
Appl Intell (2011) 35:375–398
DOI 10.1007/s10489-010-0229-0

A large-scale distributed framework for information retrieval
in large dynamic search spaces

Eugene Santos, Jr. · Eunice E. Santos · Hien Nguyen ·
Long Pan · John Korah

Published online: 27 April 2010
© Springer Science+Business Media, LLC 2010

Abstract One of the main problems facing human analysts
dealing with large amounts of dynamic data is that impor-
tant information may not be assessed in time to aid the deci-
sion making process. We present a novel distributed process-
ing framework called Intelligent Foraging, Gathering and
Matching (I-FGM) that addresses this problem by concen-
trating on resource allocation and adapting to computational
needs in real-time. It serves as an umbrella framework in
which the various tools and techniques available in informa-
tion retrieval can be used effectively and efficiently. We im-
plement a prototype of I-FGM and validate it through both
empirical studies and theoretical performance analysis.

E. Santos, Jr.
Thayer School of Engineering, Dartmouth College,
8000 Cummings Hall, Hanover, NH 03755, USA
e-mail: Eugene.Santos.Jr@dartmouth.edu

E.E. Santos · J. Korah
Department of Computer Science, University of Texas at El Paso,
Room 234, Computer Science Building, 500 West University
Avenue, El Paso, TX 79968-0518, USA

E.E. Santos
e-mail: eesantos@utep.edu

J. Korah
e-mail: jkorah@utep.edu

H. Nguyen (�)
Mathematical and Computer Sciences Department, University of
Wisconsin, 800 W. Main street, Whitewater, WI 53190, USA
e-mail: nguyenh@uww.edu

L. Pan
Department of Computer Science, Virginia Polytechnic Institute
& State University, 660 McBryde Hall,
Blacksburg, VA 24060, USA
e-mail: panl@vt.edu

Keywords Information search and retrieval · Distributed
processing · Multi-agent architecture · Dynamic anytime
processing · Content analysis and indexing

1 Introduction

One of the challenging problems that people face with to-
day’s information technology is the difficulty of retriev-
ing timely relevant information from a huge amount of in-
formation that is constantly and rapidly changing. Due to
the revolutionary advances in communication systems, data-
base connectivity, and the Internet, we can have instant ac-
cess to enormous and diverse sources of information. This
has changed the way a user accesses and uses information
in his/her personal and professional life. Most users now
are accessing databases that are large and dynamic in na-
ture. Recently, the Internet has not only seen a tremendous
growth, but also a dramatic change, in content (e.g. as cited
in [1], the surface Web is growing at a rate of 7.5 million
documents per day). The ascendency of new trends such as
Web 2.0 and e-commerce has led to the establishment of a
multitude of businesses involved with new media (e.g. blogs,
RSS, social networking, iReport1), auctions, financial mar-
kets, and so forth. This has, in turn, led to a dramatic in-
crease in the rate at which data is being added to the In-
ternet, making it an extremely dynamic place. Additionally,
users have come to depend on the Internet for their up-to-
date information needs such as news, stock prices, sports,
and entertainment, which has created the need for “real time
search” capabilities. This is especially true for profession-
als and analysts working in critical areas such as disaster

1http://www.ireport.com/

mailto:Eugene.Santos.Jr@dartmouth.edu
mailto:eesantos@utep.edu
mailto:jkorah@utep.edu
mailto:nguyenh@uww.edu
mailto:panl@vt.edu

376 E. Santos, Jr. et al.

relief and homeland security. For example, analysts work-
ing on natural disasters such as the 2010 earth quake in
Chile, or the 2004 Tsunami in Asia, would need to get ac-
cess to all relevant reports from all available channels such
as network news, formal government announcements, and
personal blogs as fast as possible. The information needs to
be continuously updated on a very short-time interval (say,
5 minute intervals). The existing techniques in information
retrieval and Web 2.0 could not meet this demand because
they only either offer one time retrieval or provide feeds
from other web sites based on static, pre-defined keywords
[34]. We need to have a more sophisticated tool that can dy-
namically change over time and offer the timely updates of
the content automatically. The urgent need for sophisticated
software tools to help human analysts was also highlighted
by the 9/11 commission that blamed the poor information
technology infrastructure available to analysts including the
unavailability of large amount of data collected by intelli-
gence agencies [39].

Even though researchers from various disciplines (Com-
puter Science, Information and Library Sciences, etc.) have
tried to tackle this problem by addressing the individual fac-
tors that contribute to the common problem, as yet, a unified
framework that allows different methods and mechanisms to
work together effectively is still missing. Therefore, wheels
are being reinvented and the results of such research still
have not fully addressed the problem. For example, the in-
formation retrieval community has focused on improving
the retrieval methods on large, heterogeneous data sources
[12] while the parallel and distributed computing research
has focused on different techniques to optimize the use of
resources [15]. Unfortunately, we have not been able to find
any work that bridges these two fields. This gap is a stum-
bling block to achieving a solution for real-time retrieval be-
cause we have to simultaneously deal with large amounts
of fast changing data and the time constraints imposed by a
user’s needs. Current methodologies have tried to solve this
by indiscriminately adding computational resources leading
to the creation of large data centers and supercomputing fa-
cilities. However, the growth rate of the Internet and pri-
vate databases continue to outstrip resources. Therefore, we
need to integrate smart resource allocation algorithms that
scale well with ever expanding search spaces. To summa-
rize, there is a need for a well-defined cross-disciplinary
framework that is capable of adapting, in real-time, to dy-
namic information content while addressing the problem of
computational resource allocation.

In this paper, we present such a large-scale distributed
real-time framework, called the anytime Intelligent Forag-
ing, Gathering, and Matching (I-FGM) system [27–29, 31].
We integrate the knowledge representation techniques from
Artificial Intelligence (AI) and algorithms from Distributed
and Parallel computing to efficiently allocate and deploy

computation resources in a unified framework. The central
goals of this framework are quick retrieval of relevant results
in large dynamic search spaces, easy incorporation of new
retrieval technologies, and capability for employing multiple
retrieval algorithms in tandem. To build such a framework,
we need to address two main issues which are efficient re-
source allocation and unified representation of documents
from different resources. We employ efficient resource al-
location strategies within I-FGM by using a multi-agent ar-
chitecture with a modular structure and a partial information
processing strategy to reduce the time taken to retrieve in-
formation. In order to deal with data heterogeneity, we use
a common unifying knowledge representation in the form
of concept graphs to represent documents retrieved from
different sources. The multi-agent technology allows rapid
allocation and deployment of resources in a parallel dis-
tributed environment. It also enables us to employ sophis-
ticated resource allocation principles. We believe that the
Achilles’ heel in current retrieval technologies is its require-
ment to fully process a document before its relevancy can
be measured. We term such systems as full-processing sys-
tems. In the full-processing systems, the resource allocation
strategies that can be applied is severely limited. We pro-
pose a paradigm shift in the way documents are processed
by introducing partial processing—incrementally process-
ing documents in multiple steps and calculating their par-
tial relevancy or approximation of the final relevancy after
each step. This partial relevancy helps prioritizing the allo-
cation of computational resources to documents that have
‘potential’. This strategy of prioritizing documents helps in
the efficient use of limited computational resources. As we
shall see, this strategy is crucial to dealing with a rapidly
changing space of information in real-time. It also helps in
delivering a rough set of results to the user quickly and grad-
ually refines these results. Our experimental section shows
that a dynamic resource allocation strategy based on par-
tial processing is more effective than current strategies that
range from random allocation to static resource allocation.
We further bolster these results with a theoretical analysis of
the full and partial processing systems.

Furthermore, the multiagent architecture has a natural
modularity that allows for the rapid assimilation of third
party tools required for accessing and processing informa-
tion from different sources in different ways. This modular-
ity enables deployment on a wide variety of grid computing
platforms/architectures [11].

Finally, the common knowledge representation in I-FGM
captures document information retrieved by any third party
tool based on the representation of document graphs [24–26]
representation. Document graphs are graph based structures
where nodes and edges represent the concepts in a docu-
ment and the relationships among them. Having a common
representation in our framework allows for the processing

A large-scale distributed framework for information retrieval in large dynamic search spaces 377

and display of results from diverse search techniques on a
unified ranking system. Although this paper deals with text
retrieval, I-FGM and document graphs have also been suc-
cessfully used with other types of data such as images [31].

In order to validate I-FGM, a prototype has been built
with the Internet as the target search space with various
search engines based on third party tools. In order to dupli-
cate the dynamic conditions that some users like intelligence
analysts often face, we provide a dynamic simulation envi-
ronment where documents enter I-FGM at different rates.
The validation is provided through comparison with con-
trol systems that reflect the current paradigms in information
retrieval. Additionally, we show through analytical model-
ing that our resource allocation strategy based on the par-
tial processing paradigm is better than conventional meth-
ods.

In what follows, we describe the related work and point
out the challenges we faced while designing I-FGM. We also
provide background on document representation within our
I-FGM framework. Next, we present the framework in de-
tail, followed by a description and analysis of our validation
experiments. We then provide theoretical analyses of system
performance for I-FGM to better explain the observed per-
formance. Finally, we present our conclusions and discuss
future work.

2 Related work and background

2.1 Related work

In this section, we review the existing approaches to re-
trieving information in a distributed setting and the exist-
ing architectures for distributed information retrieval (dis-
tributed IR).

We are primarily interested in being able to employ
and adapt existing state-of-the-art information retrieval tech-
nique into our framework to enable retrieval in large dy-
namic search spaces. As such, we are not focusing on
developing a new retrieval method. While most typical
document retrieval techniques (such as Boolean, keyword-
based matching, and probabilistic information retrieval, to
name a few) have relatively low computational requirements
[40, 41], they still do not address the problems arising from
the inherent dynamics of the information space. The ex-
isting approaches to retrieving information such as filter-
ing [13, 21], taxonomies [4, 5, 36], user modeling [6], and
document clustering [2, 37], cannot achieve our objectives
for quickly obtaining accurate results in dynamic situations.
The current search engines use pre-processing techniques
such as indexing web pages to achieve quick returns to the
queries. Indexing is only done periodically and typically not
in real-time. This may work for predominantly static infor-

mation but will fail in situations such as real-time intelli-
gence or disaster relief operations where most of the infor-
mation is being quickly produced and changing rapidly, e.g.,
streaming data [7]. Since such databases are dynamic with
new documents coming in and older documents being up-
dated by new real-time information, the indexing cycle must
be continuous.

Distributed IR is often considered a solution for retrieval
in large databases (see [8] for more discussion on distributed
IR). Resource allocation is typically treated as the simple
“distribution of labor” or “partitioning of indexes” methods.
Unfortunately, dynamic databases are changing at a much
faster rate than processor speeds are capable of handling.
One straightforward solution (which incidentally is the most
popular method in distributed retrieval methods) is to con-
sider a document to be an indivisible unit and completely
process it before moving on to the next. This limits the ef-
fectiveness of potential methods in dynamic search spaces
and thus, does not adequately address our challenge.

Although a number of architectures have been suggested
for distributed IR, there has been little work in anytime in-
formation retrieval architectures for dynamic databases and
information spaces. The Harvest system [3], for example, is
an architecture suggested for distributed web searching. The
main difference between I-FGM and Harvest is that the Har-
vest system does not have an intelligent resource allocation
strategy which can improve system efficiency over time and
imbue the system with the ability to bring new relevant in-
formation to the attention of the analyst in a timely manner.
ACQUIRE [9] is a powerful system designed for retrieving
heterogeneous data from distributed databases. The system
can dynamically change its retrieval strategy according to
retrieval factors such as network speed, computational capa-
bilities. However, it does not take the dynamism of data into
account.

2.2 Background

In I-FGM, we represent a document as a document graph
(DG), instead of a typical vector [22]. DG is a directed
acyclic graph that consists of concepts nodes and relation
nodes. The main difference between the DG representation
and a vector space model is that we further explore the syn-
tactic structure of sentences in a document to establish the
relationships among the concepts. The DG representation
has been successfully used in the development of a cognitive
user modeling technology to enhance the performance of an
IR system [24–26]. This cognitive user modeling technology
has been shown to help the target IR system to retrieve more
relevant documents earlier when compared to the traditional
vector space model approach in evaluations with testbed col-
lections found in the IR community such as CRANFIELD,
CACM, and MEDLINE [18–20]. More importantly, it also

378 E. Santos, Jr. et al.

helps human intelligence analysts to retrieve more uniquely
relevant documents as compared to keyword-based retrieval
systems as demonstrated in an experimental evaluation with
human analysts at the National Institute of Standard and
Technology [30]. Given the above user modeling technology
for information retrieval, the I-FGM framework is a natural
complement.

In I-FGM, to make comparisons between a query and a
document possible, we represent queries also as graphs and
we refer to them as query graphs (QGs) in this paper. Basi-
cally, a QG has similar structure as a DG and is constructed
from a user’ query in the same way that a DG is constructed
from a document. The construction of a DG is an automated
process as follows:

(1) decomposing a document from plain text format into
sentences;

(2) parsing each sentence using Link Parser [33];
(3) extracting noun phrases (NPs) from the parsing results;

and,
(4) generating relations between concepts/entities based on

heuristic rules (see [23] for details).

The most computationally costly step in this process is pars-
ing the sentence, with a complexity of O(m3) where m is
the number of words in a sentence [33]. A simple query and
its corresponding DG are shown below in Fig. 1. The query
“Asian Tsunami disaster in South East Asia” contains two

main NPs and one prepositional phrase (PP). The “related-
to” link between the node “Asian Tsunami disaster” and the
node “South East Asia” is generated using a prepositional
phrase heuristic while the remaining “is-a” links between
nodes are generated from a noun phrase heuristic [23].

A match (or similarity measure) between a query q and
a document d is defined as:

sim(q, d) = n

2 ∗ N
+ m

2 ∗ M
(1)

where n, m are the number of concept and relation nodes of
q matched in d , respectively, and N , M are the total num-
ber of concept and relation nodes in q . If a labeled concept
node c occurs in both q and d , then c is called a match. Two
labeled relation nodes are said to be matched if and only if
at least one of their concept parents and one of their con-
cept children are matched and they share the same relation
label. This measure is modified from [17]. We can compare
two DGs that are significantly different in size (for exam-
ple, a DG representing an entire document and another DG
representing a user’s query) by using the number of con-
cept/entity nodes and relation nodes in the larger DG instead
of the total number of nodes in both DGs.

Thus, for comparisons, we note that we are working
strictly with labeled graphs, as opposed to general graph iso-
morphism, which avoids computational complexity. I-FGM

Fig. 1 Example of a document graph (DG) for the query “Asian Tsunami disaster in South East Asia”

A large-scale distributed framework for information retrieval in large dynamic search spaces 379

uses DGs as the scheme for representing semantic informa-
tion given their effectiveness. To re-iterate though, I-FGM
allows for any modular method to be used in place of DGs.

3 I-FGM framework and system architecture

The overall goals of the I-FGM framework are to enable
easy incorporation of the existing and new retrieval tech-
nologies, to allow for multiple retrieval algorithms to work
in tandem, and ultimately, to quickly retrieve relevant re-
sults in large dynamic search spaces. We use popular search
engines such as Google or Yahoo to do a quick, coarse-
grained exploration of the search space and filter out the
most non-relevant documents. The filtered search space is
still large and dynamic enough to create problems with ex-
isting methodologies. The difference between our I-Foragers
with popular meta-search engines [14–16, 32] is that their
goals focus primarily on data coverage while our goal is the
rapid retrieval of relevant documents from a dynamic infor-
mation space. The documents in the search spaces are then
chosen to process incrementally by an intelligence resource
allocation strategy and the results are shown to the users in
real-time.

The I-FGM framework consists of five major compo-
nents: I-Foragers, IGSoup, gIG-Builders, I-Matchers, and
the Blackboard. The I-FGM framework and system archi-
tecture is shown in Fig. 2.

I-Foragers (Information Foragers) are tasked with forag-
ing for data from various (massive and dynamic) sources.
The user’s modified query is sent to the I-Foragers, each of

which analyzes the query and selects appropriate sources/
databases to collect information. I-Foragers gather lots of
data from the Internet by taking advantages of existing
search tools such as search engines. Different retrieval en-
gines use different techniques which work better for some
queries over others. To deal with these differences, we first
measure the reliability of each engine for different types of
queries and use them as guiding metrics for integrating re-
sults from the different engines. We denote A as the set of
the relevant documents for a query. We denote B as a sub-
set of A which is the set of relevant document returned by
the I-Forager. Then reliability is calculated based on results
from a number of test runs using the following equation:

reliability = α1β
n

k
+ α2s + α3d (2)

where s—average similarity measurement of documents in
B , d—average difference between rank of documents of
B within A and the rank returned by the I-Forager, β—
ratio of the maximum number of documents gathered by
any I-Forager to the number of documents gathered by this
I-Forager, n—order of B , k—order of A, and α1, α2, α3—
scaling factors.

The reliability function measures how reliable a search
engine is at any given time. It may be noted that the relia-
bility function used here is heuristic in nature, however, we
also note that the choice of a reliability function or any of the
metrics listed in this paper is not fixed and can be adapted
based on the designers’ choice. Our design choice reflects
the metrics most useful from our previous experience in in-
formation retrieval research.

Fig. 2 I-FGM system architecture

380 E. Santos, Jr. et al.

With reliability, we can now determine our expected
first-order similarity for a new document which is defined
as the similarity measure that can be calculated from the
I-Forager measurements. For each downloaded document,
it is a summation of the product of the scaled reliability of
the I-Forager and I-Forager measurement, which is the in-
verse of its rank in the result that the I-Forager returned,
over all I-Foragers. For example, if document x is returned
by engines a, b and c which have reliability values ya ,
yb and yc respectively. Let za , zb and zc be the rank of
the document x as given by engines a, b and c respec-
tively. Then, the first order similarity of document x is cal-
culated as:(

ya ∗ 1

za

)
+

(
yb ∗ 1

zb

)
+

(
yc ∗ 1

zc

)
.

I-Foragers perform “quick and dirty” or roughly ade-
quate retrieval to continuously populate the common reposi-
tory called IGSoup. The IGSoup (Information Graph Soup),
serves as the repository for retrieved data in which more so-
phisticated analyses will be performed to determine final rel-
evancy with respect to the target query. For our testbed, as
we mentioned earlier, we simply employed existing search
engines to populate our space of documents. We will pro-
vide simulations with respect to our goal of working with
dynamic search spaces. In particular, our target I-Foragers
would be those attached to streams, blogs, etc. that rapidly
come into existence, change, and can even disappear in a
short amount of time.

gIG-Builders (geospatial Information Graph-Builders)
are processes that extract and partially analyze informa-
tion/knowledge nuggets (such as DGs) from documents
chosen in the IGSoup. In this paper, we refer to knowl-
edge nuggets as a partial piece of information. gIG-Builders
together with I-Matchers are at the heart of the I-FGM
framework in dealing with search space dynamics and mas-
sive size. In order to be able to partially process a docu-
ment, we need a resource allocation strategy that determines
the candidate documents to choose from the IGSoup. We
identified two methods for gIG-Builders to select documents
for processing. The simple way is to select the document
with the highest priority. Each document in the IGSoup has
an associated priority value that dynamically changes over
time. Intuitively, this priority value reflects the partial rel-
evancy value computed thus far (such as the current par-
tial similarity/match value for DGs) as well as an indicator
on how promising or how likely this document is among
the most relevant. Hence, the priority value is a parame-
ter used by the gIG-Builders in determining the candidates
for future allocation of computational resources for further
semantic analyses. The priority of a document d is com-
puted as follows by the I-Matchers (as we shall discuss
later):

Pk = β1q1 + β2q2

q1 = δPk−1 + (1 − δ)Simk

q2 =
{

�k �k > 0

−�0
tk
t0

�k = 0

�k = Simk − Simk−1

(3)

where Pk represents the priority of a document d at step k.
It is computed from the document priority at step (k − 1),
Pk−1, and its current similarity, Simk . �0 is the average ex-
pected similarity for the maximum parsing time. tk is the
parsing time allocated for the document at step k. δ, β1, and
β2 are the scaling factors.

The purpose for employing the simple function is to pro-
vide a basis of comparison with our desired second method.
The second method of selection is done using a probabilis-
tic function, biased towards higher priority documents. This
function is called a biased randomized function and formu-
lated as:

Pi = prii∑k
j=1 prij

(4)

where Pi is the probability for selecting document i, prii
is the priority value of document i, and k is the number of
documents contained in the selection pool. In our current
implementation, k is equal to 10. Within the top k yet-to-be-
finished documents according to priority, gIG-Builders use
the biased randomized function (biased selection) to choose
the document that will be processed. This type of selection
guarantees that documents with lower priority have some
chance of being selected. This is essential to handling dy-
namic search spaces since new documents will have had
very little processing done on them and potentially have an
initial low priority. Since the difference in priorities of top
documents may be small, and priorities may fluctuate, the
biased selection also provides a smoothing function. Specif-
ically, for our target testbed, the gIG-Builders partially and
incrementally build the DG for each document. The promis-
ing document is chosen and processing time is set based on
its priority. After working on the document for the process-
ing time assigned, they store the updated DG in the IGSoup
and then choose other promising documents to work on.

For a newly arriving document, we can then set its ini-
tial priority according to two factors, one is its first order
similarity described above and the other is the priority of its
neighborhood. For finding the neighborhood of a new docu-
ment, we rank the documents in the IGSoup that is brought
in by the same engine as new documents according to this
retrieval engine’s measurement. The documents surrounding
the new document in this rank order are termed as its neigh-
borhood. The size of the neighborhood that should be con-
sidered while calculating the priority will depend on the re-
liability of the I-Foragers. For this, we rely on the following

A large-scale distributed framework for information retrieval in large dynamic search spaces 381

principle: the higher the reliability is, the smaller the size of
the neighborhood should be. We use the following formula
to calculate the initial priority of the new document:

Pinit = max(first order similarity,

average of neighborhood priority) (5)

Now on to our fourth component, I-Matchers (Informa-
tion Matchers) compare the documents that have been par-
tially processed by the gIG-Builders with the target query
to obtain a similarity measure for the document and update
the document rankings and priority values in the IGSoup. In
essence, the I-Matchers update the current similarity value
when the gIG-Builders continue with content analyses. In
our target testbed, the gIG-Builders continuously extend the
DGs while the I-Matchers update the similarity value be-
tween the DGs and the target query. The new priority values
are then calculated by the I-Matchers.

The last component, the Blackboard continuously dis-
plays the current top results to the user/analyst based on
similarity/match value. These results change over time as
the processing of the documents in the system proceeds.

4 Empirical evaluation

4.1 Overview of the evaluation

The goal of I-FGM is to retrieve relevant information for the
analyst fast in a dynamic environment. In order to validate
this goal, we focus on evaluating how the efficiency and ef-
fectiveness of current relevance-based retrieval methods can
be improved through use of I-FGM. We compare its perfor-
mance to control systems that represent the current methods
for dealing with large dynamic data. Our evaluation proce-
dure also differs from standard procedures used in informa-
tion retrieval systems such as TREC testbeds [38]. This is
because we are not evaluating the effectiveness of our re-
trieval algorithm (the effectiveness of document graphs have
already been discussed in earlier sections).

In our evaluation, we designed two intuitive control sys-
tems that have similar system architectures to I-FGM but
differ in the manner in which they choose a document to
process and consequently how the resources are allocated.
Each of the control systems uses the same retrieval tech-
nique. Our task is to determine whether the I-FGM system
alerts the analyst to relevant documents in a more timely
fashion than the control systems. Furthermore, since the
control systems use relatively straightforward approaches
for resource allocation, the goal here is to determine whether
the resource allocation used in I-FGM is beneficial. Thus,
for our purposes, it is sufficient to choose four queries from
a scenario that an analyst might encounter for our study. Ex-
perimental runs are conducted with these queries and the

results are collected. Since we are concerned with getting
the relevant documents quickly, we record the recall of the
systems at regular intervals. Recall is defined as the ratio be-
tween the number of retrieved relevant documents over the
number of relevant documents [22]. In essence, since each
system will ultimately, in time, return the same collection of
documents in the same ranking order, the system that returns
all the relevant documents the earliest is the best.

For the purposes of our experiments, we used the Internet
(World-Wide Web) as the basis for constructing our dynamic
testbed. Clearly, the Internet is large and dynamic, and in ad-
dition to the proliferation of web pages, there is a substan-
tial variance in type and scope of content. We realize that
the dynamism in the Internet does not mirror the extreme
conditions that a human analyst in the field must face. How-
ever, we can artificially create a highly dynamic search space
by controlling the arrival of different sets of documents into
the system. Since our testbed focus is on text-based infor-
mation, we decided to select five popular search engines to
retrieve quick and raw results as our I-Foragers: Google,
Yahoo, MSN, LookSmart, and Teoma. Thus, we have five
I-Foragers, one for each search engine.

4.2 Control systems

The two control systems used to evaluate the performance
of I-FGM are the Baseline system (B system) and Partial-
Intelligent system (PI system). These control systems were
carefully selected to represent the conventional resource al-
location strategies. It may be noted that all these control sys-
tems incrementally process the documents even when they
do not use the partial relevancy values. The control systems
differ from the I-FGM (or known as the fully intelligent)
system mainly in the way the resources are allocated. We
do not use a control system that does full-processing be-
cause the list of relevant documents in such systems can
only be known after all the documents have been processed
and this would unfairly penalize the full-processing systems.
The Baseline and Partial-Intelligent control system utilize
some of the resource allocation used in the full-processing
systems. The Baseline system does a random selection of the
documents and allocates it a constant amount of resources.
Thus the baseline system represents a system that does not
employ any resource allocation strategy. Partial-Intelligent
system uses the first-order similarity or the initial ranking
given by the search engine or other document gathering al-
gorithms, to allocate resources. This system uses a static re-
source allocation that does not take into account the current
state of the search space. The experimental runs are con-
ducted with the control systems using the various queries
and performance statistics collected. In order to accurately
compare performance, these three systems use the same in-
formation resources and the same set of queries. By compar-
ing the performance of the control systems with the I-FGM

382 E. Santos, Jr. et al.

system, we demonstrate how the partial knowledge in an in-
formation nugget can be used to achieve efficient resource
allocation to get better and faster results. We will also show
that depending only on the first-order similarity of the search
engines is insufficient.

4.3 Method and testbed

We evaluate I-FGM by comparing its performance with the
control systems described above. The systems are run with
four queries and results are collected and analyzed. We use
recall to evaluate the performance of an information retrieval
system. One of the goals of I-FGM is to retrieve the rele-
vant set of documents quickly. We validate this result, by
collecting the recall values of I-FGM at regular intervals
throughout the duration of the experiment. Time taken to
retrieve individual relevant documents is also noted, as this
gives us insights on factors that influence the performance
of I-FGM.

The queries that we have used for the simulation studies
are based on the Asian Tsunami disaster of 2004 and are as
follows:

1. Asian Tsunami disaster in South East Asia
2. Tsunami survivors in Indonesian islands
3. Damages caused by tsunami in Phuket beach, Thailand
4. Tsunami victims in Phi Phi Island

In creating the testbed for each query, we attempted to select
the set of 10 documents with the highest similarity values
(based on document graphs as described earlier). However,
multiple documents can have the same similarity value de-
pending on the measure used. For example, there might be
10 documents with the same similarity value, say for the
9th best position. Choosing all of them as relevant docu-
ments can make the relevant set large and not very useful
when analyzing the performance difference between I-FGM
and other control systems. On the other hand, choosing only
some of these documents will skew the experimental results.
For example, let doc1, doc2, and doc3 be three documents of
equal similarity. They have the 10th highest similarity in the
testbed of a particular query. In order to maintain the size
of the relevant set at 10, we would need to select one of the
documents to be in the set. This can certainly skew the re-
sults. For example, let’s select doc3 to be the 10th document
in the relevant set. While running the control systems with
this query, the I-FGM system, hypothetically speaking, may
find doc1 at time t = 1, doc2 at time t = 2, and lastly, doc3 at
time t = 3. Even though it has found equally relevant docs
at time t = 1 and t = 2, its recall is incremented only at
t = 3. Meanwhile some other control system such as Base-
line system may select doc3 at t = 2 and gets its recall value
incremented before I-FGM. Due to this, the analysis of sim-
ulation results can lead to a false conclusion that Baseline

system performs better. In other words, the performance of
the systems cannot be compared with such a relevant set. As
we will see below, we limit our relevant set to include all
documents with the same similarity but try to avoid going
much beyond 10.

For our experiments, we used a total of 19 machines.
Each machine has a Pentium III 1 GHz processor and runs
Red Hat 8.0 operating system. The machines are intercon-
nected with a 100 Mbps Ethernet network. Of the 19 ma-
chines, 12 are used as gIG-Builders, 5 as I-Foragers, 1 as
an I-Matcher, and 1 as IGSoup and Blackboard. Our test-
bed is created by sending the query for the current run to
the I-Forager search engines. The top 50 results from each
I-Forager are collected and combined to form the testbed. In
order to identify the relevant document set, we process the
documents using the document graph-based ranking method
as described in Sect. 2.2. The control systems are then run
using the documents in the testbed as the search space. In
addition, to simulate a highly dynamic search space, we con-
duct a second experiment where the relevant documents are
added to the search space at different instants in time. Thus,
the time it takes for these documents to appear on the black-
board is an important indicator of system performance and
is duly recorded.

4.4 Procedure for evaluating retrieval performance

We conducted three sets of experiments. The first set of ex-
perimental runs is static, i.e., all documents in the search
space are available to the retrieval system from the begin-
ning of the experiment. We use all 4 queries for each run.
For each query, we run the I-FGM system and its two con-
trol systems with the query until all documents in the testbed
for the particular query have been completely processed. For
each run, we record the following data:

• Blackboard content: We record the contents of the black-
board at each interval time t . To determine t , multiple
experimental runs were conducted to determine the opti-
mum interval and 30 seconds was chosen because it is not
so big that important trends are missed and not so small
to put a strain on the database by constantly querying it.

• Data used for computing reliability for each I-Forager:
The number of documents retrieved by a particular
I-Forager that appears in the final blackboard content is
used in computing a reliability rating for that I-Forager
and its associated search engine. This rating is then used
as part of the first-order similarity function.

We use the same procedure for Baseline, Partial-Intelli-
gent and I-FGM systems. The neighborhood priority is not
used to calculate the initial priority of the documents. Initial
priority of a new document is equal to first order similarity.
This first step helps to quickly validate I-FGM with a simple
experimental setup.

A large-scale distributed framework for information retrieval in large dynamic search spaces 383

Fig. 3 Static run query 1:
Retrieval vs time

Fig. 4 Static run query 1: Time
to appear on the blackboard

In the second set of experiments, we simulate dynamic
databases by inserting relevant documents into the search
space at different instants during the simulation. As in the
first experimental set, the time taken for documents to ap-
pear on the blackboard, and the recall values are noted. The
performance of the systems is compared and the results are
analyzed to bring out their salient features.

I-FGM uses an equal number of highest priority selection
and biased selection gIG-Builders. In order to justify this,
we conduct the third set of experiments to compare the per-
formance of I-FGM with two intermediate I-FGM systems,
which have gIG-Builders with highest priority selection and
biased selection respectively. They are called all-top I-FGM
and all-biased I-FGM, respectively.

From the test results obtained from the experimental runs,
we calculate the average time spent by a relevant document
in each of the component of I-FGM. This gives us an insight
into main bottlenecks of the system with respect to process-
ing. This will help us to formulate a policy to allocate opti-
mum number of gIG-Builders, I-Matchers, according to the
processing load on the machines.

5 Experimental results and analyses

5.1 Experiment one—static runs

For brevity, and since this static experiment is identical to
the one in [27], except for using different queries; we pro-
vide the results and analysis only for query 1. From the
recall vs. time graph in Fig. 3, I-FGM has better recall in
the 0.4–1 range. It reaches these recall levels faster than the
other systems. Another point we observed is the surprisingly
good performance of the Baseline system when compared to
the Partial-Intelligent system. In similar experiments in [27],
we see that on average, Baseline performed worse than the
Partial-Intelligent system. This can be attributed to the fact
that the performance of the Baseline system increases when
the ratio of the number of document in the search space to
the number of gIG-Builders decreases. In [27], we used only
5 gIG-Builders compared to the 12 gIG-Builders being used
in this experiment, while the total number of documents in
the search space remained about the same. Figure 4 is the
histogram comparing the time it takes for the relevant doc-
uments to appear in the Blackboard for each of the three

384 E. Santos, Jr. et al.

Fig. 5 Dynamic run query 1:
Recall vs time

Fig. 6 Dynamic run query 1:
Time to appear on the
blackboard

systems. The relevant documents are listed on the x-axis in
the form x.y where x is the search engine that downloaded
the document and y is the rank returned by the search en-
gine. I-FGM performed best by retrieving 6 documents out
of a total 9, faster than the control systems.

5.2 Experiment two—dynamic runs

In order to simulate a dynamic search space, we conducted a
second set of experiments - the dynamic runs. The relevant
documents are held back from the I-Foragers and are in-
serted into the search space at different time instants during
the simulation. The instants at which they are inserted are
identical for all the three systems but were chosen randomly.
For all the queries, I-FGM typically has better recall time
than other control systems. Results for queries 1, 2, 3, and
4 are provided in Figs. 5–12. Figures 5, 7, 9, and 11 show
the relationship between recall and time for these 4 queries.
The y-axis is the recall value which is between 0 and 1 while
the x-axis represents time-slices starting from 0. For all the
queries, I-FGM has better recall than the other control sys-
tems for most of the simulation time. For queries 1 and 3,
I-FGM has highest recall throughout the experiment.

For query 2, Partial-Intelligent has better recall than
I-FGM in 0.1–0.2 range. This is because the relevant set
consists of looksmart.1 and looksmart.12, which are already
highly ranked by Looksmart (#1 and #12, respectively) and
are inserted into the search space early on in the simula-
tion. Thus, Partial-Intelligent is able to retrieve them both
quickly and reach a 0.2 recall faster than I-FGM. For query
4, in the recall region 0–0.4, the Partial-Intelligent system is
better than I-FGM. The reason is that a number of relevant
documents are short documents and are highly ranked by
the search engines. Since the Partial-Intelligent system de-
pends only on the measure returned by the I-Foragers, these
short relevant documents are quickly displayed to the ana-
lyst. Hence, we see the spurt in recall during the first part
of the simulation. The performance of I-FGM is marginally
inferior for these documents. The other documents in the
relevant set are ranked low by the I-Foragers. The Partial-
Intelligent system takes a long time to process them. Since
I-FGM uses refined priority measures, it picks up these
documents much faster and consequently has better perfor-
mance. Though Partial-Intelligent may win over I-FGM in
queries 2 and 4, they are for only short durations. On the
other hand, in all the queries, I-FGM reaches the full recall

A large-scale distributed framework for information retrieval in large dynamic search spaces 385

Fig. 7 Dynamic run query 2:
Recall vs time

Fig. 8 Dynamic run query 2:
Time to appear on the
blackboard

Fig. 9 Dynamic run query 3:
Recall vs time

386 E. Santos, Jr. et al.

Fig. 10 Dynamic run query 3:
Time to appear on the
blackboard

Fig. 11 Dynamic run query 4:
Recall vs time

Fig. 12 Dynamic run query 4:
Time to appear on the
blackboard

the fastest. In fact for queries 1, 2, and 3, I-FGM reaches
full recall 15 or more minutes faster than Partial-Intelligent
or Baseline systems.

In all the queries, I-FGM discovers the maximum num-
ber of relevant documents faster than the other control sys-
tems. The average time for the documents to appear on the

Blackboard is also the lowest in I-FGM. Figures 6, 8, 10,
and 12 are the histograms to depict the time it takes for rele-
vant documents to appear in the Blackboard for each system
during the dynamic runs. The y-axis is the time in minutes
and the x-axis has the documents that are inserted dynam-
ically. The documents are named using the form x.y(z),

A large-scale distributed framework for information retrieval in large dynamic search spaces 387

Fig. 13 Comparison of
gIG-builder document selection
criterion—time to appear on the
blackboard

where x is the search engine that found the document, y

is the rank returned by the search engine and z is the time
(in minutes) when the document was added to the search
space. For query 1, out of 9 documents, I-FGM retrieves
5 documents faster than other systems. It ties with Partial-
Intelligent for 2 other documents. Similarly, the dominance
of I-FGM is clear for queries 2 and 4 with retrievals of
6 out of 11, and 6 out of 10, respectively. For query 3,
I-FGM ties with Partial-Intelligent by getting 2 out of 5
documents. In order to understand why this happens, we
have to analyze the factors that affect the performance of
the Partial-Intelligent and I-FGM system. For the Partial-
Intelligent system, the factors are the rank (returned by the
search engine) of the document and the time that it was in-
serted. If a is the number of gIG-Builders used, then the
Partial-Intelligent system processes the documents in sets of
size a. For example, a document ranked (a + 3) cannot be
processed until at least 3 documents in the top a documents
have been completely processed. When a relevant document
ranked low by the search engine is inserted at the begin-
ning of the simulation, the Partial-Intelligent system will not
discover the document until the documents ranked above it
have been processed. By the same reasoning, it is easy to see
that relevant documents ranked high by the search engine are
quickly discovered by the Partial-Intelligent system. For the
I-FGM system, the factors are the rank (according to prior-
ity) of the document and layout of the document. By layout
of the document, we refer to the distribution of the relevant
parts within the document. Since the I-FGM reduces the pri-
ority of the document if it does not find anything relevant
during one cycle of parsing, documents that have its rele-
vant portion in the beginning or uniformly distributed have
a better chance of being discovered quickly. Since the prior-

ity function that we use is not rigid, future work would be to
fine tune it for better performance.

5.3 Experiment three—selection functions

As we described earlier, the gIG-Builders use two types of
document selection strategies: (i) highest priority selection
and (ii) biased selection. It is our hypothesis that each of
these strategies can work efficiently only in some scenar-
ios and that using a combination of these two types of gIG-
Builders is the best approach. This issue is critical as the
processing in the gIG-Builders is the main computational
bottleneck. Any performance advantage that we gain by us-
ing the right kind of gIG-Builders will have significant im-
pacts on the overall performance of I-FGM. In the third
set of experimental runs, we compare the performance of
I-FGM systems with the other intermediate I-FGM systems:
all-top I-FGM and all-biased I-FGM. From the recall graph
in Fig. 14, we see that the I-FGM system has better recall
over time. The I-FGM system reaches full recall 7 minutes
before the other two intermediate systems, which is a sig-
nificant performance difference. Also, the average time for
relevant documents to appear on the Blackboard is lowest in
the I-FGM system compared to all-top or all-biased interme-
diate systems. From Fig. 13, we compare the time taken for
relevant documents to be displayed on the Blackboard for
the three systems. We see that I-FGM performs better than
the other two intermediate I-FGM systems. Out of 9 docu-
ments, the I-FGM system is a clear winner in 4 and ties with
all-top system for 2 other documents. The other two systems
are clear winners for only one document each. Each of them
wins for 4 documents and ties for one when we compare the
results for just all-top and all-biased I-FGM systems. This
provides the intuition that I-FGM should employ a mix with

388 E. Santos, Jr. et al.

Fig. 14 Comparison of
gIG-builder document selection
criterion—recall vs time

Fig. 15 Process pipeline for
control systems

half of the gIG-Builders using the highest priority selection
method and the other half using the biased selection.

5.4 Computational costs

We tabulated the time spent on the documents in the dif-
ferent components and prepared a process pipeline repre-
senting the average processing time for the top relevant doc-
uments for each query. Given the limitation of space, we
present only the results for query 1 which is representative
of all the queries in Fig. 15. From this figure, we see that the
main processing is done in the link parser phase which is a
part of the gIG-Builders. This provides guidance on initially
allocating the computational resources among gIG-Builders,
I-Foragers and I-Matchers (represented by their numbers).
This figure also shows that the waiting time is the least for
I-FGM, which is indicative of the effectiveness of our re-
source allocation strategy. This will also be useful for future
work on dynamically changing agents from gIG-Builders to
I-Matchers and so on to further improve performance.

5.5 Scaling up I-FGM

From the experimental results for static and dynamic simu-
lations, we see that I-FGM has achieved better performance
than the Baseline and Partially-intelligent systems. But one
drawback shown in the results is that the average time to
“discover” a relevant document is longer with respect to the
analysts’ requirement. The analysts deal with critical, real
time events and the average discovery times that we ob-
tained in our experimental results, for example, 33 minutes
for query 3 and 17 minutes for query 4, are not acceptable.
We have already mentioned that the I-FGM architecture is
easily scalable and more nodes can be included to provide
better performance. But this aspect of I-FGM should not be
confused with brute force methodology wherein the naïve
solution is to just increase the computational resources. We
show in a succeeding section on system analysis, that I-FGM
has a better chance of discovering relevant documents ear-
lier because of its smart resource allocation strategy. By
increasing the number of nodes, we reduce the contention
for resources and this combined with our resource alloca-

A large-scale distributed framework for information retrieval in large dynamic search spaces 389

Fig. 16 Discovery time for
relevant document between
I-FGM and I-FGM PL

tion should improve the odds of retrieving the relevant doc-
uments in I-FGM.

In order to demonstrate this, we implemented the I-FGM
system using 42 nodes, which included 36 gIG-Builders
and 1 I-Matcher. The nodes are high end Intel Pentium-D
2.8 GHz 64-Bit dual processor servers connected by 1 GBPS
Ethernet links. We term this production level I-FGM proto-
type as I-FGM PL. We repeated the previously dynamic sim-
ulations on this system and analyzed the results. We saw that
average discovery time were 4 times faster than the previous
simulations. For lack of space, we do not provide the com-
plete simulation results. In Fig. 16, we compare I-FGM and
I-FGM PL prototypes using the discovery time for relevant
documents in query 4. We see I-FGM PL performs better
than I-FGM with its average discovery time 4 times smaller
than I-FGM (17 min for I-FGM and 4 min for I-FGM PL).
It may be argued that even 4 min is unacceptable. But this
delay is mainly caused by the text parsing in gIG Builders
and as such is unavoidable.

5.6 Summary

In short, after we analyze the simulation results, for both
recall and discovery time, we see that I-FGM is a clear win-
ner. All these results show that I-FGM is a viable way to get
relevant results quickly even with minimum computation re-
sources in a large and dynamic search space. Also, we can
readily infer that the elapsed times for I-FGM can be signif-
icantly decreased as the number of gIG-Builders and other
processes increases.

6 System performance analyses

In previous sections, we describe the initial design, imple-
mentation as well as demonstrate the effectiveness of our
I-FGM system for both static and dynamic search spaces. In

order to make our results more convincing, we provide rig-
orous theoretical analyses of system performance, validate
the effectiveness and efficiency of our system, and show un-
der what conditions and to what extent the I-FGM system
will outperform current technologies and its control sys-
tems. In this section, we focus on static and homogeneous
search spaces, and provide our theoretical analyses of the
performance of information retrieval systems including the
Baseline (B), the Partial-Intelligent (PI), and the I-FGM sys-
tem as well as the systems without partial processing mech-
anisms.

With the continuing proliferation of digitalized informa-
tion, a great amount of information retrieval technologies
and systems have been developed based on various models,
such as vector space model [40], probabilistic model [40],
and language model [35]. Although models are different,
most of these techniques, if not all, share a common fea-
ture that the similarity result of a document can be obtained
only after the full processing of this document. We call the
systems based on this type of techniques as Full-Processing
(FP) systems. For FP systems, document processing cannot
be interrupted. The similarity value of a document is either
zero or the final value. Although FP systems are the most
popular systems employed in current IR tasks, they waste
time on processing documents that are ultimately irrelevant
to users.

6.1 Performance metric and frequently used parameters

We assume that the retrieval technique which uses DG rep-
resentation employed in the I-FGM can accurately measure
the true similarity between any document contained in the
search space and the user’s query. In order to identify the
documents which the user is interested in, we assume that
the documents ranked in the top s based on their similarity
values are treated as relevant to the user’s query. For Partial
Processing (PP) systems including the Baseline (B) system,

390 E. Santos, Jr. et al.

the Partially Intelligent (PI) system, and the I-FGM system,
the similarity value of a document is partially and incremen-
tally built. Thus, a relevant document may be treated as rel-
evant (or not) alternatively during system processing. When
more and more parts of the document are processed, the doc-
ument’s rank according to the similarity value will become
more and more stable. A relevant document is called stably
ranked as relevant when this document is contained in the
relevant set, a set of documents which are treated as rele-
vant to the user’s query, and never falls out of it. Thus, we
decide to use the probability that at time t a relevant docu-
ment di is stably ranked as relevant to indicate the system
performance. This is depicted as:

perfX = PX(t |di) (6)

where PX(t |di) represents the average probability for a rel-
evant document di to be stably ranked as relevant at time t .

In our theoretical analyses of system performance, we
use the following assumptions in order to help bring to light
significant performance insights of these systems:

(i) All documents in a search space have the same size.
They are evenly partitioned into K slices in both the B
system and the PI system.

(ii) Slices of a document are independent of each other.
(iii) Ignoring the partial processing overhead such as the

cost for communication and synchronization, the cost
for loading documents or document graphs into gIG-
Builders.

Based on the first assumption, all documents are the
same except that they have different similarity values. From
the second assumption, we can see that the sequence for
processing document slices does not impact the B or PI
system performance. Obviously, the processing sequence of
document slices does not affect the document’s final sim-
ilarity result. For the B system, at any given time, each
un-processed document slice has the same possibility to be
processed. Therefore, the B system can process document
slices in arbitrary order without affecting its performance.
In the preliminary analyses of system performance, we want
to focus our sights on studying system computation load.
Thus, based on the third assumption, performance analysis
results of our distributed system can be achieved by scaling
up the analysis results of systems with only one processor.
Thus, our theoretical analyses of system performance can be
initially focused on systems with one processor.

In order to facilitate easy understanding of the theo-
retical analyses contained in this section, we list defini-
tions/notations of frequently used parameters in Table 1.

6.2 Full-processing (FP) system

All documents contained in the search space are treated as
the same in Full-Processing (FP) systems. These systems

Table 1 System parameters

Parameter Definition

di Document i which is relevant to the user’s query

n The total number of documents contained in the database
(IGSoup)

m The number of documents a system has processed

s The number of relevant documents contained in the data-
base (IGSoup)

K The number of slices that a document is partitioned into
in Partial Processing systems (including Baseline, Partial-
Intelligent, and I-FGM systems)

Td The time for a system to fully process a document

Tslice The time for a system to process one slice of a document.
Td = KTslice

ai The minimum number of processed slices for a relevant
document di to be stably ranked as relevant, ai ≤ K

PX(t |di) The probability for a relevant document di to be stably
ranked as relevant at time t by system X

pX(di) The probability for a relevant document to be processed
at any time in the system X

randomly select a document and wholly process it to ob-
tain its similarity value. After processing, a document’s sim-
ilarity value will not change. Thus, in static search spaces,
as soon as a FP system finishes processing a relevant doc-
ument, this document will always be ranked and remain as
relevant. It is easy to see that system retrieval results (i.e.
ranks of documents) may change only after the system fin-
ishes processing a whole document. We therefore analyze
the FP system performance at the time when a document
is fully processed. At time t = mTd , exactly m documents
have been fully processed. The number of total candidates
of these m documents is

(
n

m

)

The number of candidates which contains a relevant docu-
ment di is:

(
n − 1
m − 1

)

Since all of the documents are uniformly considered by a
FP system, the chance for each candidate being selected is
the same. Thus, for a FP system, the probability PFP that a
relevant document di is contained in these m handled docu-
ments can be defined as:

PFP(mTd |di) =
(

n − 1
m − 1

)/(
n

m

)
= m/n (7)

A large-scale distributed framework for information retrieval in large dynamic search spaces 391

6.3 Baseline (B) system

In this section, we analyze the characteristics of a B system.
In order to demonstrate the advantages of the B system, we
compare the performance of B system with FP system and
determine under what conditions and to what extent B sys-
tem will outperform FP system.

6.3.1 B system performance

Based on the design of the B system, we can see that as soon
as the system finishes its current process, it randomly picks
up one un-processed document slice to handle. Since this
system treats each document slice uniformly, the probability
pB that after each partial process the B system selects a slice
of document di to process can be formed as below:

pB(di) = 1/n (8)

To compare the B system and FP systems, we check the per-
formance of the B system at time t = mTd . At this time,
we know there are mK document slices processed because
Td = KTslice. In the search space (IGSoup), there are n doc-
uments which indicate that the total number of document
slices is Kn. Since document slices can be processed in arbi-
trary order, the total number of possible candidates of these
mK document slices at time t is:
(

nK

mK

)

In order for a relevant document di to be stably ranked as
relevant, we assume that the system should process at least
ai slices of this document. The total number of possible can-
didates that the B system has processed at least ai slices of
di at time t = mTd can be approximated as:

(
K

ai

)
·
(

nK − ai

mK − ai

)

Since each candidate has the equal chance to happen, the
probability that in the B system a relevant document di is
stably ranked as relevant at time t = mTd can be formed as:

PB(mTd |di) = PB(mKTs |di) =
(K

ai

) · (nK−ai

mK−ai

)
(

nK
mK

) (9)

From (9), we can see that ai is an important factor which sig-
nificantly affects the system performance on document di .
It is not hard to imagine that in many cases the document
does not need to be fully processed before it is stably ranked
as relevant. Intuitively, a large ai indicates that the system
should put more effort to distinguish this relevant docu-
ment from not-relevant ones, and vice versa. As K changes,

the value of ai itself does not determine the system perfor-
mance. Instead, the relationship between K and ai does. For
a fixed ai , larger K indicates less effort to find relevant docu-
ments. To maintain a specific performance, K and ai should
be in an inverse relationship. We define ri to indicate this
relationship:

ri = ai/K (10)

6.3.2 Comparison between B system and FP system

One common question is that when and under what con-
ditions Partial-Processing systems perform better than Full-
Processing systems. However, it is hard to guarantee any ad-
vantage of Partial-Processing systems since how a Partial-
Processing system performs is really dependent on the na-
ture of the data contained in the search space. As we men-
tioned in the previous sub-section, B system’s performance
is mainly affected by ri which is determined by the nature
of document di . In order to provide further analyses of (9),
and a deeper understanding of how ri affects system per-
formance, we compare the FP system with the B system
on their performance metric PX(t |di) under various system
configurations (different values of K and n).

The comparison can be accomplished by analyzing the
following inequality:

PB(t |di) > PPF(t |di) (11)

If we can solve this inequality, we can know that under what
condition (values of ri) and to what extent the B system will
outperform a FP system. The extent of B system’s perfor-
mance advantage can be measured as the percentage of the
time range during which the inequality (11) is satisfied. We
define this parameter as the percentage of time intervals in
which the B system outperforms the FP system and use � to
represent it. However, it is difficult to mathematically solve
� from (11). The value of � may be affected by different
parameters, such as ri ,K , and n. Thus, we use numerical
methods to try to find when and how � changes with the
system configuration (n and K) and ri . The sets of system
configurations used in our numerical computation are shown
in Table 2. We constrained the minimum number of docu-
ments contained in the search space to 100 since our system
is designed for dealing with large search spaces.

In our computation, we draw two curves described by (7)
and (9) respectively, and find the time intervals which satis-
fies (11). Based on the size of these time intervals, we cal-
culate the value of �. The results are shown in Fig. 17.

From the computational results we can discover the fol-
lowing facts:

1. The value of n does not affect �.
2. The value of � has an inverse relationship with ri .

392 E. Santos, Jr. et al.

Table 2 System configuration
parameters n K ri

100 5, 10, 20, 40, 60, 80, 100 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

1000 5, 10, 20, 40, 60, 80, 100 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

10000 5, 10, 20, 40, 60, 80, 100 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

100000 5, 10, 20, 40, 60, 80, 100 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Fig. 17 Percentage of time
intervals in which the B system
outperforms the FP system with
respect to r and K for all values
of n

3. Different values of K generate different curves of � ver-
sus ri . However, all these curves are contained in a narrow
band.

4. The B system will always outperforms FP systems
(� > 0.5) when ri is less than 0.7.

5. When ri is larger than 0.3, the curves of K = 10 and
K = 20 are quite close to each other, even superposed.

Based on our experience from our experiments on Partial-
Processing systems, a reasonable value of K for real search
spaces is between 10 and 20. Based on fact 5, we decide
to use the curve of K = 10 as an approximation of the B
system performance. From Fig. 17, we also can see that the
curve of K = 10 is approximately linear during the range
from ai = 0.9 to ai = 0.3.

The parameter ai represents the property of a specific
document di . It is obvious that documents are quite dif-
ferent from each other so that the B system performance
on each relevant document may be quite dissimilar. There-
fore, we focus on average performance of systems. Based o
n the linear relationship between system performance and
ai , we employ the average value of ai which is denoted
as aB :

aB =
s∑

i=1

ai/s (12)

to indicate the average performance of the B system which
is defined as rB in (13):

rB = aB/K (13)

The parameter, rB , is determined by the query and the na-
ture of real search spaces. Its value will be measured in our
system performance experiments.

6.4 Partial-intelligent (PI) system

In the PI system, we rank documents by a priori ordering of
documents based on FOS (First-Order Similarity). The PI
system processes documents in the decrease order of FOS.
Although it partitions documents into slices and processes
documents in the unit of document slice which makes us to
label it as a Partial-Processing system, in fact, it acts more
like Full-Processing system. When it begins to process a
document, it will not process other documents until it fin-
ishes all slices of the current document. The performance
of the PI system is totally determined by how well the FOS
indicates the document’s relevance to the user’s query. This
property of FOS can be represented by a function �(t |di)

which represent the probability for a relevant document di

to be stably ranked as relevant at the time t . Thus, the sys-
tem performance PPI is:

PPI(t |di) = �(t |di) (14)

In the preliminary analyses of the PI system performance,
the function �(t |di) is defined in the following way. Assume
that all relevant documents are uniformly treated in the PI
system. Also, assume that the top m documents ranked by
FOS contain a subset R(m) of relevant documents. We de-

A large-scale distributed framework for information retrieval in large dynamic search spaces 393

note the number of documents contained in R(m) as |R(m)|.
The probability of a relevant document di to be contained in
R(m) can be formulated as |R(m)|/s. Thus, the PI system
performance metric, the probability PPI that a relevant doc-
ument di is stably ranked as relevant at the time t = mTd

can be formed as:

PPI(mTd |di) = �(mTd |di) = |R(m)|/s (15)

6.5 I-FGM system

In the I-FGM system, we assign initial values (based on
FOS) for document priorities and refine them based on the
analysis of partial results obtained during system process-
ing. The refinement of priorities imbues the I-FGM system
with the ability to intelligently allocate its computational re-
sources to achieve better efficiency. Comparing with the B
system, the advantage of I-FGM can be represented as the
average number of slices required for stably ranking a rele-
vant document as relevant is less than aB . Comparing with
the PI system, the advantage of I-FGM can be shown as the
fact that when the FOS is not well defined, the refined doc-
ument priorities can identify the promising documents and
intelligently reallocate the resources accordingly.

I-FGM system is quite complicated due to the nature of
documents and the complexity of priority function. There-
fore, we simplify the I-FGM system in the following way:

1. In our original design, for each partial processing step,
the amount of data to be processed changes with the
document priority. In our simplified model, we fix this
amount as the value used in the B and the PI systems. We
believe that, with a good priority function, our original
system would need to process lesser number of document
slices, than the simplified model, to stably rank relevant
documents.

2. In our simplified model, we use the obtained document
similarity as the document priority, instead of consid-
ering a lot of other factors, such as the history of the
document’s similarity value, the increment of the docu-
ment similarity value, etc. Therefore, pridi(t) = simdi(t),
where pri represents document priority value and sim
represents document similarity value at time t .

3. In our original design, the initial value of document pri-
ority is calculated from the FOS. In our simplified model,
we set the same initial value of all document priorities.

4. In this paper, the I-FGM system uses a hybrid mecha-
nism to select a document to be processed at each partial
step. Processors are partitioned into two sets. One set of
processors select the document strictly according to the
rank on document priorities. The other set of processors
select the document based on a probability which is pro-

portional to the value of documents priorities. This prob-
ability can be formed as

pI-FGM(t |di) = pridi
(t)

/ n∑
j=1

pridj
(t)

= simdi
(t)

/ n∑
j=1

simdj
(t) (16)

where pI-FGM(t |di) represents the probability that the
I-FGM system selects document di to process at time t .
In our simplified model, all processors employ the second
mechanism. We believe that with a good priority func-
tion, our original design would perform better than the
simplified model.

Under these simplifications, the I-FGM system performance
is determined by the nature of search spaces which mainly
depends on two kinds of distributions. One is the distribu-
tion of nuggets (elements which are relevant to the user’s
query) in a document. The other one is the distribution of
documents according to their similarity values.

The nuggets distribution within a document can be ar-
bitrary. Studying this distribution is a research topic which
requires a great amount of statistical work. However, if we
can assume this distribution is uniform, then based on (16),
we can get that on average, the probability that the I-FGM
system selects a relevant document di to process at a partial
step can be formulated as

pI-FGM(di) ≥ simdi

/ n∑
j=1

simdj
(17)

This is because, at the beginning, all documents have the
same possibility to be processed. After I-FGM partially
processes a document, the document’s priority will be pro-
portional to the similarity value contained in the processed
document slices. Thus, in the initial stage, the probability
will be close to the value on the right hand side of in-
equality (17). As the I-FGM system processes more docu-
ment slices, there seems to be a positive feedback for rele-
vant documents. The high similarity value introduces more
chances for a relevant document to be processed which leads
to higher similarity value. Thus, we say that the probability
to select a relevant document to be processed is bounded by
the right hand side part in (17). In our preliminary analy-
sis of the I-FGM system performance, we approximate the
probability pI-FGM as:

pI-FGM(di) = simdi

/ n∑
j=1

simdj
(18)

The distribution of documents according to their similar-
ity values can also be arbitrary. To make our analysis easier,

394 E. Santos, Jr. et al.

we assume this distribution to be uniform too. If we take top
λ percent documents as relevant, the average similarity value
for relevant documents will be (1 + 1 − λ)/2. The average
probability for I-FGM system to choose a relevant document
di at a partial step is:

pI-FGM(di) = 2 − λ

2
· 1∑n

j=1 simdj

(19)

From the distribution of documents similarity values, we
know that:

n∑
j=1

simdj
= (1 + 0) · n/2 = 0.5n (20)

Therefore, we can get that

pI-FGM(di) = (2 − λ)

2
· 1∑n

j=1 simdj

= (2 − λ)
1

n
= (2 − λ)pB(di) (21)

We use c to present the performance comparison between
the B system and the I-FGM, and define it as:

c = pI-FGM(di)

pB(di)
= (2 − λ) (22)

Currently, in our I-FGM system, we set λ as 10%. Thus,
c = 1.9 and pI-FGM is 1.9 times of pB . This means that
the I-FGM system would retrieve the relevant documents at
least 1.9 times faster than the Baseline system. It also indi-
cates that at a given time, the average number of processed
slices of relevant documents in the I-FGM system is about
1.9 times of the corresponding number in the B system.
Therefore, we can obtain that

aI-FGM = aB/c = aB/1.9 (23)

6.6 Experimental results and analysis

In this section, we present the measurement of system per-
formance on selected queries “Asian Tsunami disaster in
South East Asia” (Query 1), “Tsunami survivors in In-
donesian islands” (Query 2), “Damages caused by tsunami
in Phuket beach, Thailand” (Query 3), and “Tsunami vic-
tims in Phi Phi Island” (Query 4). As we mentioned be-
fore, the performance of the PI system completely depends
on the design of FOS. Therefore, the experimental valida-
tion of the PI system performance is not included in this
paper. We will provide the PI system performance results
and analysis in our future work on studying the FOS de-
sign.

Table 3 Measurement of aB and rB

Query K aB rB

Query1 6.450 4.091 0.634

Query2 11.537 4.545 0.394

Query3 20.754 11.2 0.540

Query4 5.870 4.3 0.733

Average 11.15 6.034 0.575

6.6.1 Measurement of aB (comparison
between the B system and FP system)

As we mentioned, the performance comparison between the
B and FP system can be indicated by the value of rB , which
can be measured by aB and K . In the following table, we
present the measurements of the B system on 4 queries.
From Table 3 we get that the average rB is 0.575. Based
on Fig. 17, we can see that the B system outperforms FP
systems and � is about 70%.

6.6.2 I-FGM system performance measurement
(comparison between I-FGM system and B system)

As we discussed in the previous section, the value of aI-FGM

can be estimated from the value of aB and the comparison
between the I-FGM system and the B system. The compari-
son can be achieved based on comparing pI-FGM and pB .

When a relevant document di is initially stably ranked
as relevant, the number of slices processed are represented
as zi . The average probability for a system to process this
document di can be formed as:

p(di) = zi/mi = zi/ti/Ts = ziTs/ti (24)

where mi is the number of slices processed by the system
at the time ti . The average probability to choose a relevant
document is

p̄(d) =
s∑

i=1

pX(di)/s =
s∑

i=1

1

s
· ziTs

ti
(25)

Therefore, the comparison c can be estimated as

c = p̄I-FGM(d)

p̄B(d)

=
∑s

i=1 zI-FGMi · Ts/(tI-FGMi · s)∑s
i=1 zBi · Ts/(tBi · s)

=
∑s

i=1 zI-FGMi/tI-FGMi∑s
i=1 zBi/tBi

(26)

In addition to recall and the time to appear on black-
board, we need more detailed information in order to evalu-
ate I-FGM performance. Unfortunately, we did not capture

A large-scale distributed framework for information retrieval in large dynamic search spaces 395

Table 4 Measurement of z and t for query 1 and 2

Query 1 Query 2

Relevant Baseline I-FGM Relevant Baseline I-FGM

document documentSlices Time Slices Time Slices Time Slices Time

Teoma.38 1 11 1 32 Looksmart.16 5 77 4 29

Teoma.35 1 5 1 4 Google.24 2 27 2 89

Looksmart.0 11 91 11 91 Google.15 3 47 3 50

Looksmart.9 3 36 3 22 Yahoo.11 3 55 3 68

Teoma.3 1 37 1 2 Looksmart.12 2 42 2 69

Yahoo.25 11 91 11 91 Looksmart.1 3 34 1 2

Msn.21 1 14 1 4 Google.21 4 48 4 50

Teoma.29 1 15 1 54 Looksmart.33 10 100 11 100

Yahoo.1 1 11 1 5 Msn.18 10 118 10 89

Looksmart.39 7 74 7 91 Google.19 3 30 3 81

Looksmart.40 7 52 7 94 Yahoo.25 5 62 2 20

Table 5 Measurement of z and t for query 3 and 4

Query 3 Query 4

Relevant Baseline I-FGM Relevant Baseline I-FGM

document documentSlices Time Slices Time Slices Time Slices Time

Looksmart.18 7 68 12 110 Looksmart.10 6 69 6 50

Teoma.34 23 255 22 161 Looksmart.40 3 65 3 54

Looksmart.7 22 184 12 114 Google.27 8 95 8 99

Looksmart.33 2 29 2 15 Msn.7 7 101 6 44

Yahoo.35 2 18 2 19 Looksmart.9 2 31 2 23

Google.12 4 75 4 31

Google.5 7 70 6 76

Google.26 2 27 2 18

Msn.23 1 59 1 14

Teoma.26 3 29 3 50

Table 6 Comparison between
the B system and the I-FGM
system

Query1 Query2 Query3 Query4 Average

c 1.615 1.465 1.196 1.33 1.40

this information in [27]. Thus, we added some logs in our
code and re-ran the experiments. The measured values of
z and time t for every relevant document for each query
are shown in the following three tables. The Time columns
in Tables 4 and 5 represent the index of interval time in the
Blackboard. Note that we record the contents of the Black-
board at each interval time (which is equal to 30 seconds in
this experiment).

From Table 6, we can see that on average the I-FGM
system can retrieve the relevant documents 1.4 times faster
than the B system. The value of c we measured in experi-
mental results is different from the estimated value from our
theoretical analysis. This is mainly due to the fact that in
our real search space, the distribution of nuggets in a doc-
ument is not a uniform distribution. In our experiments we
found that many documents will achieve their final similar-

396 E. Santos, Jr. et al.

ity value within the first (or second) partial processing step.
This means that in many documents the nuggets are con-
tained in the front of the document. This reduces the ad-
vantage of refining document priorities in I-FGM. The other
extreme case, i.e. if all documents can obtain their final sim-
ilarity values at their first partial processing step, also holds
less advantage for I-FGM.

7 Conclusion

In this paper, we considered the problem of extracting rel-
evant data from a large and dynamic search space and the
challenges faced in providing analysts such data effectively
and efficiently. We proposed a solution to this problem
through a novel system called I-FGM. We presented the re-
sults for the experiments run on a prototype of I-FGM which
used the World-Wide Web as the search space focusing on
text-retrieval.

By analyzing the results, we have validated the I-FGM
system. We compare its performance with the control sys-
tems which represent the current paradigms in retrieval sys-
tems, and show that I-FGM readily dominates in the major-
ity of cases. The experiments have also shed light on some
of the issues we continue to face and have shown that there
is room for improvement especially in the design of relia-
bility measures. The theoretical analyses of system perfor-
mance demonstrate under what conditions and to what ex-
tent the partially-and-incrementally processing mechanism
will outperform fully processing system. In this paper, we
successfully validated the basic tenets of our system both
experimentally and theoretically. Most importantly, we have
shown that incremental processing of data reinforced by
modular system architecture is an effective way to get quick
relevant results when dealing with large and dynamic search
spaces. Finally, given the massive number of documents that
need to be processed for any retrieval algorithm, allocat-
ing large numbers of processors in a simple parallel fash-
ion without the intelligent resource allocation will meet with
limited success. I-FGM provides the scalability needed to
address the modern large-scale dynamic databases that in-
telligence analysts must work with.

In this work, we have used Document Graphs (DGs) to
represent the information in the documents. One advantage
of using DGs is that the conversion procedure of text to DGs
lends itself favorably to the partial processing paradigm in
I-FGM. Another more important reason is that DGs can be
used to represent information found in varied heterogeneous
documents. We have demonstrated in [26] a methodology
of representing the visual information (in images) as con-
cept graphs. This common representation methodology of
information found in various types of documents, leads to a
unified ranking system in I-FGM. This will be tackled in the
next phase of our research.

Acknowledgements The work presented in this paper was sup-
ported in part by the National Geospatial Intelligence Agency Grant
No. HM1582-04-1-2027. Some preliminary results in this paper can
be found in [28, 29]. Also, thanks to Morgan Pittkin for his assistance
in this project.

References

1. Bergman MK (2001) White paper: the deep web: surfacing hidden
value. J Electron Publ 7(1) doi:10.3998/3336451.0007.104

2. Bhatia SK, Deogun JS (1998) Conceptual clustering in informa-
tion retrieval. IEEE Trans Syst Man Cybern B 28(3):427–436

3. Bowman CM, Danzig PB, Hard DR, Manber U, Schwartz MF
(1995) The harvest information discovery and access system.
Comput Netw ISDN Syst 28(1–2):119–125

4. Chen SM, Horng YJ (1999) Fuzzy query processing for document
retrieval based on extended fuzzy concept networks. IEEE Trans
Syst Man Cybern B 29(1):96–104

5. Chen SM, Horng YJ, Lee CH (2001) Document retrieval using
fuzzy-valued concept networks. IEEE Trans Syst Man Cybern B
31(1):111–118

6. Cheng J, Emami R, Kerschberg L, Santos E Jr, Zhao Q, Nguyen H,
Wang H, Huhns MN, Valtorta M, Dang J, Goradia HJ, Huang J,
Xi S (2005) OmniSeer: a cognitive framework for user modeling,
reuse of prior and tacit knowledge, and collaborative knowledge
services. In: Proceedings of the 38th Hawaii international confer-
ence on system sciences

7. Coden AR, Brown EW (2006) Automatic search from streaming
data. Inf Retr 9(1):95–109

8. Craswell N (2000) Methods for distributed information retrieval.
PhD thesis, The Australian Nation University

9. Das S, Shuster K, Wu C, Levit I (2005) Mobile agents for distrib-
uted and heterogeneous information retrieval. Inf Retr 8(3):383–
416

10. Dhyani D, Ng WK, Bhowmick SVS (2002) A survey of web met-
rics. ACM Comput Surv 34(4):469–503

11. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid:
enabling scalable virtual organizations. Int J High Perform Com-
put Appl 15(3):200–222

12. Grossman DA, Frieder O (2004) Information retrieval: algorithms
and heuristics. The Kluwer international series on information re-
trieval. Kluwer Academic, Dordrecht

13. Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluat-
ing collaborative filtering recommender systems. ACM Trans Inf
Syst 22(1):5–53

14. Hu WC, Chen Y, Schmalz MS, Ritter GX (2001) An overview of
world wide web search technologies. In: Proceedings of the fifth
world multi conference on system, cybernetics and informatics, pp
356–361

15. Kshemkalyani AD, Singhal M (2008) Distributed computing:
principles, algorithms, and systems. Cambridge University Press,
Cambridge

16. Meng WY, Yu C, Liu K-L (2002) Building efficient and effective
metasearch engines. ACM Comput Surv 34(1):48–89

17. Montes-y-Gómez M, Gelbukh A, Lópes-López A (2000) Compar-
ison of conceptual graphs. In: Proceeding of MICAI-2000—1st
Mexican international conference on artificial intelligence. Aca-
pulco, Mexico

18. Nguyen H, Santos E Jr (2007) Effects of prior knowledge on
the effectiveness of a hybrid user model for information retrieval.
In: Proceedings of the SPIE: defense & security symposium, vol
6536, Orlando, FL

19. Nguyen H, Santos E Jr, Zhao Q, Lee C (2004) Evaluation of effects
on retrieval performance for an adaptive user model. In: Adap-
tive Hypermedia 2004: workshop proceedings—part I, Eindhoven,
The Netherlands, pp 193–202

http://dx.doi.org/10.3998/3336451.0007.104

A large-scale distributed framework for information retrieval in large dynamic search spaces 397

20. Nguyen H, Santos E Jr, Zhao Q, Wang H (2004) Capturing user
intent for information retrieval. In: Proceedings of the 48th an-
nual meeting of the human factors and ergonomics society (HFES
2004), New Orleans, LA, pp 371–375

21. Pazzani M, Nguyen L, Mantik S (1995) Learning from hotlists
and coldlists: towards a WWW information filtering and seeking
agent. In: Proceedings of the IEEE international conference on
tools with AI, pp 39–46

22. Salton G, McGill M (1983) Introduction to modern information
retrieval. McGraw-Hill Book, New York

23. Santos E Jr, Mohamed A, Zhao Q (2004) Automatic evalua-
tion of summaries using document graphs. In: Proceedings of the
42nd annual meeting of the association for computational linguis-
tics (ACL 2004) workshop on text summarization branches out,
Barcelona, Spain, pp 66–73

24. Santos E Jr, Nguyen H, Brown SM (2001) Kavanah: an active user
interface information retrieval application. In: Proceedings of the
2nd Asia-pacific conference on intelligent agent technology, pp
412–423

25. Santos E Jr, Nguyen H, Zhao Q, Pukinskis E, (2003) Empirical
evaluation of adaptive user modeling in a medical information re-
trieval application. In: Brusilovsky P, Corbett A, de Rosis F. (eds)
Lecture notes in artificial intelligence. User Modeling 2003, vol
2702. Springer, Berlin, pp 292–296

26. Santos E Jr, Nguyen H, Zhao Q, Wang H (2003) User modeling
for intent prediction in information analysis. In: Proceedings of the
47th annual meeting for the human factors and ergonomics society
(HFES-03), Denver, CO, pp 1034–1038

27. Santos E Jr, Santos EE, Nguyen H, Pan L, Korah J (2005) Large-
scale distributed foraging, gathering, and matching for informa-
tion retrieval: assisting the geospatial intelligent analyst. In: Pro-
ceedings of the SPIE: defense & security symposium, vol 5803,
pp 66–77

28. Santos E Jr, Santos EE, Nguyen H, Pan L, Korah J, Zhao Q, Pittkin
M (2006) Information retrieval in highly dynamic search spaces.
In: Proceedings of the SPIE: defense & security symposium, Or-
lando, FL, vol 6229, pp 1–12

29. Santos E Jr, Santos EE, Nguyen H, Pan L, Korah J, Zhao Q, Xia H
(2007) Applying I-FGM to image retrieval and an I-FGM system
performance analyses. In: Proceedings of the SPIE: defense & se-
curity symposium, vol 6560

30. Santos E Jr, Zhao Q, Nguyen H, Wang H (2005) Impacts of
user modeling on personalization of information retrieval: an
evaluation with human intelligence analysts. In: Weibelzahl S,
Paramythis A, Masthoff J (eds) Proceedings of the fourth work-
shop on the evaluation of adaptive systems (held in conjunction
with the 10th International Conference on User Modeling (UM-
05)), Edinburgh, UK, pp 27–36

31. Santos E Jr, Santos E, Nguyen H, Pan L, Korah J, Xia H (2008)
I-FGM as a real time information retrieval tool for E-governance.
Int J Electr Governm Res 4(1):14–25. Special issue: E-government
technologies for managing national security and defense

32. Selberg E, Etzioni O (1995) Multi-service search and comparison
using the MetaCrawler. In: Proceedings of the fourth world wide
web conference, pp 195–208

33. Sleator DD, Temperley D (1993) Parsing English with a link gram-
mar. In: Proceedings of the 3rd international workshop on parsing
technologies, pp 277–292

34. Segaran T (2007) Programming collective intelligence. Building
Smart Web 2.0 Applications. O’Reilly Media

35. Song F, Croft WB (1999) A general language model for informa-
tion retrieval. In: Proceedings of eighth international conference
on information and knowledge management, pp 279–280

36. Suan NM (2004) Semi-automatic taxonomy for efficient informa-
tion searching. In: Proceedings second international conference
information technology for application

37. Tanaka H, Kumano T, Uratani N, Ehara T (1999) An efficient
document clustering algorithm and its application to a document
browser. Inf Process Manag 35:541–557

38. Text REtrieval Conference (TREC) see http://trec.nist.gov/
overview.html

39. Verton D (2003) IT deficiencies blamed in part for Pre-9/11 intel-
ligence failure. Computerworld 37(30):12

40. Yates RB, Neto BR (1999) Modern information retrieval. Addison
Wesley, Reading

41. Zobel J, Moffat A (2006) Inverted files for text search engines.
ACM Comput Surv 38(2). doi:10.1145/1132956.1132959

Eugene Santos, Jr. received his
B.S. (1985) in Mathematics and
Computer Science from Youngstown
State University, a M.S. (1986) in
Mathematics (specializing in Nu-
merical Analysis) from Youngstown
State University, as well as Sc.M.
(1988) and Ph.D. (1992) degrees
in Computer Science from Brown
University. He is currently Profes-
sor of Engineering in the Thayer
School of Engineering at Dartmouth
College, Hanover, NH. His areas of
research interest include artificial
intelligence, intent inferencing, so-

cial and cultural modeling, computational social science, automated
reasoning, decision science, adversarial reasoning, user modeling, nat-
ural language processing, probabilistic reasoning, and knowledge engi-
neering, verification and validation, protein folding, virtual reality, and
active user interfaces. He has served on many major conference pro-
gram committees from intelligent agents to evolutionary computing.
He is currently Editor-in-Chief for the IEEE Transactions on Systems,
Man, and Cybernetics: Part B, an associate editor for the International
Journal of Image and Graphics, and is also on the editorial advisor
board for System and Information Sciences Notes and on the editorial
boards for Journal of Intelligent Information Systems and Journal of
Experimental and Theoretical Artificial Intelligence.

Eunice E. Santos received her
Ph.D. in Computer Science from the
University of California, Berkeley
in 1995. She has also received B.S.
and M.S. degrees in both Mathe-
matics and Computer Science. She
is currently Professor and Chair of
the Department of Computer Sci-
ence at the University of Texas, El
Paso. She is also the Director of the
National Center for Border Security
and Immigration, and the Director
of the Center for Defense Systems
Research. Her areas of research in-
terest include parallel and distrib-

uted processing, modeling and simulation, complex systems, compu-
tational biology, computational social science, and socio-cultural mod-
eling. Dr. Santos has received numerous awards, including a National
Science Foundation Career Award, the Robinson Faculty Award and
the IEEE-CS Technical Achievement Award.

http://trec.nist.gov/overview.html
http://trec.nist.gov/overview.html
http://dx.doi.org/10.1145/1132956.1132959

398 E. Santos, Jr. et al.

Hien Nguyen is currently Assis-
tant Professor in the Department of
Mathematical and Computer Sci-
ences at the University of Wisconsin-
Whitewater. She received her Ph.D.
in Computer Science from the Uni-
versity of Connecticut in 2005. Her
research interests include user mod-
eling, information retrieval, collab-
orative information retrieval, rec-
ommender systems, intent inferenc-
ing, and text summarization with a
current focus on hybrid user model
for improving a user’s performance
in information retrieval. Profes-

sional services and committee work include program committees for
2010 User Modeling Personalization and Adaptation (UMAP) con-
ference, 2008–2010 FLAIRS Conference, 2011, 2007 and 2006 IEEE
International Conference on Systems, Man, and Cybernetics. She also
is a member of User Modeling—User Adapted Interactions journal
Special Reviewers Board. She actively involves in supervising under-
graduate research at the University of Wisconsin–Whitewater.

Long Pan is a senior software en-
gineer in Microstrategy Inc. He
served as a postdoctoral associate
in the Laboratory for Computation,
Information & Distributed Process-
ing (LCID) at the Virginia Poly-
technic Institute & State University
for 8 months. He received his Ph.D.
degree from Computer Science de-
partment of Virginia Tech. He got
his B.S. and M.S. degrees from the
Automation Department of the Ts-
inghua University. His research in-
terests are focused on Social Net-
work Analysis (SNA) on large and

dynamic networks, SNA with culture infusion, parallel/distributed
computing, data mining, and information retrieval. He served as a
reviewer for Journal of Supercomputing, and the International Con-
ference on Parallel Processing (2007).

John Korah received his bache-
lor degree in Electronics and In-
strumentation Engineering from the
Govt. College of Technology, Coim-
batore, India (2000), Masters de-
gree in Electrical Engg (2002) and
Ph.D. in Computer Science (2010),
both from Virginia Tech. He is cur-
rently employed as a Research As-
sistant Professor in Computer Sci-
ence, University of Texas at El Paso.
His research interests are focused
on parallel/distributed computing,
parallel numerical algorithms, large
scale network modeling/simulation,

social networks and information retrieval. He also serves as a reviewer
for the Journal of Supercomputing and IEEE Systems, Man and Cy-
bernetics.

	A large-scale distributed framework for information retrieval in large dynamic search spaces
	Abstract
	Introduction
	Related work and background
	Related work
	Background

	I-FGM framework and system architecture
	Empirical evaluation
	Overview of the evaluation
	Control systems
	Method and testbed
	Procedure for evaluating retrieval performance

	Experimental results and analyses
	Experiment one-static runs
	Experiment two-dynamic runs
	Experiment three-selection functions
	Computational costs
	Scaling up I-FGM
	Summary

	System performance analyses
	Performance metric and frequently used parameters
	Full-processing (FP) system
	Baseline (B) system
	B system performance
	Comparison between B system and FP system

	Partial-intelligent (PI) system
	I-FGM system
	Experimental results and analysis
	Measurement of aB (comparison between the B system and FP system)
	I-FGM system performance measurement (comparison between I-FGM system and B system)

	Conclusion
	Acknowledgements
	References

