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Abstract Support Vector Machines (SVMs) deliver state-
of-the-art performance in real-world applications and are
now established as one of the standard tools for machine
learning and data mining. A key problem of these meth-
ods is how to choose an optimal kernel and how to opti-
mise its parameters. The real-world applications have also
emphasised the need to consider a combination of kernels—
a multiple kernel—in order to boost the classification accu-
racy by adapting the kernel to the characteristics of heteroge-
neous data. This combination could be linear or non-linear,
weighted or un-weighted. Several approaches have been al-
ready proposed to find a linear weighted kernel combination
and to optimise its parameters together with the SVM para-
meters, but no approach has tried to optimise a non-linear
weighted combination. Therefore, our goal is to automati-
cally generate and adapt a kernel combination (linear or non-
linear, weighted or un-weighted, according to the data) and
to optimise both the kernel parameters and SVM parame-
ters by evolutionary means in a unified framework. We will
denote our combination as a kernel of kernels (KoK). Nu-
merical experiments show that the SVM algorithm, involv-
ing the evolutionary kernel of kernels (eKoK) we propose,
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performs better than well-known classic kernels whose pa-
rameters were optimised and a state of the art convex lin-
ear and an evolutionary linear, respectively, kernel combi-
nations. These results emphasise the fact that the SVM al-
gorithm could require a non-linear weighted combination of
kernels.
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Multiple kernel · SVM · Hyper-parameters optimisation ·
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1 Introduction

As a broad subfield of artificial intelligence, machine learn-
ing is concerned with the design and development of algo-
rithms and techniques that allow computers to “learn”. Her-
bert Simon has provided a very simple, but eloquent defini-
tion: “Learning is any process by which a system improves
performance from experience.” [49]. The general problem
of machine learning is to search a, usually very large, space
of potential hypotheses to determine the one that will best
fit the data and any prior knowledge. There are many learn-
ing algorithms today and their performances (estimated by
different measures, e.g. classification accuracy, solution cor-
rectness, solution quality or speed of performance) are re-
lated not only to the problem to be solved, but also to their
parameters. Therefore, the best results can be achieved only
by identifying the optimal values of these parameters. Al-
though this is a very complex task, different optimisation
methods have been developed in order to optimise the para-
meters of Machine Learning algorithms.

In this context, evolutionary computations have been the-
oretically and empirically proven to be robust for search-
ing solutions in complex spaces and have been widely used
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in optimisation, training neural networks, estimating para-
meters in system identification or adaptive control applica-
tions [11, 38]. Evolutionary algorithms form a subset of evo-
lutionary computation in that they generally only involve
techniques implementing mechanisms inspired by biologi-
cal evolution such as reproduction, mutation, recombination,
natural selection and survival of the fittest. Candidate solu-
tions to the optimisation problem play the role of individuals
in a population, and the cost function determines the envi-
ronment within which the solutions “live”. Evolution of the
population then takes place after the repeated application of
the above operators.

In 1995, Support Vector Machines (SVMs) marked the
beginning of a new era in the paradigm of learning from
examples. Rooted to the Statistical Learning Theory and
the Structural Risk Minimisation principle developed by
Vladimir Vapnik at AT&T in 1963 [56], SVMs quickly
gained attention from the Machine Learning community due
to a number of theoretical and computational merits. The
main idea is to use a linear-separating hyper-plane to clas-
sify a set of items. In 1995 Cortes and Vapnik [13] have
suggested a modified maximum margin idea that allows for
mislabelled examples. Boser et al. (1992) [5] constructed
the SVMs for the non-linear data by involving the kernel
function. The kernel functions map the input vectors into
a very high-dimensional space, possibly of infinite dimen-
sion, where the linear separation between items is more
likely. This process amounts to a non-linear separation in the
original input space. Hence, the complexity of the achieved
boundaries depends on the nature and the properties of the
used kernel.

Two key elements in the implementation of SVM are the
techniques of mathematical programming and kernel func-
tions. The parameters are found by solving a quadratic pro-
gramming problem with linear equality and inequality con-
straints; rather than by solving a non-convex, unconstrained
optimisation problem. The flexibility of kernel functions al-
lows the SVM to search a wide variety of hypothesis spaces.

To date, various methods have been proposed to optimise
the hyper-parameters of an SVM algorithm that uses a par-
ticular kernel. However, it was shown that any classical ker-
nel achieves good enough performances for some classifi-
cation problems [7, 10]. In real world problems, especially
when the data is heterogeneous, engineering an appropriate
kernel becomes the major part of the modelling process. In
this context, an original idea has been recently proposed: to
learn the expression of a new kernel function from the prob-
lem data by using an evolutionary approach that combines
the basic elements of a kernel function (the mathematical
operators and the input vectors) [18, 29].

Furthermore, rather than to design a kernel from scratch
(by combining the input vectors through different mathemat-
ical operations), another novel idea was to generate a multi-
ple kernel (MK) function as a combination of classic kernels

[17, 39, 45, 50]. It was shown that for complex classification
problems, an MK improves the performance of SVM classi-
fier by adapting better to the characteristics of the data. In
this context, several questions arise concerning an MK:

• Which is the most efficient combination of kernels: a lin-
ear or a non-linear one?

• Is it necessary to consider a weighted or un-weighted
combination of kernels?

• Which are the kernels that have to be considered for
the most efficient combination: different classic kernels
and/or several instances of the same kernel, but with dif-
ferent parameters?

• How to optimise the hyper-parameters of an MK-based
SVM algorithm?

Our paper, through the state of the art and the pro-
posed solution, tries to answer these questions. Therefore,
we choose to use the evolutionary framework in order to
adapt the expression of a kernel combination and its para-
meters for several classification problems.

Evolutionary algorithms are a class of probabilistic
search algorithms that emulate natural evolutionary process.
In this paper we propose a framework to design an evo-
lutionary kernel that could be a linear or a non-linear,
a weighted or un-weighted combination of kernels (depend-
ing and adapted of/to the problem than must be solved). We
will denote our kernel combination as a kernel of kernels
(KoK). The best (adapted) KoK is learnt by the algorithm it-
self by using the data of a particular problem. Note that our
model is the first one that deals with both non-linear MK ex-
pression and weighting coefficients optimisation for a KoK.
For this aim the Genetic Programming (GP) technique [37]
is combined with an SVM algorithm [48, 56] within a two-
level hybrid model, since hybridisation seems to improve
the performance of solving classification problems [58]. The
prosed model simultaneously tackles two problems: to find
the most efficient expression of the KoK function and to
optimise the SVM hyper-parameters. These two objectives
are achieved simultaneously because each GP chromosome
encodes both the shape of a KoK and its parameters (the
individual kernels and their parameters). After an iterative
process, which runs more generations, an optimal evolu-
tionary kernel of kernels (eKoK) is provided.

The GP-based KoK has the added advantage that its ex-
pression needs not to be chosen a priori. Furthermore, it is
adapted to the problem to be solved, allowing for automatic
discovering of a befitting functional form. The eKoKs pro-
posed is this paper are compared not only with several well-
known classic kernels, but also with a convex linear multiple
kernel [39] and with an evolved linear multiple kernel [17].
The numerical experiments show that our hybrid model is
able to discover KoKs that are more efficient and their opti-
mal parameters on the considered data sets.
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The paper is organised as follows: Sect. 2 outlines the
theory behind SVM classifiers giving a particular emphasis
to the kernel functions. An overview of the related work in
the field of optimisation methods for the hyper-parameters
and kernel functions of an SVM algorithm is presented in
Sect. 3. Section 4 describes the new hybrid model proposed
in order to evolve KoKs. This is followed by Sect. 5 where
the results of the experiments are presented and discussed.
Finally, Sect. 6 concludes the paper.

2 Support Vector Machine

2.1 Generalities

Initially, SVM algorithm has been proposed in order to solve
binary classification problems [56]. Later, these algorithms
have been generalised for multi-classes problems [14]. Con-
sequently, we will explain the theory behind SVM only on
binary-labelled data.

Suppose the training data has the following form: D =
(xi, yi)i=1,m, where xi ∈ �d represents an input vector and
each yi , yi ∈ {−1,+1}, the output label associated to the
item xi . SVM algorithm maps the input vectors to a higher
dimensional space where a maximal separating hyper-plane
is constructed [56]. The main idea of SVM implies to min-
imise the norm of the weight vector (w in (1)) under the
constraint that the training items of different classes be-
long to opposite sides of the separating hyper-plane. Since
yi ∈ {−1,+1} we can formulate this constraint as:

yi(w
T x + b) ≥ 1, ∀i ∈ {1,2, . . . ,m}, (1)

where vT represent the transpose of v, the primal decision
variables w and b define the separating hyper-plane.

The items that satisfy (1) with equality are called support
vectors since they define the resulting maximum-margin
hyper-planes. To account for misclassification, e.g. items
that do not satisfy (1), the soft margin formulation of SVM
has introduced some slack variables ξi ∈ � [13].

Moreover, the separation surface has to be nonlinear in
many classification problems. SVM was extended to han-
dle nonlinear separation surfaces by using a feature func-
tion φ(x). The SVM extension to nonlinear datasets is based
on mapping the input variables into a feature space F of a
higher dimension and then performing a linear classification
in that higher dimensional space. The important property of
this new space is that the data set mapped by φ might be-
come linearly separable if an appropriate feature function is
used, even when that data set is not linearly separable in the
original space.

Hence, to construct a maximal margin classifier one has
to solve the convex quadratic programming problem en-
coded by (2), which is the primal formulation of it:

min
w,b,ξ

1

2
wT w + C

m∑

i=1

ξi

subject to: yi(w
T φ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0, ∀i ∈ {1,2, . . . ,m}.

(2)

The coefficient C (usually called penalty error or regular-
isation parameter) is a tuning parameter that controls the
trade off between maximising the margin and classifying
without error. Larger values of C might lead to linear func-
tions with smaller margin, allowing to classify more exam-
ples correctly with strong confidence. A proper choice of
this parameter is crucial for SVM to achieve good classifica-
tion performance. We will see in Sect. 3 how it is possible
to optimise its value.

Instead of solving (2) directly, it is a common practice to
solve its dual problem, which is described by (3):

max
a∈�m

m∑

i=1

ai − 1

2

m∑

i,j=1

aiaj yiyjφ(xi)
T φ(xj )

subject to
m∑

i=1

aiyi = 0,

0 ≤ ai ≤ C, ∀i ∈ {1,2, . . . ,m}.

(3)

In (3), ai denotes the Lagrange variable for the ith con-
straint of (2).

The optimal separating hyper-plane f (x) = w ·φ(x)+b,
where w and b are determined by (2) or (3) is used to classify
the un-labelled input data xk :

yk = sign

( ∑

xi∈S

aiφ(xi)
T φ(xk) + b

)
, (4)

where S represents the set of support vector items xi .
We will see in the next section that is more convenient

to use a kernel function K(x, z) instead of the dot product
φ(x)T φ(z).

2.2 Kernel formalism

The original optimal hyper-plane algorithm proposed by
Vapnik in 1963 was a linear classifier [56]. However, in
1992, Boser, Guyon and Vapnik [5] suggested a way to cre-
ate non-linear classifiers by applying the kernel trick. Ker-
nel methods work by mapping the data items into a high-
dimensional vector space F , called feature space, where the
separating hyper-plane has to be found [5]. This mapping
is implicitly defined by specifying an inner product for the
feature space via a positive semi-definite kernel function:
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K(x, z) = φ(x)T φ(z), where φ(x) and φ(z) are the trans-
formed data items x and z [47].

The kernels that correspond to a space embedded with a
dot product belong to the class of positive definite kernels.
This has far-reaching consequences. The positive definite
and symmetric kernels verify the Mercer’s theorem [41]—
a condition that guarantees the convergence of training for
discriminant classification algorithms such as SVMs. The
kernels of this kind can be evaluated efficiently even though
they correspond to dot products in infinite dimensional dot
product spaces. In such cases, the substitution of the dot
product with the kernel function is called the kernel trick
[5].

In order to obtain an SVM classifier with kernels one has
to solve the following optimisation problem:

max
a∈�m

m∑

i=1

ai − 1

2

m∑

i,j=1

aiaj yiyjK(xi, xj )

subject to
m∑

i=1

aiyi = 0,

0 ≤ ai ≤ C, ∀i ∈ {1,2, . . . ,m}.

(5)

In this case, (4) becomes:

yk = sign

( ∑

xi∈S

aiK(xi, xk) + b

)
, (6)

where S represents the set of support vector items xi .
There are a wide choice for a positive definite and sym-

metric kernel K from (6). The selection of a kernel has to
be guided by the problem that must be solved. In what fol-
lows, some details will be given about the kernels for vectors
and their parameters because they have gained considerable
attention in the SVM community.

3 Related work

While one of the first feelings about SVM algorithm is that
it can solve a learning task automatically, it actually remains
challenging to apply SVMs in a fully automatic manner.
Questions regarding the choice of the kernel function and
the hyper-parameters values remain largely empirical in the
real-world applications. While default setting and parame-
ters are generally useful as a starting point, major improve-
ments can result from careful choosing of an optimal ker-
nel. In this context, three directions of optimisation could be
identified in order to improve the performances of an SVM
algorithm: kernel function optimisation, hyper-parameters
optimisation and kernel function together with the hyper-
parameters optimisation.

While SVM classifiers intrinsically account for a trade off
between model complexity and classification accuracy, the

Table 1 The expression of several classic kernels

Name Expression Type

Sigmoid KSig (x, z) = tanh(σxT · z + r) Projective

RBF KRBF(x, z) = exp(−σ |x − z|2) Radial

Polynomial KPol (x, z) = (xT · z + coef )d Projective

performance is still highly dependent on appropriate selec-
tion of the penalty error C and kernel parameters. Thus, sev-
eral methods could be used to optimise the hyper-parameters
of an SVM classifier. Ideally, we would like to choose the
value of the kernel parameters that minimise the true risk of
the SVM classifier. Unfortunately, since this quantity is not
accessible, one has to build estimates or bounds for it.

Cross-validation is a popular technique for estimating
the generalisation error and there are several interpretations
[59]. Leave-one-out (LOO) method could be viewed as a
particular form of k-fold cross-validation in which k is equal
to the number of examples (m). In LOO, one example is left
out for testing each time, and so the training and testing are
repeated m times. In the case of SVM, it is not necessary to
run the LOO procedure on all m examples. In spite of several
strategies to speed up LOO procedure [55] and to optimise
SVM hyper-parameters, LOO is still too expensive.

For efficiency, it is useful to have simpler estimates of the
error that, though crude, are not expensive to compute. Once
the SVM is learnt with a given set of hyper-parameters, the
estimates of the error bounds can be obtained with very lit-
tle additional work. During the past few years, several such
simple bound estimates have been proposed, some of them
being the Xi-Alpha bound [33], the generalised approximate
cross-validation [59], the approximate span bound [57], the
VC bound [57], the radius-margin bound [57] or the quality
functional of the kernel [44].

Choosing a suitable kernel function for SVMs is a very
important step for the learning process. There are few if any
systematic techniques to assist in this choice. Until now, dif-
ferent kernels for vectors have been proposed [54]; the most
utilised of them by an SVM algorithm are listed in Table 1.

One of the first kernels involved in the SVM algorithm
was the Sigmoid kernel. It was quite popular due to its origin
from neural networks [47]. In fact, an SVM model using a
Sigmoid kernel function was proven to be equivalent to a
two-layer, feed-forward neural network [30]. The Sigmoid
kernel with a positive gain (σ > 0) and a negative threshold
(r < 0) is always positive definite and it is successfully used
in practice.

Most popular today are the RBF kernels and the Polyno-
mial kernels. The RBF kernel is one of the most frequently
used kernels, thanks to its capacity to generate nonparamet-
ric classification functions.

Furthermore, it is traditional to distinguish the kernels
of projective type from those of radial type. The projective
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kernels are based on the scalar product between variables,
while the radial ones utilise the norm of the difference be-
tween the inputs. The radial kernels are stationary or invari-
ant by translation: K(x, z) = Ks(x − z), whereas the pro-
jective kernels utilise a scalar product between the variables:
K(x, z) = Kp(xT · z). The projective kernels belong to the
most general class of non-stationary kernels.

It should be noted that the majority of these kernels de-
pend on several parameters. Observe that the smaller the pa-
rameter σ (called bandwidth), the more peaked the Gaus-
sians are around the support vectors, and therefore the more
complex the decision boundary could be. Larger σ corre-
sponds to a smoother decision boundary. The parameters
coef and r could be viewed as offset (or shifting) parame-
ters that control the threshold of the mapping.

To obtain good generalisation, it is also necessary to opti-
mise the hyper-parameters. Their values could dramatically
affect the quality of the SVM solution. Initially, Vapnik [56]
recommended direct setting of the kernel parameters and
cost function by experts, based on a priori knowledge of
the particular data set to be evaluated.

Extensive explorations, such as performing line search
for one hyper-parameter or grid search for two hyper-pa-
rameters, are frequently applied when such knowledge is
unavailable [51]. More elaborated techniques for optimis-
ing the SVM hyper-parameters are the gradient-based ap-
proaches [10, 12, 24]. Keerthi et al. [34] have developed
a hyper-parameter tuning approach based on minimising
a smooth performance validation function, actually the
smoothed k-fold cross validation error, by using non-linear
optimisation techniques.

The previous gradient-based optimisation methods are
highly efficient. They have, however, some drawbacks and
limitations: the objective function has to be differentiable.
The score function, which is used to assess the performance
of the hyper-parameters (or at least an accurate approxi-
mation of this function), has also to be differentiable with
respect to all hyper-parameters, which excludes reasonable
measures such as the number of support vectors.

The previous approaches required to train the model sev-
eral times with different hyper-parameter values. Therefore,
new methods have been proposed to overcome these prob-
lems. Several promising recent approaches [1, 60] are based
on solution path algorithms, which can trace the entire solu-
tion path as a function of the hyper-parameters (the penalty
error C and the kernel parameters) without having to train
the model multiple times. Furthermore, the paper [27] ar-
gues that it is quite tractable to compute the SVM solution
for all possible values of the regularisation parameter C.

A new study [3] has proposed to directly tackle the model
selection by using out-of-sample testing as an optimisation
problem. It seeks a set of hyper-parameters, such that when
the optimal training problem is solved for each training set,

the loss function over the test sets is minimised. The re-
sulting optimisation problem is thus a bi-level programming
problem.

The gradient-based optimisation methods have been
deeply investigated and discussed, but several derivative-
free optimisation methods have been developed as an al-
ternative to the convex methods when the last ones are not
applicable. In [42], a pattern search methodology [28] for
hyper-parameters, optimisation has been developed as an
alternative to the gradient descent. The parameter optimisa-
tion method based on simulated annealing [36] has also been
proposed as a stochastic method for traversing SVM free pa-
rameter space [4, 32]. In [40, 62], a Bayesian method based
on Markov chain Monte Carlo was proposed for estimating
kernel parameters as well as the regularisation parameter.

The evolutionary algorithms have been utilised to opti-
mise the hyper-parameters of an SVM classifier [20, 21, 31]
as well. In [20], the single-objective evolution strategies
have adapted the SVM hyper-parameters to the problem that
has to be solved; in [21] a single-objective GA has opti-
mised the regularisation parameter C in a discrete range
of values. Igel [31] has proposed an improved evolution-
ary approach for optimising the hyper-parameters. The SVM
hyper-parameter optimisation has been viewed as a multi-
objective optimisation problem, where the model complex-
ity and the training accuracy define two conflicting objec-
tives (e.g., bias vs. variance, capacity vs. empirical risk).
Different optimisation criteria have been evaluated.

Note that all the previous approaches deal only with a
classic kernel, which is fixed a priori. No kernel combina-
tion is considered in all these cases, because in the context of
an MK also the expression of such kernel combination must
be optimised.

Only very few approaches deal with both problems of
hyper-parameter optimisation and of MK learning. Recently,
Cristianini et al. [16] and Lanckrict et al. [39] have for the
first time proposed methods of selecting the kernel or ker-
nel matrix by optimising the measure of data separation in
the feature space. While the authors in [16] use the measure
called “alignment” to evaluate the adaptability of a kernel to
the data, those in [39] employ the margin or soft margin as
the measure of data separation in the feature space.

In [61], an alternate method is also proposed to optimise
the kernel function by maximising a class separability crite-
rion in the empirical feature space.

Although we are having libraries of kernels and several
methods for optimising the hyper-parameters, it is possible
that no one of them can achieve good performances for a
particular problem. Therefore, a new kernel function must
be constructed. In this context, new principles have appeared
to design particular kernels (e.g. string kernel, graph ker-
nel), or even to “learn” kernels from the observed data. Evo-
lutionary methods have been actually used in order to au-
tomatically discover, over several generations and by using
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biological-inspired operations (selection, crossover and mu-
tation), new mathematical expressions for the kernel func-
tions which are suitable for solving a particular classification
problem by an SVM algorithm [18, 22, 29]. These evolved
kernels have been encoded as tree-expressions, representing
actually the chromosomes of a GP algorithm. The leaves
of the kernel-tree contain input vectors (x or z), while the
internal nodes contain different operations (scalar or vecto-
rial) which combine the input vectors such as the obtained
expression to be a kernel function (positive definite and sym-
metric).

In spite of the large computational effort, it was shown
that these evolved kernels have reached better performances
than the classic ones for several problems [18, 22, 29]. Fur-
thermore, these results have encouraged a new idea: if a low-
level combination (of basic elements—input vectors and op-
erators) is able to design a kernel that improves the per-
formances of an SVM algorithm, then maybe also a high-
level combination (of basic kernels instead of input vectors)
could improve the classification performances and reduce
the computational cost.

The combination of several well-known kernels actually
means a better initialisation of a possible kernel than a ran-
dom combination of input vectors and operations. Further-
more, starting from some kernels instead of basic kernel
elements, the search space is some-how reduced (limited)
and the optimal kernel could be found faster. This combina-
tion of kernels represents actually a so-called multiple ker-
nel. The reader must note that the above low-level kernel
evolved by GP technique (starting from the input vectors)
[18, 22, 29] could be a multiple kernel if its expression is
more complex.

Several multiple kernels have been proposed. References
[17, 39, 45, 50] for a better adaptation to the classification
problem and due to the kernel formalism which allows dif-
ferent standard kernels to be combined. Basic algebra op-
erations such as addition, multiplication and exponentiation
preserve the key properties for a kernel function (the posi-
tive definiteness and the symmetry) and thus allows a sim-
ple, but powerful algebra of kernels to exist [47, 48]. In the
context of MKs, two important combinations could be dis-
tinguished: linear multiple kernels (LMKs) and non-linear
multiple kernels (nonLMKs).

A simple way to achieve a linear MK is to consider a
weighted sum of kernels:

LMK(x, z) =
NoK∑

q=1

μqKq(x, z), (7)

where μq ∈ [0,1] with
∑NoK

q=1 μq = 1. The weighting co-
efficients μq could reflect the relative importance of each
classic kernel in the final MK.

Non linear combination of kernels could be also con-
sidered in order to improve the SVM performance. A non-
linear MK could be either a pure (an un-weighted) combi-
nation of well-known kernels: nonLMK(x, z) = K1(x, z) +
K2(x, z) × (K3(x, z) + K4(x, z)), like those proposed in
[43, 46, 52] or a weighted combination of some standard
kernels: nonLMK(x, z) = μ1K1(x, z) + μ2K2(x, z) × (μ3

K3(x, z) + μ4K4(x, z)), undeveloped until now.
In order to find the optimal weights of the standard ker-

nels included in an LMK the convex methods [39, 45, 50,
63] and the evolutionary methods [17] have been utilised.
Two important differences must be remarked between these
models and that we develop in this paper. The previous ap-
proaches [17, 39, 45, 50, 63] impose a linear combination
of kernels, while the current one allows generating either a
linear or a non-linear efficient KoK, which is able to capture
many aspects displayed by the actual data.

Furthermore, the objective function is different in these
models: the GP algorithm from the current work optimises
the complex expression of a KoK (the shape of the kernel ex-
pression, the coefficients and the hyper-parameters), while
the previous models have optimised only the weighting co-
efficients (μq ) of the linear combination and the hyper-
parameters.

While these two distinctions are present, nevertheless
both MK generating models are capable of combining dif-
ferent parameterised standard kernels and allow, in this way,
selecting the best parameters for the actual well-known ker-
nels involved in the combination.

Concerning the non-linear combination of kernels, the
evolutionary methods, such as the Genetic Algorithms
(GAs) [43, 46] or the GP technique [52] have been used
in order to learn the expression of such MK function, but
only without scaling or shifting coefficients. Several re-
marks could be also done regarding the non-linear MKs
evolved by using a GA [46]. The expressions of the GA-
based MK is actually less complex that the expression of
our eKoK. The freedom degree of GP-based model is larger
than that of GA-based representation. Therefore, the search
space of the optimal MK in the GA-based model is smaller
than the search space in the GP case. The hybrid model we
propose is able to find a more sophisticate kernel combina-
tion because of:

• A larger set of operations—the exponential function is
also used (the numerical experiments will show that the
exponential function is actually involved in the expression
of several eKoKs). The power function with an integer ex-
ponent involved in the GA-based model does not appear
in our approach because of the tree-based representation
of the KoK; this representation is able to generate it by
itself (in an explicit manner, as a repeated multiplication);

• A more flexible form of the KoK’s expression due to the
representation and coefficients. The GP tree-based rep-
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resentation favours it, while the GA-based model (actu-
ally an array-based model) [43, 46] supposes a sequen-
tial access to kernels which does not take into account
the priority of the mathematical operators. This access
determines a smaller space for the possible combina-
tions of kernels than the space explored in the eKoK
case. The non-linear MKs obtained by the model pro-
posed in [43, 46] represent un-weighted combinations
of kernels (K1(x, z) + K2(x, z) × K3(x, z)). Our model
allows evolving more general KoKs in which the stan-
dard kernels, but also some coefficients are involved (s ×
K1(x, z) × K2(x, z) + K3(x, z) + o); this option could
generate fine-grained solutions.

• A better adaptability of the KoK to the data—the GA-
based model forces at least the polynomial and the
ANOVA kernels to appear in the combination. The GP-
based approach permits the data and their characteris-
tics to chose the classic kernels involved in combination
(maybe all the standard kernels or maybe just a few of
them).

We could also hook up our model for evolving KoKs to
the Sullivan’s one [52], both models being based on a GP
representation and optimising the kernel parameters. How-
ever, only pure combinations of kernels are actually gener-
ated in [52], while our model is able to evolve a more general
kernel combination, which combines not only kernels, but
also some scaling and/or shifting coefficients. Furthermore
and unlike our approach, Sullivan’s model did not optimise
the penalty error parameter C.

Another important observation regards the composition
of such MKs. Any coefficients or weights are involved in
the expression of the MK. To the best of our knowledge, the
model we propose in this paper is the first one that combines
both the classic kernels and some coefficients in a non-linear
combination. While not yet providing complete solution to
the problem of MK learning, our model seems to be the most
complex proposed until now. It is able to answer all ques-
tions addressed in the introduction. Furthermore, the model
we propose deal also with the problem of parameter optimi-
sation.

Ong et al. [44] have introduced a general class of hyper-
kernels allowing automatic relevance determination. They
have learn a new kernel by performing the kernel trick on the
space of kernels (hence the notion of a hyper-kernel) and by
defining a quantity analogous to the risk functional, called
the quality functional (that measures the badness of the ker-
nel function).

One of the first attempts to propose a kernel machine
based on a linear un-weighted MK (μq = 1 in LMK) was
in [26]. More recently, Lanckriet et al. [39] have provided a
general framework for learning the linear MK matrix based
on semi-definite programming. Similar to this idea, Bous-
quet and Herrmann [6] further restrict the class of kernels

involved in the LMK to the convex hull of the kernel matri-
ces normalised by their trace. The semi-definite program-
ming makes the problem rapidly intractable as the num-
ber of learning examples or kernels become large. There-
fore Bach et al. [1] have reformulated the LMK learning
problem and then proposed a Sequential Minimal Optimi-
sation algorithm for medium-scale problems. Another for-
mulations of this problem based on a semi-infinite linear
problem have been proposed by Sonnenburg et al. [50] and
Rakotomamonjy et al. [45] for LMK. A Bayesian hierar-
chical model for MK learning has been also presented in
[23]. All these approaches have optimised the coefficients
ai , i ∈ {1,2, . . . ,m} of the SVM algorithm and the weights
μq , q ∈ {1,2, . . . ,NoK} of an LMK.

Both MK shape and hyper-parameters are optimised ei-
ther by using a GA [43, 46] or a GP technique [52]. How-
ever, the evolved non-linear MKs are actually pure combi-
nations of kernels (no weighting coefficients are involved in
the MK).

The evolutionary model we propose is able to cover all
the optimisation problems related to a kernel combination
(linear or non-linear, weighted or un-weighted) and hyper-
parameters. All these criteria are considered in a unified
framework and optimised simultaneously.

4 Evolutionary kernel of kernels (eKoK)

4.1 Model architecture

This section describes our approach for automatic design
of KoKs. This model is a hybrid one: it uses GP [37] to
construct positive and symmetric functions (KoKs), and op-
timises a fitness function by using an SVM classifier (see
Fig. 1). A GP chromosome provides the analytic expression
of such KoK. The model we propose actually seeks to re-
place the expert domain knowledge concerning the design
of the SVM’s kernel function and the choice of its parame-
ters, with a GP algorithm.

Fig. 1 Sketch of the hybrid approach
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Our hybrid model is structured on two levels: a macro
level and a micro level. The macro level algorithm is a stan-
dard GP [37], which is used to evolve the mathematical ex-
pression of a KoK. The steady-state evolutionary model [53]
is involved as an underlying mechanism for the GP imple-
mentation. A steady state algorithm is much more tolerant
of poor offspring than a generational one. This is because
in most implementations, the best individuals from a given
generation will always be preserved in the next generation,
giving themselves another opportunity to be selected for re-
production. The best individuals are therefore given more
chances to pass on their successful traits. The GP algorithm
starts by an initialisation step of creating a random popula-
tion of individuals (seen as KoKs). The following steps are
repeated until a given number of iterations are reached: two
parents are selected using a binary selection procedure; the
parents are recombined in order to obtain an offspring O; the
offspring is than considered for the mutation; the new indi-
vidual O∗ (obtained after mutation) replaces the worst indi-
vidual W in the current population if O∗ is better than W .

The micro level algorithm is an SVM classifier. It is
taken from LIBSVM [8] library. The original implementa-
tion of the SVM algorithm proposed in [8] allows using
several well-known kernels (Linear, Polynomial, RBF and
Sigmoid—see Table 1). In the numerical experiments, a
modified version of this algorithm, which is based on the
evolved KoK is also used. The quality of each GP individual
is determined by running the SVM algorithm, which uses the
eKoK encoded in the current chromosome (KoKiter,ind that
corresponds to the indth individual from the population dur-
ing the iterth iteration). The accuracy rate estimated by the
classifier (on the validation set) represents the fitness of the
GP chromosome.

4.2 The representation of the eKoK

In the model we propose, the GP chromosome is a tree en-
coding the mathematical expression of a KoK and its pa-
rameters. The tree-based representation of a KoK allows
for a larger search space of kernel combinations than an
array-based representation (like that proposed in [46]—see
Sect. 3).

Moreover, the GP individual representation is con-
strained to satisfy the kernel algebra [48] (regarding the pos-
itiveness and the symmetry of the Gram matrix required by
valid Mercer’s kernels). For this purpose, a particular type
of GP tree is actually used: the leaves contain either a clas-
sic parameterised kernel or an ephemeral random constant
(viewed as a scaling or a shifting coefficient). Note that a
kernel-GP tree must contain at least one kernel in its leaves
(the number of kernels involved in an MK must be greater
than or equal to 1), otherwise the obtained expression can-
not represent a dot product or a distance between the input

vectors x and z. The leaves of the tree form the terminal set
(TS) and the internal nodes form the function set (FS).

For a better adaptation to the classification problem, the
terminal set contains not only the classic kernels, but also
some ephemeral random constants [37]: TS = KTS ∪ {o, s},
where:

• KTS—the terminal set of the standard kernels,
• o—offset (shifting) coefficients that control the threshold

of the mapping from the original space into the feature
space F and

• s—scaling (or weighting) coefficients that control the rel-
ative influence of the standard kernels in the eKoK ex-
pression. Both types of coefficients must be positive real
values in order to obtain Mercer’s kernels.

Some remarks must be made regarding these (scaling
or shifting) coefficients. The tree-based representation of a
KoK is able to generate such coefficients by itself (implicit),
but in this case, larger (deeper) trees are required. Therefore,
we have chosen to use an explicit representation of a KoK
with coefficients (the leaves of the GP tree could contain
such coefficients), which is less computational expensive,
hence faster.

Each well-known kernel has associated a set of para-
meters θ that affect the performance of the SVM algo-
rithm. Therefore, more kernels are considered for the TS,
but with different parameters. The RBF kernel has only a
parameter—the bandwidth σ (in this case θ = {σ }). The Sig-
moid kernel has two parameters: the bandwidth or the gain
σ and the shifting coefficient r that controls the threshold of
the mapping (θ = {σ, r}). The Polynomial kernel has only a
parameter: the degree d (θ = {d})—see Table 1. These ker-
nels will be denoted as parameterised kernels Kθ and dif-
ferent values of θ parameter are actually considered. The
GP algorithm will provide the most efficient KoK expres-
sion (in terms of accuracy rates) because it is able to choose
and combine the parameterised kernels. Therefore, the pur-
pose of our model is two fold: to discover the most efficient
expression of the KoK function and to optimise the values
of the hyper-parameters.

The function set FS contains 3 operations (FS = {+,

×, exp}) that preserve the key properties of a Mercer’s ker-
nel. The theory of kernel algebra [15] specifies the power
function also, but this operation (with a natural exponent)
can be implicit obtained as a repeated multiplication.

An example of a GP chromosome is depicted in Fig. 2.
The FS = {+,×, exp} and TS = {Kθ

1 ,Kθ
2 , Kθ

3 , o, s} have
been used for this chromosome, but only two functions
(+ and ×), two kernels (Kθ

2 and Kθ
3 ), two offset coeffi-

cients (o1 and o2) and a scaling coefficient (s1) are actually
involved in the expression of eKoK.

The grow method [2], which is a recursive procedure, is
used to initialise a GP individual. This initialisation method
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Fig. 2 A GP chromosome that encodes the expression of the following
KoK: (Kθ

2 (x, z) + o1) × s1 × Kθ
2 (x, z) × (Kθ

3 (x, z) × Kθ
2 (x, z) + o2)

is well known in the literature for its robustness. The root of
each GP tree must be a function from FS. If a node contains
a function, then its children are initialised either with an-
other function or with a terminal (a kernel or a coefficient).
The initialisation process is stopped when is attained a leaf
node or at the maximal depth of the tree (the nodes from the
last level will be initialised by terminals). In order to obtain
a valid KoK , at least one leaf of the GP tree has to contain a
kernel. Moreover, the maximal depth of a GP chromosome
has to be large enough in order to assure a sufficient search
space for the optimal expression of our evolutionary KoK.

4.3 Fitness assignment

The evaluation of the chromosome quality is based on a
cross-validation process. Therefore, some information about
the data set partitioning must be provided before to describe
the fitness assignment process.

The data sample was randomly divided into two sets:
a training set (80%)—for model building—and a testing set
(20%)—for performance assignment. The training set was
then randomly partitioned into learning (2/3) and validation
(1/3) parts.

The SVM model based on the eKoK that is encoded in
the current GP tree uses the learning subset for training the
SVM model and the validation subset for classification per-
formance assignment. The quality of an eKoK can be mea-
sured by the classification accuracy rate estimated on the
validation data set. The accuracy rate represents the number
of correctly classified items over the total number of items
belonging to the validation set. Note that we deal with a
maximisation problem: the greater accuracy rate, the better
KoK is.

Once the GP iterations end, the optimal eKoK, which cor-
responds to the best GP chromosome is utilised by SVM al-
gorithm in order to classify the test items.

4.4 Genetic operations

After two chromosomes are selected from the current pop-
ulation, they are recombined. The crossover is performed
in a tree-structure preserving way in order to guarantee the
syntactical validity of the offspring: first as a mathematical
expression and second as a Mercer’s kernel. The proposed
model uses the standard cutting-point crossover [37] with
the particularity that the offspring has to contain at least one
kernel in its leaves. After crossover, the mutation operator
is applied. For a GP-based KoK, a cutting point is randomly
chosen: the sub-tree belonging to that point is deleted and a
new sub-tree is grown there by applying the same random
growth process that was used to generate the initial popula-
tion. Note that the maximal depth allowed for the GP trees
limits the growth process. Like in Koza’s implementation
[37], the mutation operator may generate new constants at
any point in a run. As we already said, in eKoK’s model,
these ephemeral random constants are represented by the
scaling and offset coefficients.

5 Experimental validation and discussions

This section reports on the experimental validation of eKoK,
on a standard set of benchmark problems [19]. These data
sets were chosen in order to allow comparisons to the linear
MKs previously proposed [17, 39] and they are still widely
used in the classification community. The hybrid model we
proposed is based on TinyGP1 framework of GP algorithm
and LIBSVM [8] framework of SVM classifier.

All the datasets concern binary-classification problems
of different sizes (the number of items and the number of
characteristics) and belonging to different domains: med-
ical, economical and geographic fields. A short description
of each data set is presented in Table 2. As we already men-
tioned in Sect. 4.3, each data set has been randomly divided
into a training set (80%)—for model building—and a testing
set (20%). The training set has been randomly partitioned
into learning (2/3) and validation (1/3) parts.

We have chosen to validate our evolved KoK on these
data sets because our purpose is not only to promote new
kernel functions, but also to compare our evolved kernels
with those already proposed in the specialised literature
[39]. The comparison is performed by tacking into account
the results obtained for the first five problems. The last two
problems are utilised in order to put in evidence that our ap-
proach has considerable promise.

1http://cswww.essex.ac.uk/staff/sml/gecco/results/TinyGP/entries/
poli/.
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Table 2 Description of the data
sets ID Name #items #characteristics Reference

P1 ionosphere 351 34 [19]

P2 breast 683 10 [19]

P3 heart 270 13 [35]

P4 a1a 4217 123 [19]

P5 a2a 2591 123 [19]

P6 sonar 208 60 [19]

P7 diabetes 768 8 [19]

5.1 Evolving the KoK function

A KoK is evolved in this experiment for each problem. In
order to evolve this kind of combinations two different ter-
minal set types are used: a terminal set that contains only
several standard parameterised kernels KTS and a mixed
terminal set that contains standard kernels and coefficients
MTS = KTS ∪ {o, s}. These coefficients (or ephemeral ran-
dom constants, by using a GP vocabulary) could be either
scaling or shifting coefficients. Therefore, the TSs actually
used in the numerical experiments are:

1. A TS composed by several well-known kernels with dif-
ferent parameters

KTS = {Kθ
Pol,K

θ
RBF,Kθ

Sig}
where the parameters θ of each standard kernel have
been considered in some discrete ranges: for the degree
d of the Polynomial kernel 15 values (from 1 to 15) are
considered, for the bandwidth σ of the RBF kernel the
following values: σqt = q · 10t , q = {1,2, . . . ,9}, t =
{−5,−4, . . . ,−1} are considered and for the Sigmoid
kernel all the combination between σqt and r , where
r = 10u, u ∈ {−1,0,1} are taken into account.

2. A TS with different standard kernels and coefficients

MTS = KTS ∪ {ot , sp}.
The results found in literature indicate that these dis-

crete spaces of parameters are the most suitable for an ef-
ficient classification. The improvements obtained by using
a finer discretisation of the parameter space or a continu-
ous space are not relevant (by tacking into account the com-
putational effort that must be performed). Furthermore, the
guided search (based on the efficiency of an MK) involved
by the evolutionary algorithm is able to detect in the discrete
space the optimal values of these parameters (and implicit
the corresponding kernels).

Several things about the value of coefficients o and s must
be remarked. Mercer conditions impose that these coeffi-
cients must be positive. The [0,1] range was suggested in
[17, 39] for the coefficients when these values have repre-
sented the weights of the individual kernels involved into a

linear MK. In eKoK case there are some scaling and shift-
ing coefficients that could appear or not in the combina-
tion. Therefore, several positive intervals have been tested
for these coefficients in the numerical experiments, the best
of them being [0,1].

The selection of the kernel parameters has the same im-
portance as the optimisation of the kernel expression. In or-
der to determine good values of these parameters, it is im-
portant to search on the right scale. In [60] is suggested a
path algorithm for regularisation of C value, but this algo-
rithm can be used only when each of the two classes has the
same number of examples. Another method is proposed in
[9] proposing as default value for the C parameter is the in-
verse of the empirical variance s2 of the data in the feature
space:

s2 = 1

m

m∑

i=1

KMi,i − 1

m2

m∑

i=1

⎛

⎝
m∑

j=1

KMij

⎞

⎠ (8)

from an m × m kernel matrix KM . This value is actually
used in our numerical experiments performed in order to
evolve the expression of a KoK function.

The steady-state model [53] is used for the GP algorithm.
A population of 50 individuals is evolved during 50 itera-
tions, which is a reasonable limit to assure the diversity of
our eKoKs. The binary tournament mechanism is used for
chromosome selection. The crossover and mutation opera-
tions are performed with 0.8 and 0.3, respectively, proba-
bilities, values that are generally recommended in the spe-
cialised literature [25].

The maximal depth of a GP tree is limited to 10 levels,
which allows encoding till 210 combinations of kernels and
coefficients. This maximal depth was fixed by tacking into
account the bloat problem (the uncontrolled growth of pro-
grams during GP runs without (significant) return in terms
of fitness [37]). Furthermore, several empirical tests indi-
cated that the efficient kernel-trees do not expand to more
than 10 levels. During different runs, various expressions
of the KoK function have been obtained, all of which have
about the same complexity.

Figure 3 depicts the evolution of the eKoK’s quality along
the number of generations (for all the problems on the vali-
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Fig. 3 Fitness (Accuracy
Rate—Acc) evolution of the
KoK quality for all the test
problems (P1, P2, P3, P4, P5)
along with the number of
generations on the validation
data sets. We have tested
different TS compositions:
KTS and MTS and for each
iteration the best individual
(eKoK) is retained

dation data sets). Only the values corresponding to the first
20 generations are depicted in these graphics for a better
visualisation. Small improvements can be observed in the
chromosomes quality (or in the accuracy rate) after the first
15 GP generations for most of the problems. This aspect is
very important and it proves that the proposed model is able
to adapt the KoK in only a few generations (for instance, by
using 3 CPUs, the best KoK for problem P1 is evolved in
approximately 60 minutes).

An important remark must be also done regarding the
functions included in the evolved expression of a KoK. The
exponential function is present in several best expression
of a KoK, proving that the expansion of the function set

(from {+,×} in Sullivan’s model [52] to {+,×, exp} in our
case) was useful (in terms of the SVM performance improve-
ments).

We are interested in studying the performances of the
evolved KoKs not only on the validation set. For this pur-
pose the best evolved KoK (actually, the best GP chromo-
some from the last iteration of the evolutionary algorithm)
is involved again in the SVM algorithm and utilised to clas-
sify the test data. Thus, the performances of the best evolved
eKoKs by using various TSs are presented in Table 3: the first
two rows contain the accuracy rates (for each problem) esti-
mated by the SVM algorithm involving our best evolutionary
KoKs on the test set (unseen data). Table 3 also presents the
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Table 3 The accuracy rate of various kernels. The first two rows present the accuracy rates estimated by the SVM algorithm embedding the eKoKs.
The last three rows contain the performances of the classic kernels for each test problem

KTS MTS Kpol Krbf Ksig

P1 86.11±1.13 91.67±0.90 77.77±1.36 80.55±1.29 66.67±1.54

P2 97.81±0.13 98.03±0.13 97.58±0.14 97.81±0.13 97.81±0.13

P3 86.98±0.51 86.98±0.51 85.79±0.53 85.21±0.54 77.91±0.63

P4 84.27±0.14 84.38±0.14 84.26±0.14 83.65±0.14 82.73±0.14

P5 86.93±0.19 88.99±0.18 86.24±0.20 83.49±0.21 84.52±0.21

P6 81.25±2.39 81.25±2.39 78.13±2.53 78.13±2.53 78.13±2.53

P7 80.08±0.30 81.25±0.29 79.29±0.31 80.85±0.30 78.90±0.31

performances of three classic kernels for all the test prob-
lems (the last three rows). Note that the value of the penalty
error C is automatically adapted to the data (cf. (8)) and
the other parameters involved in each classic kernel were
optimised by grid search in order to achieve the best clas-
sification performances. The best parameters of the classic
kernels are searched in the ranges already presented for the
classic kernels involved in the KoK. In this manner we are
able to verify if eKoKs outperform the optimised standard
kernels and, than, to measure the improvements.

The accuracy rate reflects the classification performance
of the SVM algorithm in a confidence interval. The confi-
dence intervals associated to the performances of the sys-
tems must be computed in order to decide if a system outper-
forms another system. If these intervals are disjoint, then one
system outperforms the other ones. A confidence interval of
95% is used in order to perform a statistical examination of
the results. Therefore, the probability that the accuracy esti-
mations are not in the confidence interval is 5% (see (9)).

�I = 1.96 ×
√

Acc(100 − Acc)

N
%, (9)

where N represents the number of test examples. Therefore,
Table 3 displays the corresponding confidence intervals (on
the test set of each problem).

The values from Table 3 indicate that the eKoKs perform
statistically better than the optimised classic kernels in some
cases (for problem P4 there is no statistical difference be-
tween KoK based on KTS, KoK based on MTS and KPol).

This is a very important result by taking into account the
fact that we compared (a posteriori) our eKoKs with the best
standard kernel for a particular problem. In addition, by tak-
ing into account different T S compositions, the results from
Table 3 show that the eKoKs that contains well-known ker-
nels and coefficients (MTS) perform slightly better than the
eKoKs based only on standard kernels (KTS). Therefore, it
seems to be efficient to combine kernels with coefficients.
Thus, we are tempted to promote the eKoK based on MTS
to the detriment of the eKoK based only on kernels (without
coefficients).

5.2 Comparison between the evolutionary KoKs and
the linear MKs

Comparison with other MKs models is difficult due to dif-
ferent experimental methodologies and databases. Several
researchers do not provide information about the partition-
ing of the database, while for others the databases are not
available.

The improvements obtained by the SVM classifier which
involves our promising eKoK based on MTS is compared
with both the state of the art convex LMK [39] and the evolu-
tionary LMK already proposed in [17] for the first five prob-
lems.

In order to emphasise the improvements obtained by in-
volving a kernel combination in the SVM algorithm, an av-
erage performance improvement (�) is computed for each
MK as the mean of the improvements δi for all the problems
(the lack of information regarding the data-set partitioning
has imposed us to perform only this average comparison).
Note that δi is the relative difference between the accuracy
rate estimated by the SVM algorithm with an MK (AccMK )
and the accuracy rate estimated by the same SVM algorithm,
but with a standard kernel (SK) for the ith problem:

δi = Acci
MK − Acci

SK

Acci
SK

, i = 1,5, and

� =
∑5

i=1 δi

5
,

(10)

where SK could be one of the considered classic kernels:
KPol, KRBF and KSig and MK could be: eKoK—the evolu-
tionary kernel of kernels proposed in this paper based on
MTS, eLMK—the evolutionary linear multiple kernel [17]
or cLMK—the convex linear multiple kernel [39].

The values of the performance improvements are given in
Table 4 and they show that eKoKs generally perform better
than both the linear MKs (convex or evolutionary). This may
be because our eKoK being more complex and involving the
optimal parameters is better adapted to each classification
problem than the linear combinations.
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Table 4 The average performance improvements for the MKs vs.
SKs. We used bold letters to denote the eKoKs that out-perform the
eLMK. In addition, italic letters indicate that the eKoKs out-perform
the cLMKs

� KPol KRBF KSig

eKoK 7.45% 6.84% 22.10%

eLMK 2.00% 3.66% 9.33%

cLMK 8.00% 3.00% 17.66%

In conclusion, the eKoK model based on the MTS seems
to be the most promising one.

5.3 Analysis of the complexity

Even that the kernel matrix are a priori computed, the time
required to evolve a KoK is larger than that from evolution-
ary linear MK or convex linear MK cases due to the com-
plexity of kernel function. However, this time is reasonable
taking into account that the convex methods are not able to
optimise the expression of a non-linear kernel combination
and, until now, there are no other solutions for optimising
simultaneously the SVM hyper-parameters and the MK ex-
pression.

Furthermore, the optimisation of the hyper-parameters
and kernel expression takes place during the learning
process of the best adapted KoK to the given problem. Dur-
ing the test phase, these optimal values are utilised and no
time is needed to tune or to adapt them to the problem.

Moreover, the accuracy rate is utilised to estimate the
efficiency of a classification method. However, this func-
tion may over fit training data. Sometimes, data contain a
lot of noise, and thus if the model fits these noisy data, the
learned concept may be wrong. Hence, the kernel combina-
tion and the set of hyper-parameters could be validated on
many training sets.

6 Conclusion

A new hybrid model has been proposed in order to solve
classification problems: a GP algorithm combined with an
SVM classifier for evolving KoKs. Several numerical ex-
periments have been performed in order to compare the
eKoKs to other kernels (classic or evolved, simple or mul-
tiple). The numerical results have shown that eKoKs per-
form better not only than the classic kernels, but also than
the linear MKs (convex or evolutionary LMKs). Although
the proposed model has a higher computational cost during
the learning stage, once the eKoKis constructed, the classi-
fication stage is as fast as the previous MK models.

The main conclusions of this paper can be summarised as
follows. The complex (linear or non-linear) kernel functions

must include not only different combination of operators
(+, ×, exp) and kernels (Sigmoid, Polynomial, RBF), but
also some scaling and/or shifting coefficients. The eKoKs
based on efficient kernels, whose parameters are optimised
for the evolved combination of kernels seems to be the most
promising approach. The regularisation parameter C of the
SVM-classifier allows also improving the performance of
the classifier. We emphases the fact that, to our knowledge,
the approach we propose is the only one capable to achieve
these three objectives in the same framework.

7 Future works

We will focus our further work on the validation of eKoK
model proposed in this paper for large data sets and using
multiple data sets for the training stage; this could help to
evolve kernels that are more generic. Furthermore, we plan
to evolve KoKs for future selection tasks and to use them
in order to solve classification problems with heterogeneous
data. In this way, we should favour the data fusion process.
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