idx1 ← 0, since the service (IIS_bof (0,0)) popped out
belongs to Path0 [refer to Line-7 in Algorithm 1]

4. idx2 ← 0, since the service (IIS_bof (0,0)) popped out is
the 0th critical node in Path0 [refer to Line-8 in Algo-
rithm 1]

5. idx2 ← idx2 + 1 ⇒ idx2 ← 1 [refer to Line-10 in Algo-
rithm 1]

6. Service← Critical[0][1] ← {squid_port_scan(0,3)} [re-
fer to Line-11 in Algorithm 1]

7. Block← {squid_port_scan(0,3)} [corresponds to block-
ing “squid_port_connectivity Host0 Host3” in fact. pddl
(refer to Table 7)]

8. Stopped← {squid_port_scan(0,3)} [refer to Line-13 in
Algorithm 1]

The above set of values is used by the algorithm to run Plan-
ner. This results in a new path given as:

Path 1:
Attacker → IIS_bof (Att,H0)

→ ssh_bof (H0,H1)

→ squid_port_scan(H1,H3)

→ LICQ_remote_to_user(H1,H3)

→ local_setuid_bof (H3,H3)

This newly generated path (Path1) is inserted into the 2-D
array Path in the way depicted in Table 10.

The remaining minimal attack paths generated by the
customized attack path enumeration algorithm are as fol-
lows:

Path 2:
Attacker → IIS_bof (Att,H0)

→ netbios_ssn_nullsession(H0,H2)

→ squid_port_scan(H2,H3)

→ LICQ_remote_to_user(H2,H3)

→ local_setuid_bof (H3,H3)

Path 3:
Attacker → IIS_bof (Att,H0)

→ ftp_rhost_overwrite(H0,H1)

→ rsh_login(H0,H1)

→ squid_port_scan(H1,H3)

→ LICQ_remote_to_user(H1,H3)

→ local_setuid_bof (H3,H3)

Path 4:
Attacker → IIS_bof (Att,H0)

→ ssh_bof (H0,H1)

→ netbios_ssn_nullsession(H1,H2)

→ squid_port_scan(H2,H3)

→ LICQ_remote_to_user(H2,H3)

→ local_setuid_bof (H3,H3)

Path 5:
Attacker → IIS_bof (Att,H0)

→ ftp_rhost_overwrite(H0,H1)

→ rsh_login(H0,H1)

→ netbios_ssn_nullsession(H1,H2)

→ squid_port_scan(H2,H3)



382 N. Ghosh, S.K. Ghosh

Table 10 2-D array representation of generated attack paths

Nodes/Paths IIS(0,0) squid(0,3) LICQ(0,3) local_bof(3,3) ssh_bof(0,1) squid(1,3) LICQ(1,3)

0 1 1 1 1 0 0 0

1 1 0 0 1 1 1 1

→ LICQ_remote_to_user(H2,H3)

→ local_setuid_bof (H3,H3)

Path 6:

Attacker → IIS_bof (Att,H0)

→ netbios_ssn_nullsession(H0,H2)

→ ssh_bof (H2,H1)

→ squid_port_scan(H1,H3)

→ LICQ_remote_to_user(H1,H3)

→ local_setuid_bof (H3,H3)

Path 7:

Attacker → IIS_bof (Att,H0)

→ netbios_ssn_nullsession(H0,H2)

→ ftp_rhost_overwrite(H2,H1)

→ rsh_login(H2,H1)

→ squid_port_scan(H1,H3)

→ LICQ_remote_to_user(H1,H3)

→ local_setuid_bof (H3,H3)

3.5 Attack graph building algorithm

The minimal attack paths obtained by using attack path enu-
meration algorithm (refer to Algorithm 1) are collapsed to
form the minimal attack graph. The attack graph building
algorithm (refer to Algorithm 2) takes as input a set of at-
tack paths given by the 2-D array Path, a set of nodes that
constitute the paths. In each iteration, the algorithm finds
out the nodes that constitute each attack path and draws
directed arc among them. For subsequent iterations, if a
node is obtained for the first time, the algorithm gener-
ates that node. For other occurrences, it draws either in-
coming or out-going edges from that node. Using Algo-
rithm 2, the attack graph shown in Fig. 6 can be generated.

Input: 2-D array Path containing a set of paths, a set
of nodes N

Output: Attack graph
Enumerate each node in N ;1

foreach i = 1 to TotalNumberOfPaths do2

foreach j = 1 to TotalNumberofNodes do3

if Path[i][j ] = 1 then4

Draw a directed edge from i to j ;5

end6

end7

end8

Algorithm 2: Attack graph building algorithm

In Fig. 6, the circles represents the nodes in the attack graph
that contain the exploits which the attacker has utilized in
different stages of the attack. The texts in the attack graph
represent the conditions obtained by utilizing exploits or
viceversa.

4 Proof of correctness

Model checkers have been used to generate attack graphs
in [6, 8]. In [3, 7, 27], the authors have proposed formal
languages to model networks, hosts, vulnerabilities, host
connectivities, and exploits and provide them as input. The
model checkers are explicitly build to handle large state
spaces and generates counterexamples efficiently. In the
present work, security of a computer network has been en-
coded in a finite state description and then assertions are
written in temporal logic to violate a security condition “an
attacker can never acquire certain rights on a given host”.

Generation of attack graphs is essential for vulnerability
analysis of a network of hosts. Manual generation of attack
graph is tedious, error-prone, and impractical as the network
size increases. The proposed approach attempts to automate
this process. However, if the generation process has to be
automated, it is required to ensure that the produced graph
is both exhaustive as well as succinct [8]. These properties
may be defined as follows:

1. Exhaustive: the generated attack graph covers all possible
attacks.

2. Succinct: the generated attack graph contains only those
conditions and exploits from which the intruder can reach
his goal.



A planner-based approach to generate and analyze minimal attack graph 383

Fig. 6 Attack graph for
TEST-NET

The correctness of the present work may be ensured, if it
is proved that the attack graph generated by the proposed
approach preserves both of these properties.

From the formal definition of attack graph (refer to
Sect. 2.1.1) it is evident that the input model to the system is
(C,E,Rr,Ri,C0,Cgoal), where C is the set of conditions,
E is the set of exploits, Rr and Ri are transition relations,
and C0 is the set of initial states and Cgoal is the set of goal
states such that C0 ⊆ C and Cgoal ⊆ C. An attack graph de-
picts different ways in which an intruder can break into a
network and successfully reaches the goal condition. The
property p that an intruder cannot reach the goal condition
can be expresses as:

p = AG(¬goal)

When this property is false, there are paths that lead from the
initial conditions to the goal condition. The precise mean-

ing of goal depends on the network. In the present work,
goal condition implies to “obtaining root privilege on host
H3”. By restricting the domain and range of the transi-
tion relations Rr and Ri to Cgoal , we obtain the transi-
tion relations R

p
r and R

p
i . Therefore, the attack graph is

AG = (E ∪ C,R
p
r ,R

p
i ,C0,Cgoal). The exhaustive and suc-

cinct properties of the generated attack graph can be for-
mally stated by the following lemmas:

Lemma 1 (Exhaustive) An execution sequence a of the
input model (C,E,Rr,Ri,C0) violates the property p =
AG(¬goal) if and only if a is an attack path in the attack
graph AG(E ∪ C,R

p
r R

p
i ,C0,Cgoal).

Lemma 2 (Succinct) A condition c of the input model
(C,E,Rr,Ri,C0) is in the attack graph AG if and only if
there is an attack path in AG that contains c.



384 N. Ghosh, S.K. Ghosh

The proofs of these lemmas are as follows:

Proof (Exhaustive) Let a = c0e0c1 · · · cn−1en−1cn be a (fi-
nite) execution of the input model such that cn is a goal con-
dition. To prove that a is an attack path in AG, it is sufficient
to show:

1. c0e0 ⊆ R
p
r

2. en−1cn ⊆ R
p
i

3. ∀0 ≤ k ≤ n, ck ∈ C and ek ∈ E

Since the goal condition holds at cn−1en−1cn and for all k

there is a path from ck−1ek−1ck to cn−1en−1cn in the in-
put model, by definition every ck−1ek−1ck along a violates
AG(¬goal). Therefore, by construction, every ck is in Cgoal

and every ck−1ek−1 ∈ R
p
r and ek−1ck ∈ R

p
i . This satisfies

(1), (2), and (3) immediately.
Suppose that a = c0e0c1 · · · cn−1en−1cn is an attack path

in the attack graph AG. By construction, all nodes and ver-
tices of a are also nodes and vertices in the input model.
Since a is an attack path, c0e0 ∈ R

p
r and en−1cn ∈ R

p
i .

Therefore, c0e0 ∈ Rr and en−1cn ∈ Ri . So, a is an execution
of the input model, and p is false in its final (goal) condition.
It follows that a violates the property AG(¬goal). �

Proof (Succinct) By construction of attack path enumera-
tion algorithm (refer Algorithm 1 in Sect. 3.3.1), all paths
generated for the attack graph are reachable from an ini-
tial set of conditions/exploits, and all of them violates
AG(¬goal). Therefore, for any such condition c and/or ex-
ploit e in the input model, there is path a1 from an initial
condition to c and/or e, and there is a path a2 from c and/or
e to a goal condition.

The concatenation of a1 and a2 is an execution a of the
input model that violates AG(¬goal). By Lemma 1, a is an
attack path in AG. Since a contains c, the proof is com-
plete. �

5 Complexity analysis

Complexity analysis of the proposed approach requires con-
sideration of three major aspects:

1. Planner complexity
2. Running time for attack path enumeration algorithm

which executes Planner in each iteration
3. Complexity of attack graph building algorithm

5.1 Planner complexity

In Sect. 2.2, it has been stated that the time complexity
for generating a t–level plangraph at any action–level is
O(mnk) where the notations have their usual meanings [17].
In domain.pddl, it may be noted that we have used only three

formal parameters viz. A, S, and T to represent an attacker,
a source, and a destination respectively. These three para-
meters are sufficient to realize any action. So k in this case is
a constant. Again, the number of STRIP operators that have
been used for generating the attack paths is bounded by the
number of generic vulnerabilities existing in the network.
Therefore, the time complexity to generate attack paths in
any action–level is O(mn3), where n is the number of ob-
jects used in the fact.pddl i.e., mainly the number of hosts in
the network and m is the number of generic vulnerabilities
present in the hosts of the network.

5.2 Complexity of attack path enumeration algorithm

A detail analysis of the attack path enumeration algorithm
(refer to Algorithm 1) is shown below:

• Line 1: The number of times the While-loop will execute
is proportional to q , which is the total number of gener-
ated attack paths.

• Line 2: Running Planner to generate a path requires
O(mn3) time.

• Line 3: The If-loop checks if no path is generated in con-
stant time.

• Line 4: The While-loop, which checks if Stopped is
empty or not, will carry out the checking in constant time.
In worst case, this checking may be done v number of
times, where v is the total number of instantiated exploits.

• Line 5: Popping any service from Stopped takes constant
amount of time.

• Line 6: Restarting a service essentially requires modifi-
cation of fact.pddl file. The time to restart any service
will be proportional to the size of the file. Considering
fact.pddl file to have n number of objects, the size may be
given by O(n).

• Line 7: Assigning idx1 the path number, in worst case,
may require examining q number of paths and v number
of instantiated exploits. Hence, the total time to execute
this statement is proportional to qv.

• Line 8: Finding out idx2 (given idx1) from 2-D array
Critical will take at most v amount of time in worst case.

• Lines 9–14: The If-loop, which checks if idx2 is not the
last index of Critical[idx1], will perform this checking in
constant time. All the steps that are being executed within
this loop runs in constant time except the one which stops
services by modifying fact.pddl file. As stated above, this
step will be executed in O(n) time. Therefore, total time
taken by the While-loop will be given by = vc[c + n +
qv + v + c{c +n+ c}] = (nv +qv2 + v) = v(n+qv + 1)

• Lines 16–21: The If-statement, which determines if
Stopped is empty, runs in constant time.

• Line 24: The If-statement which checks if path i already
exists, requires checking of q number of paths each hav-
ing at most v number of services in worst case. Therefore,
number of comparisons is proportional to qv.



A planner-based approach to generate and analyze minimal attack graph 385

• Line 25: Determining the service present in Critical[i][0]
location takes place in constant time.

• Line 26–27: Stopping service again requires O(n) time
and pushing it into Stopped requires constant time. There-
fore, the total time taken in this If-statement is given as
= qv(c + n + c) = qv(n + 1).

• Line 29: The If-statement, which checks if path i is new,
requires checking of q number of paths each having at
most v number of services in worst case. Therefore, num-
ber of comparisons is proportional to qv.

• Line 30: Adding new path to 2-D array Path requires
marking at most v number of instantiated exploits against
the corresponding path number.

• Line 31: Restarting services will again yield a complexity
of O(n).

• Line 33: The For-loop examines at most v exploits in a
particular path. Therefore, the number of iterations will
be upper-bounded by v.

• Line 34: The If-statement which checks critical and flag
fields for each node, in worst-case, runs for at most v

number of times and each checking is done in constant
time.

• Lines 35–37: Enqueuing a service into Marker takes con-
stant amount of time. Similarly, adding the node in Crit-
ical array will again be done in constant time. There-
fore, the overall time taken by the For-loop is given as
= v{vc(c + c + c)} = v2.

• Lines 40–44: The If-statement to find out whether
Marker is empty will run in constant time. The opera-
tions within this If-statement i.e. dequeuing the first ser-
vice, blocking it, and then pushing it into Stopped will
take constant, O(n), and constant time respectively.

• Therefore, total time taken by the If-statement which
checks if path i is new, is given as = qv(v + n + v2 + n)

Hence, total running time for attack path enumeration algo-
rithm, taking into account the running time for Planner can
be given by (neglecting other lower-order terms of q and v):
q{mn3 +v(n+qv+1)+qv(n+1)+qv(v+n+v2 +n)} =
q(mn3 + 3qvn + vn + qv3 + 2qv2) ⇒ (qmn3 + q2v3).

5.3 Complexity of attack graph building algorithm

The algorithm for generating the attack graph (refer to Algo-
rithm 2) is dependent upon the number of nodes that consti-
tutes the attack paths and the number of paths which are gen-
erated. Therefore, the running time of attack graph build-
ing algorithm is always bounded by O(qv). Therefore, the
worst-case complexity of enumerating the attack paths and
collapsing them to form an attack graph may be given as
O(qmn3 + q2v3 + qv) ⇒ O(qmn3 + q2v3).

5.4 Discussion

In [9], the computation in the initial marking phase of the al-
gorithm grows as n6v, where n is the number of hosts. In [8],
the complexity of the graph generation algorithm is NP -
complete. In the proposed approach, finding shortest attack
paths and then combining these paths to generate minimal
attack graph takes place in O(qmn3 + q2v3).

In a given directed graph with v number of nodes, the
paths connecting a source node and a sink node may in-
clude 0,1,2,3, . . . , v number of intermediate nodes. Math-
ematically, total number of possible paths (P(v)) between a
source and a sink in a graph may be given as,

P(v) =
(

v

0

)
+

(
v

1

)
+

(
v

2

)

+
(

v

3

)
+ · · · +

(
v

v − 1

)
+

(
v

v

)
(1)

Again, binomial formula for expanding any power of the
sum (x + y) is as follows:

(x + y)v =
(

v

0

)
xv +

(
v

1

)
xv−1.y +

(
v

2

)
xv−2.y2

+
(

v

3

)
xv−3.y3 + · · · +

(
v

v − 1

)
x.yv−1

+
(

v

v

)
yv (2)

Putting x = y = 1 in (2), the binomial expansion formula is
reduced as,

2v =
(

v

0

)
1v +

(
v

1

)
1v−1.1 +

(
v

2

)
1v−2.12

+
(

v

3

)
1v−3.13 + · · · +

(
v

v − 1

)
1.1v−1 +

(
v

v

)
1v (3)

From (1) and (3), total number of possible paths between a
source and a sink becomes,

P(v) = 2v (4)

Therefore, the time required (T (n, v)) for generation of min-
imal attack graph using Planner becomes,

T (n, v) = C1.qmn3 + C2.q
2v3

= C1.2
vmn3 + C2.2

2vv3

[using (4)]
In majority of well-managed networks, having large

number of hosts, and stringent firewall policies, vulnerabili-
ties on most of the hosts are usually patched. Owing to these,
the attack graphs corresponding to these networks have lim-
ited connectivity and are sparse [16]. The attack paths in an



386 N. Ghosh, S.K. Ghosh

attack graph depict different attack scenarios by combining
the vulnerabilities existing on different hosts in the network
to reach a particular goal node. But in real-world scenario,
due to connectivity limiting firewall rules and difficulty in
availability of exploits, actual attacks do not include all the
vulnerabilities present in the network. This leads to the fact
that the number of intermediate nodes (exploits) between
source nodes and a goal node in an attack path is upper-
bounded by a constant number of vulnerabilities. Intuitively,
it can be concluded that the length of the longest attack path
is O(l), rather than O(v), where l is a constant. Consider-
ing this observation, total number of attack paths that can be
generated can be given as, P(v) = 2l , i.e., P(v) = constant.

Using this argument in the expression for computing the
time required to generate minimal attack graph,

T (n, v) = C1.2
vmn3 + C2.2

2vv3

= C1.2
lmn3 + C2l

2 .v3

= C3.mn3 + C4.v
3

⇒ O(mn3 + v3)

In the above time complexity expression, m is the number
of STRIPS-operators that is encoded in domain.pddl file and
it is proportional to the number of generic vulnerabilities ex-
isting in the network. The relationship between generic and
instantiated vulnerabilities for a given number of hosts in a
network can be established by the following three examples.

– Example 1: Consider a network with three hosts viz.,
n1, n2, and n3 each of which having exactly one generic
vulnerability m1, m2, and m3 respectively. Therefore,
number of possible instantiated vulnerabilities(v) will be
given as, m1(n1, n1), m1(n1, n2), m1(n1, n3), m2(n2, n2),
m2(n2, n1), m2(n2, n3), m3(n3, n3), m3(n3, n1), and
m3(n3, n2) which is proportional to n2, where n is the
number of hosts in the network.

– Example 2: Consider another network with three hosts
viz., n1, n2, and n3 each of which having arbitrary
number of generic vulnerabilities. Let the vulnerabili-
ties for host n1 are m11, m12, vulnerabilities for host
n2 are m21, m22, and m23, and those for host n3 is m31.
Therefore, number of possible instantiated vulnerabilities
are, m11(n1, n1), m11(n1, n2), m11(n1, n3), m12(n1, n1),
m12(n1, n2), m12(n1, n3), m21(n2, n2), m21(n2, n1),
m21(n2, n3), m22(n2, n2), m22(n2, n1), m22(n2, n3),
m23(n2, n2), m23(n2, n1), m21(n2, n3), m31(n3, n3),
m31(n3, n1), and m31(n3, n2).

Hence, total number of possible instantiated exploits
is proportional to the product m × n.

– Example 3: Let a network consists of three hosts viz.,
n1, n2, and n3 and each of them has as many number
of generic vulnerabilities as the number of hosts. Let the
vulnerabilities for host n1 are m11, m12, and m13. Host

n2 has the vulnerabilities m21, m22, and m23 and those
for host n3 are m31, m32, and m33. Number of possible
instantiated vulnerabilities are as follows, m11(n1, n1),
m11(n1, n2), m11(n1, n3), m12(n1, n1), m12(n1, n2),
m12(n1, n3), m13(n1, n1), m12(n1, n2), m12(n1, n3),
m21(n2, n2), m21(n2, n1), m21(n2, n3), m22(n2, n2),
m22(n2, n1), m22(n2, n3), m23(n2, n2), m23(n2, n1),
m21(n2, n3), m31(n3, n3), m31(n3, n1), m31(n3, n2),
m32(n3, n3), m31(n3, n1), m31(n3, n2), m33(n3, n3),
m31(n3, n1), and m31(n3, n2),

Therefore, total number of instantiated vulnerabilities
will be v = m × n = n2 × n = n3.

The above time complexity expression can be tested against
different cases to obtain the following variations:

• Case 1: Each host is having constant number of generic
vulnerability. In this case, total number of generic vulner-
abilities will be, m = k × n, where k is an arbitrary con-
stant. The number of instantiated vulnerabilities becomes
v = n × m = kn2.

Therefore, the time complexity to generate minimal at-
tack graph becomes,

T (n, v) = O(mn3 + v3)

= O(kn4 + (kn2)3)

⇒ O(n4 + n6)

⇒ O(n6)

• Case 2: The hosts in the network have random number of
vulnerabilities. Total number of generic vulnerabilities is,
m = m1 + m2 + m3 + · · · + mn. In this work, the ran-
dom variables are assumed to have integer values. Let
X and Y be two independent discrete random variables
with distribution functions p1(x) and p2(x) respectively.
If Z = X + Y , then the distribution function (p3(x)) for
random variable Z will be given as [28]:

p3(j) =
∑

k

p1(k).p2(j − k) (5)

for j = . . . ,−2,−1,0,1,2, . . ..
In this work, the distribution function to find the total

sum of generic vulnerabilities (m) existing on n discrete
hosts (using (5)) is as follows:

pn(m) =
n∑

k,i=1

pi(k).pn−i (m − k) (6)

Considering common distribution function p on the inte-
gers to compute the sum of n independent random vari-
ables Sn = X1 + X2 + X3 + · · · + Xn, (6) becomes,

p(m) =
n∑

k=1

p(k).p(m − k) (7)



A planner-based approach to generate and analyze minimal attack graph 387

where, p1(x) = p2(x) = · · · = pn(x) = p(x).
Therefore, computing the distribution function to find

out total number of generic vulnerabilities existing in n

hosts requires O(n2) time.
The sum of n independent random variables hav-

ing common distribution function p can be represented
as [28],

Sn = Sn−1 + Xn (8)

Similarly, using (8), the sum of number of generic vulner-
abilities existing over n hosts is given as,

Mn = Mn−1 + mn (9)

Recursively solving (9) using mn = p and M0 = 0, the
following relation may be obtained,

Mn = n × p (10)

Therefore, computation of the total number of generic
vulnerabilities present in a n host network yields a time
complexity of O(np) ⇒ O(n3).

The number of instantiated vulnerabilities (v) can be
obtained in O(mn) time i.e., O((np).p) or O(n4) time

Using the above relations in time complexity expres-
sion,

T (n, v) = O(mn3 + v3)

= O
(
(n3 × n3) + (n4)3)

⇒ O(n6 + n12)

⇒ O(n12)

The above case studies convey that for a well-protected
and large network, if the number of generic vulnerabilities
present in each host is bounded by a constant, complexity
for generation of a minimal attack graph by the proposed ap-
proach produce better performance than the reported works
in [8, 9]. Case 2 suggests that if the number of vulnerabilities
existing on the hosts is following a random distribution, the
time complexity remains polynomial and is upper-bounded
by O(n12).

5.5 Comparison with related works

Literature survey on attack graphs show that researchers
have used both custom algorithms [2–5] as well as formal
methods [3, 6–8] to generate attack graphs. Formal methods
typically involve representation of attacks, networks, vul-
nerabilities, and connectivities in some formal language and
providing them as input to the model checkers. This, in turn,
generates attack paths as counter-examples to show that a

security condition is breached. Attack graphs with one sin-
gle goal as well as those with multiple goals have been gen-
erated for network security assessment. The present work
aims at generating minimal attack graph i.e. the graph in
which all attack paths terminate to a particular goal node.
As shown in Sect. 5.4, the time complexity of generating
minimal attack graphs for networks are: (i) O(N6), when
each host contains a constant number of vulnerabilities, and
(ii) O(N12), when each host contains a random number of
vulnerabilities. The results of research works which deal
with generation of attack graphs that considers single goal
are presented in Table 11. These results have been partially
obtained from [29]. Most of the other reported works have
either not analyzed their methodology of generating attack
graphs or used other variants of attack graphs viz. Multi-
Prerequisite (MP) graph, Logical graph, and so on. Some
of the works have not presented algorithms to automate the
usage of the model-checkers. In the present work, Planner
takes O(N3) time to manually generate individual attack
paths. Therefore, with respect to attack path enumeration,
the present work thrives better than most of the previous
works as far as running time is concerned. However, only
when the attack graph generation process is automated, the
total running time is attaining some higher-order polynomial
value. Hence, there is a genuine trade-off between automatic
generation of attack graph and scaling with respect to the
size of the network.

One of the problems with generation of attack graphs
has been gathering the requisite information. Modeling a
correlated attack requires obtaining the preconditions and
postconditions relevant to each exploit. But there is no pub-
licly available database which maintains such a repository.
Although some vulnerability databases exist, but they are
either proprietary or do not contain the machine-readable
details required to accurately generate the attack graphs.
Hence, the present work deals with only those vulnerabil-
ities/exploits whose descriptions are used in previous re-
ported works in some form or other. Moreover, researchers
claim that is it not possible to obtain reachability infor-
mation by a single vulnerability scan of a network. This
is because, in a network, firewalls contain numerous ac-
cess control rules, network address translation (NAT) rules
that represent a group of IP addresses. Therefore, a single
scan from one IP address, either internal or external to the
network, will show only a few of these rules. The present
work addresses this problem by stating that attack graph
is an attacker’s perspective of the network which an ad-
ministrator obtains by its accurate generation. The attack
graph may be used for defending a network and its re-
sources and adopting appropriate security measures. This is
because, in reality, a network administrator may patch hun-
dreds of loopholes in his network, but an adversary requires
only one exploitable machine to penetrate into the network.



388 N. Ghosh, S.K. Ghosh

Table 11 Comparative study with related works

Paper Approach Results Remarks

Ammann,
2002 [9]

Custom algorithm has been
developed. A small test network
with 3 hosts/6 vulnerabilities has
been taken.

The algorithm grows at O(N6)

with the size of the network.
Finds shortest path which can be
reached to the goal. Scales to
only hundreds of nodes.

Dawkins,
2004 [4]

Formal method to generate attack
chaining trees.

Shows poor scaling results. Generates full attack graph and
finds out a “minimum cut set”
where the goal cannot be reached
if any single vulnerability is
removed.

Jajodia, 2003 [1,
10]

Customized algorithm to
automatically generate attack
graphs. A test network
comprising of 3 hosts/4
vulnerabilities has been taken

Base computation grows as N6. Computes attack graph using
vulnerability and reachability
information from Nessus and
makes recommendations to
prevent access to critical
resources.

Ritchey,
2000 [6]

Modeling of network hosts,
connectivities, attacker’s point of
view, and exploits using SMV
model checker. A network
consisting of 4 hosts has been
used for case study.

Poor Scalability problem as the size of
the state space increases.
Modeling of hosts,
vulnerabilities, and exploits are
done using arrays. This prevents
dynamic addition and also their
sizes have direct impact on the
state space.

Sheyner,
2002 [8]

Uses NuSMV model checker to
automatically generate attack
graphs. The proposed
methodology has been tested
against a network with 3 hosts/4
vulnerabilities.

Poor Generates attack graph with the
test network in 5 seconds. But
for a network with 5 hosts/8
vulnerabilities, it takes 2 hours to
generate the graph.

Swiler,
2001 [30]

Proof-of-concept attack graph
generation tool. A test network
with 2 hosts/5 vulnerabilities
have been taken for case study.

Poor Builds a full attack graph first
and then finds out the shortest
paths to specified goals by
assigning some weights on the
edges.

Proposed Work Uses Planner to generate shortest
attack path from a given domain
and fact file. Customized
algorithms have been developed
to automate the generation of
attack graph by executing
planner as a low-level module.

The complexity is: (1) O(N6) if
the hosts have constant number
of generic vulnerabilities, (2)
O(N12) if the number of generic
vulnerabilities is randomly
distributed.

Planner generates individual
attack paths in O(N3) time. But
if the mechanism is automated,
the time complexity is attending
some higher-order polynomial
value. The usage of Planner
facilitates exploration of large
state space and also allows
modeling of vulnerabilities in a
more realistic manner.

Since, a network administrator is aware of the firewall poli-

cies and the access control rules of his network, he may

gain the connectivity information and generate the attack

graph for security assessment. Therefore, a basic assump-

tion that the present work undertakes is that the informa-

tion required for generating the attack graph for a network

is complete and accurate and it has been gathered by some-

one, preferably the network administrator, who knows the

firewall rules, connectivity relationships, and access control

policies.

6 Conclusion

As computer networks continue to grow in size and com-
plexity, they are becoming vulnerable against sophisticated
cyber attacks. Such attack combines the vulnerabilities ex-
isting on different machines and are potentially more harm-
ful than single-point attacks. Attack graph is a tool that pro-
vides a succinct representation of such correlated attacks
and facilitates security analysis of a network. It consists of
a number of attack paths which in essence are the attack
scenarios. Each attack scenario is a logical succession of



A planner-based approach to generate and analyze minimal attack graph 389

exploits where any exploit in the series lays the ground-
work for subsequent exploits and forms a cause-effect re-
lationship among themselves. The present work focusses on
scalable representation by using the concept of minimal at-
tack graph. Minimal attack graph consists of only success-
ful attack paths, such that, each path terminates at a par-
ticular goal node. In this work, a method for enumerat-
ing minimal attack paths and then collapsing these paths to
form a minimal attack graph has been proposed. Planner, a
general-purpose search algorithm from artificial intelligence
domain, has been deployed for efficient generation of min-
imal attack graph. It generates the attack graph in polyno-
mial time, and unlike other model-checkers, it does not suf-
fer from combinatorial explosion problem. The domain and
fact files for the test network has been encoded in PDDL

and are given as input to Planner. Customized attack path
enumeration algorithm runs Planner as a low-level module
to generate minimal attack paths. In each iteration of the al-
gorithm, automatic modification of fact.pddl file takes place.
With this new fact.pddl either a new path, or a repeat path, or
no path is generated. A detailed complexity analysis of the
proposed methodology has been done. Analysis shows that
the methodology is time efficient in terms of finding the at-
tack paths and building the attack graph than some of the al-
ready reported works [8, 9] for real-world, large-sized, well-
protected networks where the number of generic vulnerabil-
ities on each host is bounded by a constant. However, the al-
gorithm generates minimal attack graph in polynomial time
even if the vulnerabilities are randomly distributed among
the hosts present in the network.

Acknowledgements This work is partially supported by a research
grant from the Department of Information Technology, Ministry of
Communication and Information Technology, Government of India,
under Grant No. 12(14)/09-ESD, dated 11-Jan-2010.

References

1. Noel S, Jajodia S, O’Berry B, Jacobs M (2003) Efficient
minimum-cost network hardening via exploit dependency graph.
In: Proceedings of 19th annual computer security applications con-
ference (ACSAC 2003), Las Vegas, Nevada, pp 86–95

2. Phillips C, Swiler LP (1998) A graph-based system for network-
vulnerability analysis. In: Proceedings of the workshop on new
security paradigms (NSPW), Virginia, USA, pp 71–79

3. Tidwell T, Larson R, Fitch K, Hale J (2001) Modelling internet
attacks. In: Proceedings of the second annual IEEE SMC informa-
tion assurance workshop, United States Military Academy, West
Point, New York. IEEE Press, New York, pp 54–59

4. Dawkins J, Hale J (2004) A systematic approach to multi-stage
network attack analysis. In: Proceedings of the second IEEE inter-
nation information assurance workshop (IWIA ’04), IEEE Com-
puter Society, Washington, pp 48–56

5. Ortalo R, Deswarte Y, Kanniche M (1999) Experimenting with
quantitative evaluation tools for monitoring operational security.
IEEE Trans Soft Eng 25(5):633–650

6. Ritchey RW, Ammann P (2000) Using model checking to analyze
network vulnerabilities. In: Proceedings of the 2000 IEEE sympo-
sium on security and privacy, Oakland, CA, pp 156–165

7. Templeton S, Levitt K (2001) A requires/provides model for com-
puter attacks. In: Proceedings of the 2000 workshop on new se-
curity paradigms, Ballycotton, County Cork, Ireland. ACM Press,
New York, pp 31–38

8. Sheynar O, Jha S, Wing JM, Lippmann RP, Haines J (2002) Auto-
mated generation and analysis of attack graphs. In: Proceedings of
the 2002 IEEE symposium on security and privacy, pp 273–284

9. Ammann P, Wijesekera D, Kaushik S (2002) Scalable, graph-
based network vulnerability analysis. In: Proceedings of CCS
2002: 9th ACM conference on computer and communications se-
curity, Washington, DC. ACM Press, New York, pp 217–224

10. Jajodia S, Noel S, O’Berry B (2005) Topological analysis of net-
work attack vulnerability. In: Managing cyber threats: issues, ap-
proaches and challenges, vol V. Springer, New York, pp 247–266

11. Ammann P, Pamula J, Ritchey R, Street J (2005) A host-based ap-
proach to network attack chaining analysis. In: Proceedings of the
21st annual computer security applications conference (ACSAC),
pp 72–84

12. Pamula J, Jajodia S, Ammann P, Swarup V (2006) A weakest-
adversary security metric for network configuration security
analysis. In: Proceedings of 2nd ACM workshop on quality of pro-
tection. ACM Press, New York, pp 31–38

13. Zhang T, Hu MZ, Li D, Sun L (2005) An effective method to
generate attack graph. In: Proceedings of the international confer-
ence on machine learning and cybernetics (ICMLC), Guangzhou,
China, pp 3926–3931

14. Ingols K, Lippmann R, Piwowarski K (2006) Practical attack
graph generation for network defense. In: Proceedings of the 22nd
annual computer security applications conference (ACSAC ’06),
pp 121–130

15. Wang L, Islam T, Long T, Singhal A, Jajodia S (2008) An attack
graph-based probabilistic security metric. In: Proceedings of the
international federation for information processing (IFIP). LNCS,
vol 5094, pp 283–296

16. Wang L, Noel S, Jajodia S (2006) Minimum cost-network harden-
ing using attack graphs. Comput Commun 29(18):3812–3824

17. Blum AL, Furst ML (1997) Fast planning through planning graph
analysis. J Artif Intell 281–300

18. Bonet B, Geffner H (2001) Planning and control in artificial intel-
ligence: A unifying perspective. Appl Intell 14:237–252

19. Fox M, Long D (2003) Pddl 2.1: An extension to pddl for expres-
sion temporal planning domains. J Artif Intell Res, 61–124

20. Martin M, Geffner H (2004) Learning generalized policies from
planning examples using concept languages. Appl Intell 20:9–19

21. Sheynar O (2004) Scenario graphs and attack graphs. PhD thesis,
Carnegie Mellon University, USA

22. Sheynar O, Wing JM (2004) Tools for generating and analyzing
attack graphs. In: Proceedings of the workshop on formal methods
for components and objects (FMCO), Leiden, The Netherlands, pp
344–371

23. Chen Y, Hsu C, Wah B (2006) Temporal planning using subgoal
partitioning and resolution in sgplan. J Artif Intell Res, 323–369

24. Ghosh N, Ghosh SK (2009) An intelligent technique for generat-
ing minimal attack graph. In: Proceedings of the first workshop
on intelligent security (security and artificial intelligence, SecArt
2009), 19th international conference on automated planning and
scheduling (ICAPS’09), Thessaloniki, Greece, pp 42–51

25. Bhattacharya S (2008) Security risk management of local area
network. Master’s thesis, School of Information Technology, I.I.T
Kharagpur

26. Ghosh N, Ghosh SK (2010) An intelligent approach for security
management of an enterprise network using planner. Studies in
computational intelligence, vol 275. Springer, Berlin, pp 187–214



390 N. Ghosh, S.K. Ghosh

27. Cuppens F, Ortalo R (2000) Lambda: A language to model a data-
base for detection of attacks. In: Proceedings of the 3rd inter-
national workshop on the recent advances in intrusion detection
(RAID). LNCS, vol 1907. Springer, Berlin, pp 197–216

28. Grinstead CM, Snell JL (1997) Introduction to probability. Amer-
ican Mathematical Society, Providence

29. Lippmann RP, Ingols IW (2005) An annotated review of past pa-
pers on attack graphs. Technical Report ESC-TR-2005-054, Lin-
coln Laboratory, Massachusetts Institute of Technology, USA

30. Swiler LP, Phillips C, Ellis D, Chakerian S (2001) Computer-
attack graph generation tool. In: Proceedings of the 2nd DARPA
information survivability conference & exposition (DISCEX II),
vol II. IEEE Computer Society, Los Alamitos, pp 307–321

Nirnay Ghosh is pursuing PhD
in Information Technology from
School of Information Technology,
Indian Institute of Technology (IIT),
Kharagpur, India. Prior to this, he
received MS in Information Tech-
nology from Indian Institute of Tech-
nology, Kharagpur, India and B.Tech
in Computer Science & Engineer-
ing from West Bengal University
of Technology (WBUT), India. His
present area of research includes
network security, attack graph analy-
sis, cloud security.

S.K. Ghosh did his M.Tech and
PhD in Computer Science & Engi-
neering from the Indian Institute of
Technology (IIT) Kharagpur, India.
He is currently an Associate Pro-
fessor at the School of Information
Technology, IIT Kharagpur. Before
joining IIT Kharagpur, he worked
for Indian Space Research Organi-
zation in the area of Satellite Re-
mote Sensing and GIS. His research
interests include Network Security
and Spatial Web Services. He has
over 50 research papers in reputed
conferences and journals.


	A planner-based approach to generate and analyze minimal attack graph
	Abstract
	Introduction
	Background
	Attack graph model
	Formal definitions
	Motivation behind efficient attack graph generation

	Planner

	Generation of minimal attack graph using planner
	Case study
	Identification of attack path using GraphPlan
	Domain and fact files

	Attack path enumeration algorithm
	Description of the algorithm
	Data structures
	Logic used


	Execution of attack path enumeration algorithm
	Attack graph building algorithm

	Proof of correctness
	Complexity analysis
	Planner complexity
	Complexity of attack path enumeration algorithm
	Complexity of attack graph building algorithm
	Discussion
	Comparison with related works

	Conclusion
	Acknowledgements
	References


