Appl Intell (2010) 33: 67-78
DOI 10.1007/s10489-010-0243-2

Constructing tree-based knowledge structures from text corpus

Sheng-Tun Li - Fu-Ching Tsai

Published online: 21 July 2010
© Springer Science+Business Media, LLC 2010

Abstract A knowledge structure identifies how people
think and displays a macro view of human perception. By
discovering the hidden structural relations of knowledge,
significant reasoning patterns are retrieved to enhance fur-
ther knowledge sharing and distribution. However, the uti-
lization of such approaches is apt to be limited due to the
lack of hierarchical features and the problem of informa-
tion overload, which make it difficult to enhance compre-
hension and provide effective navigation. To address these
critical issues, we propose a new approach to construct a
tree-based knowledge structure from corpus which can re-
veal the significant relations among knowledge objects and
enhance user comprehension. The effectiveness of the pro-
posed method is demonstrated with two representative pub-
lic data sets. The evaluation results show that the method
presented in this work achieves remarkable consistency with
the domain-specific knowledge structure, and is capable of
reflecting appropriate similarities among knowledge objects
along with hierarchical implications in the document classi-
fication task.

The work of S.-T. Li is partly supported by National Science Council,
Taiwan under contract NSC98-2410-H-006-007.

S.-T. Li (X)) - E-C. Tsai

Institute of Information Management, National Cheng Kung
University, Tainan, Taiwan, ROC

e-mail: stli@mail.ncku.edu.tw

F.-C. Tsai
e-mail: 17895104 @mail.ncku.edu.tw

S.-T. Li
Department of Industrial and Information Management, National
Cheng Kung University, Tainan, Taiwan, ROC

Keywords Knowledge structure - Hierarchical feature -
Information retrieval - Knowledge management -
Document classification

1 Introduction

In a fast-changing environment, knowledge is one of the
most precious assets of a corporation and a key to enhanc-
ing organizational competitiveness. Numerous case studies
of international companies have demonstrated that consid-
erable benefits can be achieved by leveraging knowledge
to meet evolving business needs. However, tacit knowledge
can easily disappear when employees leave the firm, and,
even if they stay, its usability is limited due to difficul-
ties with regard to access, sharing and distribution. In or-
der to preserve tacit knowledge and make it available to all
members of an organization, knowledge engineering meth-
ods have been developed to transform it into more explicit
forms. However, how to adequately organize the explicit
knowledge thus obtained into a systematic model which can
represent the whole picture of domain-specific knowledge
and provide effective problem solving capabilities remains a
considerable challenge.

Knowledge structures (KS) with the appropriate topol-
ogy have been identified as an effective expression of ex-
plicit knowledge which can provide concrete comprehen-
sion and figurative navigation of the information they con-
tain. KS provide the ability to discover the hidden relations
among codified knowledge objects (KO), and thus produce
a more holistic view of a subject domain. The information
embedded in KS not only depicts granular KO, but also rep-
resents the coherent reasoning framework in terms of the
relevant structural implications. In addition, various meth-
ods of organizing KO portray different reasoning patterns,

@ Springer

mailto:stli@mail.ncku.edu.tw
mailto:r7895104@mail.ncku.edu.tw

68

S.-T. Li, F-C. Tsai

even though they are composed of identical objects [1]. This
phenomenon has also been investigated in the educational
field [2, 3]. For example, the distinct KS between students
explains their different problem-solving skills after taking
the same class. Undoubtedly, well organized KS lead to su-
perior comprehension and more effective reasoning capabil-
ities when facing decision making tasks.

Different KS formats are discussed in earlier research [4],
and there are two major concerns for creating a knowl-
edge structure: (1) how to formulate human cognition, and
(2) how to make it in a form that users can visualize. With
regard to the first question, people’s cognition is believed
to have generally hierarchical properties, and when individ-
uals are asked to categorize an object in a neutral setting
without further instructions, they are very likely to provide
hierarchically-organized categories [5]. Accordingly, hierar-
chical KS are more appropriate to describe human cogni-
tion rather than non-hierarchical ones. Turning to the sec-
ond question, human visualization capacity is limited with
regard to information processing, and the more complex
the structure is, the more difficult it is for humans to re-
alize its morphology. Therefore, KS with large numbers
of KO or links between objects can reduce the effective-
ness of knowledge navigation and visualization [6-8]. To
solve these two problems, we propose a new method to con-
struct a tree-based KS (TKS) to provide both comprehen-
siveness through hierarchical features and concise KO rela-
tions to avoid information overload. The remainder of this
article is organized as follows. In Sect. 2, we review var-
ious knowledge representation and hierarchical knowledge
structure construction approaches. Section 3 introduces the
fundamental definitions used in this research, while the TKS
construction algorithm is illustrated in detail in Sect. 4. Sec-
tion 5 discusses the experimental results from two data sets,
and then Sect. 6 concludes this paper and gives some sug-
gestions for future work.

2 Previous research
2.1 Knowledge representation

How to accurately represent experts’ knowledge is the most
fundamental challenge when starting to develop knowledge-
based applications. The knowledge, or what experts call in-
tuition or natural ability in solving difficult problems, is
hard to describe and organize as principals for providing
direct support to novices. Making knowledge visible is an
instinctive method so that it can be better accessed, val-
ued or generally managed by knowledge workers [1, 9].
Knowledge maps are often used as cognitive tools to pro-
vide a direct view of knowledge, and are composed of a
set of nodes and links [10]. Nodes are widely recognized

@ Springer

as intuitive KO, whereas links describe the correlations be-
tween them. Moreover, graphical knowledge maps also con-
tain prognostic insights, principles, basic assumptions and
relations [4, 11]. Previous studies of knowledge maps are
divided into two main categories: non-hierarchical and hi-
erarchical. Networks, which are cyclic weighted graphs, are
the most typical formats of the non-hierarchical class [12].
Xu et al. [13] proposed a framework for criminal knowledge
discovery through a network structure, while Scvaneveldt
[14] and Bradley et al. [1] used PathFinder techniques to
generate a reduced network containing a human cognitive
model with the shortest paths. Although the nodes in this
network are allowed to connect to each other without fur-
ther restrictions, its complex linkages, i.e. cyclic redundancy
and cycles, can hinder awareness of the knowledge structure.
In addition, the absence of a root is another major differ-
ence between non-hierarchical and hierarchical structures.
A root provides the ground level of hierarchy and the ini-
tial point for successive growth. Without a root, the general
or specific features of KO cannot be distinguished accord-
ing to their located level. These shortcomings with the non-
hierarchical structure seriously impede knowledge represen-
tation because of the lack of concise and comprehensive sub-
sumption features. As to the hierarchical structure, it is the
most common design used to express multilayer perception,
and is widely used in practice. However, several disadvan-
tages, such as labeling and multiple inheritance, also exist in
the state-of-the-art hierarchical techniques. Automatic label-
ing, naming according to the most frequent word or several
frequent words from the composed instance, may cause am-
biguities by giving the different nodes the same title [15].
Ontology construction is proposed as an important method
to represent real-world knowledge, however, the complex
structure of such systems also hinders human cognition in
terms of multiple inheritance. Therefore, most of ontology
studies focus on linguistic and semantic applications instead
of visualization [16-19]. A more detailed analysis of these
problems and suggested remedies are discussed in the next
section.

2.2 Hierarchical knowledge structures

Hierarchies are the most straightforward mechanism for hu-
mans to utilize in knowledge modeling with respect to sub-
ordinate and superordinate associations. Lattices and trees
are two representative structures that are based on a deep
understanding of the philosophical background of knowl-
edge engineering [20, 21]. The main application of lattice
structures, i.e. formal concept analysis (FCA) [22], is to ana-
lyze data and provide well structured information for knowl-
edge workers, such as investigating and interpreting implicit
relations, deriving implication rules and facilitating knowl-
edge acquisition [23-25]. Although FCA has demonstrated

Constructing tree-based knowledge structures from text corpus

69

its ability with regard to retrieval tasks and implicit rela-
tion discovery [26], it has two drawbacks that should be
mentioned. First, many tangled nodes and linkages which
are inapplicable for knowledge visualization are produced
in lattices in order to map n-dimensional data to a two-
dimensional space. Furthermore, in practice, complex lattice
structures are too large to display visually in their entirety.
Second, FCA cannot handle a very large amount of source
data [21] due to its high complexity of O (2") [22].

As to tree structures, they are defined as acyclic graphs
which are composed of one root node, with several inter-
nal and leaf nodes and edges. In previous research, tree
structures have been successfully applied to display mas-
sive and complex information with both comprehensible vi-
sualization and easy navigation. In the knowledge manage-
ment field, such structures have been adopted to formulate
a layered thematic knowledge map [4]. In tree structures,
nodes and weighted edges represent knowledge objects and
their correlations, respectively. Although many methodolo-
gies can generate a tree structure, some are not capable of in-
dicating the upper and lower relations if they lack the impor-
tant starting point, i.e., the root, such as the minimum span-
ning tree (MST) approach. Strictly speaking, MST is not a
tree structure, but more like a condensed network which suc-
cessfully holds the most potent links in a unique structure.
With the hierarchical agglomerative clustering (HAC) ap-
proach [27], a bottom-up clustering algorithm treats each
node as a singleton and then iteratively merges the most
similar pairs until the number of clusters corresponds to a
predefined criterion. The other top-down clustering method,
bisecting K-means algorithm [28], starts with a single clus-
ter and choose a cluster to split once at a time until the de-
sired number of clusters is reached. Nevertheless, how to
label the merged or split internal nodes, which is very im-
portant with regard to facilitating complete understanding of
domain knowledge, remains a significant challenge in both
top-down and bottom-up clustering approaches [29].

In a hierarchical structure, multiple inheritance causes
ambiguity for nodes which contain cross-links to different
superordinate nodes. For example, shoes for girls are not
only daily necessities, but also often a kind of decorative
accessory. To map the above example in a tree structure,
there should be two respective links from shoes to its corre-
sponding parent nodes, decorative accessories and daily ne-
cessities. However, we believe that it is appropriate to clas-
sify each element into only one category in a specific do-
main to avoid ambiguity. In addition, the complex linkages
from multiple inheritances violate the fundamental notion
of knowledge representation, and impede both recognition
and comprehension. Although a number of previous studies
have explored this issue, the problem of multiple inheritance
has not yet been resolved [23, 24, 30-33]. An example of a
proposed TKS in computer hardware domain, with one root
node and single inheritance, is illustrated in Fig. 1.

3 Tree-based knowledge structures

In this section, two fundamental definitions of TKS are iden-
tified, and these provide the natural hierarchical features
necessary to guide the TKS constructed in this work and
avoid multiple inheritance problems. In addition, sibling in-
dependence, which is rarely discussed in previous research,
is also considered to determine the appropriate frame of
TKS.

3.1 Hierarchical features

The definition of hierarchy is considered the fundamental
principle for locating nodes and growing edges. Partial or-
der is often used to present superordinate and subordinate
relations of a hierarchy [31]. Therefore, the similar notion is
applied to define the tree structure, as shown in Definition 1.

Definition 1 (Tree structure) A Tree structure :=
(N, root, <) consisting of a set of nodes N, such that Vn € N
and Vn < root, and where the root is located at the highest
level of the tree structure and root € N.

From Definition 1, a tree structure is composed of a set
of nodes including a root which is located at the top level of
a hierarchy. The superordinate and subordinate relations are
formulated by partial order, <. Based on Definition 1, we
further extend partial order relations and propose the defin-
ition of a hierarchical feature by way of comparing mutual
similarities among nodes, as shown in Definition 2.

Definition 2 (Hierarchical feature) Vn € N, sim(n,
ancestor;(n)) < sim(n, ancestor j(n)), if n < ancestor;(n),
n < ancestorj(n) and i < j.

In Definition 2, ancestor;(n) represents the ancestor of
node n which is located at level i and sim(n, ancestor;(n))
stands for the similarity between node n and ancestor;(n).
Following the definition of a tree structure, we define that
the further a node is from the root, the larger its level num-
ber, which means that the level of the root equal to one is
the smallest number in the entire tree structure. The main
concept of the hierarchical feature is that for any two su-
perior nodes, ancestor;(n) and ancestor(n), of node n,
their mutual similarities are disproportionate to their inter-
val edge numbers. For example, we assume mammal, tiger
and Siberian tiger are ancestor-descendant nodes in the ani-
mal taxonomy, as shown in Fig. 2.

Obviously, tiger inherits mammal and Siberian tiger in-
herits tiger. We can observe that the two nodes with one
crossing link, Siberian tiger and tiger, are apparently more
similar than nodes with two crossing links, Siberian tiger

@ Springer

70

S.-T. Li, F-C. Tsai

B.8.1 Reliability,
Testing, and
Fault-Tolerance :

B.8.2 Performance { B.8 PERFORMANCE

Analysis and Design | AND RELIABILITY
Ias

B.7.1 Types and
Design Styles

B.7.2 Design Aids | [B.7 INTEGRATED p
B.7.3 Reliability and Testing / | CIRCUITS - B.Hardware

B.6.1 Design Styles
B.6.2 Reliability and Testing
B.6.3 Design Aids

}:B.G LOGIC DESIGN

B.5.1 Design
B.5.2 Design Aids

B.5)
REGISTER-TRANSFER-LEVEL }» .
B.5.3 Reliability and Testing

IMPLEMENTATION

Fig.1 An example of a tree structure

Animal

Tiger Lion eeeer

/

Siberian tiger

Fig. 2 An example of animal taxonomy

and mammal. According to Definition 2, the following equa-
tion holds:

sim(Siberian tiger, Mammal) < sim(Siberian tiger, Tiger)

@ Springer

B.1.1 Control Design Styles

B.1.2 Control
| Structure
| Performance
| Analysis and Design
| Aids
" 'B.1 CONTROL | |/ B.1.3 Control
STRUCTURES AND % Structure Reliability,
MICROPROGRAMMING \ Testing, and
|\ _Fault-Tolerance
| B.1.4 Microprogram
|\ Design Aids
B.1.5 Microcode
Applications

B.2.1 Design Styles

B.2.2 Performance
| Analysis and Design

| Ads
B.2 ARITHMETIC | / —
AND LOGIC % B.2.3 Reliability,
STRUCTURES | Testing, and

|_Fault-Tolerance

| B.2.4 High-Speed
Arithmetic

B.3.1 Semiconductor
Memories

B.3.2 Design Styles
B.3.3 Performance

. B.3 MEMORY ; Analysis and Design
{ STRUCTURES % Aids
| B.3.4 Reliability,
| Testing, and
Fault-Tolerance

B.4.1 Data
Communications
Devices

B.4.2 Input/Output
Devices

|/ BA43
| Interconnections

B4
INPUT/OUTPUT | (Subsystems)
AND DATA B.4.4 Performance

| . ;
. COMMUNICATIONS ﬁ_réalySIs and Design
— |\ Aids

| B.4.5 Reliability,
Testing, and
Fault-Tolerance

Moreover, if we take animal as the basis of similarity
comparison toward other nodes, by analyzing their mu-
tual similarities, we can examine the proper location for
each node in TKS. For example, in Fig. 2, the degrees of
similarity between animal and its descendants, mammal,
tiger and Siberian tiger, are high, medium and low, respec-
tively; hence, we should locate the most similar node, mam-
mal, nearer to animal than other two nodes in TKS. It is
worth noting that, by applying the basic nature of a hier-
archical feature in Definition 2, we do not have to define
and select features for each node in discriminating hierar-
chical relations, such as is required with the attribute se-
lection in FCA. Instead, the general and specific features
are clearly discriminated by comparing mutual similari-
ties.

Constructing tree-based knowledge structures from text corpus

71

3.2 Sibling independence

Siblings in a tree structure are defined as nodes which are
located in the same layer and share the same parent. In the
tree construction process, sibling independence is a critical
factor to determine the width and depth of a tree. However,
only few studies focus on this important issue. If we apply
stronger sibling independence criterion in the tree structure,
the nodes which are supposed to be siblings would instead
be viewed as child nodes, because they are no longer dif-
ferent enough to fit the stronger criterion. More overlap be-
tween nodes indicates they are more similar but have looser
independence, and vice versa. In this research, we proposed
a natural criterion of sibling independence to decide the lo-
cation of each node, which means the sibling independence
of node n; is understood by examining how similar it is to
its parent. For example, if the similarity between node n;
and its sibling is higher than with its parent, then node n;
should be located in the next level instead of the current
one. The formal definition of sibling independence is shown
as

sibling independence(n;)

true, V(nj,n;) € children(n),
= sim(nj,n;) < sim(n, n;) (1)
false, otherwise

where children(n) represents the child set of node n. n; are
the siblings of node n; and the children of node #n.

This criterion also fits the tree definition that the cor-
relation between parent and child should be stronger than
between siblings. Theoretically, siblings with stronger in-
dependence are more distinguishable and capable of avoid-
ing the subsumption effect from one another. However,
a straight vertical tree without siblings might be produced if
we only consider raising sibling independence to the limit.
In contrast, the hierarchical feature would be diminished
with excessive loose sibling independence, and produce a
flat, list-like structure. For the purpose of accurately codi-
fying TKS from human cognition, we adopted different de-
grees of sibling independence as the parameter for KS con-
struction. Further analysis of the impact of this is given later
in this work.

4 Construction of tree-based knowledge structures

Figure 3 depicts the three main stages of the TKS construc-
tion framework, which are knowledge codification, similar-
ity refinement and TKS construction. The detailed proce-
dures are discussed in the following subsections.

Knowledge objects

|

v
‘ Stop words filtering, ‘
‘ Stemming ‘

Knowledge

Codification ‘ Feature extraction ‘
‘ Vector space model ‘

|

o

Y

T TTDF

Similarity ‘ ‘
Refinement ‘ MSV ‘
TKS [Sibling check \
Construction ‘ Independence check ‘

|

\

& _
O
Knowﬁa;ge

Workers

Fig. 3 Three stages of TKS construction

4.1 Knowledge codification from text corpus

The various perspectives of knowledge are widely embed-
ded in and carried through multiple entities, but especially
in documents, which are the most common source of ex-
plicit knowledge. Thus, we used documents to formulate KO
with specific descriptions of the corresponding topics. To aid
the explanation of how TKS are constructed, “document”,
“node” and “KO”, which all represent the same entity, will
be used interchangeably in the following discussion. Since
the mutual similarities of KO are utilized for constructing
TKS, traditional information retrieval (IR) techniques are
applied in this stage to calculate the similarities of docu-
ments [34]. First, the data preprocessing stage includes tok-
enization, stop words filtering and stemming. Tokenization
represents the division of text into words or terms. Stop
words filtering omits words like prepositions and pronouns
which are not representative of the documents. Stemming
identifies the root form of words by removing suffixes and
prefixes. Second, the weight of each word is measured by
term frequency (TF) and inverse document frequency (IDF)
in order to produce the vectors which represent document
features. TFIDF is a statistical measure which is often used
in IR and text mining to evaluate the importance of words in
a corpus. TF provides the occurrence frequencies of terms
that appear in a document, and IDF is used to distinguish
the relevant terms in the corpus. Terms with high TFIDF are
treated as important features with regard to representing the
document.

@ Springer

72

S.-T. Li, F-C. Tsai

Finally, the mutual similarities among documents are cal-
culated using the vector space model (VSM), which is an
algebraic model that transforms documents into vectors in a
multi-dimensional space [34]. VSM is capable of facilitating
the estimation of similarity among documents by calculating
the inner product of vectors.

4.2 Similarity refinement

In most cases, mutual similarities among documents are
derived by calculating the statistical distribution of words.
However, synonyms, antonyms and writing styles usually
affect the similarity measure in IR studies. Thus, we attempt
to explore other information from the text to refine the analy-
sis of similarities. The idea is that if one can identify upper
level nodes in advance and connect them in the upper part of
the structure, then the final result will be more reasonable.
The special characteristic of upper level nodes is referred
to as abstractness, which means the degree of generality of
nodes within the repository, and this is composed of the fol-
lowing measures.

(1) Mutual Similarity Variance (MSV)

As mentioned above, higher level nodes are more gen-
eral than lower level ones, and thus the similarity distribu-
tion of nodes at higher levels should be more diverse than
those at lower ones. For this purpose, variance, a statis-
tical measure to represent the degree of spread compared
with the mean, is used to evaluate abstractness. Therefore,
MSYV is an index which stands for the degree of abstractness,
which can revise the initial similarity measures and produce
more accurate ones. The MSV for each node is calculated
by

N|—1, . —
YN (sim(ni, nj) — 77)?
IN|—1
where n;,n; € N andi # j 2)

MSV(n;) =

where 7; is the average of mutual similarities of node n; to
other nodes. We ignore the self similarity, which is always
equal to 1, in calculating variance, and thus the denominator
of MSVis |[N| — 1.

(2) Top Term Document Frequency (TTDF)

TTDF is used to estimate the generality of document d;
with the cumulative document frequency of topN frequent
terms k; in the corpus. The topN frequent terms of a doc-
ument can be treated as its typical features [35]. By sum-
marizing the df of k; in d;, one can derive the generality
of d;. Sanderson et al. [33] pointed out that the generality
and specificity of terms are determined according to their ap-
parent frequency, and thus the TTDF index can successfully
reflect the abstractness of a document. TTDF is obtained by

@ Springer

using

topN |N|—1

TIDF(dj) =Y > df;(k),

i=1 j=1
l<j<|N|—1land1<i <topN 3)

Where ropN is the number of top frequent terms in doc-
ument d; and df;(k;) represents the document frequency,
which is the number of documents in a corpus that contain
term k; in document d;. In order to enrich the information
gathered and simultaneously avoid noisy data, we use the
top three most frequent terms, as suggested in Sanderson’s
work [33], to represent document features and calculate their
abstractness.

It is worth noting that the effect of abstractness is not the
same at every level of TKS. Since the locations of lower
level nodes are determined by upper level ones, a node that
possesses a high degree of abstractness should be moved
from its current level to a higher one in order to have a
greater influence on deciding the location of its subordi-
nates. In contrast, a low degree of abstractness indicates that
a node should be located at a lower level to decrease its in-
fluence. To emphasize the influence caused by high abstract-
ness in TKS, we adopt an exponential operation to enlarge
the influence of abstractness in a nonlinear fashion. The ab-
stractness of node n; is computed as

MSV'(n;)¢ + TTDF' (n;)¢

abstractness(n;) = >)

e>1 4

where MSV'(n;) and TTDF’(n;) ranging from O to 1 are the
normalized MSV and TTDF, respectively, and e is their ex-
ponential parameter. Equation (5) depicts the weighted av-
erage operation of revised similarity, which is averaged with
a weight parameter, «, to decide the degree of refinement by
abstractness.

rev_sim(n,n’) = (1 —a) x sim(n,n’)

+ o x abstractness(n’), 0<a <1 (5)

4.3 TKS construction algorithm

The TKS construction algorithm is essentially composed of
five steps, as shown in Fig. 4. The algorithm starts from as-
signing the most likely root according to user’s intention
from a set of predefined nodes (concepts). Theoretically,
each node has the same opportunity to become the root.
However, the root in a hierarchy should contain the most
universal attribute that is inherited by other nodes. In knowl-
edge management, the root node should be the most abstract
concept and one that is relevant to all other concepts. There-
fore, the user chosen root is expected to be the most general
concept according to his/her perspective toward a specific

Constructing tree-based knowledge structures from text corpus

73

domain. In Step 2, the remaining nodes which meet the sib-
ling independence criterion will sequentially connect to the
root according to their degree of similarity, from high to low.
The purpose of prioritizing to connect the nodes with high
similarities to their parent is to preserve the most significant
links in TKS. The unlinked nodes are then moved down to

Input: N: a set of predefined nodes, each node represents
a concept in the knowledge repository.

Output: A tree-based knowledge structure that repre-
sents well organized domain knowledge composed of
predefined concepts.

Step 1 Select an appropriate node n; from N as the root
chosen by the user.

Step 2 Link the qualified child nodes which meet the sib-
ling independence criterion to the root.

Step 3 Categorize all unlinked nodes into subordinate
groups corresponding to the child nodes in Step 2.

Step 4 For each subordinate group

a. Link the nodes which meet the sibling independence
and hierarchical feature criteria to TKS and move the
remaining nodes down to the next level as a new sub-
ordinate group corresponding to the linked nodes in
this step. Recursively perform Step 4 for the newly
subordinate groups located at the next level.

b. If no node meets both the sibling independence and hi-
erarchical feature criteria simultaneously, stop the al-
gorithm.

Step 5 Return the TKS

Fig. 4 The five main steps of the TKS construction algorithm

the next level and treated as the descendants of current level
ones. In order to decide which branch each unlinked node
belongs to, the unlinked nodes are classified into different
groups according to their similarities to the nodes located
one level above the current one. For each subordinate group,
Step 4 is recursively performed to link the qualified nodes
which meet the sibling independence and hierarchical fea-
ture criteria simultaneously, and move the unlinked nodes
to the next level to become the new subordinate groups.
Ultimately, the construction process is completed when all
nodes are connected to the TKS. However, the process is
stopped if no qualified nodes in the remaining subordinate
groups can be connected. In this study, we ignore incomplete
TKS due to their inability to reflect appropriate hierarchical
relations.

To illustrate how to build a TKS more clearly, we give an
example, as shown in Fig. 5, which corresponds to the steps
of the TKS construction algorithm in Fig. 4. In Step 1, users
choose the most likely node as the root, which is node A
in our example. In Step 2, all remaining nodes which meet
the sibling independence criteria link to node A sequentially
according to their similarity to the parent. In Step 3, after
nodes B and C are connected, the rest of the nodes are cat-
egorized into the subordinate groups of nodes B and C and
treated as their descendants. In Step 4a, each subordinate
group member which meets the sibling independence and
hierarchical feature criteria is linked to its parent. Step 4a is
recursively called until all nodes are connected to TKS, and
the process then moves on to Step 5, which returns the com-
pleted TKS. However, in certain situations there are some
nodes, like node H, that cannot be linked because of the vi-
olation of sibling independence or hierarchical feature crite-

Fig. 5 An example of the TKS construction process

Step 1 Step 2 Step 3 Step 4a Step 5
® R R
] & ® & \/® ® © L ® ©
© ©® ®/ ® ©/@\® ® © ®® ®
® 5 ®/\®
H ® Q)
Step 4b
®
» B ©
© 0O ®
>
®

@ Springer

74

S.-T. Li, F-C. Tsai

Table 1 The statistical

information of the ACM gold Gold standard Nodes Height Documents Terms
standards

ACM CCS, category I 51 1,020 abstracts 154,148

ACM CCS, category B 37 740 abstracts 113,997
Table 2 The statistical — -
information of the Reuters Category Documents Training set Testing set
corpus

Earn 3809 3428 381

Acq 2212 1191 221

Crude 375 337 38

Trade 338 304 34

Interest 319 287 32

Money-fx 271 244 27

Ship 239 215 24

Grain 43 39 4

ria. When Step 4b occurs, the TKS construction process will
be terminated.

5 Evaluation and discussion

We conduct two experiments to evaluate the effectiveness
of the proposed TKS. In the first experiment, we choose
a public tree structure from the Internet as the gold stan-
dard, and then the same nodes which belong to this standard
are reconstructed using the TKS construction algorithm. We
then assess the effectiveness by investigating the consis-
tency between the gold standard and the constructed TKS.
In the second experiment, we obtain the term-term similari-
ties based on hierarchical information from TKS instead of
traditional IR techniques. Two similarity measures, TKS and
traditional IR, are applied to a document classification prob-
lem. We assess the utility of document classification using
precision, recall and f-measure across categories in the eval-
uation dataset. In the following section, we first describe the
two experimental datasets, and then analyze the evaluation
results.

5.1 Data collection

In the first experiment, the Association for Computing Ma-
chinery (ACM) Computing Classification System (CCS)
is applied as the gold standard (http://www.acm.org/about/
class/). ACM CSS is an acyclic tree based categorization
scheme without multiple inheritances, which fits our defi-
nition of a tree structure, and which accurately reflects the
essential structure of the fields of computer science and in-
formation systems. Articles related to the same topic are be
classified into the same category. Among various categories
(from A to K), we choose B (hardware) and I (computing

@ Springer

methodologies) in our research, as they have more subcat-
egories compared to other items. Each subcategory is rep-
resented by a document which is composed of 20 abstracts
randomly selected from it. However, several subcategories
with less than 20 abstracts are eliminated to avoid the unre-
liable similarities caused by insufficient data. Table 1 depicts
the statistics of the two categories in this experiment.

The second dataset for document classification is Reuters
21578, which is the collection of documents that appeared
on Reuters news service in 1987. The Reuters 21578 dataset
has been used in many document classification studies.
Since this experiment only focuses on single class classi-
fication, we omit documents which are classified into mul-
tiple categories or not classified into any categories. Table 2
shows the statistics of the training and testing corpus of the
Reuters dataset.

5.2 Evaluation of the gold standards

Since the TKS construction is affected by a number of pa-
rameters, i.e. TFIDF, degree of similarity refinement by ab-
stractness (o), power of exponential operation and sibling
independence, it is very time-consuming for the experimen-
tal process to determine the ideal ones. To better understand
the adequacy and the effects of these, an experimental de-
sign process should be applied to decrease the experimen-
tal cost and determine the optimal parameters. The TFIDF
criteria influence the number of features and form a basis
for making relevant decisions [36]. Higher TFIDF success-
fully avoid the impact from noisy terms, although some in-
formation might be lost because fewer features are kept in
document vectors. Different levels of power are designed to
represent the various exponential curves for abstractness. o
demonstrates the various degrees of influence on similarity
adjustment produced by abstractness. In order to investigate

http://www.acm.org/about/class/
http://www.acm.org/about/class/

Constructing tree-based knowledge structures from text corpus

75

Fig. 6 The TO performance at
parameter « between the range

TO performance with different

fromOto 1 90%
80%
0, r
70% b
60%
50%
’ TS —m-ACMCCST
40%
—i— ACM CCSB
30%
20%
10%
0% T T T T T T T T T]
0 0.1 02 03 0.4 0.5 0.6 0.7 08 09 1
04
Table 3 The optimal set of .
parameters in the TO evaluation Gold standard TFIDF Power o Sibling independence TO
ACM CSS 1 0.02 2 0.2 0.9 74.00%
0 65.99%
ACM CSS B 0.02 2 0.4 0.9 76.79%
0 65.35%

the structural impacts on TKS, different degrees of sibling
independence are tested to determine the appropriate width
and depth of the structure.

To validate the performance of this experiment, we adopt
taxonomy overlap (TO) [31] to demonstrate the consistency
between the gold standards and the TKS produced in this
work. Although various measures have been proposed to
evaluate consistency between two structures [37, 38], TO
emphasizes the importance of upper level nodes and thus it
is well-suited to the inherent characteristics of TKS. TO is
computed as

1 Z SC(c, T1, 12) NSC(c, 2, T1)

TO(T),) = —
[C1l cec, SC(c, T, Th) USC(c, T», T1)

(6

where
SC(c,T1,Tr) = {cj € T1 NTzc; fc\/cfcj}

T, and T5 are two different tree structures. The set of nodes
in T is denoted by Ci, and c is one of the nodes in Cj.
SC(c, T1, T») represents the nodes, which both exist in Tj
and 7>, that are the ancestor or descendant of c¢. According
to our preliminary experiment, TFIDF, power and sibling
independence are all stable with regard to TO performance,
but « is not. We thus conduct an experiment on o with a
range from O to 1 using the data of ACM CCS I and ACM
CCS B, as shown in Fig. 6.

Figure 6 demonstrates that the optimal « are 0.2 and 0.4
in the ACM CCS I and ACM CCS B, respectively. In addi-

tion, the results also show that the difference in TO perfor-
mance is not obvious when « is under 0.8, although it falls
significantly when « > 0.8, which is reasonable, because the
initial similarities are over influenced by large proportional
abstractness. We follow the combination of optimal parame-
ters determined empirically by a range test to investigate TO
performance. Table 3 indicates that TO in ACM CCS I and
B are 74.00% and 76.79%, respectively. The results repre-
sent the significant achievement of the proposed TKS with
regard to the hierarchical feature within knowledge reposito-
ries, demonstrating that the reconstructed relations achieve
high consistency compared to the gold standards. In order to
evaluate the performance of abstractness, experiments with-
out the similarity adjustment factor are also conducted. The
results in Table 3 show that TO when o = 0 in ACM CCS 1
and B are down to 65.99% and 65.35%, respectively. Hence,
the higher TO when o = 0.2 and « = 0.4, comparing to
a = 0, shows the vital utility of abstractness in construct-
ing more appropriate TKS. In addition, the results represent
the analogous parameter settings for both datasets.

5.3 Evaluation of document classification

As mentioned above, the hierarchical relations in TKS are
significant, as they make the data more comprehensible for
users. Therefore, we assume that TKS also provides impor-
tant information about the similarity of KO along with its
formation. The appropriate similarities between terms are
significant in representing documents as a set of vectors. The
accurate weight of vectors provides substantial information

@ Springer

76

S.-T. Li, F-C. Tsai

Table 4 The classification results for the Reuters corpus from TKS and WordNet

Category Precision Recall F-measure
WordNet TKS TKS TKS WordNet TKS TKS TKS WordNet TKS TKS TKS
a=0 a=02 aoa=04 a=0 «oa=02 o=04 a=0 a=02 aoa=04

Earn 0.9997 0.9990 0.9995 0.9995 0.9997 0.9997 09997 0.9997 0.9997 0.9993 0.9996 0.9996
Acq 1 1 1 1 0.8428 0.8632 0.8636 0.8758 0.8810 0.9033 0.9035 0.9100
Crude 0.8261 0.8417 0.8900 0.9150 0.4061 0.7330 0.7488 0.7461 0.4345 0.7079 0.7658 0.7795
Trade 0.7366 0.8125 0.7862 0.7849 0.8022 0.8022 0.8022 0.8022 0.7469 0.8019 0.7717 0.7699
Interest 0.5150 0.5857 0.5826 0.5826 0.5156 04625 0.4625 04625 0.5151 0.4930 0.4914 0.4914
Money-fx 0.6925 0.6050 0.6332 0.6312 0.6890 0.6890 0.6890 0.6890 0.6859 0.6328 0.6530 0.6518
Ship 0.6963 0.7726 0.7376 0.7376 0.9958 0.9958 0.9958 0.9958 0.7709 0.8480 0.8165 0.8165
Grain 0.8095 0.8111 0.8111 0.7825 0.8550 0.8750 0.8750 0.8750 0.7920 0.8057 0.8057 0.7890
Weighted avg 0.9377 0.9437 0.9449 0.9459 0.8837 0.9037 0.9046 0.9080 0.8862 0.9081 0.9095 0.9118

to enhance document classification performance. Hence, we
transform the term-term similarities from TKS and compare
them with those that are derived from semantic measure-
ment using WordNet, a well known public lexical database
for the English language [39]. The structure presented in this
work achieves better performance, which indicates that the
more accurate term-term similarities can be exhibited by its
hierarchical relations. Moreover, the abstractness which is
used to adjust TKS is also investigated to discover its effec-
tiveness in document classification.

In a tree structure, the similarity between any two nodes
can be intuitively derived according to their interval edge
number. Specifically, two nodes are more similar when there
are fewer edges between them, and vice versa. In this ex-
periment, we adopt ¢/, a similarity measure represent-
ing a nonlinear transformation function of the shortest path
length, to calculate term-term similarities from TKS [40].
The transformation function is in exponential form. Where
[is the edge number of the shortest path between two nodes
and « is a constant. The aforementioned data preprocess-
ing techniques, namely tokenizing, stop word filtering and
stemming, are applied to the Reuters dataset to reduce noise,
overfitting and unnecessarily large feature vectors. For each
category in the training set, the important term features are
determined by calculating the TFIDF, and only terms with a
high TFIDF are adopted in this experiment. We treat qual-
ified terms as a set of KO in the Reuters dataset and used
to construct the TKS. The similarity measure in TKS cal-
culates term-term similarities according to the hierarchical
structure, which was constructed using the parameter set-
tings in Sect. 5.2. Moreover, we also test « =0, @ = 0.2 and
o = 0.4 to investigate the impact of similarity refinement.
With regard to the traditional approach, the term-term simi-
larities are checked from the WordNet thesaurus. It is worth
noting that the initial term-term similarities which were used
to construct TKS were also derived from WordNet.

@ Springer

The TKS and WordNet approaches can both show the
term-term similarities for each category, C;, using an n * n
Hye i,
matrix, C; = Sl where n is the number of fea-
et
tures in the training set. Every document, d;, in the test-
ing set can also be represented by an n dimensional vector,
d; = (wi,1,w; 2, ..., w;iy), which is composed of its TFIDF
weights. Similar to the vector space model, the inner prod-
uct of each category and a new testing document produce
an n dimensional vector which is the n components of a
testing document projected onto each category. Therefore,
eight n dimensional vectors, [w;{], wi'/,z’ o w;’,n], can be
obtained for each new document, one for each category. In
order to determine which category the new document be-
longs to, we add the n vector components up as an integrated
index, Category(d;), to indicate which category should be
assigned. The integrated index of document d; is calculated
by (7). The same procedures are applied to both TKS and
WordNet.

Category(d;) = arg mjax(Ml:’) (7
where
. n .
J_ J
M; = Z Wi k
k=1
and
J J
i1 Hon
Cj Od,': : o[wi,l,wi,z,...,wi,n]
J J
tn,l t”s”
T,/ J J
= [wi,l’ Wi pseens wi,n]

The experiment performs 10-fold cross validation, and the
results in Table 4 show that the TKS method achieves a

Constructing tree-based knowledge structures from text corpus

71

higher precision, recall and f-measure as compared to the
WordNet approach. In addition, the results of o« = 0.2 and
o = 0.4 perform better than those of ¢ = 0 in the TKS
method, which indicates that the similarity refinement is
able to provide more precise relations of KOs, although the
impact is slight in this experiment. The results in Table 4
also illustrate that the initial WordNet similarities can be ad-
justed to more appropriate ones through TKS transforma-
tion. It is worth noting that compared with other document
classification methods, for example, VSM and Support Vec-
tor Machine (SVM), the proposed TKS can provide visual-
ized domain knowledge to users by demonstrating the spe-
cific key term arrangement rather than by utilizing complex
numerical computing. As a result, in KM applications, TKS
can be used to enhance knowledge comprehension by dis-
covering the appropriate hierarchical relations from a flat set
of KOs.

6 Conclusions and future work

In the current era of information overload, knowledge rep-
resentation techniques are important to aid comprehension
of tacit knowledge. In previous research, the problem of
multiple inheritance and the absence of hierarchical features
are regarded as the main weaknesses in providing clear and
comprehensive KS. In order to overcome these problems, we
propose a methodology to construct a TKS which is single
inherited and provides a layered view to enhance the nav-
igation of knowledge. To demonstrate the effectiveness of
the proposed methodology, two experiments are conducted
to evaluate its consistency with gold standards and verify the
similarity measure provided by TKS in the document classi-
fication task. The results of the experiment demonstrate the
impressive consistency of TKS and the ACM CCS gold stan-
dards. Moreover, the results in document classification also
show that the hierarchical information embedded in TKS
can successfully aid the discovery of appropriate relations
among KOs. The better performance when « > 0 in both
experiments also demonstrates that the similarity refinement
method is able to provide effective similarity revision for
TKS construction.

Future research should consider exploring more effective
similarity refinement methods trying other similarity mea-
sures to obtain a mutual similarity matrix, and achieve more
consistent performance with the gold standards. In addition,
how to automatically construct TKS with the most appro-
priate root or with multiple appropriate roots remains a con-
siderable challenge in this research. Although the parame-
ters are very stable in our preliminary tests, experiments
with a wider range values should be conducted and their
impacts investigated in more detail. Moreover, experiments
with more gold standards are also required to validate the

robustness of the universal parameter setting. It is worth
noting that, theoretically, the TCM construction algorithm
can be applied to different language system. But the vari-
ous text preprocessing techniques in knowledge codification
stage should be modified along with the language systems.

References

1. Bradley JH, Paul R, Seeman E (2006) Analyzingthe structure of
expert knowledge. Inf Manag 43:77-91
2. Chen NS, Kinshuk Wei CW, Chen HJ (2008) Mining e-learning
domain concept map from academic articles. Comput Educ
50:1009-1021
3. Tseng SS, Sue PC, Su JM, Weng JF, Tsai WN (2007) A new ap-
proach for constructing the concept map. Comput Educ 49:691—
707
4. Eppler MJ, RA Burkhard (2007) Visual representations in knowl-
edge management: framework and cases.] Knowl Manag 11:112—
122
5. Murphy GL, Lassaline ME (1997) Hierarchical structure in con-
cepts and the basic level of categorization. In: Lamberts K,
Shanks D (eds) Knowledge, concepts and categories. MIT Press,
Cambridge
6. Stumme G, Taouil R, Bastide Y, Pasquier N, Lakhal L (2002)
Computing iceberg concept lattices with titanic. Data Knowl Eng
42:189-222
7. Rajapakse RK, Denham M (2006) Text retrieval with more realis-
tic concept matching and reinforcement learning. Inform Process
Manag 42:1260-1275
8. Belohlavek R, Dvorak J, Outrata J (2007) Fast factorization by
similarity in formal concept analysis of data with fuzzy attributes.
J Comput Syst Sci 73:1012-1022
9. Sparrow J (1998) Knowledge in organizations: access to thinking
at work. Sage, London
10. Novak JD (1993) How do we learn our lesson? Taking students
through the process. Sci Teach 60:50-55
11. Ruiz-Primo MA, Schultz SE, Li M, Shavelson RJ (2001) Com-
parison of the reliability and validity of sores from two concept-
mapping techniques. J Res Sci Teach 38:260-278
12. Wang J (2003) A knowledge network constructed by integrating
classification, thesaurus, and metadata in digital library. Int Inf
Libr Rev 35:383-397
13. XulJ, Chen H (2005) Crimenet explorer: a framework for criminal
network knowledge discovery. ACM Trans Inform Syst 23:201—
226
14. Schvaneveldt RW (1990) Pathfinder associative networks: studies
in organization. Albex Publishing, Norwood
15. Chen RC, Liang JY, Pan RH (2008) Using recursive art network
to construction domain ontology based on term frequency and in-
verse document frequency. Expert Syst Appl 34:488-501
16. Fenza G, Loia V, Senatore S (2008) A hybrid approach to semantic
web services matchmaking. Int J Approx Reason 48:808-828
17. Lee CS, Kao YF, Kuo YH, Wang MH (2007) Automated ontology
construction for unstructured text documents. Data Knowl Eng
60:547-566
18. Reformat M, Ly C (2009) Ontological approach to development of
computing with words based systems. Int J Approx Reason 50:72—
91
19. Lee CS, Jian ZW, Huang LK (2005) A fuzzy ontology and its ap-
plication to news summarization. IEEE Trans Syst Man Cybern,
Part B, Cybern 35:859-880
20. Stumme G (2003) Off to new shores: conceptual knowledge dis-
covery and processing. Int] Human-Comput Stud 59:287-325

@ Springer

78

S.-T. Li, F-C. Tsai

21.

22.

23.

24.

25.

26.

217.
28.

29.

30.

31.

Priss U (2006) Formal concept analysis in information science.
In: Cronin B (ed) Annual review of information science and tech-
nology (arist), vol 40. Information Today Medford, New Jersey,
pp 521-543

Ganter B, Wille R (1999) Formal concept analysis: mathematical
foundations. Springer, New York

Tho QT, Hui SC, Fong, Cao TH (2006) Automatic fuzzy ontol-
ogy generation for semantic web. IEEE Trans Knowl Data Eng
18:842-856

Chi YL (2007) Elicitation synergy of extracting conceptual tags
and hierarchies. Expert Syst Appl 32:349-357

Formica A, Missikoff M (2004) Inheritance processing and con-
flicts in structural generalization hierarchies. ACM Comput Surv
36:263-290

Carpineto C, Romano G (2004) Exploiting the potential of concept
lattices for information retrieval with credo. J Univ Comput Sci
10:985-1013

Everitt B (1993) Cluster analysis. Edward Arnold, London
Steinbach M, Karypis G, Kumar V (2000) A comparison of doc-
ument clustering techniques. Paper presented at the KDD Work-
shop on Text Mining, Boston, MA, USA

Treeratpituk P, Callan J (2006) Automatically labeling hierarchical
clusters. Paper presented at the proceedings of the 6th national
conference on digital government research, San Diego, USA
Chung W, Chen H, Nunamaker JF Jr (2005) A visual framework
for knowledge discovery on the web: an empirical study of busi-
ness intelligence exploration. J] Manag Inf Syst 21:57-84
Cimiano P, Hotho A, Staab S (2005) Learning concept hierarchies
from text corpora using formal concept analysis. J Artif Intell Res
24:305-339

@ Springer

32.

33.

34.

35.

36.

37.

38.

39.

40.

Lammari N, Metais E (2004) Building and maintaining ontolo-
gies: a set of algorithms. Data Knowl Eng 48:155-176

Sanderson M, Lawrie D (2000) Build, testing and applying con-
cept hierarchies. In: Advances in information retrieval: recent re-
search from the center for intelligent information retrieval, vol 7.
Springer, New York, pp 235-266

Yates RB, Neto BR (1999) Modern information retrieval. ACM
Press, New York

Glover E Pennock DM, Lawrence S, Krovetz R (2002) Inferring
hierarchical descriptions. In: Proceedings of the 20th international
conference on information and knowledge management (CIKM),
McLean, Virginia, pp 507-514

Wu HC, Luk RWP, Wong KF, Kwok KL (2008) Interpreting TF-
IDF term weights as making relevance decisions. ACM Trans Inf
Syst 26:1-37

Rodriguez MA, Egenhofer MJ (2003) Determining semantic sim-
ilarity among entity classes from different ontologies. IEEE Trans
Knowl Data Eng 15:442-456

Tang J, Li J, Liang B, Huang X, Li Y, Wang K (2006) Using
bayesian decision for ontology mapping. Web Semantics: Science,
Services and Agents on the World Wide Web 4:243-262
Fellbaum C (1998) Wordnet: an electronic lexical database. MIT
Press, Cambridge

Li Y, Bandar ZA, McLean D (2003) An approach for measur-
ing semantic similarity between words using multiple information
source. IEEE Trans Knowl Data Eng 15:871-882

	Constructing tree-based knowledge structures from text corpus
	Abstract
	Introduction
	Previous research
	Knowledge representation
	Hierarchical knowledge structures

	Tree-based knowledge structures
	Hierarchical features
	Sibling independence

	Construction of tree-based knowledge structures
	Knowledge codification from text corpus
	Similarity refinement
	TKS construction algorithm

	Evaluation and discussion
	Data collection
	Evaluation of the gold standards
	Evaluation of document classification

	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

