
Appl Intell (2012) 36:348–368
DOI 10.1007/s10489-010-0265-9

Formation preserving path finding in 3-D terrains

Ali Galip Bayrak · Faruk Polat

Published online: 27 November 2010
© Springer Science+Business Media, LLC 2010

Abstract Navigation of a group of autonomous agents that
are required to maintain a formation is a challenging task
which has not been studied much especially in 3-D terrains.
This paper presents a novel approach to collision free path
finding of multiple agents preserving a predefined forma-
tion in 3-D terrains. The proposed method could be used in
many areas like navigation of semi-automated forces (SAF)
at unit level in military simulations and non-player char-
acters (NPC) in computer games. The proposed path find-
ing algorithm first computes an optimal path from an initial
point to a target point after analyzing the 3-D terrain data
from which it constructs a weighted graph. Then, it employs
a real-time path finding algorithm specifically designed to
realize the navigation of the group from one waypoint to the
successive one on the optimal path generated at the previ-
ous stage, preserving the formation and avoiding collision.
Software was developed to test the methods discussed here.

Keywords Path finding · Formation · Autonomous agents

1 Introduction

1.1 The subject

Navigation of a group of mobile agents in coordination is
a popular problem studied in different areas such as robot-
ics, computer games and military simulations. In this paper

A.G. Bayrak
EPFL-IC-LAP, INF136, Ecole Polytechnique Fédérale
de Lausanne, Station 14, 1015, Lausanne, Switzerland
e-mail: aligalip.bayrak@epfl.ch

F. Polat (�)
Department of Computer Engineering, Middle East Technical
University, 06531 Ankara, Turkey
e-mail: polat@ceng.metu.edu.tr

we consider the problem of moving a team of agents from
an initial location to a final location while preserving a pre-
defined formation on a 3-D terrain. Formation is defined to
be the tactical arrangement of agents as a team, like col-
umn, line and wedge (see Fig. 1), used especially in military
forces.

Several path finding algorithms were proposed for single
and multiple robots [2, 7, 9, 13, 16, 19, 34]. These algo-
rithms were generally developed for navigation in 2-D envi-
ronments and can not be used or efficiently adopted to 3-D
terrains. Besides, they mainly focus on the physical capabili-
ties of the robots, which is not required in computer simula-
tions, which is our primary interest in this paper. In com-
puter games, especially in strategy games, algorithms are
designed for moving a group of soldiers or vehicles in the
simulated battlefields [8, 29, 33]. In military simulations,
there has been growing interest in modeling behaviors at
both individual and unit level to simulate decision making
and tactics used in real life for simulation based training,
analysis and acquisition (OneSAF [21], TeBAT [32], Mod-
SAF [10], SWARMM [18]). In that respect, navigation of
individual soldiers/vehicles and that of a unit require effi-
cient algorithms to be embedded in Semi-Automated Forces
(SAF) [23]. There are only a few published works for the

Fig. 1 Some common formations

mailto:aligalip.bayrak@epfl.ch
mailto:polat@ceng.metu.edu.tr

Formation preserving path finding in 3-D terrains 349

so-called path finding task in the areas such as military sim-
ulations and computer games. Motivated by this, we devel-
oped algorithms for formation preserving navigation task of
multiple autonomous agents in 3-D terrains and tested them
on real 3-D maps.

1.2 Scope and objective

In this paper, we developed a novel algorithm for finding
an efficient path between two points for a group of agents
that are also required to maintain a predefined formation and
avoid collisions with each other and with obstacles in 3-D
terrains. We divided the problem into three main parts; con-
structing a search graph from 3-D terrain data, finding the
path and maintaining the formation while moving [3].

An overview of the proposed method is given in Fig. 2.
We first analyze and hence identify important terrain fea-
tures to construct a directed weighted search graph. In this
graph, nodes correspond to the waypoints some of which
will define the route, edges correspond to the accessibility
of connected waypoints, finally weights to the cost between
the connected waypoints. This graph is constructed once at
the beginning before the team actually starts to move.

Then, with the help of an off-line planner, we determine a
path for the team on the constructed search graph. The plan-
ner first uses an informed search technique, namely A∗, and
finds an optimal path (a sequence of waypoints in the order
they will be visited). Then it uses a smoothing algorithm in
order to smooth the found path, which may be jagged. Fi-
nally, the planner determines each agent’s goal position on
every waypoint on the path. Note that, the off-line planner is
also executed before the agents start to move.

The last step is to move the agents in real-time using
the on-line planner. The agents, in parallel, follows the path
found by the high-level planner, by using a real-time al-
gorithm that plans and navigates agents between two suc-
cessive waypoints on the solution path, avoiding collisions
and maintaining the formation. With the help of our on-line
planner, the team is able to rearrange the formation when an
agent loses its mobility, which may be faced in games and
military simulations.

Concerning the measurement of quality we focus on re-
ducing the search space, namely the weighted graph derived
through the terrain analysis, which is the most critical issue.
Then we employed the classical A∗ algorithm with an ad-
missible heuristics function and enjoy using a complete and
optimal algorithm. Then, the on-line planner navigates each
agent with a constant cost per time step. Our method aims at
finding the shortest path and at the same time preserve the
formation. In case it is not possible to find a path keeping the
initial formation, we employ a method that tolerates to some
degree, specified by the user, scaling down the formation
necessary enough to find a path. Note that semi-automated

Fig. 2 Steps of the proposed formation preserving path finding
method

forces (SAF in short) or non-player characters that must nav-
igate and also maintain formation as much as possible with-
out human intervention may experience worst case scenar-
ios that require changing formation radically. The way the
method handles this sort of situations is described in Algo-
rithm 6 during the off-line planning phase, simply scale the
formation width and if necessary formation depth. At the ex-
treme case (i.e., scaling down the formation to the end), the
next waypoint for the whole group will be determined as the
next waypoint for each team member and hence the team
will move in Line formation.

We developed the path planning algorithms based on the
assumption that the terrain is known, which is most of the
time a reasonable assumption for military simulation appli-

350 A.G. Bayrak, F. Polat

cations and computer games. For example, in military oper-
ations, commanders work on maps with different resolutions
on which they mark and plan the waypoints and corridors for
all troops.

Our method can easily be extended for partially unknown
environments as follows. Off-line planner is run for the
known part of the environment, then the on-line planner is
started. In case some unknown part becomes accessible (ob-
servable) during the navigation, on-line planner is paused
and off-line planner is restarted to generate the new path,
then on-line planner resumes its operation taking into ac-
count the new path. This way, it is possible to use the method
for partially unknown or dynamic environments.

1.3 Outline

In Sect. 2, related work is given. In Sect. 3, we define the
environment and describe how terrain features are extracted
from the 3-D terrain data and how the search graph is con-
structed. In Sect. 4, we first give an overview of the pro-
posed approach to formation preserving path finding and
then describe our off-line and on-line planning algorithms.
Experimental results and sample runs are given in Sect. 5.
Finally, conclusions and future research directions are given
in Sect. 6.

2 Related work

There is a growing interest in autonomous agents and multi-
agent systems in computer simulations [26]. In most of
the games, there are non-player characters that act au-
tonomously to overcome some real-life problems, either in
cooperation with or against the player. While the single-
agent decision making mechanism is more popular in
games, in some games, especially in real-time strategy
games, multi-agent systems are used, e.g. agents can work
on a cooperative task in order to beat the player. Also, in
military simulations, soldiers and vehicles, either individu-
ally or at unit level can simulate the decision making and
tactics used in real-life.

Since mostly the agents are mobile, the most frequently
faced problem in such simulations is the path finding prob-
lem. Many algorithms have been developed for single-
agent path planning, however there are less publications
for multi-agent systems [31]. Multi-agent formation pre-
serving path finding is used especially in military simula-
tions and games. In military simulations like OneSAF [21]
(One Semi-Automated Forces) and ModSAF [10] (Modular
Semi-Automated Forces) and games like Force21 [33] units
are needed to move on 3-D terrain, while preserving the for-
mation.

The path finding problem mainly consists of three parts:
how to represent the environment and construct a search

graph, how to search and find a path on the constructed
graph and how to realize the found path in real-time.

For representation of environment, there are many ap-
proaches. However, most of them are designed for 2-D and
not very efficient in 3-D domains. The representations gen-
erally focus on two important factors. One is the number of
vertices it generates for the search graph and the other is the
reliability of the generated graph. The number of vertices is
very important, such that generally the higher the number
of vertices, the more time it takes while searching on the
graph. Reliability is a key factor, such that the constructed
graph should preserve the connectedness of vertices. For ex-
ample, if one point is reachable from the other, then on the
search graph it should be so, and vice versa.

The most popular environment representation is the grid
representation. The environment is divided into equal sized
square cells, each of which is either reachable or not, and
these cells are considered as the vertices of graph. The edges
of the graph are between the reachable neighboring cells.
This representation can be implemented in such a way that
it preserves reliability, but efficiency is not the main concern
of the representation.

Another popular representation is the visibility graph [4].
It considers the environment as a huge polygon, in which
there are small polygons representing the unreachable areas.
Then, each corner of these polygons are considered as ver-
tices of the graph and the visibility of a pair to each other
determines the edges. This representation is efficient in 2-D
environments.

Delaunay triangulation can also be used for environment
representation [4]. It divides the environment into triangles,
using the corners of edges. Centers of these triangles can be
used as vertices and edges are inserted between neighbor-
ing ones if they are accessible. Voronoi diagram is another
method, which is dual to Delaunay triangulation in graph
theoretical approach.

Probabilistic roadmap algorithms (PRM) use a similar
three phased approach [11, 15, 27]: generate a connected
graph (road-maps) in obstacle-free space randomly, try to
connect initial and target points to the roadmap and finally
search a path on the roadmap between initial and target
point. There is no guarantee that an existing path on the orig-
inal map will be found using a PRM. PRMs are classified as
probabilistically complete. If the sampling coverage of the
terrain approaches 100 percent then PRM can be used to
find any valid path present in the original environment. De-
spite this property, PRMs have been shown to work quite
well in practice, solving a large number of problems in very
complex environments. The key to building a good PRM is
the sampling strategy; a sufficient number of points have to
be selected to reasonably approximate the original environ-
ment.

The second important phase in path finding is the search
on the constructed graph. Since time efficiency is one of the

Formation preserving path finding in 3-D terrains 351

most important factors in real-time applications, informed
search techniques, especially A∗, are generally used. A∗ is
the most widely-known form of best-first search [25]. A∗,
at each step during the search, expands the node having the
lowest f (n) value, where f (n) = g(n) + h(n), g(n) is the
path cost from the start node to node n and h(n) is the heuris-
tic function which is the estimated cost of the cheapest path
from node n to goal node. A∗ is optimal if h(n) is an ad-
missible heuristic, that is, provided that h(n) never overesti-
mates the cost to reach the goal.

The last step in path finding is the realization of the found
path. In the single agent case, this problem is easy to handle.
The agent can move on the line between successive way-
points along the path and simple algorithms can be used
in order to avoid collisions. However, the multi-agent path
finding problem brings many additional constraints com-
pared to the single-agent case, especially if run on 3-D ter-
rains. Agents should consider the mobility, position and ve-
locity of other agents. Representation of environment is an
important factor at this point. The Virtual structure, intro-
duced in [16] by Lewis and Tan, considers the agent group
as a rigid body and planning is done for this body. The most
common method is to let each agent decide its own path
according to its relative position with respect to the other
agents. Desai et al. presented a graph theoretical approach
where each agent determines its location according to the lo-
cations of other agents and there is a leader agent who does
not follow any other agent but leads the group [9]. The rela-
tion between two agents consists of the relative distance and
orientation between them. There are several methods that
make use of priorities among agents to describe a formation
in a team [19].

In [5], Bourgeot et al. presented a method for planning
path for a biped robot in 3D terrains. Similar to our ap-
proach, the method first determines a reference path and then
navigates the biped robot through reference track. 3D envi-
ronment made up of triangles is classified into three types
of grounds, namely flat ground, tilt ground and stair ground.
A sequence of suitable footholds keeping robot stability and
motion continuity is generated. The path-planning algorithm
navigates the robot over a path which avoids tilt ground and
which prefers pitching than rolling when slope is not avoid-
able.

There are several studies on crowd simulation in so-
cial sciences, psychology, civil and traffic engineering, etc.
Most of them use the discretization of the environment.
Some common approaches include agent-based methods
[24], cellular-automata methods [17], potential fields [22]
and particle dynamics [12]. Recently, a novel approach for
crowd simulation based on continuum dynamics has been
proposed by Treuille et al. [30]. This work computes a dy-
namic potential field that simultaneously integrates global
navigation with local obstacle avoidance. The work on

crowd simulation is concentrated on the problem of han-
dling large groups of individuals, inspired from dynamics of
flock behaviour and fish schooling. Due to the number and
diversity of individuals involved in crowds, the activity of
formation maintenance and navigation is not task oriented.

3 Description and representation of the environment

3.1 Properties of the environment

The environment is a 3-D virtual world made up of a ter-
rain and objects placed on it. The terrain is represented as
a height map. The natural and man-made objects such as
trees and buildings are represented with polygons and they
are treated as obstacles. The environment is considered to be
fully observable from the point of view of the autonomous
agents, but our method can easily be extended for partially
observable environments with a little improvement. The per-
cepts and actions of agents are handled at discrete time steps,
in other words, the environment changes in discrete-time
points. However, agents can move to a range of continuous
points on the terrain at each time step, i.e., movements take
place in continuous-space.

Agents are mobile and holonomic1 and organized as a
team having a specified formation. The team aims to reach
to a specified target point with a predefined average speed.
The team has to maintain formation and avoid collisions,
and to achieve this agents in the team may tune their speeds.
Agents in the team are considered to be physically iden-
tical and furthermore they are restricted by their physical
properties, such as maximum/minimum slope they can as-
cend/descend, maximum positive/negative acceleration and
maximum speed they can reach. We assume that agents in
the team can communication with each other in order to pre-
serve formation while moving.

3.2 Representation of the environment and construction
of the search graph

Concerning the representation of the environment, the most
common approach is the grid representation where the envi-
ronment is divided into a number of square cells of the same
size, where each cell is considered either as obstacle, or not.
Search algorithms for finding a path from one cell to another,
may consider the set of midpoints of these cells. The draw-
back of this method is that cell size should be determined
carefully. Figure 3 shows some examples of the grid repre-
sentation with different cell sizes. If the size is small, the
number of points in the search space will be huge, as shown

1If the controllable degrees of freedom is equal to the total degrees of
freedom then the robot is said to be holonomic.

352 A.G. Bayrak, F. Polat

Fig. 3 Grid representation

in Fig. 3(b). If the size is big, the homogeneity (obstacle/not)
of the cells will decrease since each cell is considered either
an obstacle or not, and even it may result in failure of the
search as shown in Fig. 3(d). The ideal cell size for this case
is shown in Fig. 3(c).

There are some other algorithms based on triangulation,
Voronoi diagrams and visibility graphs [4]. However, in 3-D
terrains having lots of contour lines, there are too many
points that these algorithms generate and need to work on.
So, we prefer to modify the grid representation, that mini-
mizes the number of points and preserves homogeneity. In
[14], Kambhampati and Davis propose a multi-resolution
representation with quad trees. In this paper, we employ a
simpler but successful method that analyzes the terrain data,
i.e., height map, to extract useful features from which it
identifies waypoints to be used by the path planner.

Concerning the representation, we consider the terrain as
a 3-D mathematical surface and find its critical and singu-
lar points, and construct a search graph using these points
as vertices of the graph. Because, by using only the singu-
lar and critical points we can determine the most important
features of a surface.

First, we divide the map into small square cells and take
the center points of these cells, as in the grid method. The
size of a cell should be small enough such that it could
be considered homogeneous. Size of a cell should be de-
termined according to the requirements of the application
domain, specifically storage requirements of the terrain data
and computational cost of the application problem. These
may include the size of the environment, number of agents,
computational cost of the line-of-sight algorithm, expected
response time and many other application specific require-
ments. Let sizeOfCell denote the size of a cell. Then, deter-
mine the critical points of the terrain as described in Algo-
rithm 1. The extremum points of the terrain are considered
critical points of it. The basic idea of the algorithm is as
follows. First, mark the points that are local maxima and lo-
cal minima according to their height. All marked points are
added to the set of vertices of the search graph. A point can
be considered local maximum if its height is greater than
all of its neighbors (4 or 8 neighborhoods can be assumed
for simplicity, we take 4 neighborhood for this study but the
method is easily extended to 8 neighborhood) and local min-
imum if its height is less than all of its neighbors. Also, mark

Algorithm 1 DetermineCriticalPoints(terrainGridData):
SetOfPoints

1: // neighbor(x, dir): The point that is sizeOfCell unit far
from x (i.e. neighbor of x) in the direction dir. dir is one
of the following: NORTH, SOUTH, WEST, EAST

2: // height(x): The height of point x

3: S ← ∅ // Let S denote the set of points to be returned
4: for all point p in terrainGridData do
5: if ∀z (z ∈ {NORTH,SOUTH,EAST,WEST} =⇒

height(p) > height(neighbor(p, z))) then
6: S ← S ∪ {p} // p is local maximum, add it to the

set S

7: else if ∀z (z ∈ {NORTH,SOUTH,EAST,WEST} =⇒
height(p) < height(neighbor(p, z))) then

8: S ← S ∪ {p} // p is local minimum, add it to the
set S

9: else if ∀z (z ∈ {NORTH,SOUTH} =⇒ height(p) >

height(neighbor(p, z))) ∧ ∀z (z ∈ {EAST,WEST}
=⇒ height(p) < height(neighbor(p, z))) then

10: S ← S ∪ {p} // p is partial extremum, add it to the
set S

11: else if ∀z (z ∈ {EAST,WEST} =⇒ height(p) >

height(neighbor(p, z))) ∧ ∀z (z ∈ {NORTH,
SOUTH} =⇒ height(p) < height(neighbor(p, z)))

then
12: S ← S ∪ {p} // p is partial extremum, add it to the

set S

13: end if
14: end for
15: return S

the points that are partial extrema. A point can be consid-
ered as partial extremum if it is either maximum or mini-
mum on every opposing pair and it is not local maximum
or local minimum. For example, if the height of a point is
greater than the height of its south and north neighbors and
less than the height of its west and east neighbors it is partial
extremum. The points that are marked (local maxima, local
minima and partial extrema) will form the set of extremum
points.

We mark and use the extremum points in search graphs
because of two main reasons. The first one is the mathemat-
ical property of such points. For example, if we take two
consecutive extremum points on a curve and if there is no
other singular/critical points between them, curve is smooth
in the region between them. In our case, instead of using all
the points as vertices of the search graph, we use only the
two consecutive extremum points and omit the other points
in between, if none of them are marked points (all types of
marked points will be discussed later). The second reason is
the physical property of such points. For example, military
teams may sometimes prefer to move in valleys (sequence of

Formation preserving path finding in 3-D terrains 353

Algorithm 2 DetermineSingularPoints(terrainGridData):
SetOfPoints

1: S ← ∅ // Let S denote the set of points to be returned
2: for all point p in terrainGridData do
3: if ∃z (z ∈ {NORTH,SOUTH,EAST,WEST} ∧

inaccessible(p,neighbor(p, z))) then
4: S ← S ∪ {p} // p is singular, add it to the set S

5: end if
6: end for
7: return S

local/partial minimum points) in order to minimize the fuel
consumption and hide from the enemy.

The terrain may be rough and hence there may be some
very small hills or cavities. To eliminate such extremum
points, the condition in (1) is checked against every marked
point p. Note that, nearestMarked(p, z) denotes the marked
point that is nearest to the point p in direction z. The con-
dition checks four nearest marked points in four neighbor-
ing directions and returns whether the height differences be-
tween p and each of these four points are within a threshold.
If the condition evaluates to true for p, then we unmark p.
k can be considered as the height that an agent can pass over.

∀z(z ∈ {NORTH,SOUTH,EAST,WEST}
=⇒ |height(p) − height(nearestMarked(p, z))| > k)

(1)

The next step is to determine and mark the singular
points. In mathematics, a point p of a curve c is consid-
ered as singular if c is not well-behaved in some manner,
such as differentiability, at p. Generally, the term is used for
the points where the curve is not differentiable. In our work,
we classified a point as singular, if it is not accessible from
at least one of its neighbors. A point is inaccessible from its
neighbor if the slope between them prevents the agent move-
ment (because of agent’s physical capability). Algorithm 2
returns the set of singular points.

Figure 4 contains a sample terrain where local maxima
and minima are shown with small blue circles and singular
points are shown with small red squares.

Singular points are marked in order to indicate inaccessi-
bilities because of terrain features. If we do not mark these
points, two vertices in the constructed search graph may be
connected even if there is no reachability between them in
the terrain. Marking these points guaranties the disconnect-
edness in such a case.

The next step is to mark the borders of the obstacles.
If a point is on the border of at least one obstacle, then it
is marked. The borders of obstacles can be determined by
using Bresenham’s line drawing algorithm [6] or any other
line drawing algorithm. Figure 5 contains an example where
dark squares represent the marked points.

Fig. 4 Sample environment with singular and extremum points

Fig. 5 Obstacle borders shown with orange

Then, we mark the initial and goal locations of agents.
Note that if the terrain is flat then there will be no crit-
ical/singular points and our algorithm will not mark any
point. In such a situation, since we mark the initial and the
goal locations, a path is guaranteed to be found.

The points marked up to this point can express the char-
acteristics of the terrain. However, since some of these
marked points might be the only marked point in its
row/column, the constructed search graph will be discon-
nected in such a case and the search will fail if the initial
and the goal locations are not in the same connected compo-
nent. To prevent this, we mark some additional points using
Algorithm 3. This algorithm is just used to make the con-
structed graph connected if the terrain is actually connected.

354 A.G. Bayrak, F. Polat

Algorithm 3 AlonePoints(terrainGridData)
1: lastAloneRow ← 0
2: for i = 1 to n /*n denotes the number of rows*/ do
3: numberOfMarkedPoints ← 0, lastMarked ← 0
4: for j = 1 to m /*m denotes the number of columns*/

do
5: if isMarked(i, j) then
6: numberOfMarkedPoints + +
7: if numberOfMarkedPoints > 1 then
8: break
9: else

10: lastMarked ← j

11: end if
12: end if
13: end for
14: if numberOfMarkedPoints == 1 ∧ lastAloneRow �= 0

then
15: mark(lastAloneRow, lastMarked)
16: lastAloneRow ← i

17: end if
18: end for
19: lastAloneColumn ← 0
20: for i = 1 to m do
21: numberOfMarkedPoints ← 0, lastMarked ← 0
22: for j = 1 to n do
23: if isMarked(j , i) then
24: numberOfMarkedPoints + +
25: if numberOfMarkedPoints > 1 then
26: break
27: else
28: lastMarked ← j

29: end if
30: end if
31: end for
32: if numberOfMarkedPoints == 1 ∧

lastAloneColumn �= 0 then
33: mark(lastAloneColumn, lastMarked)
34: lastAloneColumn ← i

35: end if
36: end for

Note that if the terrain is not connected, the graph will nat-
urally be disconnected. Let’s call a point alone, if it is the
only marked point in its row. Let pij denote the point on row
i and column j . The algorithm, starting from the first row,
traverses all the rows and skips the first alone point and if
it finds an alone point pkl on row k, it marks the point pkn

where n denotes the column of the previous alone point pmn.
Figure 6a shows an example of this step. A similar process
is repeated for the alone points columnwise as shown in
Fig. 6b. After this step, each of the alone points is connected
to at least one other alone point.

Fig. 6 Preventing alone points

Fig. 7 Marking additional points using height difference factor

If the agent only considers the points marked so far in de-
termining the path to its destination, the search will guaran-
tee to find a path if there is one, but the path realized may not
be natural since it only considers critical and singular points.
In order to prevent this and find more natural paths not only
considering extremum and singular points, we mark some
additional points as follows. Let’s call two marked points
adjacent if they are on the same row or column and there are
no other marked points or obstacles between them. For each
adjacent point pairs u and v, we draw a line connecting u

to v. Starting from u, find and mark the first point w such
that the difference between heights of w and u is greater than
or equal to a predefined value called height difference fac-
tor. We repeat this by considering the most recently marked
point in place of the current point (w in place of u in the
second iteration) until reaching v. Note that the height dif-
ference factor can be set to any value as desired, depending
on the requirements of the application problem. Two con-
secutive recently marked points on the line are considered
adjacent from now on. Figure 7 contains an example where
height difference factor is 1. The points shown with ‘X’ are
recently marked.

The marked points so far will form the vertices of the
graph on which the search will be performed. Since each
of the marking algorithm traverses each point of the grid at
most constant times, the total complexity of the algorithms
used so far is O(N), where N denotes the number of points
in the grid. The algorithm decreases the number of vertices
significantly compared to grid method, especially if the ter-
rain is not very rough.

The edges of the graph are determined as follows. For
each marked point (i.e., vertex) u, if any adjacent point v is
accessible from u, an edge incident from u to v is created.

Formation preserving path finding in 3-D terrains 355

Fig. 8 Checking whether the formation can pass through a point

A point is accessible from another if the slope between them
is in the range that is determined by the physical capability
of the agent and there is no obstacle in between them.

The cost of an edge is calculated as follows. We divide
the edge into small pieces (line segments) each of which has
the length sizeOfCell, and then sum the costs of all these
small pieces. The cost of a small piece is initially assumed
to be the Euclidean distance between the two corners (end
points) of the piece. Then, we multiply this cost with a func-
tion of slope such that the higher is the slope the higher is
the cost. The last factor that affects the cost of an edge is
whether the desired formation can be maintained along it.
Note that this is just a heuristic for calculating the costs of
edges of the search graph and the calculation is done be-
fore the team actually starts to move. Considering the for-
mation as a rectangular box and checking whether this box
can move along the edge can be a solution. However, mov-
ing along the whole edge for all edges will be computation-
ally costly. So, we used a computationally cheap method
given in Algorithm 4, which checks whether this box can
pass through the two vertices incident with the edge. This
does not always give the desired result but is a good approx-
imation. Figure 8 shows an example for Algorithm 4 to de-
termine whether the formation can pass through a waypoint,
namely startPoint. The algorithm finds two points, leftPoint
and rightPoint, on the line perpendicular to the edge, denot-
ing the left and right boundaries of the line accessible from
startPoint and checks whether the formation can fit into the
particular area between them.

If this algorithm returns false, we multiply the cost of the
edge with a function of the distance between leftPoint and
rightPoint, such that, the smaller is the distance the higher
is the cost. Repeat the same procedure for the end point of
the edge, namely endPoint. After this step, construction of
the search graph is completed. The algorithmic complex-
ity of edge cost detection using above algorithm is O(E ∗

Algorithm 4 CanFit(formationWidth, edge): Boolean
1: startPoint ← edge.start
2: lineP ← a line perpendicular to the edge and passing at

startPoint
3: leftPoint ← startPoint
4: for i = 1 to formationWidth do
5: if inaccessible(startPoint, leftPoint) then
6: break
7: end if
8: leftPoint ← point that is i ∗ sizeOfCell far from

startPoint on the line lineP and to the left of the
startPoint

9: end for
10: rightPoint ← startPoint
11: for i = 1 to formationWidth do
12: if inaccessible(startPoint, rightPoint) then
13: break
14: end if
15: rightPoint ← point that is i ∗ sizeOfCell far from

startPoint on the line lineP and to the right of the
startPoint

16: end for
17: if EuclideanDistance(leftPoint, rightPoint) ≥

formationWidth then
18: return true
19: end if
20: return false

formationWidth + N), if we traverse all grid points once in
north-south direction and once in east-west direction and
consider at most 2 ∗ formationWidth points for each edge,
where E is the number of edges and N is the number of
grid points. Adding up this complexity with the complexity
of vertex determination, total algorithmic complexity of the
graph construction is found as O(E ∗ formationWidth +N).

4 The proposed formation preserving path planning
method

In this section, we will discuss our formation preserving
path planning method (Fig. 2). We first construct the search
graph as described in previous section. Then, we use an in-
formed search technique (i.e., A∗) to find an optimal path
in this search graph. If there exists a path, we use a smooth-
ing algorithm in order to make the found path smooth, which
may be jagged due to the number of neighborhoods used in
the graph construction. After that, for each waypoint along
the path, we determine each agent’s position at that way-
point, assuming that the team is able to arrive at the way-
point. All these steps are executed off-line before the team
actually starts to move. At this point, we have a path (se-
quence of waypoints) for each individual agent. Then, in real

356 A.G. Bayrak, F. Polat

Fig. 9 Path smoothing process

time, each agent moves along its own path in coordination
with its teammates maintaining the formation and avoiding
collision. During on-line path finding, the group is able to
reorganize itself in case some agent loses its mobility. When
all the team members reach their goal points, the task is ac-
complished. In the following subsections, we will describe
each of the steps of off-line and on-line path planning in de-
tail.

4.1 Off-line path finding

The number of points to be considered in the search in a re-
alistic application can be very large because of the terrain
size. That’s why there is a need for using an informed search
technique to plan the path. We employ the A∗ algorithm
on the constructed weighted graph to produce an optimal
path. Since 4 neighborhood is considered during graph con-
struction phase, the Manhattan distance is used as a heuris-
tic function (namely h(.)). Manhattan distance between two
points is the sum of the absolute values of differences in each
coordinate axis (i.e., in 2-D, |x1 − x2| + |y1 − y2|). If an
8 neighborhood was considered, Euclidean distance might
have been used. For the actual distance traveled from source
(namely g(.)), we use the cost function mentioned in the
previous section to determine the edge costs. The heuris-
tic function is admissible, since the Manhattan distance be-
tween any two points will never overestimate the actual cost
between them.

The path generated by A∗ may be jagged because of the
number of neighborhoods used. In order for the path to be
more realistic, it should be smoothed. For path smoothing,
we used the method described in [19] given in Algorithm 5,
with some small changes. The basic idea is to remove a
point from the path if its predecessor is visible to its succes-
sor. For visibility of two points to each other, we can use any
Line-of-Sight algorithms. Figure 9 shows an example of the
smoothing process.

This algorithm is effective in 2-D. Because of the triangle
inequality, the cost of smoothed path can not be larger than

Algorithm 5 SmoothPath(listOfWayPoints): Sequence-
OfWayPoints

1: start ← 1
2: returnList.add(listOfWayPoints[1])
3: length ← listOfWayPoints.length()

4: for end = 2 to length − 1 do
5: if invisible(listOfWayPoints[start],

listOfWayPoints[end + 1]) then
6: returnList.add(listOfWayPoints[end])
7: start ← end
8: end if
9: end for

10: returnList.add(listOfWayPoints[length])
11: return returnList

the cost of original path. Since the terrain is 3-D and the cost
function does not only consider the Euclidean distance, the
cost may sometimes grow during this smoothing process. In
order to make the path smoother but prevent the cost from
growing too much, step 5 of the algorithm is revised as fol-
lows:

if invisible(listOfWayPoints[start],
listOfWayPoints[end + 1])

∨ cost(listOfWayPoints[start],
listOfWayPoints[end + 1])

> cost(listOfWayPoints[start], listOfWayPoints[end])
+ cost(listOfWayPoints[end],

listOfWayPoints[end + 1])
+ ε then

4.1.1 Formation representation

The spatial structure of a formation should be represented
precisely. In [16], Lewis and Tan introduced the concept of

Formation preserving path finding in 3-D terrains 357

virtual structure, considering the agent group as a rigid body
and all the planning is done for this body. Another popular
method is to let each agent decide its own path according to
its relative position with respect to other agents. In [9], De-
sai et al. presented a graph theoretical approach where each
agent determines its location according to the locations of
other agents and there is a leader agent who does not follow
any other agent but leads the group. The relation between
two agents consists of relative distance and orientation be-
tween them. There are several methods that make use of pri-
orities among agents to describe a formation in a team [13,
19].

In our work, we defined a formation by specifying the
relative positions of agents and their priorities. Agents are
given ID’s from 1 to n where n denotes the number of
agents. The agent with the lowest ID (i.e., 1) has the high-
est priority and is called the leader. The priority is mainly
used to determine the order of movement within each dis-
crete time step in on-line path planning. An agent’s relative
position is given with respect to that one of the other agents
having smaller ID. The relative position of agent a with re-
spect to agent b is defined with two variables, �depth(a, b)

and �width(a, b). �depth(a, b) is the distance between a

and b in the movement direction of the group. �width(a, b)

is the distance between a and b in the axis perpendicular to
the forward facing direction of the group. In addition, the
numbering of agents brings about another constraint that if
agent a is closer to the front of the group in depth compared
to agent b, a has lower ID than b’s. Note that, one can design
any formation using our representation and Fig. 10 shows
how some commonly used formations are represented. In
the figure, circles are the agents and numbers in the cir-
cles are ID’s of the agents. A directed edge from agent a

to agent b means that position of a is described with respect
to position of b in the formation. a is called predecessor of
b and b is called successor of a. The example formations
in Fig. 10 are chosen to be the most common formations
that are used in military domain. However, our formation

Fig. 10 Formation representation

representation scheme can be used with any formation de-
fined by the user. For example, wedge formation given in
the experiments contains branch. And circular formation can
be defined by the user as a polygon, since the relations are
given as distances in two dimensions, namely �depth(., .)

and �width(., .).

Algorithm 6 PlaceAgents(formation, wayPoint, nextWay-
Point)

1: lineM ← the line passing through wayPoint and
nextWayPoint

2: lineP ← the line perpendicular to the lineM and passing
at wayPoint

3: Find leftPoint and rightPoint as in Algorithm 4,
with these arguments: CanFit (formation.width,
edge(wayPoint, nextWayPoint))

4: backPoint ← wayPoint
5: for i = 1 to formation.depth do
6: if inaccessible (wayPoint, backPoint) then
7: break
8: end if
9: backPoint ← the point that is i ∗ sizeOfCell far from

wayPoint on the line lineM and to the back of the
wayPoint considering facing direction as front (see
Fig. 11)

10: end for
11: midPointLR ← midpoint of leftPoint and rightPoint

(see Fig. 12.a)
12: midPointBR ← front midpoint of bounding rectangle of

formation (see Fig. 12b)
13: Put the bounding rectangle of formation in such a way

that midPointLR and midPointBR are superposed (see
Fig. 12c)

14: Scale bounding rectangle in left-right direction such
that it can fit between leftPoint and rightPoint (see
Fig. 13a)

15: Scale bounding rectangle in front-back direction such
that it can fit between midPointBR and backPoint (see
Fig. 13b)

16: for i = 1 to n /*n denotes the number of agents*/ do
17: pointOfAgent ← the place of agent in the bounding

rectangle found above (see Fig. 14)
18: lineOfAgent ← line parallel to lineP and passing

through pointAgent
19: pointOfReference ← the point that is intersection of

lineOfAgent and lineM
20: if inaccessible(pointOfReference, pointOfAgent)

then
21: update the place of agent in the bounding rectangle

as pointOfReference
22: end if
23: end for

358 A.G. Bayrak, F. Polat

Fig. 11 Determination of leftPoint, rightPoint and backPoint

4.1.2 Determining agent positions at every waypoint
of the path

At any waypoint of the path found by off-line planner, we
use Algorithm 6 to determine each agent’s position in ac-
cordance with the predefined formation. The method de-
scribed in the algorithm is as follows. First, by using the
same method as in Algorithm 4, for a waypoint, we deter-
mine the two points leftPoint and rightPoint, considering
the edge between the waypoint and its successor. Then, de-
termine the farthest accessible point to the waypoint, called
backPoint, that is on the line passing through the waypoint
and its successor and is to the back of the wayPoint consid-
ering facing direction of group as front. Figure 11 shows an
example of leftPoint, rightPoint and backPoint.

Then, we determine the midpoint of leftPoint and right-
Point and superpose the front midpoint of bounding rectan-
gle of the formation on this midpoint. Bounding rectangle of
the formation can be defined as follows. Draw a line pass-
ing through the leader agent which is perpendicular to fac-
ing direction of the formation. Then, draw a parallel line
passing through the agent that is farthest from the first line.
Finally, draw two perpendicular lines to these lines passing

Fig. 12 Superposing
midPointLR and midPointBR

Formation preserving path finding in 3-D terrains 359

Fig. 13 Scaling bounding
rectangle to fit into an area

through the leftmost and the rightmost agents with respect
to the moving direction. These 4 lines will form the bound-
ing rectangle. This superposing is illustrated by an example
in Fig. 12.

After that, the bounding rectangle is scaled in both left-
right and front-back directions in order to fit to the spe-
cific area near the waypoint, if there are inaccessible points
near it. This scaling processing is done to make sure that
the bounding box is not occupied by the unreachable re-
gions (e.g. obstacles). If the distance between leftPoint and
rightPoint is not smaller than the width of the formation,
then there is no need to scale in left-right direction. Like-
wise, if the distance from backPoint to the front of bounding
rectangle is not smaller than depth of formation, then there
is no need to scale in front-back direction, too. Figure 13
shows an example of scaling process.

Finally, for each of the agents’ positions in the bound-
ing rectangle formed so far, a line passing through the po-
sition and parallel to the line passing through leftPoint and
rightPoint is drawn and the intersection of this line with the
line passing through the waypoint and successor of the way-
point is determined. If this intersection point is inaccessible
from the position, the position of agent is shifted to the inter-
section point. This is because this intersection point is nec-
essarily accessible from the waypoint and it is important for
each agent’s position to be accessible from the waypoint,
in order to move in coordination. An example of shifting
process is given in Fig. 14.

We use bounding rectangle for approximating the shape
of the group. Since the size of the rectangle is not fixed
and scaled down if necessary, the team has the ability to
pass through any waypoint. The agents will get closer when
they are passing through a narrow passage, and will return
back to the normal distances in other cases. Hence, we don’t
think that it will cause any problems to use a bounding rec-
tangle instead of bounding polygon, for example. We think
that bounding polygon, or similar approach, will be algo-
rithmically much more complicated than ours and will not
have a significant benefit compared to rectangle approach.

Fig. 14 Shifting inaccessible points

In addition, similar approach, i.e., bounding box, is used in
many different areas, like physics engines in games etc., and
shown to be effective.

Using this algorithm, agent positions at any waypoint are
determined and off-line path finding step is completed. Next
step is to move the agents in real time by using on-line path
planning method given in next subsection.

4.2 On-line path finding

Having the positions calculated with the help of Algorithm 6
for each agent in the team at any waypoint, each agent nav-
igates between its own waypoints in real time, avoiding the
collisions. Agents plan their next moves and execute them at
discrete time steps where the time between two successive
time steps is very small. At any time step, agents plan and
execute their moves in the order of their priorities (i.e., ID’s).
Note that the on-line planning algorithm is complete since

360 A.G. Bayrak, F. Polat

the priority of the agents introduced in Sect. 4.1.1 Formation
representation are designed using follower scheme, where
the agents closer to the front of the formation are followed
by the others that are on the back and higher priority agents
move before the others. Similar distributed approaches are
used in other similar works as well, e.g. [19].

We introduce an online path finder algorithm, low level
planner, given in Algorithm 7, that navigates an agent from
one waypoint to another which may take more than one time
step. Note that, at the beginning of each time step, all the
agents tune their speeds in order to maintain formation using
Algorithm 8.

Basic idea behind the Algorithm 7 is to move the agent
towards the next waypoint at each time step and if this can
not be accomplished, get closer to the line from last visited
waypoint to the next waypoint since it is guaranteed that the
next waypoint is accessible from the last visited one. The
reason why all agents do not move along this line is to move
in formation.

In order to move more smoothly, the agents can change
their direction a few steps before facing obstacles. This can
be done by changing the definition of canMove(dir) in the
first line of the algorithm as follows:

‘. . . with its current speed in the direction . . .’ → . . . with
t times (where t determines the lookahead value, if it is huge
the computational cost increases, if it is 1 it is same as main
algorithm) its current speed in the direction . . .

Agents tune their speeds at each time step in order to pre-
serve the formation while moving by using Algorithm 8. Ac-
cording to the distance between an agent and its predecessor,
it tunes its speed and tells the predecessor to do so when the
distance exceeds a threshold.

If an agent gets more than one contradictory request, the
decelerate request has higher priority over accelerate re-
quest. However, an accelerate request has higher priority
over a normalize (tuning to average speed) request.

4.2.1 Rearrange formation

In the case of mobility loss of an agent, the remaining agents
should rearrange their role according to Algorithm 9. The
team re-organizes by making each agent get the role (rela-
tive position and ID) of its predecessor. This is only a state
change for the team, the formation will be restored in time
as the team moves. Figure 15 shows an example, where the
team is moving in column formation and the agent with ID
2 has lost its mobility.

5 Experimental results and sample run

The experimental results of the proposed algorithms are
given in this section. First, the testing platform and exper-
imental setup are given. Then, the performance of off-line

Algorithm 7 OnlinePathFinder(lastVisitedWayPoint,
nextWayPoint)

1: /* Definitions:
canMove(dir): agent checks whether it is possible to
move without colliding with any other agent/obstacle
with its current speed in the direction dir, and if so,
moves in that direction and returns true; otherwise, does
nothing and returns false.
direction(dir, LEFT/RIGHT, angle): returns the direc-
tion that is angle degrees on the LEFT/RIGHT of dir.
e.g. direction(dir, LEFT, 90) returns the direction that is
perpendicular to and on the left of dir. */

2: while distance(agent.location, nextWayPoint) > ε do
3: targetDir ← vector(agent.location, nextWayPoint)
4: if canMove(targetDir) then
5: continue
6: else if canMove(direction(targetDir, LEFT, 45))

then
7: continue
8: else if canMove(direction(targetDir, RIGHT, 45))

then
9: continue

10: else if canMove(direction(targetDir, LEFT, 90))
then

11: continue
12: else if canMove(direction(targetDir, RIGHT, 90))

then
13: continue
14: end if
15: secondPhase:
16: lastTargetDir ← vector(lastVisitedWayPoint,

nextWayPoint)
17: if agent is on the right of lastTargetDir then
18: side ← RIGHT
19: else
20: side ← LEFT
21: end if
22: if canMove(targetDir) then
23: continue
24: else if canMove(direction(targetDir, side, 45)) then
25: continue
26: else if canMove(direction(targetDir, side, 90)) then
27: goto secondPhase
28: else if canMove(direction(targetDir, side, 135)) then
29: goto secondPhase
30: else
31: Wait for a predefined amount of time (because the

path may have been unavailable for an amount of
time), and then goto secondPhase

32: end if
33: end while

Formation preserving path finding in 3-D terrains 361

Fig. 15 Rearranging formation

Algorithm 8 TuneSpeeds(positionsOfAgents,
directionOfAgents)

1: /* p is a predefined threshold (a real number between 0
and 1) that specifies to what degree the relative position
of any agent wrt its predecessor can be altered. */

2: for i = 2 to numberOfAgents do
3: dist ← distance in depth between the agent

i and agent predecessor(i) according to the
direction(predecessor(i))

4: if dist < �depth(i,predecessor(i)) ∗ (1 − p) then
5: decelerate(i)
6: else if dist > �depth(i,predecessor(i)) ∗ (1 + 2 ∗ p)

then
7: decelerate(predecessor(i))
8: else if dist > �depth(i,predecessor(i)) ∗ (1 + p)

then
9: decelerate(i)

10: else
11: normalizespeed(i)

12: normalizespeed(predecessor(i))
13: end if
14: end for

Algorithm 9 RearrangeTeam(agent, remainingFormation)
1: current ← agent
2: while current has successor in remainingFormation do
3: child ← the lowest numbered successor of the

current
4: add child to list L

5: current ← child
6: end while
7: current ← agent
8: for i = 1 to lengthOfList(L) do
9: replace current with L[i]

10: current ← L[i]
11: end for

planner is discussed. Our method was developed for primar-
ily simulation of military operations. Therefore, the path to
be generated must guarantee that the team is able to move
in formation to the desired destination with minimum cost.

Size of the search graph is critical for the running time of
off-line algorithm, which guarantees to find optimal paths.
Success of our method is due to the nice reduction on the
size of the search graph as can be seen in the experimental
study.

Then, experimental results of on-line planner are given.
On-line planner is quite fast as it requires constant time
per iteration. The on-line planner tolerates deviation from
the desired formation to some extend, controlled by a user-
specified threshold p as specified in Algorithm 8. Exper-
imental results justify that formation maintenance is quite
successful measured in terms of pairwise isolation to be ex-
plained next.

To sum up, our experimental study justify that our
method is efficient and optimizes multiple criteria, length
of the solution path and degree of formation maintenance.
Finally, some sample screenshots from software are given.

5.1 Experimental setup

All the given algorithms are implemented using C++ pro-
gramming language. To visualize the 3-D environment, the
OGRE (Object-Oriented Graphics Rendering Engine) API
[20] is used. The code was written platform independently
and the software was both tested in Linux and Windows
platforms. Tests were run on a PC, which has Intel Core2
1.80 GHz CPU and 1 GB memory.

We randomly generated 15 terrain data and one real
world terrain data to test the algorithms. Randomly gen-
erated data are of sizes 2500 × 2500, 2000 × 2000,
1500 × 1500, 1000 × 1000 and 500 × 500, and we gen-
erated three instances from each size. The real world data
is 2000 × 2000. Algorithm 10 is used to generate random
heightmaps,2 which is converted to 3-D mesh to represent
terrain. The algorithm first creates a heightmap whose pixels
are initialized to 0. Then, it randomly creates oblate semi-
spheroids3 at randomly selected points and having random
but bounded major axis and minor axis lengths. Finally, it
adds up the elevations of all these spheroids at each pixel.

2Heightmap is an image used for storing terrain elevation data.
3Oblate spheroid is a special type of ellipsoid, formed by rotating an
ellipse around its minor axis.

362 A.G. Bayrak, F. Polat

Algorithm 10 GenerateHeightMap(terrainSize, numberOf-
Spheroids, maxMajorAxis, maxMinorAxis): HeightMap

1: Create a height map H with size terrainSize ×
terrainSize and initialize all pixels as 0

2: for i = 1 to numberOfSpheroids do
3: x ← random(terrainSize) // Assume that random(i)

generates an integer between 1 and i

4: y ← random(terrainSize)
5: r ← random(maxMajorAxis)
6: h ← random(min(maxMinorAxis, r))
7: Create an oblate semi-spheroid which is centered at

(x, y), with major axis of length r and minor axis of
length h and add the elevation of this spheroid at each
pixel to the corresponding pixels of H

8: end for
9: return H

Fig. 16 Sample smooth terrain

By increasing the number of spheroids or minor axis/
major axis ratio, more rough terrains can be generated. One
of the three randomly created terrains of the same size is
relatively smooth, one is relatively rough and the other is
mountainous. Tested terrains of size 1000 × 1000 are given
in Figs. 16, 17 and 18.

5.2 Performance evaluation of off-line planner

In this part, experimental results of the off-line planner will
be discussed. Results are given in Tables 1, 2, 3, 4, 5
and 6. For each terrain, 4 methods are tested. These are
grid method, our proposed method with height difference
threshold 2 (HDT = 2), 5 (HDT = 5) and not using height
difference threshold (i.e., HDT = ∞ or No HDT). Details
of the height difference threshold is given in Sect. 3. For
each method, the number of points (i.e, vertices) in the con-
structed search graph, time consumed for graph construction

Fig. 17 Sample rough terrain

Fig. 18 Sample mountainous terrain

in seconds, time used for finding a path on constructed graph
(time for A∗ + time for path smoothing), cost of the path
found after running A∗ and cost of the path after smoothing
are given. Note that the cost of the path is taken as the length
of the path (sum of the edge weights of the path). The calcu-
lation of the edge weights is described in Sect. 3.2. In each
test data, team’s mission is to find a path from one corner of
terrain to the opposing corner.

From these results, first, we can conclude that our method
is very effective in time, especially the method named
NoHDT . As can be seen in all terrains, the method decreases
the number of points steeply and as a result, the search can
finish in a very short time period compared to grid method.
Even if the problem is to find a path once in a given terrain,
the method is very effective since time constructing graph +
time running A∗ is small compared to grid method. But in
real life applications, e.g. games and military simulations,

Formation preserving path finding in 3-D terrains 363

Table 1 Experiment on 2500 × 2500 terrains

Height Number Time Time Cost Cost of

difference of points constructing running of path smoothed

threshold (vertices) graph A∗ (sec) found path

(sec) by A∗

First terrain

HDT = 2 410837 29.85 8.96 4950 3859

HDT = 5 158312 29.05 6.44 4964 3831

No HDT 3652 10.76 0.24 5431 4188

Grid 6250000 20.98 18.52 5099 3853

Second terrain

HDT = 2 857802 37.77 11.94 5228 4182

HDT = 5 358043 26.46 6.76 5248 4196

No HDT 38609 22.13 0.85 5453 4376

Grid 6250000 19.85 9.75 5476 4503

Third terrain

HDT = 2 887673 35.58 18.13 5279 4287

HDT = 5 403464 36.21 11.96 5317 4687

No HDT 120731 24.66 1.35 5516 4913

Grid 6250000 19.28 16.41 5481 4280

Table 2 Experiment on 2000 × 2000 terrains

Height Number Time Time Cost Cost of

difference of points constructing running of path smoothed

threshold (vertices) graph A∗ (sec) found path

(sec) by A∗

First terrain

HDT = 2 308047 19.63 5.68 3902 2937

HDT = 5 119164 19.4 4.87 3906 2907

No HDT 2837 7.24 0.2 5783 2907

Grid 4000000 16.32 16.5 4035 3309

Second terrain

HDT = 2 608702 29.4 8.36 4091 3353

HDT = 5 255044 19.93 4.73 4085 3259

No HDT 30768 19.27 0.95 4172 3500

Grid 4000000 16.23 8.19 4290 3646

Third terrain

HDT = 2 667764 19.05 16.58 4236 3636

HDT = 5 306255 19.89 8.54 4259 3607

No HDT 99102 17.15 1.04 4343 4146

Grid 4000000 16.64 16.24 4367 3564

the search graph is only constructed at the beginning of the
simulation once, which can be used for many navigation
tasks throughout the simulation. So, efficiency of the time
running A∗ is the key criteria in such applications. We can

Table 3 Experiment on 1500 × 1500 terrains

Height Number Time Time Cost Cost of

difference of points constructing running of path smoothed

threshold (vertices) graph A∗ (sec) found path

(sec) by A∗

First terrain

HDT = 2 145285 12.74 2.54 2822 2083

HDT = 5 51417 12.75 0.92 2829 2094

No HDT 2441 5.40 0.09 5141 2098

Grid 2250000 7.08 6.94 2918 2343

Second terrain

HDT = 2 269544 12.77 3.66 2964 2379

HDT = 5 109337 12.94 1.67 2978 2436

No HDT 19035 9.97 0.21 3227 2327

Grid 2250000 7.20 6.33 3060 2336

Third terrain

HDT = 2 361108 12.55 5.79 3043 2480

HDT = 5 172921 12.79 2.46 3047 2622

No HDT 73490 11.93 0.61 3163 2714

Grid 2250000 9.6 15.46 3154 2460

Table 4 Experiment on 1000 × 1000 terrains

Height Number Time Time Cost Cost of

difference of points constructing running of path smoothed

threshold (vertices) graph A∗ (sec) found path

(sec) by A∗

First terrain

HDT = 2 77661 6.89 2.78 1822.38 1336.71

HDT = 5 27774 6.73 1.09 1823.71 1336.71

No HDT 1192 1.66 0.03 1878.03 1336.71

Grid 1000000 3.75 3.17 1864.63 1476

Second terrain

HDT = 2 161407 6.98 4.17 1901.5 1513.29

HDT = 5 66539 4.74 1.3 1914.43 1504.8

No HDT 7119 3.02 0.07 2157.72 1854.16

Grid 1000000 4.19 3.58 1965.35 1567.92

Third terrain

HDT = 2 172522 4.59 3.43 1987 1590.36

HDT = 5 78881 6.92 2.08 2010.55 1600.45

No HDT 31574 4.24 0.29 2087.38 2005.66

Grid 1000000 3.82 18.6 2054.35 1642

gain up to 100 times better results in this criteria if we use
the method NoHDT .

Second criteria for the search is the cost of path. We can
conclude from the results that, the lengths of the paths found

364 A.G. Bayrak, F. Polat

Table 5 Experiment on 500 × 500 terrains

Height Number Time Time Cost Cost of

difference of points constructing running of path smoothed

threshold (vertices) graph A∗ (sec) found path

(sec) by A∗

First terrain

HDT = 2 16348 1.11 0.22 741.554 540.507

HDT = 5 5378 1.05 0.07 746.535 540.507

No HDT 373 0.35 0.02 1093.96 540.507

Grid 250000 0.69 1.24 760.892 540.507

Second terrain

HDT = 2 43812 1.12 0.52 787.862 632.598

HDT = 5 18053 1.57 0.32 782.584 608.401

No HDT 2621 0.82 0.02 852.89 703.412

Grid 250000 0.94 1.11 825.305 632.04

Third terrain

HDT = 2 44818 1.11 0.54 796.319 630.541

HDT = 5 20370 1.1 0.25 812.369 718.666

No HDT 9804 0.98 0.06 903.353 840.836

Grid 250000 0.7 0.86 842.652 625.592

Table 6 Experiment on real world terrain

Height Number Time Time Cost Cost of

difference of points constructing running of path smoothed

threshold (vertices) graph A∗ (sec) found path

(sec) by A∗

HDT = 2 199765 19.5 8.3 3942.27 3125.81

HDT = 5 95703 19.65 2.73 3953.93 3145.27

No HDT 62933 19.52 1.08 3977.06 3188.32

Grid 4000000 16.3 7.86 4075.39 3147.34

using our proposed methods are approximately equal to and
generally better than the one found using grid method. Note
that in Table 5, the cost of smoothed path for the first terrain
seems to be all the same because that terrain is small and the
smoothest one and all the methods end up with the same re-
sult after smoothing. In Table 1–5, the cost of the path found
by A∗, which is expected to be minimal, is not the lowest
among other methods. The reason for this is the fact that
heuristic estimation used by A∗ is not admissible. As ex-
plained in Sect. 3.2. Representation of the environment and
construction of the search graph, cost of an edge is depen-
dend on whether the desired formation can be maintained
between two nodes incident with that edge, or not, in ad-
dition to parameters such as distance, slope, etc. Because
of this parameter, the cost function is not linear in terms of
the distance between two nodes, which might result in lower
costs for our method than the grid based method. Finally, we

Table 7 Results of on-line planner of 4 agents

Terrain Formation Average error in depth Average error in width

A1 A2 A3 A4 A1 A2 A3 A4

1 Column – 1.78 3.04 3.04 – 0.25 0.21 0.21

Line – 1.79 1.76 1.70 – 1.10 1.01 1.06

Wedge – 2.46 1.10 2.71 – 1.21 0.95 1.37

2 Column – 3.99 3.99 3.93 – 0.28 0.33 0.23

Line – 3.21 2.96 2.94 – 1.02 1.22 1.55

Wedge – 2.59 1.72 3.04 – 1.33 1.09 1.46

3 Column – 3.54 3.26 3.68 – 0.32 0.28 0.45

Line – 3.26 3.12 3.29 – 2.30 1.32 2.41

Wedge – 3.58 3.08 3.63 – 2.09 1.39 2.59

Real Column – 2.52 2.60 2.65 – 0.18 0.20 0.22

Line – 1.44 1.45 1.41 – 1.11 1.22 1.39

Wedge – 2.54 2.48 2.60 – 1.21 1.28 1.38

Table 8 Results of on-line planner of 8 agents

Terrain Formation Average error Average error

in depth in width

1 Column 2.16 0.34

Line 1.62 1.54

Wedge 1.72 1.51

2 Column 3.12 0.41

Line 3.10 1.82

Wedge 2.52 1.75

3 Column 3.31 0.37

Line 3.14 2.20

Wedge 3.50 2.01

Real Column 1.42 0.23

Line 1.45 1.63

Wedge 1.48 1.74

would like to state that our algorithm is complete. Further-
more, there is not any case where the grid-base method can
find a solution but ours cannot, because we reflect all of the
accessibilities and inaccessibilities of the grid method to our
search graph.

5.3 Performance evaluation of on-line planner

Experimental results of on-line planner will be discussed in
this part. These results are obtained from the on-line path
planner during the team is moving on the path found by the
off-line planner using our method (No HDT) on 2000×2000
terrains and the real world terrain used above. Results can be
seen in Tables 7, 8 and 9. On each of the four terrains, three

Formation preserving path finding in 3-D terrains 365

Table 9 Results of on-line planner of 16 agents

Terrain Formation Average error Average error

in depth in width

1 Column 1.98 0.45

Line 1.86 2.23

Wedge 1.73 2.15

2 Column 2.94 0.43

Line 3.21 3.26

Wedge 2.71 3.21

3 Column 3.79 0.62

Line 3.74 3.51

Wedge 3.37 3.48

Real Column 1.88 0.45

Line 1.75 2.41

Wedge 1.80 2.11

common formations (column, line, wedge) are tested with
teams of four, eight and sixteen agents. Formations are de-
fined as in Fig. 10 in Sect. 4 for four agents. Formations of
eight and sixteen agents are defined similarly. As previously
mentioned, the formation is specified by each agent’s rela-
tive position with respect to its predecessor. Remember that
the relative position of a with respect to its predecessor b is
defined with two variables �depth(a, b) and �width(a, b).
�depth(a, b) is the distance between a and b in the move-
ment direction of the group and �width(a, b) is the distance
between a and b in the axis perpendicular to the movement
direction of the group. In the on-line planner, fluctuation of
these �depth and �width values up to 20% are considered
in range and up to 40% are tolerable. These values are se-
lected due to our domain analysis in the development of
an agent-based military simulation framework, consulting to
military domain experts. The results in Table 7 show the av-
erage absolute values of distance errors in depth and in width
of each agent. In Tables 8 and 9, the average �depth(a, b)

and �width(a, b) of all agents are given. Note that the rel-
ative distances in formations are set to 10 units, so values
up to 2 are considered in range and up to 4 are considered
tolerable.

Results show that, agents are successful in preserving
their relative position with respect to their predecessor (es-
pecially in width), since the errors in both are in tolerable
range. Because of the terrain features (e.g. roughness), it be-
comes hard, sometimes impossible, to preserve the distances
and that’s why the errors increase in 2nd and 3rd terrains.

5.4 Sample runs

Screenshots from sample runs of three common formations
of 4 agents, line, column and wedge, are given in Figs. 19,

Fig. 19 Team in line formation

Fig. 20 Team in column formation

20 and 21, respectively. In figures, the red lines show the
paths travelled by agents. Each agent forms a red line by
putting small red spheres to its instant position at every time
step during simulation.

Screenshots for teams of 8 agents in column formation
and 16 agents in line formation are given in Figs. 22 and 23,
respectively.

Also, a sample run in which the team in line formation
passing through a passage is given. In Fig. 24, four screen-
shots from the sample run is given. The paths realized by
each agent during the run can be seen in Fig. 25.

366 A.G. Bayrak, F. Polat

Fig. 21 Team in wedge formation

Fig. 22 Team of 8 agents in column formation

6 Conclusions and future work

In this work, we developed an algorithm for planning a path
for a group of autonomous agents that need to move in a
specified formation in 3-D terrains. We developed software
in order to test the proposed methods and visualize the envi-
ronment and behavior of agents in 3-D. Our method can be
used especially in computer games and military simulations.

The proposed method, considering the group as a rigid
body, first constructs a search graph by analyzing and iden-
tifying important terrain features from height map. We use
grid representation and the number of moving directions is
selected to be 4. The number of moving directions can be
at most 8 because of grid representation of the terrain, i.e.,
there are 8 neighbors of any grid cell. The number of mov-

Fig. 23 Team of 16 agents in line formation

ing directions can be increased if the grid cell is made an
n-gonal (n ≥ 8) instead of squares. But increasing the num-
ber of neighborhood of cell, the size of the search graph
will increase, making both the terrain analysis and the path
search costly.

Then a high level planner that uses A∗ algorithm deter-
mines an optimal path from an initial location to a target
location. Then with the help of a low level on-line plan-
ner, each agent in the team navigates between waypoints on
the solution path, avoiding collisions with each other and
with objects in the environment. We defined a representa-
tion for group formation on which algorithms were devel-
oped to maintain formation while moving from one way-
point to another. The proposed method also has the ability
to repair the formation when an agent or some agents in the
team loses mobility, which is quite possible in real-life ap-
plications. Concerning the on-line planning, the possibility
of agents getting stuck is not possible. Off-line planner guar-
antees to find a sequence of waypoints for the overall team
from which individual waypoints are generated. The only
thing left is to maintain formation between two successive
waypoints. For this we have defined priorities by totally or-
dering the agents, and any agent will only be trying to keep
its relative position with respect to another agent (the next
high priority agent). The highest priority agent will surely
be able to reach its designated next waypoint, at the same
time the next highest priority agent following the first one,
and so on.

We tested our proposed algorithms both on randomly
generated and real-world terrains. The off-line planner has
brought a significant gain in time performance, which might
be the most crucial factor in real-life applications especially
in games, over grid based terrain representation. Results ob-
tained from the on-line planner were also very satisfactory.

Formation preserving path finding in 3-D terrains 367

Fig. 24 Team passing a
passage—screenshots

The team maintained the formation through most of the
path, and when it is necessary to break the formation, e.g.
a team in line formation passing through a narrow passage,
the team recovered the formation in a very short time period.

The algorithms were implemented and tested on static
environments but they are easily adaptable to dynamic en-
vironments. Reconstructing only the changed part of the
search graph and using D∗ [28] like algorithms would be
a solution. D∗ is a A∗ like search algorithm especially used
in dynamic environments. Also, it is considered that the en-
vironment is known at the beginning of the simulation. In
the same way, by considering the observability of a region as
dynamism of the environment, this problem can also be han-
dled. As future work, methods will be adapted to dynamic
and partially observable environments.

Additional research will be performed on the formation
preserving navigation of hierarchical agent teams. For ex-
ample, each of the fireteams (Fireteam is the smallest unit
in military) will move in wedge formation, while the squad
(Squad is one level higher unit of fireteam) will move in
column formation. By making some changes in formation
representation, our method may also be used for this task.

References

1. Bahceci E, Soysal O, Sahin E (2003) A review: pattern formation
and adaptation in multi-robot systems. Technical report, Robotics
Institute, Carnegie Mellon University

Fig. 25 Team passing a passage—paths

2. Balch T, Arkin RC (1998) Behavior-based formation control for
multirobot teams. IEEE Trans Robot Autom 14(6):926–939

3. Bayrak AG, Polat F (2008) Formation preserving navigation of
agent teams in 3-d terrains. In: Proceedings of industrial simula-
tion conference (ISC), pp 148–155

4. Berg MD, Krefeld MV, Overmars M, Schwarzkopf O (2000)
Computational geometry: algorithms and applications. Springer,
Berlin

5. Bourgeot J-M, Cislo N, Espiau B (2002) Path-planning and track-
ing in a 3d comlex environment for an anthropomorphic biped
robot. In: Proceedings of the IEEE/RSJ international conference
on intelligent robots and systems IROS, Lausanne, Switzerland,
pp 2509–2514

368 A.G. Bayrak, F. Polat

6. Bresenham JE (1965) Algorithm for computer control of a digital
plotter. IBM Syst J 4(1):25–30

7. Dain RA (1998) Robot wall-following algorithms using genetic
programming. Appl Intell 8(1):33–41

8. Dawson C (2002) Formations. AI Game Programming Wisdom.
AI Wisdom, pp 272–281. Charles River Media, Boston

9. Desai JP, Kumar V, Ostrowski JP (1999) Control of changes in for-
mation for a team of mobile robots. In: Proceedings of IEEE inter-
national conference on robotics and automation, vol 2, pp 1556–
1561

10. Fugere J, LaBoissonniere F, Liang Y (1999) An approach to de-
sign autonomous agents within modsaf. In: Proceedings of IEEE
SMC’99 conference on systems, man, and cybernetics, Tokyo,
Japan, vol 2, pp 534–539

11. Geraerts R, Overmars MH (2002) A comparative study of proba-
bilistic roadmap planners. In: Workshop on the algorithmic foun-
dations of robotics (WAFR’02). Springer, Berlin, pp 43–57

12. Helbing D, Buzna L, Johansson A, Werner T (2005) Self-
organized pedestrian crowd dynamics: experiments, simulations,
and design solutions. Transp Sci 39(1):1–24

13. Hsu C.-H., Liu A (2005) Multiagent-based multi-team formation
control for mobile robots. J Intell Robot Syst 42(4):337–360

14. Kambhampati S, Davis L (1986) Multiresolution path planning for
mobile robots. IEEE J Robot Autom 2(3):135–145

15. Kavraki L, Latombe JC (1998) Probabilistic roadmaps for robot
path planning. In: Practical motion planning in robotics: current
and future directions. Addison-Wesley, Reading, pp 33–53

16. Lewis MA, Tan KH (1997) High precision formation control of
mobile robots using virtual structures. Auton Robots 4(4):387–
403

17. Loscos C, Marchal D, Meyer A (2003) Intuitive crowd behavior in
dense urban environments using local law. In: Proceedings theory
practice of computer graphics (TPCG 03), pp 122–129

18. McIlroy D, Smith B, Heinze C, Turner M (1997) Air defence op-
erational analysis using the SWARMM model. In: Asia pacific op-
erations research symposium

19. Ngo VT, Nguyen AD, Ha QP (2005) Toward a generic architec-
ture for robotic formations: planning and control. In: Proceedings
of the sixth international conference on intelligent technologies,
pp 89–96

20. OGRE—Open Source 3D Graphics Engine. http://www.
ogre3d.org

21. Parsons D, Surdu J, Jordan B (2005) Onesaf: a next generation
simulation modeling the contemporary operating environment. In:
Proceedings of Euro-simulation interoperability workshop

22. Pradhan SK, Parhi DR, Panda AK, Behera RK (2006) Poten-
tial field method to navigate several mobile robots. Appl Intell
25(3):321–333

23. Reece DA (2003) Movement behavior for soldier agents on a vir-
tual battlefield. Presence 12(4):387–410

24. Reynolds CW (1987) Flocks, herds, and schools: a distributed be-
havioral model. Comput Graph 21(4):25–34

25. Russell S, Norvig P (2003) Artificial intelligence a modern ap-
proach. Prentice Hall, New York

26. Sahli N, Moulin B (2009) Ekemas, an agent-based geo-simulation
framework to support continual planning in the real-word. Appl
Intell 31(2):188–209

27. Sanchez G, Ramos F, Frausto J (1999) Locally-optimal path plan-
ning by using probabilistic roadmaps and simulated annealing. In:
Proceedings IASTED robotics and applications international con-
ference

28. Stentz A (1994) Optimal and efficient path planning for partially-
known environments. In: Proceedings of the IEEE international
conference on robotics and automation, vol 4, pp 3310–3317

29. Tomlinson SL (2004) The long and short of steering in computer
games. Int J Simul 1–2(5):33–46

30. Treuille A, Cooper S, Popović Z (2006) Continuum crowds. ACM
Trans Graph 25(3):1160–1168

31. Undeger C, Polat F (2007) Rttes: real-time search in dynamic en-
vironments. Appl Intell 27(2):113–129

32. Vaughan J, Connell R, Lucas A, Ronnquist R (2003) Towards
complex team behavior in multi-agent systems using a commercial
agent platform. In: Lecture notes in computer science, vol 2564.
Springer, Berlin, pp 175–185

33. Verth JV, Brueggemann V, Owen J, McMurry P (2000) Formation-
based pathfinding with real-world vehicles. In: Proceedings of the
game developers conference

34. Voorbrk F, Massion N (2001) Decision-theoretic planning for au-
tonomous robotic surveillance. Appl Intell 14(3):252–262

Ali Galip Bayrak received his BS
and MSc degrees from Middle East
Technical University, Computer En-
gineering department in 2005 and
2008. He worked on automated
agents and multi-agent systems dur-
ing his MSc studies. He is currently
a PhD student in EDIC (Doctoral
program in computer and commu-
nication sciences) in EPFL. He is
working in Processor Architecture
Laboratory on hardware cryptog-
raphy, particularly side-channel at-
tacks.

Faruk Polat is a professor in the
Department of Computer Engineer-
ing of Middle East Technical Uni-
versity, Ankara, Turkey. He received
his BSc in computer engineering
from the Middle East Technical Uni-
versity, Ankara, in 1987 and his MS
and PhD degrees in computer en-
gineering from Bilkent University,
Ankara, in 1989 and 1993, respec-
tively. He conducted research as a
visiting NATO science scholar at
Computer Science Department of
University of Minnesota, Minneapo-

lis in 1992–1993. His research interests include artificial intelligence,
multi-agent systems and object oriented data models.

http://www.ogre3d.org
http://www.ogre3d.org

	Formation preserving path finding in 3-D terrains
	Abstract
	Introduction
	The subject
	Scope and objective
	Outline

	Related work
	Description and representation of the environment
	Properties of the environment
	Representation of the environment and construction of the search graph

	The proposed formation preserving path planning method
	Off-line path finding
	Formation representation
	Determining agent positions at every waypoint of the path

	On-line path finding
	Rearrange formation

	Experimental results and sample run
	Experimental setup
	Performance evaluation of off-line planner
	Performance evaluation of on-line planner
	Sample runs

	Conclusions and future work
	References

