
Appl Intell (2012) 36:1–28
DOI 10.1007/s10489-010-0238-z

Dynamic planning approach to automated web service
composition

Mehmet Kuzu · Nihan Kesim Cicekli

Published online: 8 June 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper, novel ideas are presented for solving
the automated web service composition problem. Some of
the possible real world problems such as partial observabil-
ity of the environment, nondeterministic effects of web ser-
vices and service execution failures are solved through a dy-
namic planning approach. The proposed approach is based
on a novel AI planner that is designed for working in highly
dynamic environments under time constraints, namely Sim-
planner. World altering service calls are done according to
the WS-Coordination and WS-Business Activity web ser-
vice transaction specifications in order to physically recover
from failure situations and prevent the undesired side effects
of the aborted web service composition efforts.

Keywords Semantic web services · Automated web
service composition · Automated web service invocation ·
AI planning · Simplanner

1 Introduction

The web is growing very fast and a significant number of
web services have become available to be used. Although a
large number of web services exist, individually they are not
always sufficient to satisfy the user’s needs. The absence of
a web service that responds to the user’s request does not

M. Kuzu
Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA
e-mail: mxk093120@utdallas.edu

N.K. Cicekli (�)
Department of Computer Engineering, Middle East Technical
University, Ankara 06531, Turkey
e-mail: nihan@ceng.metu.edu.tr

mean that the request cannot be handled. Web services can
collaborate to satisfy user requests, that is, a new function-
ality can be produced by composing the existing functional-
ities to handle user requests. Since the number of web ser-
vices and possible collaboration scenarios is huge, analysing
them manually for the purpose of achieving user goals is
very difficult and beyond human ability. This web service
composition process could be done automatically by soft-
ware agents.

The main goal of this paper is to propose a framework
which provides the ability to automate the web service com-
position task in an effective manner in terms of time and
adaptability to the real world environment. The aim of the
proposed framework is to find several web services and ex-
ecute them according to the discovered execution order for
handling the user’s request, given a repository of services
and the user’s goal. There are two commonly accepted ap-
proaches for solving the web service composition problem:
workflow composition and AI planning [1]. In this paper the
AI planning approach is adapted for the construction of a
web service composer agent.

The automated web service composition problem is a hot
research topic. There are excellent surveys [1–5] about the
challenges of web service composition (WSC). Although
many important studies have been conducted in order to
solve this challenging problem, there still exist many open
issues. Several open issues about the proposed WSC solu-
tions are summarized in the literature [3, 6]. This paper aims
to solve some of the stated problems in [6]. The paper pro-
vides solutions to the following problems:

• If unexpected events that cause failures occur, replanning
and compensation mechanisms are required.

In this paper, this problem is solved in two levels. In the first
level, which is the abstract logical level, a novel AI plan-
ner, namely Simplanner [7] which is specially designed for

mailto:mxk093120@utdallas.edu
mailto:nihan@ceng.metu.edu.tr

2 M. Kuzu, N. K. Cicekli

highly dynamic, nondeterministic environments is used. The
proposed solution interleaves planning and execution. The
planner keeps track of the current state by using the ini-
tially provided semantic state descriptions and the seman-
tic effects of the executed actions. If something unexpected
occurs, such as service unavailability, the web service com-
poser informs the planner about the situation and the plan-
ner then changes the current state according to that infor-
mation and activates dynamic replanning for handling the
unexpected situation. In order to cope with the unexpected
situations, just replanning is not sufficient. During the real
execution of a plan, service failures may occur in later steps
and previously executed services may have world altering
effects which must be undone or compensated. The second
level is the physical level, where failure recovery is provided
by using the WS-Business Activity framework [8]. Ours is
the first work that combines transactional execution and re-
planning in the same framework for the automated WSC.

• The environment that is available during planning may
not be the same as the environment during execution,
which is problematic. Interleaving planning and execu-
tion is desirable.

In this paper, the proposed web service composer interleaves
planning and execution. Simplanner is an anytime planner.
In the anytime planning approach, the planner constructs a
very quick initial solution which may include wrong deci-
sions and improves the initial solution if time permits [7].
Simplanner concentrates not on the total plan but on the best
initial action for the solution. The service composer requests
the best initial action from the planner and does the real ex-
ecution after doing the other required steps. During real ser-
vice execution, the planner continues trying to find a new
best action. Generally the service execution time is sufficient
for the planner to produce the new best action. As a result,
interleaving planning and execution is done in a timely man-
ner by using the features of Simplanner.

• Web services may have nondeterministic effects which
should be tackled.

Actions may have different effects. Which effects will be-
come true can only be found out during execution. (For in-
stance, before the execution of a reservation service, it is not
known if there is an available place or not. The behaviour
of the service execution depends on the factors that can be
decided at run time). If services have nondeterministic ef-
fects, they can be observed by the service composer after
the real execution and a state change request can be made to
the planner. The planner changes the state according to the
effect and continues to plan taking that effect into consider-
ation.

• Service descriptions are provided once and they are not
updated frequently. Availability checks should be done
from time to time.

The proposed solution initially assumes that, all service de-
scriptions are valid and that the preconditions of action def-
initions are updated with a logical statement that shows the
availability of that particular action. After a real service call,
if there is a problem with the service, the service composer
informs the planner and makes the logical counterpart of
the problematic service unavailable. As a result, the planner
does not consider that problematic service for further deci-
sions and tries to solve the problem using alternative ser-
vices.

• It is possible that web services may produce new objects
at run time. It is very difficult to model dynamic object
generation with the current AI planners. Therefore a new
mechanism should be provided to handle such cases.

The planner can only propose logical actions to execute if
the preconditions of those actions are satisfied and the re-
quired logical objects for grounding the logical actions are
available. It is possible that such logical objects are not avail-
able in the initial state but can be produced by other services.
In such a case, the service composer constructs a logical ob-
ject for each defined type and adds a logical statement to the
initial sate in order to assert that users can provide the details
of logical objects at run time. If the value of the service pa-
rameters cannot be provided by the user, the planner tries to
find a web service that supplies the values for those objects
and changes the plan accordingly.

• Semantic web service descriptions should be connected
to real web services.

Semantic web services are web services whose properties
and capabilities are described in machine understandable
format. Semantic web service descriptions are high level
definitions that are used by the AI planner in this paper.
For real web service interaction, syntactic counterparts of
these semantic service descriptions are needed. The bridge
between the syntactic and semantic definitions is provided
by using the definitions stated in the grounding section of
OWL-S [9] descriptions. The actual values of the syntactic
counterparts are obtained either from the user or from other
web services. By substituting the actual values for the syn-
tactic interfaces through the reflection mechanism [10], the
service composer performs the real interaction with web ser-
vices.

• User interaction is required during WSC.

During WSC, service execution is needed in order to vali-
date the found plan and act accordingly if something goes
wrong. During service execution, inputs to the services
should be provided by the users. If they do not know the re-
quired input values, some other paths should be found which
does not require that particular input.

This paper tries to solve the open issues about auto-
mated web service composition and invocation problems

Dynamic planning approach to automated web service composition 3

mentioned above. To the best of our knowledge this is the
first work that proposes complete solutions to these prob-
lems in one framework.

The organization of the paper is as follows: In Sect. 2, re-
lated works that have been conducted for the solution of the
WSC problem are described and their strengths and weak-
nesses with respect to this work are discussed. In Sect. 3,
an adapted AI planner, namely Simplanner, is introduced.
In Sect. 4, the general system architecture and the appli-
cation of Simplanner to the WSC domain is described. In
Sect. 5, issues related to automated web service invocation
are discussed and an action caching mechanism is proposed.
In Sect. 6, transactional issues are discussed and the inte-
gration of WS-Transaction frameworks to the system archi-
tecture is presented. In Sect. 7, a case study is conducted to
clarify the functionality of the proposed system. Finally, in
Sect. 8 the paper is concluded and future work is discussed.

2 Related work

There exist several previous studies in automated web ser-
vice composition with AI planning. In this part of the paper,
the most relevant of these studies are briefly described and
compared to this work.

The Hierarchical Task Network (HTN) planning ap-
proach is adapted for web service composition domain
in [11]. The SHOP2 [12] HTN planner is used for find-
ing plans to achieve the user goals. Although HTN planners
have very important performance advantages, they need a
reasonable amount of domain knowledge, which is a strict
requirement. In [11], the execution and planning is inter-
leaved as in our work, but with limitations both in DAML-S
service descriptions and in the procedure. They execute only
information providing services during plan generation so
that the world state is not altered during plan generation.
Executing world altering effects is not acceptable before the
total plan generation, since it may cause unintentional re-
sults if the whole plan cannot be achieved. In our work we
have solved this problem by using WS-Coordination [13]
and WS-Business Activity [8] frameworks which guarantee
the atomicity of composed services. In our system there is
no need to have any assumptions for the DAML-S descrip-
tions; instead our system considers only those services that
implement the WS-Transaction specification if it is a world
altering one.

In [14], a WSC model is proposed based on XPlan and
OWLS2PDDL conversion. XPlan is a hybrid planner that is
built on an action based Fast Forward planner [15] with an
HTN component. OWLS-XPLAN [14] finds the whole plan
before execution so it does not work well on partially ob-
servable domains and it is not a time efficient solution. It also
does not handle nondeterminism that is naturally available in

web services. If a found plan is interrupted due to a reason
such as a network failure, a new plan needs to be generated
from scratch. More importantly, if some actions with world
altering effects are executed before the interruption of the
plan, inconvenient and undesired states may be constructed.
Our work also includes OWSL2PDDL mapping, but with
few extensions that are necessary in nondeterministic envi-
ronments. In contrast to [14], this paper interleaves planning
and execution. In addition, the transactional properties are
preserved to prevent undesired states. However, [14] is more
scalable than our solution since XPlan contains HTN com-
ponents.

In [16], OWL-S XPLAN is extended with a replanning
component. Replanning occurs in the cases of a new oper-
ator, a lost operator or a new goal. All of these situations
are handled by Simplanner in our system. In [16] replan-
ning cases are defined in general, not connected with the
web service composition problem. The execution process of
web services is not described. Without real interaction it is
hard to know about the lost operators. One of the most fre-
quent reasons of replanning is unknown information (e.g.
users may not know the required inputs of web services, so
replanning may be needed), and this situation is not men-
tioned in [16].

In [17] and [18], PDDL is also used as the input language
to the planner. Instead of using OWL-S, they constructed
a new semantic description language, called SESMA [19]
which is designed for WSC purposes. It has the same power
as OWL-S with regards to its representational aspects but
it is simpler. After mapping SESMA to PDDL, a different
planner is selected depending on the application problem.
In [17] it is mentioned that if resource optimization is re-
quired then the Metric-FF [15] planner is more suitable; if
planning with typed variables and lifted actions is required
then VHPOP [20] is more suitable; and if durative actions
are required then the LPG [21] planner is better. Because
of these facts, they propose to plug in any planner instead
of using a particular planner. Although the idea seems good
initially, it is not well defined. In order to use the differences
between the planners, one needs to understand which one to
use for a particular problem by inspecting the properties of
the problem. This is a very challenging task for machines
and it is not examined in [17]. The work discusses nonde-
terminism in WSC but the proposed solution is a naïve one.
Handling nondeterministic cases is ascribed to the applica-
tion logic, which is totally contradictory to the service ori-
ented architecture. They have also mentioned complex goal
definitions that include selection and iteration constructs.
However, the proposed solution is not a desirable one; they
propose to embed these constructs into the application logic
with hard coding. This paper has advantages over the work
in [17] in terms of adaptability to dynamic and uncertain en-
vironments. However, complex goal definitions are not al-
lowed in our framework.

4 M. Kuzu, N. K. Cicekli

The approach in [22] is different from the other existing
work and this paper. The main focus is to construct new ser-
vices by using the existing ones by means of BPEL [23] con-
structs. In order to construct a new service, first its functional
(input, output, precondition, effect) and non-functional re-
quirements (quality of service, time constraints, etc.) are
described. Then a two-phase process is applied for service
composition: logical composition and physical composition.
Logical composition provides the functional requirements
of the new service that are described through OWL-S. In
the physical composition phase, concrete service matching
is done. In the logical composition type matching is con-
ducted. There may be more than one concrete service com-
position that provides such a type matching. The choice
between multiple possible services is done in the physical
composition phase according to the non-functional attributes
that are stated in the new service request. The most attractive
part of this work is filtering, where the irrelevant services are
eliminated before planning. They mention an important ex-
periment: On a problem with a 7-step plan, the planner can
return a solution in 4 seconds if the filter is enabled when
100,000 irrelevant service types/actions are present. How-
ever it takes hours without a filter. Filtering determines the
irrelevant actions with the specified goal, but the underlying
algorithm about this filter and its computational complexity
are not presented.

In [4], available approaches for service composition
and execution are divided into four categories: interleaved,
monolithic, staged and template based. According to [4],
the interleaved approach lacks composition control and han-
dling composition failures. However, our approach is an in-
terleaved execution and composition which solves the com-
position failure problem completely. Composition control is
the ability of the user to change the workflow. Our approach
has a great potential to give flexibility to the user for control-
ling the composition. During the composition, users can see
the outputs of services and according to those outputs they
may want different services to handle their requests (ser-
vices can easily be made unavailable and new services can
be found by using the state change and replanning properties
of system).

In [24], the importance of user interaction is discussed.
They propose using domain knowledge to estimate if the
user can provide the required information. This approach is
domain dependent and does not present a recovery mech-
anism if the estimation is wrong. On the other hand, our
approach initially assumes that all the required information
can be provided by the user, and asks the user to provide
data when required. If the user does not know the answer,
dynamic adaptability and recovery properties of our system
enables easy handling of such situations. As a result, our
system involves the user during composition in a domain in-
dependent manner and resolves the problems automatically
if initial the assumptions go wrong.

An important open issue in automated web service com-
position problem is to represent complex requirements.
A formal language for representing the control flow and data
flow requirements is presented in [25]. Our system does not
allow defining complex requirements (i.e. conditional, iter-
ative etc.). In [25], the service composition plan is found
according to the control and data flow requirements and it is
executed afterwards. It is almost impossible to represent all
possible situations (dynamic state changes) that may arise
during real execution a priori, so a system that decides on
actions during interaction is more suitable for real world
applications.

In [26], the general framework for WSC presented in [1]
is extended with a workflow repository. Manually con-
structed workflows are considered as simple web services
and can be used during composition. Our approach is com-
parable to that framework, since we also have a repository
similar to the proposed workflow repository, but our reposi-
tory contains previously found successful service composi-
tion flows instead of manually constructed workflows.

In [27], methodologies for recovery mechanisms for se-
mantic web services are discussed. In case of a failure, they
propose finding alternative services at run time instead of us-
ing the static information about the alternatives of particular
services, which increases the chance of a successful recov-
ery and process completion. Our approach proposes a real
application of dynamic recovery, not only for service fail-
ures but also for the situations where the user cannot pro-
vide input for services. If a failure occurs before a compen-
sation decision is made, our system tries to find alternative
paths for solving the problem instead of firing compensation
mechanisms immediately.

In [28] a different approach is presented for service com-
position. Entities and services are represented as resources
and resource related actions; the interactions between the re-
sources are handled automatically by the composer. The pro-
posed solution requires a manual description of resources
and resource interaction instead of considering the seman-
tic service descriptions. Since users define only limited re-
sources which they are interested in, the search space for
the composition is small so the application is very practical
to use in daily life. Our approach tries to solve the general
service composition problem where resources are dynami-
cally constructed by using the semantic web service descrip-
tions and the relations between them are discovered auto-
matically.

3 Simplanner

Simplanner [7] is a very suitable planner for the web service
composition domain, since it provides the ability to han-
dle partially observable, nondeterministic environments in a

Dynamic planning approach to automated web service composition 5

time efficient manner. Some features of Simplanner, such as
its ability to deal with unexpected situations and the reactiv-
ity that it provides, are very valuable for the WSC domain.
In this paper, these features of Simplanner are used and a
service composition agent is constructed that is competitive
with the ones that are available in the literature.

Simplanner is a kind of domain independent AI planner
that is designed to operate on highly dynamic, partially ob-
servable environments with time limitations. Simplanner is
an anytime planner, that is, it finds an initial solution to the
presented problem very quickly and tries to refine the ini-
tial solution as time permits. Simplanner is also an online
planner which makes it highly resistant to unexpected situa-
tions: the plan execution can start without a total plan being
generated. Also, it allows for the modification of the current
state to another desired state, which enables it to deal with
incomplete information and unexpected situations. As a re-
sult, the required flexibility for the real world problems can
be obtained.

The Simplanner algorithm is based on goal decomposi-
tion and searching with heuristics obtained from the relaxed
planning graph (RPG) [29]. RPG is a rich source of informa-
tion and it is used by most AI planners, and especially by the
domain independent ones. The algorithm of the Simplanner
contains three important steps: Relaxed Plan Graph genera-
tion, Subplan Construction, and Subplan Ordering. The de-
tails of the algorithm can be found in [7].

One of the most important features of Simplanner is its
responsiveness in real time. Planning problems are generally
very complex to solve and their computational complexity is
generally exponential so it is very difficult to give a solution
in a short period of time. There are different approaches to
produce solutions in a timely manner, such as precompiled
solutions to the problems and any time planning approaches.
In most real world cases as in the WSC, using precompiled
solutions is out of the question since there are millions of
possible problems and solutions, so what is needed is to use
an anytime approach like Simplanner. By using an anytime
approach, Simplanner gives an initial solution in polynomial
time which is reasonable and it continues to plan up to the
execution point. The execution can start any time before the
total plan generation. After each execution step, Simplanner
considers the current state and produces a plan for the cur-
rent situation [7]. Producing the initial plan in polynomial
time does not mean that the planning problem can be solved
in polynomial time. Anytime planning a provides quick re-
action decision which is important for interactive applica-
tions that perform interleaved planning and execution and
interact with users continuously.

Achieving any time planning is a very difficult task and
generally requires an important amount of domain knowl-
edge as in the HTN case that uses domain information for
task decomposition. Using HTN based solutions is limited

in most real world problems since there does not exist suf-
ficient domain knowledge in most of the cases. What we
need is a domain independent anytime planner for time crit-
ical operations. The novelty of Simplanner comes from the
fact that it achieves anytime planning without the need of
domain specific information. Simplanner continuously in-
teracts with the custom executor logic. It provides high level
logical actions to the executor and gets information about
unexpected events from the executor. If an unexpected event
occurs, the planner rejects the current plan and tries to find
a new plan that is suitable for the current state. If everything
goes well, the planner does not try to find a new plan from
scratch but to improve the current plan by searching the state
space as time permits [7].

Like other AI planners, the aim of Simplanner is to find
a complete solution to the presented problem, but Simplan-
ner also has another goal which is very important and pro-
vides its main distinction from other planners. Simplanner
concentrates on the initial action but not on the whole plan
because of its anytime principles. The algorithm of the Sim-
planner is based on depth limited heuristic search that can be
interrupted at any time. If an interruption occurs, the plan-
ner returns the most promising action that will be used to
reach the goal state. Otherwise it continues to provide better
solutions [7].

Generally speaking planning problems require searching
the whole state space for completeness which is in fact very
time consuming and impractical. As many other effective
planners, Simplanner uses some heuristics which work very
well in practice. These heuristics are very useful for plan de-
tection but if the plan does not exist for a particular problem,
Simplanner starts to search the whole state space, which is
not practical. When the state space search is started, an ac-
tion may be offered by the planner several times. If the same
action with the same logical parameters is offered again our
system decides to abort the operation.

Without a complete state space search, we cannot say that
a solution does not exist but the time complexity of search-
ing the whole state space is exponential and cannot be used
in real applications. Simplanner does not inform the appli-
cation program when it starts to search the complete state
space, so our system tries to infer this situation by examin-
ing the actions offered by the planner. As a result, the system
may decide to abort when the planner starts a complete state
space search in some necessary situations too (e.g. iterative
service calls). However, such situations are infrequent so it
is not a big problem for the time being. Our concern is not
to make the solution complete but to use the heuristics when
available.

We have examined many off-the-shelf planners for our
purposes and finally decided that Simplanner is the planner
that we need because of the mentioned properties. Although
it is one of the most important components in the framework,

6 M. Kuzu, N. K. Cicekli

it constitutes only a small part of the system. Simplanner
mainly provides actions in the abstract level as it performs
the planning.

The specific contributions of this paper related to the in-
tegration of Simplanner to the framework are:

• converting the abstract level actions to real interactions,
• representing the abstract state that handles information

unavailability (user may not know the required inputs of
services) and service unavailability (service may not re-
spond),

• deciding about the state changes after real interactions.

It was not possible to use Simplanner directly in our
framework, because Simplanner was written in Delphi and
the proposed framework involves many components related
to real service execution (dynamic code generation, service
calls, transactional execution, etc.) many of which are han-
dled with the available libraries written in the Java program-
ming language. In order to connect the Delphi implementa-
tion of Simplanner with other components, the JNI interface
of Java is not sufficient since Simplanner is a multithreaded
application and JNI does not allow to access distinct threads
at the same time. Therefore we re-implemented Simplanner
in Java programming language from scratch in order to inte-
grate it with other components of the framework.

4 Simplanner application to WSC domain

A high level view of interactions between the proposed au-
tomated web service composition core and external com-

ponents is presented in Fig. 1. Simplanner works with the
PDDL data format [30], as do most of the other off-the-shelf
planners. Therefore, before using Simplanner, semantic web
service descriptions and user requests are converted from
OWL-S to the PDDL data format.

The service invocation component is integrated with Sim-
planner through communication interfaces. The actual ser-
vice execution component requests high level logical ac-
tions from the planner. The execution component performs
some processing on the provided actions, and informs the
unexpected event handler about unexpected events, if any.
An interface is provided between the planner and the unex-
pected event handler component. The handler requests state
changes from the planner that are suitable to the current sit-
uation.

The proposed architecture provides a highly dynamic, in-
teractive, flexible and time efficient service composition and
invocation framework. The general web service composition
process is composed of five phases which are preprocessing,
planning, action handling, executing and unexpected event
handling. A formal algorithmic description of the proposed
system is presented in Table 1. The algorithmic details of
the phases are presented in the forthcoming sections. (Third
party software and noncritical implementation details are
represented by function calls or skipped completely. Only
important parts are included in the algorithmic description,
function calls with bold font represent sub-components of
the system).

Fig. 1 Interaction with external
components

Dynamic planning approach to automated web service composition 7

Table 1 WSC algorithm

WS_Composer (repository)

OBTAIN initialState described with OWL constructs // end user is asked to provide the initialState

OBTAIN goalState described with OWL constructs // end user is asked to provide the goalState

[domain_PDDL , problem_PDDL, physicalMap, logicalObjects] ← PREPROCESS (repository, initialState, goalState)

// physicalMap contains the mapping between semantic action definitions that are extracted from OWL-S files and machine codes that

// implement the corresponding web service client. physicalMap also contains the syntactic type definitions corresponding to the semantic
// types. logicalObjects are the semantic objects that are obtained from the init section of problem_PDDL

LogicalPhysicalMap ← constructLogicalPhysicalMap(logicalObjects, physicalMap)

// logical/physical map contains the details of logical objects, such as their syntactic definitions and current value of their syntactic counters

currentState ← initialState; //currentState contains the predicates that describes the current state, it is initialized by the initial state description

executedActions ← ∅ //executedActions keep track of the logical action list executed in this session

cachedActions ← loadCachedActions() //cachedActions are the composite action definitions that are formed after successful WSC processes

businessActivityCoordinator ← construct BusinessActivityCoordinator() //coordinator for current WSC session, provides transactional execution

//Apache Kandula project is used for WS-Business Activity protocol impl.

termination ← SUCCESSFUL

// variables constructed above are global variables and they are used by submodules

PLAN (plan_SIGNAL) //Simplanner is fired to work on the problem

WHILE (currentState != goalState) OR (termination = UNSUCCESSFUL)

prev_state ← current_state //planner will change the current state during action proposal, if action cannot be executed physically

//state should be rolled back to its previous state, previous state is saved for possible uses later

[currentState, action] ← PLAN (proposeAction_SIGNAL)

IF executedActions CONTAIN action // heuristic for termination decision, precise determination of plan inexistency requires

termination ← UNSUCCESSFUL // full space search which is too costly, iterative service calls are rare

ELSE

handleResult ← LOGICAL_ACTION_HANDLER(action) //construct physical counter of the logical action

IF handleResult == SUCCESSFUL // physical counter is constructed, values for action parameters are collected successfully

execSuccess ← EXECUTE (action, Execute_SIGNAL)

IF execSuccess == SUCCESSFUL //service is successfully executed

executedActions ← executedActions ∪ {action} //update executedAction list with new executed act.

ELSE //problem occurred during service execution

UNEXPECTED_EVENT_HANDLER(action, prev_state, UnavailableService_SIGNAL)

ENDIF

ELSE //required parameters for calling web service cannot be obtained, service is not invoked

UNEXPECTED_EVENT_HANDLER(action, prev_state, UnavailableInformation_SIGNAL)

ENDIF

ENDIF

END WHILE

IF termination == UNSUCCESSFUL //plan is not found

UNEXPECTED_EVENT_HANDLER (NoPlan_SIGNAL)

ELSE //WSC session is successfully completed

businessActivityCoordinator.closeAll() //commit the transaction

newLogicalAction ← constructNewAction (initalState, goalState, executedActions) //save the steps of the found plan as a new action

cachedActions ← cachedActions ∪ {newLogicalAction} //definition to use for future problems

ENDIF

PLAN(terminate_SIGNAL) //stop the Simplanner thread

8 M. Kuzu, N. K. Cicekli

4.1 Pre-processing phase

The preprocessing phase prepares all the required objects
for the upcoming phases. In this phase, the system uses se-
mantic and syntactic service descriptions that are located in
the service repository, the user provided domain ontology
and the initial state and goal state ontologies. The graphical
representation of this phase is given in Fig. 2 and a formal
algorithmic description is presented in Table 2.

The framework produces the domain knowledgebase in
PDDL by using the OWL-S semantic service descriptions
that are provided by the service providers in the service
repository, and the selected domain ontologies by the ser-
vice requester. The user request consists of the representa-
tion of the initial state and the goal state in OWL [31]. The
request can require the invocation of both world altering and
information gathering services. The action definitions that
are given in the problem statement (OWL constructs that
presents the desired properties between OWL individuals)

are considered high level, logical actions, since both actions
and their parameters do not exist in the real physical world.
Therefore, they cannot be used directly.

One of the important operations of this phase is the gener-
ation of physical counterparts of logical actions that are rep-
resented in the domain knowledgebase. In order to achieve
this, first the OWLS-WSDL mapping is extracted from the
grounding part of the OWL-S files in order to find the syn-
tactic requirements of the domain actions and their parame-
ters. In the physical state, the logical actions and their para-
meters are represented by machine interpretable codes and
types respectively. By using WSDL [32] descriptions of ser-
vices, client stubs are automatically generated which con-
tain both service client implementations and complex type
implementations that are defined in WSDL files by the ser-
vice providers. As a last step PDDL action-Physical action
mapping information is constructed using the automatically
generated codes and the OWLS-WSDL mapping. This in-
formation is then used by the executor in the service execu-

Fig. 2 Pre-processing

Dynamic planning approach to automated web service composition 9

Table 2 Pre-processing algorithm

PREPROCESS (repository, initial_state, goal_state)

action_list ← ∅ //action,

predicate_list ← ∅ //predicate, and

type_list ← ∅ //type definitions that will be obtained by parsing the OWL descriptions in repository

physical_Map ← ∅ //mapping between semantic definitions and their syntactic counters

FOR EACH service serv_i in repository

action_i ← owls2PDDL (owl-s definition of serv_i) //standard conversion rules are applied

action_i.Precondition ← action_i.Precondition ∪ {“validService” + identifier OF serv_i} //each service should be operational

//precondition of action is updated

FOR EACH input inp_i OF action_i //all input parameters should be known to execute action

action_i.Precondition ← action_i.Precondition ∪ {“agentHasKnowledgeAbout” + identifier OF input_i }

FOR EACH output out_i OF action_i //services provide information after successful execution if they have output

action_i.Effect ← action_i.Effect ∪ {“agentHasKnowledgeAbout” + identifier OF output_i }

// domain information such as types and predicates are obtained by parsing the OWL definitions used in OWL-S service descriptors

FOR EACH ontology ont_i used in OWL-S service definition OF serv_i

[types,predicates] ← owl2PDDL(ont_i)

type_list ← type_list ∪ {types}

predicate_list ← predicate_list ∪ {predicates}

action_list ← action_list ∪ {action_i}

init ← owl2PDDL(initial_state) //initial state is obtained from user, OWL is used for representation

goal ← owl2PDDL (goal_state) //goal state is obtained from user, OWL is used for representation

// Initial state contains the objects defined by the user to represent initial state and goal state, some additional objects may be required to execute
services that will be found by the planner later, for each available type construct a logical object*/

FOR EACH type typ_i in type_list

IF init.Objects NOT CONTAIN any object with type typ_i

obj_i ← constructObject (typ_i)

init.Objects ← init.Objects ∪ {obj_i}

ENDIF

// Logical objects will be used as inputs to the web services; if user has written a goal with “agentHasKnowledgeAbout obj_i”, it means

// that the value of it is not known by the user; for other logical objects, initially assume that values can be provided by the user, if not

// appropriate actions will be fired in coming phases*/

FOR EACH object obj_i in init.Objects

IF goal.Predicates NOT CONTAIN {“agentHasKnowledgeAbout” + obj_i}

init.Predicates ← init.Predicates ∪ {“agentHasKnowledgeAbout” + obj_i}

ENDIF

[domainPDLL, problemPDDL] ← constructPDDLDefinitions(action_list,predicate_list,type_list,init, goal)

FOR EACH service serv_i in repository

mapEntry.machinecode_i ← wsdl2Java (wsdl definition of serv_i) //form service client codes and complex type definitions

/*mapEntry contains mapping between logical types and physical types for each input and output of serv_i*/

mapEntry.physicaltype_i ← typeMapping(owls grounding definition of serv_i, wsdl definition of serv_i)

mapEntry.logicalAct ← identifier OF serv_i

physical_Map ← physical_Map ∪ mapEntry //save mapping to physical_Map for later use

RETURN [domainPDLL, problemPDDL, physical_Map, init.Objects]

10 M. Kuzu, N. K. Cicekli

tion phase. The details of the execution issues are presented
in Sect. 5.

The problem is provided by the user through logical state-
ments using OWL individual definitions and relations be-
tween OWL individuals. The statements that are represented
in the Web Ontology Language are translated into PDDL ob-
jects and PDDL initial and goal states according to the rules
described in works [14, 33, 34]. In [14], a new predicate is
generated for the PDDL representation of OWL-S action
parameters, namely agentHasKnowledgeAbout(X) which is
used to show information availability. The construct agen-
tHasKnowledgeAbout(X) is necessary for the web service
composition domain, especially for cases where the infor-
mation is partially observable. In our work, this construct
is used to decide whether the user or a web service is the
source of information.

The transformation from OWL-S to PDDL is done based
on the ideas presented in two other previous works [14, 33]
with some modifications that are needed in nondeterminis-
tic domains. No particular language is determined for the
representation of preconditions and effects by the OWLS
specification and therefore it allows custom languages as
well. SWRL, KIF and some other custom languages such as
PDDXML can be used in order to represent preconditions
and effects of actions. We have used PDDXML as in [14] in
the proof of concept implementation; therefore the solution
is not generic. During the transformation there is no infor-
mation loss and the conversion is always possible but spe-
cific implementations are needed for particular precondition
and effect languages. These conversion rules are not new;
we have only two modifications to the available conversion
rules.

First, we have added the predicate “valid[serviceID]” as
a precondition to each service and we have added the predi-
cate “valid[servicedID]” for all services in the init section of
the generated PDDL. During the real service interaction, if
a service does not respond, the predicate “valid[serviceID]”,
corresponding to the failed service, is removed from the cur-
rent state and that service is not considered as a valid action
afterwards.

The second modification to the rules is to use the idea pre-
sented in [14] in a more realistic way. In [14] the predicate
agentHasKnowledgeAbout(X) is proposed in order to repre-
sent the information availability. The hasInput and hasOut-
put components of OWLS are converted as agentHasKnowl-
edgeAbout(X) predicates in the precondition and the effect
parts of the PDDL actions. agentHasKnowledgeAbout(X) is
given manually in the initial state description of PDDL. This
is not realistic, because it is not known initially which ser-
vices are required, which inputs are required and whether
the user can provide the required inputs for the solution of
a given problem. In this work we have created one logical
object for each PDDL type and we have added agentHas-
KnowledgeAbout(X) for each PDDL type in the initial state

description of PDDL (the same logical type can be used for
multiple physical calls). If the user can not provide a particu-
lar input (say X) during the real service interactions, the sys-
tem removes the predicate agentHasKnowledgeAbout(X)
from the state and the planner starts searching for alterna-
tive ways (i.e. it tries to find either another plan which does
not require that service or another service which provides
the missing input). In summary, “valid[serviceID]” and the
practical usage of “agentHasKnowledgeAbout(X)” are new
to this work and the other conversion rules are adapted from
previous works.

Both OWL statements and PDDL statements are high
level constructs and give the same information. The differ-
ence between the two lies in their syntax. Users provide
their requests abstractly and the details of the request are
extracted by the system in later stages by asking the user
for the required information. The following example clari-
fies the things mentioned here.

Suppose the user wants to make a reservation for the
transportation of a person to the hospital. The user defines
his request by using the domain ontology constructs and de-
fines the initial state and the desired state. In the initial state,
the following statements are provided by the user to show
the logical availability of a particular person and a particular
transportation

<Person rdf:ID = “Patient_0”/>
<VehicleTransport rdf:ID = “TransportToHospital”/>

In the goal statement, the user shows the availability of
the same logical objects and presents the desired relation be-
tween these two logical objects. They are all logical; there is
no information about the details of a particular transporta-
tion and a particular person. The only useful information
is the semantic types of objects which are sufficient in this
phase.

<Person rdf:ID = “Patient_0”/>
<VehicleTransport rdf:ID = “TransportToHospital”/>
<VehicleTransport rdf:resource = “#TransportToHospital”>
<isBookedFor rdf:resource = “#Patient_0”/>
</VehicleTransport>

OWL statements represent the fact that there is a desire
to book a thing whose semantic meaning is “VehicleTrans-
port” to another thing whose semantic meaning is “Person”.
The semantic details are going to be obtained by the actions
proposed by the planner and the syntactic details are going
to be obtained by the service composer by processing the
WSDL and asking questions to the user about the required
parameters.

Sometimes users do not request a change in the world
state but they need only to find information. In such cases,
the agentHasKnowledge(X) construct is used. In this case,
users provide limited information about their requests. For

Dynamic planning approach to automated web service composition 11

instance, suppose the user wants to find the number of a par-
ticular flight. In such a case s/he initially presents the fol-
lowing statements to the system.

Init: <Flight rdf:ID = “Flight”/>

Goal:
<Flight rdf:ID = “Flight”/>
<agentHasKnowledgeAbout rdf:resource = “#Flight”>

The details of the flight such as its source and destination
locations and arrival time are all unknown at this stage. The
system only knows that the user wants to retrieve the flight
number of a particular flight. The details are determined ac-
cording to other services offered by the planner and WSDL
description of services and the required values are requested
from the user. It is possible to collect more details about the
problem at the initial stage, but this is an ineffective way.
The user cannot know all of the information that will be
needed in later stages. In our work, we propose to request
only the necessary information from the user after under-
standing their problem at a higher level.

4.2 Planning phase

In this phase, all work is handled by Simplanner. Initially,
Simplanner does grounding by using the available PDDL
objects and PDDL action definitions and produces the pos-
sible logical action instances. After grounding, it constructs
an initial plan and continues to plan in the lifetime of the

session. The interface with the Simplanner is presented in
Table 3.

Simplanner produces a quick logical action and contin-
ues with planning as time permits. The planner continuously
collaborates with the action handle/execution module and
the unexpected event handler module. The planner sends
logical actions to the action handle/execution module one at
a time. During the actual service execution that is conducted
by the executor, Simplanner continues to operate in order to
refine the current plan. During service execution some prob-
lems may appear, such as information unavailability or ser-
vice execution failures. In such cases the unexpected event
handler examines the state and informs the planner about the
unexpected situations. Simplanner then produces a new plan
according to the current state.

After the high level problem and domain information are
presented to the planner, it tries to find out a logical solu-
tion to the current problem. Two important assumptions are
made at the beginning of planning. First, all the actions that
are available in the domain knowledge base are executable.
Second, all the necessary information that will be required in
later stages can be provided by the user. These assumptions
are the initial assumptions. The validity of these assump-
tions is determined after some interactions with the user and
web services. If the assumptions are wrong, they are handled
easily by the features of Simplanner.

The initial assumptions are asserted to the planner
through the use of two predicates: “validService(X)” and
“agentHasKnowledgeAbout(X)”. Each logical action defin-

Table 3 Simplanner interface

PLAN (intrerruptSIGNAL)

SIMPLANNER ← constructSimplannerThread()

terminate ← FALSE

WHILE terminate == FALSE

LISTEN INTERRUPTS

CASE interruptSIGNAL OF /*functions corresponding to given signals are provided by the Simplanner*/

plan: SIMPLANNER .start(domain.pddl, problem.pddl)

proposeAction: SIMPLANNER .pause()

[action, currentState] ← SIMPLANNER.proposeAction() //action will be sent to the module that

// causes interrupt

SIMPLANNER.continue()

changeState: SIMPLANNER.pause()

currentstate ← SIMPLANNER.changeState(currentState) //currentState is global variable

SIMPLANNER.continue() // keep track of the current logical state

terminate: SIMPLANNER.stop()

terminate ← TRUE

END WHILE

12 M. Kuzu, N. K. Cicekli

ition that corresponds to a physical web service operation in-
cludes statements with these predicates in their precondition
part. In order to execute any service, it should be physically
available and the parameters that are required for executing
that service should be known a priori. Consider the follow-
ing example:

(:action BookFlightService
: parameters (?Customer-Person ?AccountData-Account
?Flight-Flight)
: precondition (and
(validBookFlightService)
(agentHasKnowledgeAbout ?Customer) (agentHasKnowledgeAbout
?AccountData) (agentHasKnowledgeAbout ?Flight))

“BookFlightService” is the logical counterpart of the ser-
vice that does the booking operation. The service requires
three parameters, the semantic types of which are “Person”,
“Account” and “Flight” respectively. The precondition state-
ments represent that the parameters should be known and the
service should be available.

At the initial problem statement, the user defines some
logical objects and represents the relationship between
them, but some other objects with other types may also be
necessary to solve the problem. Suppose the user wants to
do a booking and represents his problem as described earlier.
Initially the user does not know that “BookFlightService” is
going to be used for the solution of the problem, so he does
not know the required parameters of the service either. As
a result, some of the required logical objects that are nec-
essary for the solution of the problem are not provided by
the user. For the “BookFlightService” example, the logical
service instantiation needs an “Account” typed object. If it is
not defined by the user in the problem statement, the service
cannot be used even if it is required for the solution.

The proposed solution to this problem is to construct one
logical object corresponding to each PDDL type if it is not
constructed by the user explicitly. The instantiation of any
action becomes possible after the logical object construc-
tion with each PDDL type, but the instantiation is not suf-
ficient for the physical execution. Before the physical exe-
cution, the system asks for the values of the logical objects
and acts according to the answer. Since the PDDL objects
are logical objects, the same objects can be used for the in-
stantiation of different actions. The actual values of these
logical objects are obtained at run time so the use of the
same logical object by different services does not mean that
distinct services are called with the same arguments. Sup-
pose “service1” uses “obj1” as a parameter and “service2”
also uses “obj1” as a parameter. During “service1” call, the
actual value of “obj1” is requested from the user or from an-
other service the details of which are described later. During
“service2” call, the same procedure is applied from scratch.
Therefore, different arguments are used for the same logi-
cal objects. In conclusion, one logical object for each PDDL

type is sufficient, and they do not cause confusion during the
actual service call since physical values are obtained in later
stages.

If the user’s goal includes an information gathering re-
quest, the system does not include the particular objects on
the list of known objects. For instance, if the user presents
an information gathering request like “agentHasKnowledge-
About Flight”; the system does not add “agentHasKnowl-
edgeAbout Flight” statement to the init section of the prob-
lem PDDL. Thus, the planner tries to find a solution. When
the execution module requests an action, the planner returns
the most promising logical action (that is grounded action
with the logical objects) to the executor. While the execu-
tor is doing its own job (actual service execution, informa-
tion collection from user, etc. . . .), the planner continues to
search for a better solution and to repair any problems that
may occur in the later steps of the proposed initial solution.
The planning procedure continues until another interruption
by the executor.

4.3 Action handling phase

In this phase, the logical action that is provided by the plan-
ner is handled in order to satisfy user needs. The graphical
representation of this phase is given in Fig. 3 and a formal
algorithmic description is presented in Table 4. The action
handler prepares the logical actions for execution in two
ways. One is for single logical actions and the other is for
complex (cached) actions.

When the planner proposes a single action, the action
handler tries to collect the actual parameters, which are
the physical counterparts of logical action parameters, from
the user or from other web services. For instance, suppose
the planner provides a logical action like “BookFlightSer-
vice Person1 Account1 Flight1”. “Person1”, “Account1”
and “Flight1” are the objects that are defined in the prob-
lem.pddl. The only information about these logical objects
is their semantic types at this stage, which is not usable for
the execution of the real service. The Logical/Physical map,
which is kept in memory, is the core of the mechanism that
associates logical entities with their physical counterparts.
At the beginning of each session, a fresh Logical/Physical
map is constructed (the details are presented in Sect. 5).
The Logical/Physical map contains the syntactic counter-
parts of the semantic objects and their current values. The
syntactic counterparts of the semantic objects are obtained
by processing the grounding part of OWL-S service descrip-
tions and WSDL descriptions of services. Initially the actual
values of the syntactic counterparts of logical entities are
unknown.

During the processing, these values are obtained from the
user or from other services.

Dynamic planning approach to automated web service composition 13

Fig. 3 Action handling

When a logical action is presented to the action han-
dler, it extracts the parameters and looks up the Logi-
cal/Physical map to learn their actual values. If they can
be found in the Logical/Physical map, the action handler
directs the action to the real executor. If the answer “un-
known” is returned from the Logical/Physical map, the in-
formation collector’s turn starts. Initially, the information
collector gets the syntactic details of logical objects from
the Logical/Physical map. For instance, a logical object
“Request” whose semantic type is “RequestParameters” is
contained in the parameters of the current action defini-
tion. The WSDL counterpart of “RequestParameters” that
is obtained from the OWL-S grounding section is the “Re-
questInfo” type. It has a complex type definition in the
WSDL. Suppose the “RequestInfo” complex type contains
the parts “DestinationLocation-xsd:string SourceLocation-
xsd:string ArrivalTime-xsd:dateTime”. When the informa-
tion collector requests the details of the “Request” object,
the Logical/Physical map provides all the syntactical de-
tails and the information collector asks the user the val-
ues of “DestinationLocation”, “SourceLocation” and “Ar-
rivalTime”. The user will provide “DestinationLocation”,
“SourceLocation” and “ArrivalTime” for the example above.
If the user can not provide the values of the requested pa-

rameters, another strategy should be used. As an example,
suppose the user wants to book a flight and a flight num-
ber is needed by the booking service. The above procedure
is executed and the user is asked for the value of the flight
number. If the user does not know the value, s/he tells the
system that the value is not known. In this case the “un-
known information” signal is fired. The details of the un-
expected event are sent to the Unexpected Event Handler
Module.

The action handler also extracts the details of cached ac-
tions. Action caching is a mechanism for making use of the
previous executions in order to speed up the system. When a
cached action is proposed by the planner, the procedure that
is used for non-cached actions cannot be applied. A cached
action is not a single action but it is a set of actions (i.e
the steps of a previously successful WSC plan). There does
not exist any information about the details of cached ac-
tions in the Logical/Physical Map and the details of the ac-
tions are obtained from other resources (Action caching is
described in Sect. 5). Action handler finds the components
of the cached action and does the grounding (constructing
logical action with logical objects) of sub-actions accord-
ing to the types of their arguments. After the action handler

14 M. Kuzu, N. K. Cicekli

Table 4 Action handling algorithm

LOGICAL_ACTION _HANDLER (action)

result ← SUCCESSFUL

IF cachedActions CONTAIN action //cachedActions are loaded when session starts, it contains the composite action definitions

subActions ← extractSubActions(action) //subactions are parts of the previously found plan for a particular problem

FOR EACH action act ELEMENT OF subActions

act ← groundLogicalActions(act) //in this step logical objects are found and associated with the actions according to

//types of action parameters

LOGICAL_ACTION _HANDLER (act) //composite actions are divided into its original actions, Logical_Action_Handler

//can now operate on it

ELSE

inputList ← extractActionInput(action) //get the input parameters of the proposed action

FOR EACH input inp ELEMENT OF inputList

physical_parts ← extractPhysicalDetail(inp) //syntatic counters of semantic object parameters are obtained in this step

createGUI(physical_parts) //by using the syntactic definitions graphical user interface is generated for collecting inputs

OBTAIN input from USER //user is prompted to provide required input

//syntatic counter of semantic objects may contain multiple parts, corresponding WSDL type definition may be complex

FOR EACH component comp ELEMENT OF physical_parts

comp.real_value ← user provided value

inp.comp ← inp. comp ∪ {comp}

IF inp.comp.real_value == UNKNOWN //user cannot provide value for some parts of the required input

result ← UNSUCCESSFUL //this situation will be handled by Unexpected Event Handler

updateLogicalPhysicalMap(inp) //Logical/Physical Map contains the information about syntactic counter of semantic

//parameters and their current values, update the map with new information

ENDIF

RETURN result

performs its function, the real executor goes through the re-
maining steps for calling the web service.

4.4 Execution phase

In this phase, the actual service call is performed. The execu-
tion is done in two ways according to the service behaviour.
If only an information gathering service is executed, it is
done as a usual service call. However, if a world altering ser-
vice is executed, then the service is called indirectly in con-
formity with WS-Business Activity and WS-Coordination
specifications. The graphical representation of this phase is
given in Fig. 4 and a formal algorithmic description is pre-
sented in Table 5.

In this phase, dynamically generated service client codes
and PDDL action- physical action mappings are used in or-
der to make a real service call. The objects are dynamically
constructed at run time by using the above mentioned infor-
mation resources and by the help of the reflection mecha-
nism [10]. The actual values of the arguments of the service

are collected from the Logical/Physical map and the con-
structed object instances are modified with the collected real
data with reflection. If the service only provides information,
the provided information is taken to the Logical/Physical
information map and the consumed information is deleted
from the Logical/Physical map. If the called service has
world altering effects, its call is done through the business
activity coordinator which is generated at the beginning of
each session.

When the actual execution is conducted, some problems
may arise because of network problems or other external
reasons. In such cases the executor informs the Unexpected
Event Handler about the unexpected situation and completes
its work for that particular action.

4.5 Unexpected event handling phase

During service execution and information collection, some
unexpected situations may occur. The service execution may
fail because of network problems or wrongly provided argu-

Dynamic planning approach to automated web service composition 15

Fig. 4 Execution

Table 5 Execution algorithm

EXECUTE (action)

service_function ← loadService(action) //by using the outputs of the preprocessing phase and java reflection mechanism

//web service client is constructed

inputList ← extractActionInputs (actions)

FOR EACH input inp ELEMENT OF inputList

type_implementation ← loadType(inp) // by using the outputs of the preprocessing phase and java reflection mechanism

//required type definitions of web service arguments are constructed (complex types)

// LogicalPhysicalMap contains real values for input components, service arguments should be set with those values before invocation

physical_components ← lookupLogicalPhysicalMap(inp)

FOR EACH component comp ELEMENT OF physical_components

setType_parts (comp.real_value) //real values of input components are set through java reflection mechanism

IF action.Effects IS NOT EMPTY //world altering service call, transaction execution is required

[result, serviceOutput] ← invoke(service_function, businessActivityCoordinator) //service is invoked through businessActivity

//coordinator with reflection mechanism

ELSE

[result, serviceOutput] ← invoke(service_function) //result is the success of the execution and serviceOutput is the output values

//provided by the service if it is information providing

END IF

out ← extractActionOutput(action) //extract output parameter of the logical action if it has

physical_components ← lookupLogicalPhysicalMap (out) //get parts of the logical object corresponds to output from Logical/Physical map

FOR EACH component comp ELEMENT OF physical_components

comp.real_value ← extractRealValue(serviceOutput) //set physical value of the object with service provided value

updateLogicalPhysicalMap(out) //update the Logical/Physical map with new information

RETURN result

16 M. Kuzu, N. K. Cicekli

Fig. 5 Unexpected event handler

ments or because the user may not know the information
that is required by the service. Such unexpected situations
are handled in this phase. The operations of this phase are
described in Fig. 5 and a formal algorithmic description is
presented in Table 6.

The executor component sends two kinds of unexpected
events to the Unexpected Event Handler: service unavail-
ability and unknown information. The Unexpected Event
Handler tries to solve these problems in collaboration with
the planner. The Unexpected Event Handler keeps the log-
ical state that is valid before the service execution. If any
problem occurs, it uses this saved state and the information
returned from the executor about the problem, to construct
a new state that describes the current situation. After a new
logical state is constructed, it is presented to the planner and
the planner starts to find a solution according to the current
situation. Simplanner allows state changes at any time. After
a state change request is received by the planner, the logical
actions that it provides to the executor conform to the current
situation afterwards.

When the service unavailability message comes from the
executor to the unexpected event handler, it requests a state
change from the planner. The new state is constructed by re-
moving the “valid[serviceID]” predicate from the last saved
state. For instance, if there is a problem during the execu-
tion of the booking service “BookFlightService”, the unex-

pected event handler removes the “validBookFlightService”
predicate from the newly constructed state and informs the
planner. From that point on, “BookFlightService” cannot be
used, since its precondition “validBookFlightService” is not
satisfied. The planner will not consider this logical action
again and it tries to find other ways of solving the problem.
There may exist alternative ways to solve the same prob-
lem. The planner constructs a new solution with alternative
services, if available. Otherwise, the session is terminated
unsuccessfully. If the session cannot be terminated success-
fully, there may be side effects in the environment due to
the previously executed world altering services. Such side
effects are compensated by the used transaction mechanism.
The session termination condition and the used transactional
mechanism are described in detail in Sect. 6.

The other unexpected event is information unavailabil-
ity. The information collector component of the execution
module asks the user for the values of the physical coun-
terparts of logical objects as described earlier. If the user
can not provide the requested information, the unexpected
event handler changes the logical state for the planner. Sup-
pose there is a logical object “Flight1” which has a semantic
type of Flight. Initially, the logical state contains the pred-
icate “agentHasKnowledgeAbout Flight1” which assumes
that the user can provide the required information about the
logical object “Flight1”. If the information collector cannot

Dynamic planning approach to automated web service composition 17

Table 6 Unexpected event handling algorithm

UNEXPECTED_EVENT_HANDLER (action, previousState, signal)

CASE signal OF

UnavailableService_SIGNAL : //if service does not respond, make it invalid, planner does not consider it any more

currentState ← removePredicate(previousState, {“validService” + identifer OF action})

PLAN (changeState_SIGNAL)

UnavailableInformation_SIGNAL: //if user cannot provide input value, change the state that describes this situation

inputList ← extractActionInputs(action)

FOR EACH input inp ELEMENT OF inputList

physical_components ← lookupLogicalPhysicalMap(inp)

FOR EACH component comp ELEMENT OF physical_components

IF comp.real_value == UNKNOWN

currentState ← removePredicatecurrentState ({“agentHasKnowledgeAbout” +identifer OF inp})

PLAN (changeState_SIGNAL)

NoPlan_SIGNAL: //if plan inexistency decision is reached, abort the transaction

businessActivityCordinator.cancelOrCompensateAll() //abort transaction

ENDCASE

RETURN currentState

get the necessary information about “Flight1” from the user,
it delivers the situation to the unexpected event handler. The
unexpected event handler removes the predicate “agentHas-
KnowledgeAbout Flight1” from the last saved state and de-
livers the state change request to the planner. After that state
change, the planner has two alternatives: it can either search
for other actions that do not require the unknown informa-
tion or try to find other services that provide the required
information. Suppose there is an action whose partial defin-
ition is presented below.

(:action ProposeFlight
(:parameters
(. ?Flight-Flight)
(:effect (and
(agentHasKnowledgeAbout ?Flight)))

This action is grounded with “Flight1” during the Sim-
planner action grounding procedure and it can provide the
required information about the logical object “Flight1”. If
the planner proposes this action to the executor, the execu-
tor does the actual service call. The physical counterpart of
the logical object “Flight” is constructed with the reflection
mechanism. The actual values of the physical counterparts
are then updated in the Logical/Physical map. When an ac-
tion that requires the information about “Flight1” is again
proposed by the planner, the action handler can get the actual
values that are required for the service call from the Log-
ical/Physical map without any need to ask the user again.
An important issue about the Logical/Physical map is that
once the actual values of the physical counterparts of log-
ical objects that are provided by either the user or another

web service are used, those real values are cleared from the
map even if they are required in later steps for the reasons
described in Sect. 5.2.

If replanning cannot produce new ways to achieve the
user’s goal after the occurrence of unexpected events, the
transactional operations are rolled back. The business initia-
tor sends the necessary signal (i.e. compensate) to all par-
ticipating services through a business activity coordinator.
This prevents the occurrence of side effects of unsuccessful
attempts.

5 Automated service invocation issues

The automated web service invocation module is one of the
core components of the proposed framework. The service
invocation mechanism uses off-the-shelf technologies such
as the Java reflection mechanism [10], the web service invo-
cation framework (WSIF) [35], the WSDL2Java tool of the
Apache Axis [36] framework and integrates them in an effi-
cient manner for achieving an automated service call. Dur-
ing service invocation, the arguments that are needed for the
service calls are obtained from the data structure, namely
the Logical/Physical map. This data structure provides the
communication between the service invocation mechanism
and the input values provided by either the user or a service.
After the termination of each successful session, the system
caches the action sequence that is used for handling the cur-
rent problem in order to use them directly when a similar
request comes again later. The following sections present

18 M. Kuzu, N. K. Cicekli

the details of the mechanism that is used for the automated
service invocation.

5.1 Automated service invocation

The provided solution for linking abstract actions with ac-
tual service calls is highly generic. There is no manual
coding, classes are dynamically generated and objects are
constructed dynamically at run time with the user provided
inputs automatically. After the planner provides a logical ac-
tion to the execution module, the action handler prepares
the logical action for the actual service invocation with the
help of the information collector and the unexpected event
handler. The action handler makes sure that the parameters
of logical actions have the desired syntactic counterparts in
the Logical/Physical map, so the real service executor can
get the required service argument values from the Logi-
cal/Physical map. If the required arguments can be supplied
by neither the user nor another service, the planner tries to
find an alternative path. If an alternative path cannot be dis-
covered, the session is terminated before reaching the auto-
matic service invocation phase.

There are two kinds of service executions in the system.
One is the information gathering service call and the other
one is the world altering service call. The difference between
them is that the world altering service call causes side ef-
fects. In order not to change the world in an unintended way,
one makes sure that such a call is made transactional. The
mechanisms that are used to call these two kinds of services
are different. The information gathering services are called
as usual, but the world altering ones are called by conform-
ing to the WS-Business Activity and WS-Coordination stan-
dards [8, 13].

Simplanner uses the semantic knowledge extracted from
OWL-S service descriptions, but the actual service executor
needs syntactic information in order to operate. The syntac-
tic information is collected from WSDL descriptions of the
used web services. WSDL contains all necessary details for
service calls such as syntactic types of operation arguments,
service end point and the required communication protocol.

For a real service call, the client stubs of web services
are generated through the WSDL2Java tool during the pre-
processing phase. The connection between the semantic in-
formation that is used by the planner and the syntactic infor-
mation that is required for the actual service call is provided
in the grounding part of OWL-S definitions. The software
processes the grounding section of the OWL-S file and ex-
tracts the relationships between semantic types and syntactic
types of service arguments. The syntactic counterpart of the
semantic type might have complex type definitions. The sys-
tem extracts the details by processing the WSDL document
of the web services. The output of this phase is the “PDDL
Action-Physical Action mapping.xml” file whose structure
is shown below.

<actions><action name = “LogicalOperation”
class = “ImplementationClass” endpoint = “ServiceEndPoint”>
<inputs>

<input name = “Input” class = “ImplementationClass”>
<subtype name = “SubType”
class = “ImplementationClass”/>
. . . .

</input>
. . . .

</inputs>
<outputs>

<output name = “Output” class = “ImplementationClass”>
<subtype name = “SubType” class = “ImplementationClass”/>

. . . .

</output>
. . . .

</outputs>
</action>

. . . .

</actions>

The information in the “PDDL Action-Physical Action
mapping.xml” file is used for dynamic method construction
corresponding to the planner-provided logical action and
logical parameters through the Java reflection mechanism.

After a logical action with its logical parameters is pro-
vided to the executor by the planner and the action han-
dler does its processing, the real service invoker starts
the execution. The service invoker discovers the imple-
mentation code of the requested operation and its parame-
ters by using the metadata that are produced before, and
it constructs a dynamic method for the real service in-
vocation. For instance, the logical action “BookFlightSer-
vice Param1 Param2” is produced and “BookFlightService”
has an implementation, namely “BookFlightServiceClass”,
Param1 and Param2 have implementations, “Param1Class”
and “Param2Class” respectively, and BookFlightService has
an endpoint namely “BookFlightServiceEndpoint”. The fol-
lowing java code shows how a service call method is dynam-
ically generated for the “BookFlightService” case.

Class c = Class.forName(“BookFlightServiceClass”);

Constructor construct = c.getConstructor(new Class[] {URL.class,
Service.class})

Object stb = construct.newInstance(new
URL(“BookFlightServiceURL”, null);

Class partypes[] = new Class[2];

partypes[0] = Class.forName(Param1);

partypes[1] = Class.forName(Param2);

Method meth = c.getMethod(“BookFlightOperation”, partypes);

The information that is needed for dynamically generat-
ing a service call method is collected during preprocessing
phase and it is written to the metadata files as described be-
fore. Actually, it is not sufficient to generate only a method
for service invocation. The values of the method arguments
are needed as well. The Logical/Physical map is used for

Dynamic planning approach to automated web service composition 19

this purpose. The action handler makes sure that the map
contains the required syntactic values of logical parameters
before the real service execution begins. After the method
construction, the service invoker gets the actual values of
the logical parameters from the Logical/Physical map and
instantiate the dynamically constructed methods with the
obtained values. The Java code for the instantiation of the
example above and the real service call is shown as follows:

Object arglist[] = new Object[2];

arglist[0] = “Param1Value”;

arglist[1] = “Param2Value”;

meth.invoke(stb,arglist);

Param1Value and Param2Value are the real values of
Param1 and Param2 logical objects respectively which are
obtained from the Logical/Physical map. If the called ser-
vice is an information providing service, it returns some val-
ues and these values are handled in a similar mechanism that
is applied for inputs with the help of the reflection mecha-
nism and Java beans. If the returned type is a complex type,
the sub-parts are obtained by using the properties of Java
beans. The generated code for complex types is in the form
of Java beans which provides a static interface for reaching
the subcomponents of the returned values so the handling of
them can be done automatically without any human assis-
tance.

5.2 Logical/Physical map

The Logical/Physical map associates the logical objects that
are used as action parameters by the planner with their syn-
tactic counterparts and values which are required for the real
service calls. The syntactic counterpart of a semantic type
may be a complex type and it may contain subcomponents.
Therefore more than one physical part may exist for a se-
mantic type as shown in Fig. 6. The values of the physical
parts are needed for the real service call.

Fig. 6 Logical/physical map

The values are obtained from either the user or other
services before each service call. At the beginning of each
session, a fresh map is constructed where the values of the
physical parts are initialized to the value “unknown”.

When a logical action with logical object parameters
comes to the execution module, the action handler exam-
ines the values of logical objects in the map. If they are
“unknown”, the information collector asks the user for the
values of the physical components. If the user provides the
values, the map is updated with these values and the ser-
vice invocation begins. If the user does not know the values,
the unexpected event handler and the planner together try to
find a service that can provide the particular information. If
such a service is found, the current plan changes and the in-
formation providing service is invoked with the same steps
applied. The map is updated with the collected values. The
action handler then discovers that the required information
is available in the map and allows the service invocation to
operate.

The construction of the map is dynamic and it is car-
ried out throughout the current session according to the
logical action definition. There may be several logical ac-
tions that are grounded with logical objects but the syntactic
structure of distinct services may be different. For instance
consider the services “BookFlightService ?Flight-Flight
?Person-Person” and “BookMedicalFlightService ?Flight-
Flight ?Person-Person” and PDDL objects “Flight1-Flight
and Person1-Person”. The two services given above are two
distinct services, but their semantic parameter types are the
same. After the planner performs grounding, two distinct
logical actions are generated with the same logical object pa-
rameters as follows: “BookFlightService Flight1 Person1”,
“BookMedicalFlightService Flight1 Person1”.

The intended semantic meanings of “Flight1” and “Per-
son1” objects are the same in the two grounded services,
since “Flight1” and “Person1” are used with the same mean-
ing in mind by the user. However, syntactic differences may
occur in the physical definition of the logical objects. For
instance, “Flight” type may have a WSDL counterpart such
as “xsd: int” for the “BookFlightService”, but a complex
type counterpart that contains a string and an integer value
“sequence (xsd: int, xsd: string)” for the “BookMedicalSer-
vice”.

Since one logical object may be used by different ser-
vices, we need to make sure that the correct syntactic coun-
terpart is available in the map before each service call.
For instance, before the “BookFlightService” is called, the
map contains (Flight → int) information and before the
“BookMedicalService” is called the map contains (Flight →
(int, string)). Thus a part of the map is reconstructed every
time an action is called. After each service call, that part of
the map is destroyed. By using this reconstruction method-
ology the syntactic differences can be avoided for the para-
meters with the same intended semantic meaning.

20 M. Kuzu, N. K. Cicekli

The same problem can also occur when a service is in-
voked to obtain values of unknown parameters if the user
does not know the values. For instance during a flight reser-
vation, the web service may need the flight number which is
not known by the user. Another service can provide the flight
number with the source, destination and time data which can
be provided by the user. In such a case, the map is updated
with values obtained from the other service. The syntactic
incompatibility problem mentioned above may arise in this
case too, since the other service may provide the required
input of the reservation service with a different syntax. This
problem can be avoided by using the syntactic checks be-
tween the input structures of both services, but it is not im-
plemented in the current version of our system.

5.3 Action caching mechanism

Although Simplanner provides important advantages for
providing timely response, precompiled solutions are still
very valuable. Different users may have similar requests, so
if previously found plans are saved they can be used again
later.

In this paper, such a previous experience caching mech-
anism is proposed. During the processing of each session,
the system keeps track of the successfully executed services
and the initial and final logical states of the current session.
After the successful termination of the session, the system,
constructs a new PDDL action with a precondition which
represents the initial state of the current session and with an
effect which represents the final state of the current session.
Parameters of the action are determined according to the re-
quirements of the constructed precondition and effect parts.
The new PDDL action is added to the PDDL action defini-
tions in the domain.pddl file. After the addition of the newly
constructed action to the domain.pddl, the metadata of the
new action is written in an xml file, namely “complexAc-
tions.xml”. The metadata contains the successfully executed
logical actions in an order which represents the components
of the constructed complex action. The structure of the xml
file that holds the components of the complex action is as
follows:

<complexActions>
<action name = “LogicalActionName”>

<subAction name = “SubAction1”/>
. . . .

</action>
. . . .

</complexActions>

Simplanner usually proposes the shortest path to the so-
lution. Because of its any-time principles, Simplanner con-
centrates on finding the first action instead of the entire plan.
And, it needs some deliberation time to propose the new

best action after any state change due to an action execu-
tion or an unexpected event. If enough deliberation time is
provided, it proposes the action that is part of the shortest
plan. For instance, suppose two plans are available, such as
complexAction → B and C → D → A → B, in order to
reach a given goal. If enough deliberation time is provided
the planner proposes the complexAction.

In our system the deliberation time is determined exper-
imentally to be 5 seconds after each state change. It is the
average time to collect inputs from user and execute the web
service. During that period planning process can proceed in
parallel to refine the plan found so far. However it does not
mean that this time is always sufficient to find the optimal
solution. The complexAction will be in the optimal plan if
the new problem is similar to a previously solved problem.
Having a small number of steps in the plan is valid only for
logical actions; physically, more steps may be required to
reach the goal since the complexAction creates the effect of
executing several actions.

6 Transactional issues

One of the most important goals for the automated web ser-
vice composition that this work focuses on is to deal with the
nondeterminism of services and partial observability of the
environment. Simplanner that is chosen for the logical action
construction of WSC is very effective in dealing with these
problems. Service and information unavailability is effec-
tively handled by the planner. In case of such problems, the
planner tries to find alternative paths for solving the prob-
lem. However, sometimes it is not possible to discover alter-
native ways when unexpected situations arise, and in these
cases the session is terminated unsuccessfully.

The planner handles the unexpected situations at the log-
ical level which is not sufficient in fact. Some physical
mechanisms are also needed for handling such cases. The
proposed system works step by step and executes the ac-
tions physically. If any problem occurs in the later steps
of processing and the previously executed actions have
world altering effects, some undesired situations may arise.
Transactional execution is the solution that we propose to
solve this problem. Although the transaction concept is very
tightly coupled with databases, it is widely used in distrib-
uted systems for the same purposes at an application level.

Specifications, such as WS-Coordination, WS-Atomic
Transaction and WS-Business Activity, are proposed to en-
able transactional features during web service collaboration
[8, 13, 37]. The WS-Business Activity framework is more
suitable for long running transactions. The web service com-
position may also be considered as a long running transac-
tion because generally a large amount of user interaction is
needed for information collection and the planner needs a

Dynamic planning approach to automated web service composition 21

deliberation time before the real service execution. There-
fore WS-Business Activity framework is used in the pro-
posed system.

The WS-Business Activity framework is used for coordi-
nator-participant communication and the Web Services-
Business Activity Initiator Protocol [38] is used for the com-
munication between the service composer agent and the co-
ordinator in the proposed system. The implementations of
both protocols are done by the Apache Kandula project [39]
and Kandula is adapted to the proposed system. The coordi-
nator implementation is deployed as a web service and the
world altering service calls are done through the coordinator.
When the service composer decides to make a real service
call, it checks to see if the service is a world altering or in-
formation gathering service by examining the logical effects
of the logical action that corresponds to the service to be ex-
ecuted. If it is a world altering service, the service composer
agent invokes the service in a transactional activity.

In this work, world altering services are assumed to im-
plement the WS-Business Activity participant specification.
This assumption is not needed in fact, because it is possible
to find out if the web services implement that specification or
not from their WSDL definitions. However, such an assump-
tion is still made for the sake of simplicity. For instance,
a booking flight service with inputs “user account”, “flight
number” and “personname” has an input message part as
follows in its WSDL definition.

<message name = “BookFlightInputMsg”>

<part name = “transactionalContext”
type = “tns:contextChoiceType” />

<part name = “useraccount” element = “tns:UserAccount” />

<part name = “flightnumber” type = “xsd:int” />

<part name = “personname” type = “xsd:token” />

</message>

The type “contextChoiceType” is defined according to
the “WS-Business Activity” specification. When a transac-
tion is required, the coordination context that is requested
by the service composer agent from the coordinator is trans-
ported to the web service. For the example above, the first
input argument represents the context and it is sent to the
real service by the dynamically constructed method.

The coordinator keeps the status of all world altering web
service participants through interfaces provided by the WS-
Business Activity. However, all commands that are sent to
the participants by the coordinator are determined by the
service composer itself. The service composer sends the
commands to the coordinator through the Web Services-
Business Activity Initiator protocol according to its deci-
sions. The coordinator works as a proxy that conveys com-
mands from the service composer agent to the web services.

When the system decides that the current session can be
terminated successfully, it sends the command “closeAllPar-
ticipants” to the coordinator, which informs each participant

about the situation. The execution component of the agent
checks to see if there exists a remaining goal to be achieved
before requesting a new action from the planner. If there are
no remaining goals, that is if all requests are handled, then
the system decides to terminate the session successfully and
informs the world altering services about the decision by
means of issuing the command “closeAllParticipants”.

The planner tries to find alternative paths when an un-
expected situation arises. It is sometimes possible that such
paths do not exist. In such cases a solution cannot be found
for the requested goal and sometimes, even if the unexpected
events do not happen, it is understood that the planner can-
not provide a solution to the problem after several steps. In
such cases, the system issues the command “cancelorCom-
pensateAllParticipants” to the coordinator for the current ac-
tivity and the coordinator asks the participating web services
to execute their compensation operations.

The problem of proving that a plan does not exist is very
difficult not only for Simplanner but for all existing plan-
ners. Generally the whole search space needs to be exam-
ined, which is impossible for big environments such as the
WSC domain since a huge amount of time is needed. Some
admissible heuristics are needed for understanding why a
plan does not exist. In the WSC case, it is very rare that the
same service is called with the same input values in a single
session. Although sometimes a need for such calls occurs,
such rare cases are not considered for the sake of a timely re-
sponse to all other cases. In this system the abort decision is
made if the same service call is proposed by the planner with
the same logical object parameters and with the same phys-
ical values (obtained from the Logical/Physical map). Some
more restricted admissible heuristics can be applied, such as
considering the current logical state. That is, the abort de-
cision is made if the same service call is proposed by the
planner with the same logical object parameters and with
the same physical values in the same current state. In fact
all these session abort heuristics are domain dependent and
they cannot be used in a domain independent manner.

In the case of cached actions, a complex logical action
is composed of multiple physical actions. The service calls
of the physical actions are done by conforming the transac-
tional rules mentioned before, that is, world altering service
components are called through the coordinator. The logical
effects of each physical service component are made visible
after each service call. Therefore, the planner finds alterna-
tive paths in case a complex action fails, by considering the
logical effects of successfully called physical components
of the complexAction. As a result, when the successful ter-
mination decision is made by the system, the compensation
operations of the physical components of the failed com-
plexAction do not need to be called since the planner con-
siders their logical effects while discovering the new path. If
an alternative path cannot be found, the usual compensation

22 M. Kuzu, N. K. Cicekli

mechanism is applied to all the previously executed world
altering services.

7 Case study: travel domain

In this section, a simple case study is presented in order to il-
lustrate the implementation and the functionality of the pro-
posed system. The system is highly resistant to unexpected
real world situations and it provides a timely response.

Domain independent AI planners cannot be practically
used when the number of available actions is more than a
few thousands. The current system is applicable in relatively
small environments; it is applicable in some prefiltered en-
vironments. What we mean by a prefiltered environment is
that the relevant web services are discovered and saved in
a temporary registry. The planner considers only the ser-
vices in the local registry. Scalability cannot be provided
within the current domain independent planners. Some fil-
tering mechanisms are offered by other works to provide
scalability. We are currently working on such a mechanism
in order to provide scalability on this work but it is out of
the scope of this paper.

The case study is based on a travel domain scenario
which is used as a data set in [40]. The following web ser-
vices are used in this scenario. This case study contains two
parts that focus on information and service unavailability,
respectively.

RequestMedicalFlight: provides the same functionality as the
ProposeFlight service.
CreateMedicalFlightAccount: provide the same functionality as the
CreateFlightAccount service
CreateVehicleTransportAccount: This service creates a vehicle
transport account for a particular person. The user provides personal
information such as name, address, password, etc. and the service
creates a transport account that is required for reservation in later
stages.
RegisterPersonWithTransport: This service reserves a particular
transport to a particular person. It requires that the person has a
transport account and it requires transport id information. If the
requirements of the service are provided, it books the transport for the
person.
RequestTransport: This service provides a transport id
corresponding to request parameters such as source and destination
locations and arrival time.
CreateFlightAccount: This service creates a flight account for a
particular person. The user provides personal information such as
name, address, password, etc. and the service creates a flight account
that is required for reservation in later stages.
BookFlight: This service reserves a particular flight to a particular
person. It requires that a person who has a flight account and it
requires flight id information. If the requirements of the service are
provided, it books the flight for the person.
ProposeFlight: This service provides a flight id corresponding to
request parameters such as source and destination locations and
arrival time.
BookMedicalFlight: provides the same functionality as the
BookFlight service.

7.1 Case 1: information unavailability

In this scenario, the user requests the reservation of trans-
portation, using the constructs of the available travel ontol-
ogy.

<Patient rdf:ID = “Patient_0”/>

<VehicleTransport rdf:ID = “TransportToHospital”>

<isBookedFor rdf:resource = “#Patient_0”/>

</VehicleTransport>

This request is constructed using OWL individuals and
their relationships in the travel ontology by the user explic-
itly (At this version, requests are manually constructed; an
ontology editor will be integrated to the system to construct
initial requests visually in later versions). The user asserts
the system that s/he wants to make a VehicleTransport reser-
vation for a Patient. The details of the request are asked to
the user in later stages by the system (who the patient is,
reservation details such as time, departure, etc. . .) accord-
ing to the semantic and syntactic details of services that will
be used. This request is converted to PDDL and the plan-
ner starts to work on the problem. The service “RegisterPer-
sonWithTransport” does the booking operation, but it has a
precondition that it requires a valid customer account and
some other inputs. The service “CreateVehicleTransportAc-
count” satisfies the precondition of the service “Register-
PersonWithTransport”. As a result the planner produces the
plan given in Fig. 7.

The planner proposes an action with logical parameters
such as “desiredaccount”, “emacc” and “emaworker” for
this particular case. Before the service composition begins,
the Logical/Physical map is constructed and the physical
counterparts of all logical objects are written on the map by
using the grounding part of OWL-S and the WSDL defini-
tions of the services. The “Input Dialog” is prompted to the
user in order to obtain the physical values of logical objects.
The user enters the inputs and the map is updated with the
given values. By using the provided inputs and previously
constructed service client stubs, the system does the actual
service call.

Since the service “CreateVehicleTransportAccount” has
world altering effects, its call is done through the WS-
Business Activity coordinator. After calling “CreateVehicle-
TransportAccount”, the precondition of “RegisterPerson-
WithTransport” is satisfied and the system prompts the
“Input Dialog” to the user that asks for the physical coun-
terparts of the logical parameters (See Fig. 8). The user
does not know the “transportid”, which is the physical coun-
terpart of the logical object “transporttohospital”. Since its
real value is left “unknown”, the system removes the logical
statement “agentHasKnowledgeAbout transporttohospital”.
So the planner searches for an action that provides the re-
quired input.

Dynamic planning approach to automated web service composition 23

Fig. 7 Initial plan generation

The planner discovers another service “RequestTrans-
port” which is able to provide the missing information. The
required inputs are requested from the user for firing the ser-
vice “RequestTransport”, and after the required information
is collected the actual service is called.

The service “RequestTransport” is called directly be-
cause it is an information providing service. Since the
“transportid” is provided by another service, the required
inputs for “RegisterPersonWithTransport” service become
ready and the actual service call is done by the system using
these inputs.

After the service “RegisterPersonWithTransport” is exe-
cuted, the session is terminated successfully since the user’s
goal has been reached.

7.2 Case 2: service unavailability

In this case, when the user tries to reserve a flight, some
unexpected situations occur (i.e. service failures). Only
the most important parts of this case are presented in or-
der not to repeat things that were already explained. Ini-
tially the system discovers a plan which contains ser-
vices “CreateFlight”, “ProposeFlight” and “BookFlight”.

The services “CreateFlight” and “ProposeFlight” are suc-
cessfully executed, but during the execution of the service
“BookFlight”, the execution fails because of some network
problems. The system then removes the logical statement
“validBookFlightAtomicProcess” from the current state and
tries to find an alternative path in order to respond the
user request. Since “validBookFlightAtomicProcess” state-
ment is a precondition for firing the “BookFlight” ser-
vice and it is not true anymore, that service becomes
unavailable to the planner. The planner discovers a new
path for achieving the goal by dynamic replanning. The
new plan contains “CreateMedicalFlightAccount”, “Pro-
poseMedicalFlight” and BookMedicalFlight” respectively
(see Fig. 9).

The services “CreateMedicalFlightAccount” and “Pro-
poseMedicalFlight” are executed successfully. During the
execution of the “BookMedicalFlight” service, a failure oc-
curs because of service unavailability. The predicate “valid-
BookMedicalFlightAtomicProcess” is removed from the
current state so that the service will not be considered as
an available action any more for this particular session. This
time the planner cannot produce an initial plan but proposes

24 M. Kuzu, N. K. Cicekli

Fig. 8 Unknown information

the best available action which is the “CreateVehicleTrans-
portAccount” service.

After the service “BookMedicalFlight” has failed, the
planner cannot find a new plan and starts to search the
state space. During the state space search, the same action,
with the same logical parameters is proposed by the planner.
However this causes the session to abort. All of the services
that are executed up to the abort decision have world alter-
ing effects in this scenario. Therefore their calls are con-
ducted through the business activity coordinator. After the
abort decision is made, the system sends a “compensateAll”
signal to the coordinator which then transmits it to the par-
ticipants. The participant services fire their compensation
mechanisms. As a result, undesired side effects of the previ-
ously executed actions are prevented.

Besides algorithmic scalability, the interactive web ser-
vice execution is realistic. The user interfaces are not man-
ually engineered; all of them are generated at run time au-
tomatically by using the xml schema definitions provided in
the WSDL files. Before any service call, the logical actions
and their syntactic counterparts are available in the Logi-
cal/Physical map. When a logical action is proposed by the

planner, its physical counterparts (WSDL counterparts) are
retrieved from the map and the user interface is constructed
with that information at run time (the input and output inter-
face is represented as a dom tree and the tree is updated with
the information retrieved from the map). When the user pro-
vides the required inputs the map is updated with the values
and the real service call is done if all inputs are provided.
The map contains all syntactic details (if a complex type de-
finition exists in WSDL, it is represented in the map and the
user interface is constructed according to it).

It is clear that the proposed system is highly adaptable
for the real world environment. A direct comparison with
other service composers in terms of algorithmic efficiency
is not possible, since the approaches are quite different. To
the best of our knowledge this is the first work that com-
bines replanning with transactional execution and combines
planning and user interaction for service execution. For in-
stance, to run OWS-XPLAN [40], all information must be
given as a config file and there is no user interaction. The
system proposes the complete plan without considering the
possible service failures. It only gives a sequence of ser-
vice calls and does not execute the services. The web service

Dynamic planning approach to automated web service composition 25

Fig. 9 Service failure

composer software of Mindwap lab [41] allows interaction
with the user, but it works with only information provid-
ing services. It only considers inputs and outputs of the ser-
vices but not preconditions and effects. Our framework on
the other hand supports world altering web services; allows
user interaction; and considers preconditions and effects. It
has more functionality as an integrated framework. There-
fore the available softwares are not directly comparable with
our system.

However the existing approaches may be compared with
respect to the planners they use, since the bottleneck of the
systems is usually the planning algorithm. If the used plan-
ner is effective then the system becomes effective too. Sim-
planner is compared with similar planners and it is shown
that Simplanner is timely effective [7]. As a result our sys-
tem is effective. If something unexpected occurs during op-
eration, its handling should be done in a timely manner with
the help of Simplanner’s algorithm.

Experiments that are presented in [7] show that the de-
liberation time is high at the initial steps when compared
to the final steps, since the goal is far away. However, even
in the initial states the time required for an action decision
can be limited to less than the execution time of a particular

service. According to experiments, unexpected situations do
not increase the action production time, so dealing with the
unexpected situations can be done in a responsive way.

8 Conclusions and future work

This paper proposes a novel solution for performing au-
tomated web service composition and invocation. Users
present their requests to the proposed framework and the
system handles the required analysis. It finds the required
web services, the execution order of the found web services
and possible data transfers among them.

In the literature, a considerable amount of work on the au-
tomated WSC problem has been conducted, but there is no
complete solution to the problem yet. The literature lists sev-
eral open problems. There are solutions proposed to solve
some of these problems but the open problems are not inde-
pendent of each other. For instance proposing a re-planning
component without a real interaction is not sufficient alone,
dynamic object generation is part of integrating planning
and execution. The execution component without transac-
tional properties and without user interaction is unaccept-
able in real world. Therefore we propose the framework in

26 M. Kuzu, N. K. Cicekli

this paper as a solution to the open problems in one frame-
work. This paper proposes the use of an AI planner, namely
Simplanner, and it also proposes integrating the web ser-
vice transaction frameworks (i.e. WS-Coordination and WS-
Business Activity) to its automatic web service invocation
mechanism. The solution that is proposed by this paper is
highly adaptable, which makes it appropriate for real world
applications.

The important features of the proposed “automated web
service composition and invocation framework” can be sum-
marized as follows:

• It is highly fault tolerant, which is very important for real
world applications.

The proposed system interleaves planning and execution.
If any problem occurs during service execution, the unex-
pected event handler is fired. The unexpected event handler
initially tries to resolve the problem at a high level by us-
ing Simplanner’s dynamic replanning features. If it cannot
solve the problem at high level, physical operations are con-
ducted. Since world altering service calls are done by con-
forming the WS-Business Activity specification, in failure
situations compensation mechanisms are fired which pre-
vent undesired side effects.

• It is responsive; users do not to wait for long periods of
time to get the results of their requests.

The component that determines the time for responding to
the user is the AI planner, since computationally complex
operations are handled by it. Simplanner finds the first best
action in polynomial time, and during real execution it finds
the next action. The deliberation time required by the plan-
ner is very short, and sometimes this short deliberation time
can be eliminated. The system has an action caching mecha-
nism. If a similar problem has previously been solved by the
system, the precompiled solutions are directly used. Shortly,
the proposed system is highly responsive.

• Users do not need to provide an excessive amount of in-
formation initially; the system asks for only the required
information during the composition process.

It is impossible for users to know which services are going
to be used in the handling of their requests, so they cannot
provide all required inputs initially. In the proposed system,
users initially give a very high level description of their re-
quests. The system discovers the required services for the
high level definitions and asks the user for the required in-
put. If users cannot provide the input, it discovers new paths
that do not require that particular information or, if possible,
it discovers other web services that can provide the particu-
lar information.

• The dynamic object generation of web services is mod-
eled by using in-memory data structures and with contin-
uous user interactions.

Web services sometimes produce information which is not
available initially. The system, constructs an object for each
type definition of the worked domain. Their availability and
unavailability is represented by using logical statements and
determined according to user interactions.

The paper provides these important contributions to the
automated web service composition and invocation prob-
lem. However, some important future work still exists. The
most important future work is providing scalability. Almost
all domain independent AI planners fail to work with more
than thousands of actions, which is a very small number
for real world cases. One of the possible solutions is to do
some kind of filtering before transferring the problem to the
planner. A filtering operation will eliminate irrelevant web
services according to the user’s goal and give the planner a
problem with a reasonable search space. A filtering proce-
dure may eliminate some of the relevant services as well,
but it is acceptable, otherwise the proposed system cannot
be used in the real world where there exist millions of web
services.

Another direction for future study is to include more syn-
tactic analysis to the system. In the current system, some-
times the inputs of the service cannot be provided by the
users but by other services. In this case, semantic types are
compared. However semantic type similarity does not mean
that syntactic types are equal too. For instance, the output of
service A provides the input of service B, that is; the output
of A and the input of service B has the same semantic type,
but their WSDL counterparts may be different. Such cases
are rare, but they are problematic situations which should be
solved by a syntactic analysis.

Another future work is to increase the user’s involvement
in the WSC procedure. The users can see the results of the
executed services immediately and according to those re-
sults they might be able to direct the system. If a service re-
turns an undesired result, they will be able to invalidate that
service for that session through the interfaces. In the cur-
rent system, service invalidations are conducted automati-
cally for the unexpected situations. This mechanism can eas-
ily be used by the users themselves manually when desired.

Acknowledgements The bulk of this work was completed while
Mehmet Kuzu was supported by the Scientific and Technical Council
of Turkey (TUBITAK). The authors would like to thank anonymous
referees for many helpful suggestions which have improved the pre-
sentation of the paper. The authors would also like to thank one of the
creators of Simplanner Dr. Oscar Sapena for helping them understand
the details of Simplanner.

References

1. Rao J, Su X (2004) A survey of automated web service compo-
sition methods. In: Proceedings of 1st international workshop on
semantic web services and web process composition, pp 43–54

Dynamic planning approach to automated web service composition 27

2. Milanovic N, Malek M (2004) Current solutions for web service
composition. IEEE Trans Internet Comput 8(6):51–59

3. Srivastava B, Koehler J (2003) Web service composition—current
solutions and open problems. In: Proceedings of ICAPS’03 work-
shop on planning for web services, Trento, Italy, 2003, pp 28–35

4. Agarwal V, et al (2008) Understanding approaches for web service
composition and execution. In: Proceedings of the 1st Bangalore
annual compute conference, India, 2008, pp 1–8

5. Alamri A, Eid M, Saddik AE (2006) Classification of the state-of-
the-art dynamic web services composition techniques. Int J Web
Grid Serv 2(2):148–166

6. Polleres A (2004) AI planning for web service composition. Pre-
sentation, Ilog, Paris, France, 2004. http://axel.deri.ie/~axepol/
presentations/20040907-paris-ilog-AIplanning4WSC.ppt

7. Sapena O, Onaindia E (2007) Planning in highly dynamic environ-
ments: an anytime approach for planning under time constraints.
J Appl Intell 29(1):90–109

8. OASIS (2006) Web services business activity specification. http://
docs.oasis-open.org/ws-tx/wsba/2006/06

9. OWL-S Semantic markup for web services. http://www.w3.org/
Submission/OWL-S/

10. Java Reflection. http://java.sun.com/docs/books/tutorial/reflect/
index.html

11. Sirin E, Parsia B, Wu D, Hendler J, Nau D (2004) HTN plan-
ning for web service composition using SHOP2. J Web Semant
1(4):377–396

12. Nau D, Au TC, Ilghami O, Kuter U, Murdock W, Wu D, Yaman F
(2003) SHOP2: an HTN planning system. J Artif Intell Res (JAIR)
20:379–404

13. OASIS (2006) Web services coordination specification. http://
docs.oasis-open.org/ws-tx/wscoor/2006/06

14. Klusch M, Gerber A, Schmidt M (2005) Semantic web service
composition planning with OWLS-XPlan. In: Proceedings of the
AAAI fall symposium on semantic web and agents, Arlington VA,
USA. AAAI Press, Menlo Park

15. Hoffmann J (2003) The metric-FF planning system: translating
ignoring delete lists to numeric state variables. J Artif Intell Res
(JAIR) 20:291–341

16. Klusch M, Renner K-U (2006) Fast dynamic re-planning of com-
posite OWL-S services. In: Proceedings of IEEE/WIC/ACM in-
ternational conferences on web intelligence and intelligent agent
technology—workshops, 2006, pp 134–137

17. Peer J (2004) A PDDL based tool for automatic web service com-
position. In: Proceedings of the 2nd international workshop on
principles and practice of semantic web reasoning, 2004, pp 149–
163

18. WSPlan http://sourceforge.net/projects/wsplan/
19. Peer J (2005) Semantic service markup with SESMA. In: Pro-

ceedings of the web service semantics workshop (WSS’05) at the
14th international world wide web conference (WWW’05), 2005,
Chiba, Japan, pp 100–116

20. Younes HLS, Simmons RG (2003) VHPOP: versatile heuristic
partial order planner. J Artif Intell Res (JAIR) 20:405–430

21. Gerevini A, Saetti A, Serina I (2003) Planning through stochas-
tic local search and temporal action graphs. J Artif Intell Res
20(1):239–290

22. Agarwal V, Dasgupta K, Karnik N, Kumar A, Kundu A, Mittal S,
Srivastava B (2005) A service creation environment based on end
to end composition of web services. In: Proceedings of the 14th
international conference on world wide web, Chiba, Japan, 2005,
pp 128–137

23. WS-BPEL http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wsbpel

24. Bartalos SP, Bieliková M (2008) Enhancing semantic web services
composition with user interaction. In: Proceedings of the IEEE
international conference on services computing (SCC), Honolulu,
Hawaii, USA, 2008, pp 503–506

25. Marconi SA, Pistore M, Traverso P (2008) Automated composi-
tion of web services: the ASTRO approach. IEEE Data Eng Bull
31(3):23–26

26. Digiampietri LA, Alcázar JJP, Medeiros CB (2008) AI planning
in web services composition: a review of current approaches and
a new solution. In: Proceedings of the XXVII Brazilian computer
society conference (CSBC), July 2008

27. Wiesner K, Vaculín R, Kollingbaum MJ, Sycara KP (2009) Recov-
ery mechanisms for semantic web services. In: Meier R, Terzis S
(eds) International conference on distributed applications and in-
teroperable systems (DAIS). LNCS, vol 5053. Springer, Berlin,
pp 100–105

28. Kazhamiakin R, Bertoli P, Paolucci M, Pistore M, Wagner M
(2009) Having services “YourWay!”: towards user-centric com-
position of mobile services. In: Future Internet FIS 2008. LNCS,
vol 5468. Springer, Berlin, pp 94–106

29. Bryce D, Kambhampati S (2007) A tutorial on planning graph-
based reachability heuristics. AI Mag 28(1):47–83

30. Ghallab M, Howe A, Knoblock C, McDermott D, Ram A,
Veloso M, Weld D, Wilkins D (1998) PDDL: the planning domain
definition language, AIPS-98 planning committee

31. Smith MK, Welty C, McGuinness DL OWL web ontology lan-
guage guide. http://www.w3.org/TR/owl-guide/

32. Christensen E, Curbera F, Meredith G, Weerawarana S Web
services description language (WSDL) 1.1. http://www.w3.org/
TR/wsdl

33. Kim H, Kim I (2007) Mapping semantic web service descriptions
to planning domain knowledge. Proc IFMBE 14(1):388–391

34. OWLS2PDDL tool http://projects.semwebcentral.org/projects/
owls2pddl/

35. WSIF Web services invocation framework. http://ws.apache.org/
wsif/

36. Axis Apache web services project. http://ws.apache.org/axis/
37. OASIS (2006) Web services atomic transaction specification.

http://docs.oasis-open.org/ws-tx/wsat/2006/06
38. Erven H, Hicker G, Huemer C, Zaptletal M (2007) The web

services-business activity-initiator (WS-BA-I) protocol: an exten-
sion to the web services-business activity specification. In: IEEE
international conference on web services (ICWS), 2007, Salt Lake
City, pp 216–224

39. Kandula Apache WS-transaction project. http://ws.apache.org/
kandula/, http://ws.apache.org/axis/

40. OWLS-XPLAN http://projects.semwebcentral.org/projects/owls-
xplan/

41. Mindswap Web service composer software. http://www.
mindswap.org/~evren/composer/

42. Srivastava B (2004) A software framework for building planners.
In: Proceedings of knowledge based computer systems (KBCS),
2004, Hyderabad, pp 382–392

Mehmet Kuzu is currently a PhD
student in Computer Science de-
partment at the University of Texas
at Dallas. He received his BS and
MS degrees in Computer Engineer-
ing at the Middle East Technical
University, Ankara, Turkey, in 2007
and 2009, respectively. His research
areas include intelligent systems,
data mining, security and privacy is-
sues related to the management of
data.

http://axel.deri.ie/~axepol/presentations/20040907-paris-ilog-AIplanning4WSC.ppt
http://axel.deri.ie/~axepol/presentations/20040907-paris-ilog-AIplanning4WSC.ppt
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://java.sun.com/docs/books/tutorial/reflect/index.html
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://sourceforge.net/projects/wsplan/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://projects.semwebcentral.org/projects/owls2pddl/
http://projects.semwebcentral.org/projects/owls2pddl/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://ws.apache.org/axis/
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://ws.apache.org/kandula/
http://ws.apache.org/kandula/
http://ws.apache.org/axis/
http://projects.semwebcentral.org/projects/owls-xplan/
http://projects.semwebcentral.org/projects/owls-xplan/
http://www.mindswap.org/~evren/composer/
http://www.mindswap.org/~evren/composer/

28 M. Kuzu, N. K. Cicekli

Nihan Kesim Cicekli is an Asso-
ciate Professor in the Department
of Computer Engineering at the
Middle East Technical University,
Ankara, Turkey. She received her
BSc degree in Computer Engineer-
ing at the Middle East Technical
University in 1986. She received the
MSc degree in Computer Engineer-
ing at Bilkent University in Ankara
in 1988; and the PhD degree in
Computer Science at Imperial Col-
lege, London, UK in 1993. She was
a visiting associate professor at the
University of Central Florida, Or-

lando, USA, from 2001 till 2003. Her current research interests include
multimedia databases, semantic web, web services, workflow manage-
ment systems, recommender systems and temporal reasoning. She is
a member of IEEE. She served on the program committee of several
international conferences including VLDB and ICDE. For more infor-
mation about her, see http://www.ceng.metu.edu.tr/~nihan.

http://www.ceng.metu.edu.tr/~nihan

	Dynamic planning approach to automated web service composition
	Abstract
	Introduction
	Related work
	Simplanner
	Simplanner application to WSC domain
	Pre-processing phase
	Planning phase
	Action handling phase
	Execution phase
	Unexpected event handling phase

	Automated service invocation issues
	Automated service invocation
	Logical/Physical map
	Action caching mechanism

	Transactional issues
	Case study: travel domain
	Case 1: information unavailability
	Case 2: service unavailability

	Conclusions and future work
	Acknowledgements
	References

