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Abstract This paper investigates the first hybrid scatter
search and path relinking meta-heuristic for the Delay-
Constrained Least-Cost (DCLC) multicast routing problem.
The underpinning mathematic model of the DCLC multi-
cast routing problem is the constrained Steiner tree prob-
lem in graphs, a well known NP-complete problem. After
combining a path relinking method as the solution com-
bination method in scatter search, we further explore two
improvement strategies: tabu search and variable neighbor-
hood search, to intensify the search in the hybrid scatter
search algorithm. A large number of simulations on some
benchmark instances from the OR-library and a group of
random graphs of different characteristics demonstrate that
the improvement strategy greatly affects the performance
of the proposed scatter search algorithm. The hybrid scat-
ter search algorithm intensified by a variable neighborhood
descent search is highly efficient in solving the DCLC mul-
ticast routing problem in comparison with other algorithms
and heuristics in the literature.
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1 Introduction

The increasing development of numerous real-time mul-
timedia applications (e.g. E-learning, E-commerce, video-
conferencing) stimulates the demand of Quality of Service
(QoS) based multicast routing in computer networks over
the past decade. Multicast routing which transfers informa-
tion from a source to a group of destinations simultane-
ously thus becomes an important communication technique.
More specifically, a solution of a multicast routing prob-
lem is to construct a multicast tree which spans the source
and all the destinations. Most real-time multimedia applica-
tions require the underlying computer networks to support
the multicast routing which needs to concern certain QoS
requirements. In reality, two most common and important
QoS requirements are the cost of the multicast tree and the
end-to-end delay from the source to each destination. The
cost of a multicast tree is defined as the total cost of all
the edges included in the tree. An end-to-end delay is the
total delay of the edges along the path from the source to
each destination in the multicast group (a set of all the des-
tination nodes). Other QoS requirements include the band-
width, delay variation, lost ratio and hop count, and so on.
In this paper, we consider the Delay-Constrained Least-Cost
(DCLC) multicast routing problem which concerns two of
the most important QoS requirements: to minimize the to-
tal cost of the multicast tree while satisfying the end-to-end
delay bound.

Multicast routing problems can be reduced to the Min-
imum Steiner Tree Problem in Graphs (MStTG) [1]. The
MStTG problem is a well known NP-complete problem [2]
that aims to search for a Steiner tree in the graph which
spans a set of given nodes with the minimum total cost.
The DCLC multicast routing problem can be defined as the
Delay-Constrained Steiner Tree (DCST) problem, which is
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also known to be NP-complete [3]. The DCLC multicast
routing problem with complex real world constraints thus
demands effective and efficient intelligent algorithms. Due
to the complexity and challenge of various QoS based mul-
ticast routing in real world applications, multicast routing
problems have attracted a lot of research attention in the area
of computer networks and algorithmic network theory [4–6]
since the 1990s. An early survey was given in [7] to describe
protocol functions, mechanisms for data transmission within
a group (including multicast routing problems and end-to-
end multipoint transmission controls) and related solutions.
A recent survey in [8] has reviewed applications of com-
binatorial optimization problems and associated algorithms
for multicast routing problems.

In this paper, we investigate a Scatter Search and Path
Relinking (SSPR) meta-heuristic for the DCLC multicast
routing problem. As far as we know, this is the first hybrid
scatter search algorithm for multicast routing problems. We
test our proposed SSPR algorithms on a set of small and
medium sized instances (Steinb) for the benchmark Steiner
tree problem in the OR-library [9] as well as a group of ran-
dom graphs of different characteristics. Simulation results
show that our proposed SSPR algorithm is highly efficient
for solving the DCLC multicast routing problem in com-
parison with other existing algorithms and heuristics in the
literature.

The rest of the paper is organized as follows. In Sect. 2,
we present the formal definition of the DCLC multicast
routing problem and summarize the related work. Section 3
presents the proposed SSPR algorithms. To evaluate the per-
formance of our SSPR algorithms, a large amount of experi-
mental results on a range of problem instances have been an-
alyzed in Sect. 4. Finally, we conclude this paper and present
the possible future work in Sect. 5.

2 Problem definition and related work

2.1 The network model and problem definition

A computer network is modeled as a connected, directed
graph G = (V ,E) with |V | = n nodes and |E| = l edges.
Each edge e = (u, v) ∈ E, where u and v are two adjacent
vertices of e, is associated with two real values, namely the
cost c(e) and the delay d(e). The edge cost c(e) is a mea-
sure of the utilization of the network resources along the
edge. The edge delay d(e) is the delay caused by trans-
ferring messages through the edge in the network. We as-
sume that the network is asymmetric, i.e. for edge e = (u, v)

and edge e′ = (v,u), it is possible that c(e) �= c(e′) and/or
d(e) �= d(e′). For a multicast routing problem, there is a
source node s ∈ V and a set of destination nodes, called the
multicast group, denoted by D ⊆ V \{s}, each destination

node ri ∈ D receives information from the source s simulta-
neously.

We define a path from node u to v as a series of edges
along the path, denoted by P(u, v) = {(u, i), (i, j), . . . ,

(k, v)}. A solution of a multicast routing problem is a multi-
cast tree T (s,D) ⊆ E which is rooted at source s and spans
all destination nodes in D. The path in T from s to ri ∈ D,
denoted by P(s, ri) ⊆ T , is a set of edges along the path.
The end-to-end delay from s to each destination ri is the
sum of the delays of all edges along P(s, ri), denoted by
Delay(ri), i.e.

Delay(ri) =
∑

e∈P(s,ri )

d(e) (1)

The delay of the tree, denoted by Delay(T ), is the maxi-
mum delay among all Delay(ri) from source s to each des-
tination ri , i.e.

Delay(T ) = max{Delay(ri) | ∀ri ∈ D} (2)

The total cost of the tree, denoted by Cost(T ), is defined
as the sum of the cost of all links in the tree, i.e.

Cost(T ) =
∑

e∈T

c(e) (3)

The delay bound is the upper bound of the end-to-end de-
lay for each destination, i.e. Delay(ri) along the path from
s to ri . Applications in computer communication networks
may assign different upper bound δi to each destination
ri ∈ D. In this paper, we assume that the delay bounds for
all destinations are the same, denoted by � = δi, ri ∈ D.

Given the above definitions, we formally define the
DCLC multicast routing problem, i.e. the Delay-Constrained
Steiner Tree problem, as follows:

The Delay-Constrained Steiner Tree (DCST) problem Given
a network G, a source node s, a set of destination nodes D,
an edge cost function c(.), an edge delay function d(.), and
a delay bound �, the objective of the Delay-Constrained
Steiner Tree (DCST) problem is to construct a multicast tree
T (s,D) such that the delay bound is satisfied, and the tree
cost Cost(T ) is minimized. So we can define the objective
function of DCST as follows:

min{Cost(T ) | P(s, ri) ⊆ T (s,D), Delay(ri) ≤ �,

∀ri ∈D} (4)

For the ease of understanding, Fig. 1 presents a simple
example of a random directed network graph with |V | = 9
nodes and |E| = 14 edges, the numbers beside each edge
are the cost and delay of the directed edge, i.e. c(e)/d(e),
the source node s = 5, the multicast group D = {0,2,7}.
An example multicast tree connected by bold arrow lines is
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shown in the figure. Here the delay bound � is assumed to
be a very large number.

2.2 Related work

With the rapid development of computer networks, the
DCLC multicast routing problem has received extensive
research efforts in computer network community, among
which lots of exact and heuristic algorithms have been in-
vestigated since the first DCLC multicast routing algorithm
KPP [10] was presented in 1993. Most of the early multi-
cast routing algorithms can be classified as source-based or
destination-based algorithms. The source-based algorithms

Fig. 1 An example of a random network graph and a multicast tree

(e.g. [10–14]) assume each node has all the necessary infor-
mation to construct the multicast tree. While the destination-
based algorithms do not require every node in the network
to maintain the information of the entire network, and mul-
tiple nodes can participate in constructing the multicast tree,
examples can be found in [3, 15–17].

Recently, many meta-heuristic algorithms such as sim-
ulated annealing [18, 19], genetic algorithm [20–23], tabu
search [24–27], path relinking [28], Greedy Random Adap-
tive Search Procedure (GRASP) [29, 30], and Variable
Neighborhood Search (VNS) [31] have been investigated
for various multicast routing problems. We summarize the
heuristic algorithms for multicast routing problems with dif-
ferent QoS requirements in the literature in Table 1, catego-
rized by the type of heuristics and ordered in the year of
publication. From the table we can see that a large amount
of heuristics and algorithms exist in the literature for solv-
ing a wide range of multicast routing problems. In this pa-
per, we only review the most relevant recent meta-heuristic
approaches in this rich literature.

Ghaboosi et al. [28] have presented the first path relink-
ing approach for the DCLC multicast routing problem. In
their algorithm, a prüfer relinking is designed to implement
the path relinking process, where a prüfer number encoding
is used to represents a multicast tree, i.e. a solution. A multi-
cast tree with n nodes can be encoded by a prüfer number
with n − 2 bits. After generating a reference set of random

Table 1 Summary of related multicast routing algorithms in the literature (* represents a DCLC multicast routing algorithm has been investigated
in the corresponding work)

Algorithms Description

Heuristic Algorithms Kompella et al. (1993) [10, 15] KPP, the first source based multicast heuristic *

Widyono (1994) [11] CAO, source based heuristic *

Zhu et al. (1995) [14] BSMA, source based heuristic *

Sun and Langendoerfer (1997) [13] CDKS, source based heuristic *

Jia (1998) [17] DSPH, destination based heuristic *

Guo and Matta (1999) [3] QDMR, destination based heuristic *

Genetic Wang et al. (2001) [20] Bandwidth-delay-constrained least-cost multicast algorithm

Algorithms Haghighat et al. (2004) [21] Delay-delay variation-constrained multicast algorithm

Zahrani et al. (2008) [22] Capacity-delay-constrained genetic local search for group multicast

Tabu Search Youssef et al. (2002) [24] TS, based on Dijkstra’s shortest path algorithm [31] *

Algorithms Skorin-Kapov and Kos (2003) [25] TS-CST, based on Prim’s spanning tree algorithm [32] *

Wang et al. (2004) [26] TSDLMRA, based on the Kth shortest path algorithm [33] *

Ghaboosi and Haghighat (2006) [27] TS-based, uses the Kth shortest path and Prim’s algorithm *

Path Relinking Ghaboosi and Haghighat (2007) [28] The prüfer number based path relinking algorithm *

GRASP Skorin-Kapov and Kos (2006) [29] GRASP-CST, a GRASP with tabu search algorithm *

Algorithms Xu and Qu (2009) [30] GRASP-VND, a hybrid GRASP and VNS algorithm *

VNS Algorithm Qu et al. (2009) [31] VNDMR, a variable neighborhood descent search algorithm *
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initial solutions, the path relinking algorithm operates on
pairs of randomly chosen elite solutions repeatedly. A repair
procedure repairs infeasible solutions when they appear. At
the end of each iteration, the algorithm updates the reference
set by replacing the worst solution in the reference set by the
better ones generated in the relinking process. The best so-
lution in the reference set is output as the final solution after
a given number of iterations. One disadvantage of the path
relinking algorithm is its high time complexity since it has
to spend a lot of time to repair infeasible solutions which
occur during the path relinking phase.

In [29], a GRASP heuristic is developed for the delay-
constrained multicast routing problem. During each itera-
tion, a greedy randomized initial solution is constructed by
using the Dijkstra’s shortest path algorithm in the construc-
tion phase. A modified tabu search heuristic [25] is then ap-
plied to improve the initial solution in the local search phase.
After a fixed number of iterations, the best solution found
during the GRASP procedure is accepted as the final solu-
tion.

The first variable neighborhood descent search algorithm
VNDMR [31] has been proposed in the authors’ previous
work for the DCLC multicast routing problem. In VNDMR,
two neighborhood operators (node-based and path-based)
have been designed to reduce the tree cost and while time
satisfying the delay constraint. Experiment results demon-
strate that the neighborhood structure plays a crucial role
in the performance of the VNDMR algorithm and that bet-
ter initial solutions lead to better final solutions and re-
duce the computational time. The VNDMR algorithm has
shown to be highly efficient with regard to both the compu-
tational time and the tree cost. In [30], a new hybrid GRASP
approach, named GRASP-VND, is also developed for the
DCLC multicast routing problem, where the VNDMR al-
gorithm [31] is applied in the local search phase. A large
number of experiments carried out on some benchmark in-
stances and a group of random graphs demonstrate that the
proposed GRASP-VND outperforms another GRASP-CST
in [29] and a Multi-VND (an extended multi-start algorithm
of VNDMR by running it for a fixed number of iterations)
along with other existing algorithms and heuristics in terms
of the average tree cost.

In this paper, we investigate the first scatter search and
path relinking approach, hereafter named SSPR, for the
DCLC multicast routing problem. Although the scatter
search meta-heuristic has been successfully applied to solve
a variety of combinatorial optimization problems in the lit-
erature [35–40], to the best of our knowledge, no research
has been carried out to apply it for solving the QoS multi-
cast routing problem. As suggested in [36], a path relink-
ing procedure is applied as the combination method in our
SSPR meta-heuristic. To intensify the search towards bet-
ter solutions, we explore two improvement strategies: Tabu

Search (TS) and Variable Neighborhood Descent (VND)
search in the proposed SSPR algorithm, namely SSPR-TS
and SSPR-VND, respectively. We test these two variants of
the algorithm on a set of small and medium sized (50–100
nodes) instances (Steinb) for the Steiner tree problem from
the OR-library. Results indicate that SSPR-VND can ob-
tain better solutions in comparison with SSPR-TS for the
Steinb instances with different delay bounds. The proposed
SSPR algorithms are also compared with two existing al-
gorithms (GRASP-CST in [29] and GRASP-VND in our
previous work [30]). SSPR-VND has similar performance
as GRASP-VND and GRASP-CST for the Steinb instances
with two larger delay bounds, while outperforms the two
GRASP algorithms on the same instances with a tighter de-
lay bound. Furthermore, results of our SSPR-TS and SSPR-
VND algorithms on a set of random graphs (10–100 nodes)
show that our proposed SSPR-VND algorithm has the best
performance in terms of the total tree cost in comparison
with some existing algorithms and heuristics in the litera-
ture.

3 The proposed scatter search and path relinking
(SSPR) algorithm

Scatter search is a population-based meta-heuristic that has
recently shown to be efficient for solving a wide range of
combinatorial and nonlinear optimization problems. It oper-
ates on a set of solutions, called the reference set, which con-
sists of good solutions obtained from the previous search.
The aim of scatter search is to derive new solutions from
combined solutions. Path relinking has been suggested as
a solution combination approach to integrate intensification
and diversification strategies in a search procedure. It op-
erates on pairs of solutions (the initiating solution and the
guiding solution) to explore the trajectory that connects each
pair of solutions. Path relinking generates a new solution by
recording the best solution during the path in the neighbor-
hood space that starts from the initiating solution and move
towards the guiding solution. More detailed features of scat-
ter search and path relinking strategies can be found in [35,
36].

The scatter search meta-heuristic is a very flexible al-
gorithm, where each component can be designed in alter-
native ways with regard to the problems being concerned.
Figure 2 provides the pseudo-code of our proposed SSPR al-
gorithm. Based on the basic framework of the scatter search
meta-heuristic, the SSPR algorithm consists of the following
five components:

a) A Diversification Generator is used to create a large set
of diverse solutions Pop. Based on the initial population
Pop, an initial reference set (RefSet) with b distinct solu-
tions is built as the starting point of the procedure (where
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Fig. 2 The pseudo-code of the
SSPR algorithm

b is usually a small value, e.g., no more than 20). Typi-
cally, the size of Pop (Psize) is 10 times the size of Ref-
set, i.e. Psize = 10 × b. The solutions in RefSet are or-
dered according to their objective function value, where
the best solution is the first one in the set. In our SSPR al-
gorithm, the Diversification Generator is a pure random
generator to create initial solutions, each solution rep-
resents a multicast tree generated by starting from the
source node and randomly selecting the next node which
connects the tree until all the destination nodes have been
mounted on the tree.

b) A Subset Generation Method operates on the reference
set to generate a set of subset (SubSets) of RefSet as the
basis to create combined solutions. One common Sub-
Sets generation method is to construct all pairs of solu-
tions in RefSet, i.e. all subsets of size 2. The cardinality
of SubSets is thus given by (b2 − b)/2 corresponding to
the initial RefSet of b solutions.

c) A Solution Combination Method is designed to produce
new combined solutions based on the given subset of so-
lutions from SubSets. The combination method is simi-
lar to the crossover operator in genetic algorithms except
that it should be able to combine more than two solu-
tions. We apply a path relinking approach (see Sect. 3.1)
as the solution combination method in the proposed
SSPR algorithm.

d) An Improvement Method is applied to enhance a solu-
tion by exploring neighborhoods of the current solution
in order to generate new better solutions. In our SSPR
algorithm, we develop and test two local search heuris-
tics as the improvement methods (see Sect. 3.2), namely
tabu search and variable neighborhood search, to further
intensify the search.

e) A Reference Set Updates Method aims to maintain the
reference set consisting of the b best solutions obtained
in the previous search procedure. Different criteria may
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Fig. 3 An example of the path relinking process for the random network shown in Fig. 1

be defined to add solutions to RefSet and delete solutions
from RefSet.

3.1 The path relinking method

Path relinking is an evolutionary approach for solving op-
timization problems [35, 36, 41]. It combines elements of
pairs of solutions by starting from one solution, called an ini-
tiating solution, and generating a trajectory in the neighbor-
hood space which connects to the other solution, called the
guiding solution. During the path relinking, the main goal is
to incorporate attributes of the pairs of solutions and record
a series of moves leading from the initiating solution to the
guiding solution. In our proposed SSPR algorithm, a path re-
linking method is applied as the combination method in the
hybrid scatter search algorithm. The aim of the path relink-
ing method is to generate a path (a series of moves) between
the paired solutions (the initiating solution and the guiding
solution) and therefore better solutions may occur along the
path.

In our path relinking method, a solution, i.e. a multicast
tree, is represented by using a binary array with |V | = n bits.
Each bit (from 0 to n − 1) represents one node in the net-
work, and takes a value of 1 if the corresponding node is
in the multicast tree, 0 otherwise. During the path relink-
ing procedure, the algorithm will calculate the difference
between the initiating solution and the guiding solution by
comparing the number of different bits between their mul-
ticast tree arrays. At each step, starting from the initiating
solution, the algorithm will change one different bit in the
initiating solution array to the corresponding bit in the guid-
ing solution array. Then for each of these generated array, a
modified Prim’s spanning tree algorithm is applied to gen-
erate a new tree of the given nodes in the array while con-
cerning the end-to-end delay bound from the source node to

each destination node. This procedure repeats until the guid-
ing solution is finally reached, i.e. the initiating solution ar-
ray becomes the same as the guiding solution array. All the
solutions generated during the process are recorded, from
which the best solution generated is obtained as the result of
the path relinking procedure.

An illustrative example of the path relinking method in
the proposed SSPR meta-heuristic is shown in Fig. 3. As
described above, we use the binary array to present a solu-
tion, i.e. a multicast tree. We can see that a better new solu-
tion (tree cost = 230) is generated compared with the initiat-
ing solution (tree cost = 319) and the guiding solution (tree
cost = 299) during the path relinking process. Here delay
bound � = 100.

3.2 The improvement methods

The improvement method in scatter search is an impor-
tant intensification strategy to further transfer the incum-
bent solution into one or more enhanced solutions. In or-
der to test the effect of improvement method in the pro-
posed SSPR algorithm, we design two variants of SSPR al-
gorithms, namely SSPR-TB and SSPR-VND, by integrat-
ing two improvement methods, a tabu search heuristic and
a variable neighborhood descent search heuristic, respec-
tively, within the SSPR algorithm.

The tabu search improvement method in SSPR-TS ap-
plies the modified tabu search heuristic in [25]. The tabu
search heuristic uses the same solution representation as that
in the path relinking method described above. The initial so-
lution of the tabu search heuristic is the best solution gener-
ated by the path relinking procedure. Neighboring solutions
include all the solutions whose binary sets are exactly one
bit different from the current solution. In other words, the
neighboring solutions are all those solutions generated by
adding or removing exactly one node excluding the source
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node or the destination nodes in the current multicast tree.
The Prim’s spanning tree algorithm is then applied to gen-
erate a new delay-constrained spanning tree of the given
nodes. The best new neighboring solution becomes the cur-
rent solution in the next iteration. The process stops after a
desired number of iterations without improvements; here we
set the number to 2 which is the same as that in [25]. In the
tabu search heuristic, the tabu list is repeatedly updated by
the corresponding bit of the last performed move. The size
of tabu list is set to one which is enough to prevent the al-
gorithm from visiting the solutions of the moves just came
from.

The variable neighborhood descent search algorithm
VNDMR2 in SSPR-VND employs three neighborhood
structures, one is a node-based neighborhood by flipping
nodes in the network to generate new neighboring solutions
and the other two are based on a path replacement strat-
egy by iteratively replacing high cost paths in the tree by
new better paths satisfying the delay bound to reduce the
tree cost. One important parameter in the node-based neigh-
borhood of VNDMR2 is the number of non-improved it-
erations. To avoid consuming too long computational time,
we set the iteration number to 2 in VNDMR2 of our SSPR-
VND. Detailed information can be found in our previous
work [31].

4 Performance evaluation

4.1 Simulation environment

We use a multicast routing simulator (MRSIM) imple-
mented in C++ based on Salama’s generator [4], to gener-
ate random network topologies by using a graph generation
algorithm described in [42]. Like many other network sim-
ulators, the distance l(u, v) between pairs of nodes (u,v)

is determined by the Euclidean metric. The probability of
edges placed connecting nodes (u,v) is given by:

p(u, v) = β exp(−l(u, v)/αL)α, β ∈ (0,1] (5)

where L is the maximum distance between two nodes, the
parameters α and β can be set to obtain desired characteris-
tics in the graph to represent features of computer networks.
For example, the average node degree is increased with the
value of β , and a small α gives long connections between
nodes. In our simulations, we set α = 0.25, β = 0.40, av-
erage node degree = 4, capacity of each edge (resource ca-
pacities in computer networks) is set to a large enough value.
The edge delay d(e) of sending information data via the link
in the simulator is defined as the propagation delay of the
link (queuing and transmission delays are negligible), the
edge cost c(e) is assigned as the consumption of the band-
width reserved on the edge in the network. All simulations
were run on a Windows XP computer with P4-3.4 GHz,

Table 2 Characteristics of the Steiner tree instances (Steinb) from the
OR-library. |V |, |E| and |D| stand for the number of nodes, edges
and destinations. ‘OPT’ denotes the optimal solution for each instance
given by the OR-library

No. |V | |E| |D| OPT No. |V | |E| |D| OPT

B01 50 63 9 82 B10 75 150 13 86

B02 50 63 13 83 B11 75 150 19 88

B03 50 63 25 138 B12 75 150 38 174

B04 50 100 9 59 B13 100 125 17 165

B05 50 100 13 61 B14 100 125 25 235

B06 50 100 25 122 B15 100 125 50 318

B07 75 94 13 111 B16 100 200 17 127

B08 75 94 19 104 B17 100 200 25 131

B09 75 94 38 220 B18 100 200 50 218

1 GB RAM. More detailed information of all the problem
instances tested and some example solutions obtained by
the algorithms are publicly available at http://www.cs.nott.
ac.uk/~rxq/MRPresource.html.

4.2 Experiments on Steinb problems in the OR-library

4.2.1 The test instances

We test our proposed algorithms on the set of small and
medium sized Steiner tree problems (Steinb) from Stein-
Lib, which is a publicly available library of test instances
for the MStTG problem. Table 2 presents the characteris-
tics of the 18 instances. Since the Steinb instances only con-
cern the costs of edges, there is no delay for each edge.
We thus extend these 18 Steinb instances to generate Delay-
Constrained multicast routing problems by setting the delays
of every edge randomly in our experiments.

4.2.2 The influence of population sizes within the SSPR
algorithm

To properly set the parameters in the SSPR algorithms, a
number of tests were carried out. In the first group of exper-
iments, we evaluate the performance of the SSPR algorithms
with different population sizes (Psize = 20, 30, 40, 50 and
60) and reference set sizes (b = Psize/10) on the Steinb in-
stances. In this group of experiments, we set the delay bound
of each instance to a large enough value, denoted by � = ∞,
so that the solutions obtained are actually the solutions to
the minimum Steiner tree problem without constraint as the
delays of the edges have no impact on the construction of
the Steiner tree. In this case, the optimal solution for each
instance is already known as shown in Table 2. The max-
imum iteration number is set as 4 in variants of the SSPR
algorithms. The termination criterion of these SSPR algo-
rithms is either the algorithm finds the optimal solution or

http://www.cs.nott.ac.uk/~rxq/MRPresource.html
http://www.cs.nott.ac.uk/~rxq/MRPresource.html
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Table 3 Comparison of
different population size (Psize)
within the SSPR algorithm.
(Best results are in bold)

No. Psize = 20 Psize = 30 Psize = 40 Psize = 50 Psize = 60

Mean σ Mean σ Mean σ Mean σ Mean σ

B01 82 0 82 0 82 0 82 0 82 0

B02 89.2 0.67 89 0 88.9 0.22 88.3 0.72 88.5 1.47

B03 139.5 2.93 139.2 3.14 138.3 1.34 138 0 138 0

B04 66.2 2.8 67.4 4.27 65.3 3.4 63.6 2.35 64.9 2.17

B05 62.9 0.88 62.1 1.1 61.6 0.69 61.6 0.6 61.1 0.31

B06 132.1 5.74 127.5 2.5 127 2.28 125.6 1.6 125.7 1.37

B07 114.2 3.31 112.9 2.34 112.1 0.85 112 0.51 111.8 0.55

B08 108 2.6 106.9 2.26 106.1 1.7 105.7 1.09 106 1.23

B09 221.3 1.34 220.5 0.51 220.4 0.49 220.4 0.49 220.3 0.47

B10 98.8 5.74 97.7 3.94 95.2 1.54 95.5 3.55 95.7 1.41

B11 107.2 4.5 105.7 3.54 102 5.99 101 4.64 101.7 5.22

B12 184.9 2.15 181.6 2.78 179.6 3.32 178.9 2.28 179.2 2.71

B13 182.1 5.37 179.1 5.22 178.9 4.56 175.3 4.32 174.2 4.08

B14 258.9 8.76 248.6 5.02 245.6 3.08 246.4 4.72 246.7 2.01

B15 330.9 4.82 327.5 3 325.5 1.36 324.6 1.62 324.7 1.46

B16 148.7 3.48 148.4 3.15 147.2 3.07 140.9 4.8 140.9 4.88

B17 139.9 1.93 136.5 2.5 137.4 2.06 136.5 2.01 136.3 1.74

B18 222.9 1.62 222.5 1.61 222.3 0.86 221.4 1.23 221.7 1.17

Fig. 4 The Computational time
of the SSPR algorithm with
different population size (Psize)
on Steinb instances

within the fixed number of iterations. In order to clearly ob-
serve the influence of the population size, the improvement
method is not applied in this set of experiments. On each
instance, the simulation was run 30 times for each variant
of the algorithm. Table 3 and Fig. 4 present the average tree
cost, standard deviation (σ) and computational time of the
SSPR algorithms on the 18 Steinb instances with different
population sizes.

Results in Table 3 indicate that SSPR with Psize = 40,
50 and 60 outperform other variants of the algorithm. We
further calculate the paired t-test value between the aver-
age tree costs on the 18 instances with Psize = 40 and 50.
The result 2.55 is larger than the value 2.11 with p = 0.05,
meaning their difference is statistically significant. While

the t-test value between the average tree costs from SSPR
with Psize = 50 and Psize = 60 is only 0.823, difference
between these two variants can be seen as not signifi-
cant.

From Fig. 4, we can see that with the increasing pop-
ulation size, the execution time of the SSPR algorithm in-
creases. We further observe that the computing time of the
SSPR algorithm with Psize = 50 is less than that of the
SSPR algorithm with Psize = 60, while their performance
is similar with respect to the average tree cost on each in-
stance as shown in Table 3. We thus conclude that for our
proposed SSPR algorithm, the most appropriate population
size Psize is 50. The population size is set as 50 in our later
experiments.
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Table 4 Experiment results for
minimum Steiner tree problems
(� = ∞). (The values marked
with ‘*’ denote the optimal
solutions and the best results are
in bold)

No. SSPR-VND SSPR-TS GRASP-VND GRASP-CST

Avg. Best σ Avg. Best σ Avg. Best σ Avg. Best σ

B01 82* 82 0 82* 82 0 82* 82 0 82* 82 0

B02 83* 83 0 86.5 83 2.58 83* 83 0 83* 83 0

B03 138* 138 0 138* 138 0 138* 138 0 138* 138 0

B04 59* 59 0 59* 59 0 59* 59 0 59* 59 0

B05 61* 61 0 61* 61 0 61* 61 0 61* 61 0

B06 122* 122 0 122* 122 0 122* 122 0 122* 122 0

B07 111* 111 0 111* 111 0 111* 111 0 111* 111 0

B08 104* 104 0 104* 104 0 104* 104 0 104* 104 0

B09 220* 220 0 220* 220 0 220* 220 0 220* 220 0

B10 86* 86 0 86* 86 0 86* 86 0 86* 86 0

B11 88* 88 0 88* 88 0 88* 88 0 88* 88 0

B12 174* 174 0 174* 174 0 174* 174 0 174* 174 0

B13 168.1 165 1.92 168.5 165 2.37 167.3 165 2.39 165.4 165 1.09

B14 235.3 235 0.47 238.9 235 3.8 235.1 235 0.22 235* 235 0

B15 318* 318 0 319.2 318 1.01 319.5 318 0.89 319.8 318 0

B16 127* 127 0 134.1 130 2 127* 127 0 127* 127 0

B17 131* 131 0 131* 131 0 131.2 131 0.67 131* 131 0

B18 218* 218 0 218.2 218 0.37 218.2 218 0.41 218* 218 0

4.2.3 Comparisons on Steinb instances with different delay
bounds

In the second group of experiments, we compare the perfor-
mance of SSPR-VND and SSPR-TS with other two algo-
rithms, GRASP-CST in [29] and GRASP-VND in our pre-
vious work [30], on the Steinb instances with different delay
bounds. For a fair comparison, we set the same running time
(60 seconds) for the four algorithms in each run and all al-
gorithms were run 30 times on each instance.

Firstly, we set the delay bound � = ∞. The average, best
and standard deviation of the two variants of SSPR algo-
rithms, along with GRASP-VND and GRASP-CST on the
Steinb instances are illustrated in Table 4. From the table,
we can see that SSPR-VND and GRASP-CST have similar
performance, obtaining 16 and 17 best solutions out of 18 in-
stances in terms of the average tree cost, respectively. Both
algorithms are better than SSPR-TS which finds 12 best so-
lutions and GRASP-VND which finds 13 best solutions.
Similarly, both SSPR-VND and GRASP-CST always find
the optimal solutions on 16 out of 18 instances, which are
better than SSPR-TS and GRASP-VND which find optimal
solutions on 12 and 13 out of 18 instances, respectively. In
addition, the results obtained by SSPR-VND are more stable
than those of SSPR-TS, since SSPR-VND has a smaller av-
erage standard deviation (0.133) over the 18 instances com-
pared with that of SSPR-TS (0.674). The experiment results
also show that SSPR-VND outperforms SSPR-TS, mainly
due to the better improvement method VND within the same
SSPR meta-heuristic.

In the DCLC multicast routing problem, the delay bound
is a key factor which affects the difficulty of the problems,
and thus leads to different search results. Generally, the
smaller the delay bound, the more constrained the problems.
In the second set of experiments, we set the delay bound
�1 = 1.1 × Delay(TOPT), where TOPT denotes the multi-
cast tree of the optimal solution. With the slightly tighter
bounded end-to-end delay compared with the delay bound
� = ∞ in the previous experiments, the SSPR-VND algo-
rithm still outperforms the SSPR-TS algorithm in terms of
both average tree costs and the standard deviation as shown
in Table 5. SSPR-VND has similar overall performance as
GRASP-VND and GRASP-CST, since they all find 15 out
of 18 best results in terms of average tree cost.

We set the delay bound �2 to a smaller value 0.9 ×
Delay(TOPT). The optimal solutions are thus not known to
any of the cases. Due to the tighter delay constraint, we can
see that no feasible solutions were obtained for some in-
stances as presented in Table 6. The table again shows that
SSPR-VND outperforms SSPR-TS with respect to the aver-
age tree costs on 11 instances. We also observe that SSPR-
VND is more stable than SSPR-TS comparing the average
standard deviation on the instances. For this set of experi-
ments, SSPR-VND performs better than GRASP-VND and
GRASP-CST when comparing the number of best average
tree costs found by each algorithm which are 14, 10 and
9 out of 18 instances, respectively. It demonstrates that the
SSPR-VND is more flexible in solving problems of different
delay bounds.
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Table 5 Experiment results for the DCLC multicast routing algorithm with �1 = 1.1 × Delay(TOPT ). (The values marked with ‘*’ denote the
optimal solutions and the best results are in bold)

No. � SSPR-VND SSPR-TS GRASP-VND GRASP-CST

Avg. Best σ Avg. Best σ Avg. Best σ Avg. Best σ

B01 145 82* 82 0 82* 82 0 82* 82 0 82* 82 0

B02 228 83* 83 0 86.8 83 2.1 83* 83 0 83* 83 0

B03 248 138* 138 0 138* 138 0 138* 138 0 138* 138 0

B04 173 59* 59 0 59* 59 0 59* 59 0 59* 59 0

B05 125 61* 61 0 61* 61 0 61* 61 0 61* 61 0

B06 281 122* 122 0 122.1 122 0.45 122* 122 0 122* 122 0

B07 212 111* 111 0 111* 111 0 111* 111 0 111* 111 0

B08 209 104* 104 0 104* 104 0 104* 104 0 104* 104 0

B09 280 220* 220 0 220* 220 0 220* 220 0 220* 220 0

B10 262 86* 86 0 86* 86 0 86* 86 0 86* 86 0

B11 235 88* 88 0 88* 88 0 88* 88 0 88* 88 0

B12 225 174* 174 0 174* 174 0 174* 174 0 174* 174 0

B13 190 168.1 165 1.67 169.2 165 1.82 167.6 165 2.39 165* 165 0

B14 221 236.6 235 4.61 258.8 244 11.39 235* 235 0 235* 235 0

B15 308 318.6 318 0.92 319.5 318 1.39 319.6 318 0.82 319.6 318 0.82

B16 291 127* 127 0 133.5 129 1.88 127* 127 0 127* 127 0

B17 219 131.7 131 1.24 131* 131 0 131.9 131 0.88 131.5 131 0.51

B18 425 218* 218 0 218.2 218 0.41 218* 218 0 218.2 218 0.37

Table 6 Experiment results for the DCLC multicast routing algorithm with �2 = 0.9 × Delay(TOPT ). (The best results are in bold)

No. � SSPR-VND SSPR-TS GRASP-VND GRASP-CST

Mean Best σ Mean Best σ Mean Best σ Mean Best σ

B01 118 83 83 0 83 83 0 83 83 0 83 83 0

B02 187 84 84 0 88.6 86 2.19 84 84 0 84 84 0

B03 203 140.8 139 0.75 142 142 0 / / / / / /

B04 142 62 62 0 64.9 64 0.22 62 62 0 62 62 0

B05 102 62 62 0 62.5 62 0.95 62 62 0 62 62 0

B06 199 125 125 0 125 125 0 124.6 124 0.93 125 125 0

B07 173 112 112 0 112 112 0 / / / / / /

B08 171 107 107 0 107 107 0 107 107 0 107 107 0

B09 229 221 221 0 221 221 0 221 221 0 221 221 0

B10 215 87.9 87 0.11 88 88 0 88 88 0 88 88 0

B11 180 89 89 0 89 89 0 89 89 0 89 89 0

B12 184 177 177 0 177.9 177 1.84 177 177 0.89 178.5 177 4.24

B13 139 169 169 0 170.4 169 0.94 169.3 168 0.83 172 168 2.44

B14 180 / / / 243.6 236 8.44 237 237 0 238.3 236 2.37

B15 194 332.1 328 5.22 335.3 323 5.45 323.7 322 1.55 321.3 319 1.31

B16 238 131.4 129 1.08 134.4 132 1.23 130.7 129 1.53 129.3 129 0.92

B17 180 134 134 0 / / / 134.5 134 0.61 134.3 134 0.44

B18 348 219 219 0 219.6 219 0.94 219.1 219 0.22 219.2 219 0.37
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Table 7 Average tree costs of
our SSPR algorithms and some
existing heuristics and
algorithms on random graphs

Algorithms Average

Tree Cost

Heuristics KPP1 [10] 905.581

KPP2 [15] 911.684

BSMA [14] 872.681

GA-based Wang et al. [20] 815.969

Algorithms Haghighat et al. [21] 808.406

TS-based Skorin-Kapov and Kos [25] 897.875

Algorithms Wang et al. [26] 869.291

Youssef et al. [24] 854.839

Ghaboosi and Haghighat [27] 739.095

Path relinking Ghaboosi and Haghighat [28] 691.434

VNS Algorithms VNDMR1 [31] 680.067

VNDMR2 [31] 676.427

Multi-VND [30] 653.257

GRASP GRASP-CST [29] 669.927

Algorithms GRASP-VND [30] 649.203

Scatter Search Our proposed SSPR-TS 679.690

Algorithms Our proposed SSPR-VND 644.840

4.3 Experiments on random graphs

In [28], a set of random network graphs is generated by Gha-
boosi and Haghighat to test their proposed path relinking
algorithm. Their simulations show that the path relinking
algorithm outperforms a number of existing heuristics and
algorithms in the literature, where the average tree cost of
each algorithm over all these random graphs is reported. The
same simulations have been conducted in our previous pa-
pers [30, 31] by generating a set of random networks as de-
signed in [28]. Furthermore, in order to compare our SSPR
algorithms with other existing heuristics and algorithms, a
group of experiments have been carried out on the same set
of random graphs in our previous work [30, 31]. These ran-
dom graphs include 3 random topologies for each network
size (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 nodes), so
there are 30 random network graphs in total. For each net-
work graph, edge costs depend on the length of the edges,
with edge delays are set to 1. The multicast group size is
considered to be 30% of the network size in each random
graph. Delay bounds vary according to the network sizes
(� = 7 for network size 10–30, � = 8 for network size
40–60, � = 10 for network size 70–80, and � = 12 for
network size 90–100). The simulation results are shown in
Table 7.

In Table 7, we can see that SSPR-VND has the best over-
all performance on the random graphs with respect to the

average tree cost in comparison with other heuristics and
algorithms in the literature. SSPR-VND outperforms SSPR-
TS in terms of the average tree cost, showing that the bet-
ter improvement method improves the performance of the
SSPR meta-heuristic.

Table 8 presents more details of the average tree cost,
standard deviation and computational time of these four al-
gorithms on each network size. We observe that SSPR-VND
performs the best by obtaining 7 best solutions out of the
10 different size networks, compared with GRASP-VND
which achieves 4 best solutions, and GRASP-CST only finds
2 best results. Table 8 also shows that SSPR-VND is better
on large problems, while GRASP-VND is better on smaller
problems. The average standard deviation of SSPR-VND
for the 10 network sizes is 4.8, which is better than that
of SSPR-TS (11.39). It demonstrates again that SSPR-VND
gives more stable and better quality solutions than SSPR-TS
on all the tested random graphs. We also notice that SSPR-
VND obtains better results by consuming longer computa-
tional time compared with other three algorithms.

5 Conclusions

In this paper, we have investigated a hybrid Scatter Search
with Path Relinking (SSPR) for solving the Delay-Con-
strained Least-Cost (DCLC) multicast routing problem for
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Table 8 Average tree cost and standard deviation of our SSPR algorithms compared with GRASP-VND and GRASP-CST on random graphs

Network
size

SSPR-VND SSPR-TS GRASP-VND GRASP-CST

Cost σ Time (s) Cost σ Time (s) Cost σ Time (s) Cost σ Time (s)

10 94.67 0.00 0.039 97.93 2.25 0.017 94.67 0 0.008 94.67 0 0.009

20 272.53 2.41 0.314 274.4 1.97 0.141 272.07 2.25 0.085 271.13 1.48 0.048

30 393.5 3.57 1.453 414.1 14.96 0.577 392.33 0 0.353 394.67 0 0.156

40 513.33 0.00 3.522 533.43 3.22 1.291 512.8 1.55 0.857 526.47 1.79 0.388

50 660.83 0.53 9.575 707.43 8.27 2.727 662.33 1.94 2.109 697.07 3.43 0.815

60 748.07 7.03 13.637 759.07 17.92 5.271 757.33 13.48 3.894 761.13 17.13 1.625

70 779.5 5.97 29.608 811.2 5.57 9.08 780.83 2.96 9.029 797.53 1.64 2.648

80 863.33 5.93 66.356 935.33 22.65 15.791 868.87 7.73 19.421 902.67 5.49 5.941

90 1132.77 19.35 116.419 1215.17 21.07 31.595 1155.57 19.02 32.621 1201.93 18.02 10.27

100 989.87 3.19 177.454 1048.83 16.03 47.218 995.23 4.23 41.681 1052 23.4 10.983

Avg. 644.84 4.8 41.837 679.690 11.39 11.371 649.203 5.316 11.006 669.927 7.238 3.289

the first time. The problem is also known as the Delay-
Constrained Steiner Tree problem and has been proved to be
NP-complete. Although both scatter search and path relink-
ing have shown to yield promising solutions for various op-
timization problems, little attention has been given to them
for solving the constrained multicast routing problem.

In our proposed SSPR algorithm, the path relinking
heuristic is applied as the combination method to incorpo-
rate attributes of high quality solutions. Two local search
heuristics, tabu search and variable neighborhood search,
have been designed and tested as the improvement meth-
ods in the SSPR meta-heuristic. A large number of simula-
tions on small and medium sized problems from SteinLib in
the OR-library and a group of random graphs demonstrate
that SSPR with a variable neighborhood search outperforms
SSPR with a tabu search in terms of average tree costs. This
indicate that the improvement method will greatly affect the
performance of the proposed SSPR meta-heuristic, and bet-
ter local search can contribute to better results. Experiments
demonstrate that our SSPR algorithm is able to find high
quality solutions for the DCLC multicast routing problem in
comparison with some existing algorithms and heuristics.

In our future work, the proposed SSPR meta-heuristic
can be improved in different ways. For example, more com-
bination methods may be applied and investigated. In addi-
tion, we plan to extend our SSPR meta-heuristic to solve
more sophisticated multicast routing problems in reality,
such as the multicast routing problem with multiple QoS
constraints (e.g. the bandwidth, delay-variation, node de-
grees) or the dynamic multicast routing problem with mul-
ticast members leaving and joining the multicast group at
various times during the connection.
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