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Abstract In this paper, we address object recognition for a
mobile robot which is deployed in a multistory building. To
move to another floor, a mobile robot should recognize var-
ious objects related to an elevator, e.g., elevator control, call
buttons, and LED displays. To this end, we propose a neural
network based retrainable framework for object recogni-
tion, which consists of four components—preprocessing, bi-
nary classification, object identification, and outlier rejec-
tion. The binary classifier, a key component of our system,
is a neural network that can be retrained, the motivation of
which is to adapt to varying environments, especially with
illuminations. Without incurring any extra process to pre-
pare new training samples for retraining, they are freely ob-
tained as a result of the outlier rejection component, being
extracted on-line. To realize a practical system, we adopt a
parallel architecture integrating both recognition and retrain-
ing processes for seamless object recognition, and further-
more detect and cope with the deterioration of a retrained
neural network to ensure high reliability. We demonstrate
the positive effect of retraining on the object recognition
performance by conducting experiments over hundreds of
images obtained in daytime and nighttime.
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1 Introduction

Mobile robots have been successfully employed in various
applications including delivery services, tour guidance, and
security services. In some cases, robots have been developed
to assist partly motion-impaired users with the transporta-
tion of light objects in an office environment [1]; to guide
tourists in a museum [2] and to interact and communicate
with staffs and visitors in an exhibition area [3]. Unfortu-
nately, most of these robots could navigate in a single story
building successfully but extension to more realistic multi-
story buildings was not under consideration, bringing about
a serious limitation in mobility. To navigate in a multistory
environment, the robot should be able to exploit an eleva-
tor [4, 5]. From a mobile robot’s point of view, elevator ac-
cess is a very challenging task which has not yet been com-
pletely resolved. At the outset, a preliminary question which
must be considered is an ability to recognize the status of an
elevator, such as moving up or down.

Objects related to an elevator are the elevator call/control
buttons, its moving direction indicator, the floor index in-
dicator, all of which are assumed to lie on a planar sur-
face. This assumption will turn the problem into a 2D object
recognition. The scale invariant feature transform (SIFT)
based object recognition has been accepted as the state-of-
the art, showing an outstanding performance in recogniz-
ing objects even in circumstances where a partial occlusion
or illumination change occurs [29, 30]. Since, however, it
is based on extraction of dense keypoints, it suffers from
a long processing time and actually ends up with few key-
points around the target object when applied to our prob-
lem. In addition, we need to devise a recognition scheme
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that includes a robust outlier rejection method for reducing
erroneous recognition as well as an adaptation mechanism
for dealing with environmental changes. The outlier rejec-
tion is a basic problem in data mining literature, with a great
deal of research on it [26]. Methods that have been proposed
so far include a distance-based outlier rejection that is based
on the distance of a point from its kth nearest neighbor [6], a
density-based clustering method, which defines a local out-
lier factor for each object in a dataset to indicate its degree
of outlier-ness [7], and the method of applying graph parti-
tioning to identify the sets of outliers [8].

The neural network has been widely used in various
recognition or classification problems. Rowley et al. used
a neural network for detecting an upright frontal face in a
static image [18]. Er et al. introduced a radial basis function
neural network classifier to cope with face recognition [16].
To recognize the electrocardiographic (ECG) beat, Osowski
et al. implemented a fuzzy hybrid neural network which con-
sists of self-organizing subnetworks connected in cascade
with the multilayer perceptron [15]. Moreover, to cope suc-
cessfully with environmental changes in real time, a neural
network that can be automatically adapted to the current en-
vironment has been proposed. An on-line retraining neural
network was utilized to separate the foreground from the
background of nonstationary image sequences [9], to clas-
sify multimodal feature-based emotion patterns into several
representative emotions [10], and to detect and recognize
malignant regions in colonoscopy video sequences [17].

The advantages of a neural network naturally come from
its massively parallel distributed structure and its generaliza-
tion ability by learning. Those advantages lie in adaptability,
fault tolerance, dealing with certainty and contextual infor-
mation, and model-free estimation by constructing input-
output mapping [13]. Therefore, it can continuously pro-
vide intelligent perception to a mobile robot that navigates
in varying environments. This paper presents an on-line re-
training neural network and its performance improvement
while dealing with the following problems: how to reorga-
nize the new training set, how to determine when to retrain
it, how to evaluate its efficacy, and finally how to achieve
parallel execution of object recognition and retraining.

With this in mind, we introduce an on-line retraining
neural network based framework to recognize objects re-
lated to an elevator. More specifically, we proposed a se-
quential framework, named as the Cascaded Processing El-
ements (CPEs). The CPEs include: preprocessing, binary
classification, object identification, and outlier rejection.
The first step of preprocessing extracts object candidates
from an input image regardless of varying illumination con-
ditions using an adaptive thresholding and a size filtering
technique. The binary classifier, as a key component of the
proposed method, is implemented with a neural network
whose weights can adapt to changing environments. Then,

object identification is accomplished by template matching,
giving an identified index to each candidate. In the last step,
graph partitioning in conjunction with a priori knowledge
is utilized to reject outliers which were not removed by the
preceding three steps. In brief, the main contribution of this
paper is to provide a methodology for the relearning of a
neural network to solve practical problems, and as its ap-
plication we present a robust recognition system for mobile
robots which adapt to varying environments through an on-
line retrainable neural network.

This paper is organized as follows. The overall system
description is given in Sect. 2, and Sect. 3 addresses the
detailed procedures of object recognition. We consider four
main problems in achieving on-line retraining in Sect. 4. Ex-
perimental results by the proposed method are demonstrated
over daytime and nighttime images in Sect. 5.

2 System overview

The system configuration is divided into two parts. The left
hand side of Fig. 1a is related to the system hardware which
contains the mobile robot, a stereo camera module, and a
pan-tilt module (Fig. 1b). The mobile robot provides the cur-
rent position information for calculating a 3D position of the
target object. The pan-tilt module is mounted on the head of
the robot and controls stereo camera to look in arbitrary di-
rections. The camera module captures stereo images, which
are then analyzed by the CPEs so as to extract a 3D position
of the target object.

2.1 Cascaded processing elements

The right hand side of Fig. 1a show the main structure of the
proposed algorithm. The target object to recognize depends
on the robot location. If it is in an elevator, then the target
object may be an elevator control button or a floor number.
As such, the Object Template Storage selects one of the rel-
evant target templates when the robot location is given.

The CPEs consist of four components and two external
image storages, defined as the Object Image Queue (ObjIQ)
and the Outlier Image Queue (OutIQ) (Fig. 2). Each com-
ponent has its unique function. In the preprocessing com-
ponent, an adaptive thresholding technique is applied to the
whole region of the input image to extract object candidates
under varying illumination conditions. Then, the several ex-
tracted object candidates go through size filtering, using its
geometric constraints. Next, a neural network that is retrain-
able during the recognition process, as a second component,
can solve the binary classification problem, while reducing
the number of object candidates by removing the ambigu-
ous ones. Through the third component of template match-
ing, each candidate is identified as one of the objects in the
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Fig. 1 Overall system
configuration. (a) The system
hardware and the simplified
structure of the proposed
method. (b) Our mobile robot

Fig. 2 Structure of the CPEs
and two image queues. The
components in black boxes are
major processing units that
allow the system to adapt to
varying illumination condition

Object Template Storage with a proper template index. Fi-
nally, the outlier rejection component, using graph partition-
ing and a priori knowledge, further removes falsely identi-
fied objects from the candidate set by considering their rela-
tionships based on a model. Here the outlier is defined as a
candidate which can pass through the neural network but is
excluded by the outlier rejection component.

Through the CPEs, an ambiguous object is rejected se-
quentially whenever it goes through each component. More-
over, the rejected candidates are not just discarded but
reused as negative training data to retrain the neural network
in the second component; thus this retraining ability guaran-
tees self-adaptability of the system. In our configuration, the
CPEs have four components, yet more components can be
added to reinforce rejection of ambiguous candidates. For
instance, another classifier can be added in parallel with or
after the neural network. Utilization of many components

of the CPEs can lessen false positives, i.e., recognizing a
non-target as a target object. On the other hand, false neg-
atives, i.e., recognizing a target object as a non-target, may
increase. This brings forth the problem of how many com-
ponents of the CPEs to utilize, but it is beyond the scope of
this study.

In summary, the proposed method is characterized by its
self-adaptability and flexibility in structure; both are the core
features for practical applications. In this paper, we imple-
ment the CPEs with four components and their primary roles
will be discussed in more detail in Sect. 3.

2.2 Two image queues

There are two kinds of image queues, ObjIQ and OutIQ,
which serve as data storage for training samples in our pro-
posed system (Fig. 2). Once the objects and outliers are dis-
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tinguished by the CPEs, then each object or outlier is stored
in the corresponding image queue. The data storage mecha-
nism of two image queues is analogous to First In First Out;
whenever an outlier is detected, it is inserted to OutIQ as
the form of an image patch by the push operation, whereas
the oldest outlier is automatically ejected from OutIQ by the
pop operation. This series of processes is also applied to Ob-
jIQ in a similar way. Note that the size of each image queue
is kept constant during the recognition process; however, the
size of two image queues need not be the same. A number
of image patches in OutIQ, used as negative training data,
play a dominant role in suppressing the occurrence of out-
liers; hence the size of OutIQ, Nout is usually set to be larger
than that of ObjIQ, Nobj , because reducing the occurrence
of outliers is of vital importance when dealing with object
recognition in a visually dynamic environment.

The existence of the two image queues is related to the
retraining of the neural network, which is triggered when-
ever the current environment or its illumination condition is
decided to be changed. In the retraining phase, two image
queues perform important roles such as offering the new
training data and determining when to start retraining. By
retraining the neural network with the help of the two image
queues, adaptability of the proposed method is guaranteed
regardless of the environmental changes.

3 Object recognition

In this section, we address potential problems that are likely
to occur when we use the SIFT based approach, one of the

most widely used in object recognition, as a tool for solving
our problem. Then, we explain the proposed method step
by step including detailed preprocessing procedures for ex-
tracting object candidates, how the neural network can re-
move false candidates generated in the previous preprocess-
ing step, how to identify object candidates, and how to reject
outliers.

3.1 SIFT-based object recognition and its limitations

In the SIFT-based object recognition, A large number of fea-
tures, or keypoints, are extracted from an image, and then
the target object is recognized by matching these extracted
keypoints with the registered keypoints in the robot’s object
database. This method has several advantages such as scale
and rotation invariance, robustness to occlusion, affine dis-
tortion, and partial changes in illumination [29].

In spite of these advantages, use of the SIFT-based ap-
proach for recognition of our target objects encounters sev-
eral problems:

• This method assumes that an image of a typical object has
dozens of SIFT keypoints, but in our case, the target ob-
ject is displayed as a tiny object in an input image (nearly
5% of the input image size). Thus, it may be hard to ex-
tract enough keypoints around the target object (Fig. 3a).
We could adjust parameters so as to extract dense key-
points, but then, the processing time may increase, which
is a failure seen from a real time processing point of view
(Fig. 3b).

• When an elevator control button, as a target object, is
pressed, the overall pixel intensities of the button change

Fig. 3 (Color online)
Extraction of SIFT keypoints by
adjusting a contrast threshold
parameter. The green dots
represent extracted keypoints
and yellow and red lines connect
matched keypoints. (a) Contrast
threshold 0.04; 623 keypoints
are extracted from 640 × 480
image and the processing time is
2.15 s. (b) Contrast
threshold 0.01; 930 keypoints
are extracted and the processing
time is 3.03 s. (c) There are two
correct (yellow line) and one
false (red line) keypoint
matchings. The false matching
happens in a similar object
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significantly (Fig. 3). Therefore, multiple sets of keypoint
descriptors may be necessary even for defining one target
object.

• False keypoint matching may occur due to the high simi-
larity between the target objects (Fig. 3c).

• From a visual scene perspective, the usual experimen-
tal environment is highly dynamic. However, there is
no self-adaptation mechanism to cope with environmen-
tal changes such as illumination variations, even though
SIFT feature is robust to partial illumination changes.

In the light of these problems, we might conclude that SIFT-
based object recognition is not adequate for solving our
problem and thus we need to find a different method.

3.2 Target object

Every time the robot is confronted with the task of an eleva-
tor, it has to recognize four kinds of target objects associated
with the elevator. They may differ according to the current
robot location or the task assigned to the robot as shown in
Fig. 4.

The floor number offers the current elevator position, and
the moving direction indicates whether an elevator is go-
ing up or down (Fig. 4a, b). These two objects show the
moving state of the elevator. To call the elevator, the robot
must recognize the up or down buttons (Fig. 4c). In order
to move to the target floor, the robot must recognize and se-
lect an elevator control button to press within an elevator
(Fig. 4d).

Identical CPEs except the outlier rejection are utilized
to recognize all these objects. The graph partitioning step
is used only to recognize the elevator control buttons, be-
cause it needs the relationship between the identified ob-
jects. Thus, the remainder of this paper deals with recog-
nition of the elevator control buttons.

3.3 Preprocessing by adaptive thresholding and size
filtering

The inside of the elevator where our experiment is to be
carried out is a very reflective environment, surrounded by
mirror-like surface (Fig. 5a). Furthermore, the lighting con-
dition is constantly varying according to the vertical position
of the elevator because the natural light penetrating transpar-
ent glass comes in directly through the inside of the eleva-

tor. Under such a varying illumination condition, an adap-
tive thresholding [11, 12] can be used to separate the possi-
ble object region from the background based on local pixel
intensities. Isource is the input image and param is a para-
meter set related to the adaptive thresholding, which con-
sists of the neighborhood size and the offset value subtracted
from a local mean intensity to determine a threshold value.
Figure 5b is the resulting binarized image after applying an
adaptive thresholding, where the neighborhood size is nine
and the offset is five, and a collection of white pixels repre-
sents possible object region. As can be seen in Fig. 5b, there
are too many possible regions, including those outside our
interest as well as the target object regions such as the num-
bers from one to five. Then, the next problem that we face
is how to remove these undesirable regions. First of all, the
white regions have to be divided into several independent
groups.

By grouping white pixels that are connected to each other
using connected component labeling [27], a group of white
pixels can be defined as a single object candidate ci . Each
candidate ci is assigned several attributes: area βi (i.e., num-
ber of white pixels in the candidate), center position pi in the
image space, width wi , height hi , width-to-height ratio ri

of its bounding box, and size-normalized rectangular image
patches ImgOi and ImgBi centered at pi where the former
is extracted from the input image and the latter is from the
binarized image, respectively (Fig. 5d, e).

The number of candidates can be reduced by size fil-
tering, which uses geometric constraints such as area and
width-to-height ratio of a candidate. In other words, size
filtering filters out candidates which do not satisfy the fol-
lowing constraints: βi should be larger than a minimum
area βmin and also ri should be bounded between rmin and
rmax, which are the lower and upper bounds of the width-to-
height ratio. All the preprocessing procedures are listed in
Table 1. As a result of the above preprocessing, most false
candidates were eliminated from Fig. 5b, whereas the tar-
get objects, or numbers in the control panel, still remained
(Fig. 5c). These remaining candidates form the object can-
didate set C, which still includes a false positive. In the
subsequent step, the neural network as a retrainable binary
classifier can further filter out these remaining false candi-
dates.

Fig. 4 Target objects. (a) Floor
number display. (b) Moving
direction display of the elevator.
(c) Elevator call buttons.
(d) Elevator control buttons
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Fig. 5 Preprocessing.
(a) A gray-scale input image.
(b) After an adaptive
thresholding. (c) After a
connected component labeling
and size filtering. (d) Example
image patches of correct
candidates. (e) Example image
patches of false candidates. The
upper image patches of (d)–(e)
are extracted from the input
image (a), followed by
normalization in terms of size
and pixel intensity. The lower
image patches are from the
binarized image (b)

Table 1
Preprocessing—extraction of
object candidates

Preprocessing(Isource)

1: Ibinary ← Adaptive thresholding (Isource,param)

2: ci = (βi ,pi ,wi, hi , ri , ImgOi, ImgBi) ← Connected component labeling (Ibinary )

3: n ← 0

4: C ← ∅
//size filtering

5: For all detected candidates ci do

6: If βi > βmin and rmin < ri < rmax then C ← C ∪ {ci}, n ← n + 1

7: Endfor

8: L ← n

9: return object candidate set C = {c1, c2, . . . , cL}

3.4 Neural network as a binary classifier

Neural network based recognition and classification
schemes have been widely investigated by researchers in
a diverse range of research fields, such as pattern recog-
nition [23, 24], image processing [22], and mobile robot-
ics [19–21]. The key idea, adopting methods that are in-
spired by biological systems, is unchanged even though the
motivation of research comes from different research areas.
Although many types of the neural networks can be uti-
lized in classification purposes [25], in our application, we
choose a three-layer multilayer perceptron (MLP) that is
most widely studied and used.

In this study, the neural network, as the second compo-
nent of the CPEs, classifies each candidate ci into an object
or a non-object when an input image patch ImgÔi of ci is
fed into it, where ImgÔi is a histogram-equalized and size-
normalized version of ImgOi (Fig. 6). Through histogram
equalization, pixel intensities of each image patch ImgOi

are mapped nonlinearly to other pixel intensities thereby ex-

panding the range from 0 to 255. This compensates for dif-
ferences in camera input gains, as well as improving contrast
to some extent [18]. The width and height of ImgÔi is also
normalized to 15 by 20. This size normalization of the input
image can reduce the number of connections between the
input and the hidden layer.

Each image patch ImgÔi is converted into a vector whose
elements represent pixel intensities which are normalized
from zero to one, and fed into the neural network. Each
neuron in the input layer accepts corresponding normalized
pixel intensity of ImgÔi , implying that the number of neu-
rons in the input layer is identical to the size of ImgÔi ; thus
there are 300 neurons in the input layer.

To decide on a proper size of the network, many prun-
ing techniques including the sensitivity method, penalty-
term method, and pruning by a genetic algorithm have been
proposed [28]. Our approach to choose the optimal network
size, i.e., the number of neurons used in the hidden layer, is
straightforward. We train a number of networks of various
sizes and select the smallest one that shows a good general-
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Fig. 6 A neural network used
in a binary classification
problem. Gray-scale image
patch of each candidate is fed
into the neural network so as to
test whether it contains a
number or not. The number in
parentheses of each layer of the
neural network is the number of
neurons used

Table 2 Neural network as a
binary classifier Neural Network Classfier(C = {c1, c2, . . . , cL},w)

1: For all object candidates ci = (βi ,pi ,wi, hi , ri , ImgOi, ImgBi) do

2: Transform ImgOi into the input vector x

3: y = [y1y2]T ← Neural network (x)

//removing non-object in the set C

4: If y2 > y1 and y2 > θa then C ← C − {ci}
5: Endfor

6: return object candidate set C = {c1, c2, . . . , cM }

ization performance; we found that utilizing 15 neurons in
the hidden layer is the optimal choice in our classification
problem. The number of neurons in the output layer corre-
sponds to the number of output classes. We have two classes:
object and non-object. Thus the output layer has two neu-
rons. After input data is fed to the network, we observe the
output values of the two neurons in the output layer, each of
which represents a degree of activation. Let y = [y1 y2]T de-
note the activation vector of the output neurons, where each
element of y represents corresponding activation value. If y1

is activated more than y2 and a predefined threshold θa , then
the input image patch is considered as belonging to the ob-
ject class. On the other hand, y2 is more activated than y1

and θa if belonging to the non-object class. In this manner,
each input candidate is classified as object/non-object ac-
cording to the distribution of these activations in the output
layer (Fig. 6). Once a candidate is classified as a non-object,
then it is removed from the object candidate set C (Table 2).

Although much work has been done on the topic of neural
network training, backpropagation (BP) is most widely

used training method [13]. Through BP training, the neural
weights are adjusted in an iterative and gradient descent way,
minimizing the overall error between the desired and actual
outputs of the neural network:

w(k + 1) = w(k) + �w(k), (1)

�w(k) = −η
∂e(k)

∂w(k)
, (2)

where k is an iteration number within training, η is a learn-
ing rate, e is error at the output layer, and w is a collection
of weights associated with all layers.

We have two classes of training samples: positive and
negative samples. The positive samples are stored in ObjIQ
in the form of a 15 by 20 gray scale image patch and the
negative samples are stored in OutIQ in the same form, re-
spectively. At the initial training step, where r is zero, these
training samples are already provided to the system by man-
ual selection, neural weights are then modified so as to learn
these initial training samples. However, at the r th retrain-
ing phase, some initial training samples are not maintained
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Table 3 Object identification
by template matching Object Identification(C = {c1, c2, . . . , cM }, T = {tp1, tp2, . . . , tp5})

1: For all object candidates ci = (βi ,pi ,wi, hi , ri , ImgOi, ImgBi) do

2: (cri , ti ) ← Template Matching (ci , T )

//assign attributes

3: If cri > θc then add attributes (cri , ti ) to ci

4: Else C ← C − {ci}
5: Endfor

6: return object candidate set C = {c1, c2, . . . , cN }

but removed sequentially from the two image queues, giv-
ing room to newly acquired training samples. The concept
as well as the detailed procedures of retraining will be dis-
cussed in Sect. 4.

3.5 Object identification by template matching

The camera viewpoint is related to the robot’s pose in the el-
evator; moreover, we can assume that the robot can locate in
front of the control panel within a reasonable bound. Under
this assumption, we consider a skew and a slant factor small
in each candidate image, so we chose to use a simple tem-
plate matching to identify a target. There are five binarized
templates corresponding to numbers from one to five; each
template has a fixed size of 10 by 14. Although the size of a
query image ImgBi is varying depending on the preprocess-
ing results, it is normalized to 15 by 20; thus the template
search space is limited to 6 by 7. Therefore, the processing
time of template matching can be considerably reduced, and
normalization of the query image allows template matching
to be scale-invariant as well.

The most commonly used similarity measure is the nor-
malized cross-correlation (NCC):

Rij (x, y)

=
∑

x′
∑

y′ Tj (x
′, y′) · Ii(x + x′, y + y′)

√∑
x′

∑
y′ Tj (x′, y′)2

√∑
x′

∑
y′ Ii(x + x′, y + y′)2

,

(3)

where Ii is the ith query image, Tj is the j th template, and
Rij is the calculated correlation coefficient, respectively. In
general, we can find several local maxima in the correlation
surface, but owing to its limited size of 6 by 7, the assump-
tion that the correlation surface is unimodal can be justified;
so, only one peak with its correlation coefficient exists in a
pair of the query image and a template.

Since we have five templates, multiple template match-
ing processes are done sequentially to identify a query im-
age. In other words, identification of an object candidate ci

using its query image ImgBi is accomplished by giving it a
template index ti which has a maximum value among five

correlation coefficients. However, if the maximum correla-
tion coefficient is lower than a predefined threshold value θc,
then the object candidate ci is discarded from the object can-
didate set C. Otherwise, the maximum correlation value cri
and the template index ti are included into ci as additional
attributes (Table 3).

3.6 Outlier rejection by graph partitioning and a priori
knowledge

We have N number of candidates represented by a set
C = {ci = (βi,pi,wi, hi, ri , ImgOi, ImgBi, cri, ti) | i =
1, . . . ,N}. Until now, the rejection criterion is purely de-
pendent on the attributes of each candidate, especially its
segmented image patch, area, and width-to-height ratio. In
other words, the relationship between the identified candi-
dates is not taken into account in removing falsely identified
objects from the candidate set C. Since the elevator control
buttons are aligned vertically in the control panel, we can de-
tect these buttons together. We modeled the elevator control
panel as in Fig. 7a, where d is a constant proportional to the
distance between two adjacent buttons, which will be used
as the scale factor for estimating a real distance in image
coordinates. There are five buttons, each of which contains
a corresponding number in it, arranged in descending order.
With this control panel model and a graph representation of
the object candidates, we can further eliminate falsely iden-
tified candidates, also called outliers, from the set C.

3.6.1 Outlier rejection by graph partitioning

Usually a graph G is expressed by a set of vertices V

and edges E connecting them. An image space can be
transformed into a graph space; object candidates and their
relationships in the image space are mapped to vertices
and edges, respectively, in the graph space by the control
panel model shown in Fig. 7b. The positions of the vertices
mapped to the graph space have no relevance to those of
the object candidates in the image space; however, their re-
lationship is closely associated with an edge. Under the as-
sumption that the transformed graph is a simple graph [14],
a pair of any two vertices cannot hold more than one edge;
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Fig. 7 Model based
transformation from an image
space to a graph space.
(a) Elevator control panel
model. (b) Graph representation
of candidates by model based
transformation. In the image
space, seven candidates which
are denoted by white circles are
mapped to seven vertices one by
one

thus if there are N vertices in a simple graph, then it has
N(N − 1)/2 edges at most.

In our application to outlier rejection, all vertices are con-
nected with each other via edges, which have different con-
nection weights. The connection weight aij between the ith
and the j th vertices is calculated based on the control panel
model as follows:

ED(pi,pj ) = dO
ij , (4)

d(hi + hj )|ti − tj |/2 = dM
ij , (5)

aij = 1√
2π

exp(−(dO
ij − dM

ij )2/2), (6)

where ED is a measure of the Euclidean distance, dO
ij is the

distance between two object candidates observed in a scene
image and dM

ij is the reference distance estimated by the con-
trol panel model. In (4), a Gaussian function with zero mean
and unity standard deviation is used to convert disparity be-
tween dO

ij and dM
ij into the connection weight. Therefore, if

two candidates are matched well with the model, then the
connection weight will be high, otherwise low.

In this manner, we can assign connection weights to all
possible pairs of two vertices. A collection of connection
weights is represented in the form of an N by N symmetric
matrix, A = [aij ], defined as an adjacency matrix, where N

is the number of candidates. In case of a simple graph in
Fig. 8, the adjacency matrix is as follows:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0 0 0 1
1 0 1 0 1 0 0
1 1 0 1 1 0 1
0 0 1 0 0 1 0
0 1 1 0 0 0 1
0 0 0 1 0 0 1
1 0 1 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

where aij is given by

aij =
{

1 if i �= j, ci and cj are connected,

0 otherwise.
(8)

Fig. 8 Graph partitioning. The
vertices having low connection
weights, i.e., c4 and c6, are
considered as outliers. Thus the
graph G is partitioned into two
parts by dashed line

However, in our case, an element of A is not binary value
but continuous as defined in (6).

An outlier in a graph is defined as the vertex which has
a relatively low connection weight; thus an average connec-
tion weight m(G) of a graph G is maximized when such
outliers are removed from the graph G. m(G) is calculated
as follows:

m(G) =
∑N

i

∑N
j aij

N
, (9)

where N is the number of vertices. Let us now define u as an
indicator whose ith element ui represents whether an object
candidate ci is an outlier or not:

ui =
{

0 if ci is an outlier,
1 otherwise.

(10)

Consequently u expresses a subgraph H = (Y,F ) of a graph
G = (V ,E), which satisfies the following conditions:

Y ⊆ V and F ⊆ E ∩ (Y,2), (11)

where (Y,2) means an edge set which consists of edges
formed by any two vertices in Y . Then, m(H) of a subgraph
H is represented by a matrix form:

m(H) = uTAu
uTu

, (12)

where the numerator is a summation of all connection
weights except the connection weights of outliers, and the
denominator is the number of elements whose values are
one.
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Then, the problem is to find a subgraph H , or umax that
maximizes m(H):

umax = arg max
u

uTAu
uTu

. (13)

There are 2N number of subgraphs, but it is tedious work
to calculate all the m(H) of 2N subgraphs. Instead, we seek
umax by differentiating (12) with respect to u, and this gives:

Au = m(H)u. (14)

Fortunately, m(H) and u are the eigenvalues and eigenvec-
tors of the adjacency matrix A, respectively. We can get a
maximum eigenvalue m(H) and its corresponding eigen-
vector umax with the help of linear algebra. Each element
of umax indicates a degree of outlier-ness [7], i.e., small ui

implies a high outlier-ness. We convert each element of umax

into a binary value to indicate it as either an outlier or not as
follows:

ui =
{

1 if ui > θu

0 otherwise,
(15)

where θu is a predefined threshold value. Now, we obtain the
binarized indication vector umax, which denotes a reduced
candidate set C = {c1, . . . , cP }, where P is the number of
candidates in the set C. In the process of outlier rejection
by graph partitioning, outliers are collected into the outlier
set O .

3.6.2 Outlier rejection by a priori knowledge

Suppose that there are two candidates, ci and cj , whose tem-
plate indexes ti and tj (respectively) are the same, then at
least one of the two should be rejected as an outlier because
only one floor number can exist in the set C; for instance,
two or more buttons which correspond to ‘floor 2’ cannot
appear in one control panel. So, we divide the set C into five
subsets by defining Tk = {ck

1, c
k
2, . . . , c

k
Gk

} as a collection of
candidates whose template indexes are k, where Gk is the
number of elements in the subset Tk . We assign an evidence
value to each ck

i as follows:

evk
i = ηcrk

i + (1 − η)

L∑

j=1

aij , (16)

where η is a weighting constant ranging from zero to one.
The first term of the right hand side of (16) represents self-
evidence; it is determined by the correlation coefficient, in-
dicating how well the candidate matches with a template.
The second term, relational evidence, is determined by con-
nection weights, signifying how well the candidate is in ac-
cord with the other candidates. If η is chosen small, we in-
tend to give priority to the relationship between candidates

rather than a candidate itself. Consequently, the weighting
constant sets the balance between self-evidence and rela-
tional evidence. During this process, redundant candidates
are also stored in the outlier set O = {o1, o2, . . . , oQ}, where
Q is the number of outliers in the set O . Each oi has the
same attributes as ci in the object set C.

Now, we have two separate sets as recognition results;
the set C is a collection of identified objects, and the set O

is a collection of rejected outliers. The elements of these two
sets are used as a part of the positive and negative training
data in subsequent neural network retraining. Table 4 sums
up the whole procedure of outlier rejection.

4 Neural network revisited: from a retraining
perspective

Up to now, we have looked at the whole object recogni-
tion procedures by stages. In this section, we again de-
scribe the neural network, but much attention is given to
self-adaptability and retraining aspects rather than the neural
network itself.

4.1 On-line retraining neural network: concept and related
questions

In this study, the experimental environment is confined
within the neighborhood of an elevator. This environment
seems to be a small area in terms of the physical space
in which the robot moves. However, even when the robot
stands still, the environment is changing dynamically when
viewed from the visual space where the object recognition
process is carried out. The inside of the elevator is sur-
rounded by transparent glass and reflective materials such
as mirror. For this reason, a visual scene of the inside of the
elevator is affected by the outer world and changes when the
elevator is moving up and down.

In most cases, due to these conditions, an off-line training
of the neural network is not enough to cope with all the pos-
sible variations of the environment, including illumination
conditions. Hence it requires an on-line retraining behavior
that can be performed in parallel to the recognition process.
We now begin with a discussion of the four fundamental
questions related to the on-line retraining neural network:

• Generation and reorganization of a new training set in real
time for on-line retraining—this procedure has to be em-
bodied in the recognition process so as to reduce extra
processing time to generate new training data. It should
also give a solution to the problem of forgetting some of
the previously learned knowledge in the neural network.

• How to determine when to retrain; the decision is based
on whether the environment changed or not.
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Table 4 Outlier rejection by
graph partitioning and a priori
knowledge

aMc is the elevator control panel
model

Outlier Rejection(C = {c1, c2, . . . , cN },Mc
a)

1: G ← ∅
//transform candidates from an image space into a graph space

2: For all pairs of two candidates ci and cj with i > j do

3: {vi , vj , aij } ← Transformation(ci , cj ,Mc)

4: G ← G ∪ {vi , vj ,wij }
5: Endfor

6: Define A = [aij ] and u = [u1, . . . , uN ]T
7: umax ← arg maxu

uTAu
uTu

//outlier rejection by the graph partitioning

8: O ← ∅
9: For all elements ui of umax do

10: If ui < θu then C ← {ci}, O ← O ∪ {ci}
11: Endfor

//outlier rejection by a priori knowledge

12: For k = 1 to 5 do

13: Let Tk = {ck
1, c

k
2, . . . , c

k
Gk

} be a collection of candidates whose tki is k

14: Calculate evidence value, evk
i ← ηcrk

i + (1 − η)
∑L

j=1 ak
ij

15: Define evmax as a maximum value among evk
i

16: For all candidates in Tk do

17: If evk
i < evmax then C ← C − {ck

i }, O ← O ∪ {ck
i }

18: Endfor

19: Endfor

20: return recognized object set C = {c1, c2, . . . , cP } and

outlier set O = {o1, o2, . . . , oQ}

• Evaluation of the retrained neural network; it is necessary
after every retraining to validate the retrained neural net-
work, avoiding getting stuck in local minima.

• Simultaneous retraining and recognition process; the re-
training process has to be done in parallel to recognition
process.

We should bear in mind that real-time processing capability
has to be considered; hence simplicity, or low-complexity,
is worth pursuing when managing these questions. In the
following sections, we suggest a simple but practical method
to deal with the above questions.

4.2 How to organize a new training set

For generating a new training data, a maximum a posteri-
ori estimation is used for selecting an optimal training data
that represents the current environment [9]. In this paper,
however, generation and reorganization of the new training
data is implemented in a much simpler manner and is pur-
posefully incorporated into the object recognition process,
avoiding an extra process to acquire a new training data.
Furthermore, it also enables the neural network to avoid for-
getting previous knowledge by using a training set where
some previous samples that are already learned are blended

with the current ones to be learned. This forgetting phenom-
enon is called catastrophic interference, or catastrophic for-
getting, that happens in a sequential learning task [31]. In
our problem, it may also happen if we use only the newly
obtained samples as the training data of next retraining;
however, we have two image queues that serve as temporal
storage for samples that are obtained through past process-
ing steps so that we can exploit past samples as the next
training set to adjust neural weights, thereby preventing
catastrophic interference. This approach is analogous to the
‘rehearsal’ scheme, which relearns a subset of previously
learned patterns at the same time that each new pattern is
introduced [32].

The initial training data consisting of positive and neg-
ative object samples that are selected manually are already
stored in the two image queues, ObjIQ and OutIQ; positive
samples in ObjIQ and negative samples in OutIQ. Let S0

pos

and S0
neg denote initial positive and negative sample sets in

each image queue, respectively:

S0
pos = {c0

1 · · · c0
Nrep

, c0
Nrep+1 · · · c0

Nobj
}, (17)

S0
neg = {o0

1 · · ·o0
Nrep

, o0
Nrep+1 · · ·o0

Nout
}, (18)
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Fig. 9 Reorganization of the
training data. (a) Initial training
samples in OutIQ.
(b) Reorganized training
samples in OutIQ after
processing the (n − 1)th image.
Representative samples are
never removed so as to keep the
initial knowledge

where Nrep is the number of representative samples which
should be preserved during all retraining processes for the
purpose of maintaining initial knowledge. After finishing the
object recognition process of the nth input image, we have
two sets; the identified object set Cn = {cn

1 , cn
2 , . . . , cn

Pn
}, and

the outlier set On = {on
1, on

2, . . . , on
Qn

}, where Pn and Qn are
the numbers of identified objects and rejected outliers in the
nth input image, respectively. Of course the elements in the
outlier set On should have been removed as non-objects by
the neural network classifier; unfortunately however, these
are classified as objects. Therefore, each element in On is
pushed into OutIQ as a negative training sample, whereas
the oldest sample in Sn−1

neg except the representative ones
are popped out from OutIQ. This procedure is depicted in
Fig. 9. An identical procedure is applied to ObjIQ where cn

i

is pushed and the oldest sample is popped out. We can now
express elements in ObjIQ and OutIQ after processing the
nth input image as follows:

Sn
pos = {c0

1 · · · c0
Nrep

, c0
NP

· · · c0
Nobj

, . . . , cn
1 · · · cn

Pn
}, (19)

Sn
neg = {o0

1 · · ·o0
Nrep

, o0
NQ

· · ·o0
Nout

, . . . , on
1 · · ·on

Qn
}, (20)

where

Np =
n∑

m=1

Pm + Nrep + 1,

and

NQ =
n∑

m=1

Qm + Nrep + 1.

This is the case where some initial training samples still re-
main in each image queue. However, if all initial training
samples except the representative ones are removed from
each image queue, then (19) and (20) are slightly modified
as follows:

Sn
pos = {c0

1 · · · c0
Nrep

, c
ka

P0
· · · cka

Pka
, . . . , cn

1 · · · cn
Pn

}, (21)

Sn
neg = {o0

1 · · ·o0
Nrep

, o
kb

Q0
· · ·okb

Qkb
, . . . , on

1 · · ·on
Qn

}, (22)

where

P0 =
n∑

m=ka

Pm − Nobj + Nrep + 1,

and

Q0 =
n∑

m=kb

Qm − Nout + Nrep + 1.

Each of ka and kb is an integer value that satisfies:

n∑

m=ka+1

Pm < Nobj − Nrep <

n∑

m=ka

Pm, (23)

n∑

m=kb+1

Qm < Nout − Nrep <

n∑

m=kb

Qm. (24)

Note that the number of elements in Sn
pos and Sn

neg , or the
size of each image queue, is kept constant throughout the
whole retraining process.

Now the training samples in each image queue represent
the current and past knowledge of the environment. In (21),
for example, the initial, former, and current knowledge cor-
responds to c0

1 ∼ c0
Nrep

, c
ka

P0
∼ cn−1

Pn−1
, and cn

1 ∼ cn
Pn

, respec-
tively. Therefore, using Sn

pos and Sn
neg as training data, neural

weights can be adapted to the current environment as well as
the past one:

wc = wl + �w, (25)

where each of wc and wl represents the matrix form of
neural weights after current retraining and previous retrain-
ing is completed, respectively. �w stands for a small incre-
mental knowledge that should be supplemented through cur-
rent retraining. In retraining process, a small number of iter-
ation is expected to be sufficient to supplement �w due to
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the fact that wl serves as initial weights that already learned
the given training data to some extent.

In summary, the problem of reorganizing a new training
set is nothing but a successive process of object recognition
and outlier rejection. Hence the advantages of this method
are that further processing is not needed to generate new
training samples and due to its simplicity, it is also amenable
to real time systems, avoiding catastrophic interference.

4.3 Decision of the time to retrain

In the preceding section, we have described how to orga-
nize a new training set, and then it is natural to ask how to
decide on the time to retrain the neural network with this
training set. Apparently, it is reasonable to retrain the neural
network when the environmental changes including changes
in illumination condition are believed to have occurred. The
method that we adopt to detect environmental changes is re-
lated to the classification performance of the neural network
and so straightforward. Suppose that the training set that is
used for last retraining consists of the object recognition re-
sults of up to the kth image. It does not hold recent knowl-
edge, or object recognition results from the (k + 1)th to nth
image; thus the lastly retrained neural network is likely to
give an erroneous output when the current environment be-
comes different from the past ones. For example, we be-
come aware of abrupt environmental changes in Fig. 13a, b
through the occurrence of outliers. If this becomes frequent,
then the neural network requires retraining to update with
the recent knowledge of the changing environment. The de-
gree of the necessity of retraining is inversely proportional
to the degree of adaptability (DoA) of the neural network
defined as follows:

DoA = 1
/

(
n∑

m=l

Qm + 1

)

, (26)

where n is the frame index of the current image, and l is the
frame index where the last retraining occurred. A retraining
process occurs when the following condition is satisfied:

DoA < θs, (27)

where θs is a predefined threshold value that represents
sensitivity to environmental changes, ranging from zero to
one. It is associated with frequency of retraining. If θs is
high, then the neural network is sensitive to environmen-
tal changes; thus retraining occurs frequently. However, it
may be unreasonable and wasteful in terms of computing
resources due to unnecessary retraining. On the other hand,
if θs is low, then the adaptability of the neural network de-
teriorates, so one may not be able to cope with the current
environmental changes immediately. In this study, we set θs

to 0.2 as its best value. The calculation of DoA is carried out
in conjunction with the object recognition similar to the case
of generating a new training data.

4.4 Evaluation of the retrained neural network

Once retraining of the neural network is completed success-
fully, occurrence of outliers may be reduced at the next im-
age frame. On the contrary, if retraining fails for some rea-
son, the neural network may not work as a classifier prop-
erly. Consequently, whenever the retraining is done, the re-
trained network should be proven to be valid before being
used in object recognition. Supposedly, the following are the
reasons of failing in retraining:

• Catastrophic interference.
• Getting stuck in local minima.

The catastrophic interference problem, as suggested in
Sect. 4.2, can be assumed to be resolved by the specially
reorganized training set that preserves past training sam-
ples. The second problem is that the neural weights may
get stuck in local minima due to periodic retraining. In this
paper, attention was not directed to prevent neural weights
from getting stuck in local minima but devoted to a method
of detecting and handling the local minimum problem.

For every retraining, some criterion for terminating the
retraining process must be established. Our stopping crite-
rion involves the root mean square (RMS) error for a given
training set and the number of iterations. More specifically,
retraining stops if the RMS error for a given training set be-
comes lower than θe or if the number of iterations exceeds
over θi . In general, the RMS error gets lower than θe within
20 iterations and so retraining comes to an end if the neural
weights do not get stuck in local minima. By contrast, if
retraining terminates after θi iterations in a situation where
the RMS error is not lower than θe, then the neural network
may yield unacceptable performance due to neural weights
that are not correctly trained. In this case, we evaluate the
retrained neural network to decide whether or not to uti-
lize it as a classifier at the next object recognition process.
Let wc denote the neural weights after the current retraining
(where (21) and (22) are used as training set) is completed.
If one of the representative samples in the training set is pre-
sented to the retrained neural network, then the disparity be-
tween its actual output and desired output should be small:

‖(wc)Txi − od‖2 < εe, i = 1,2, . . . ,Nr, (28)

where xi is the input vector that corresponds to one of rep-
resentative samples, od is desired output vector, and εe is a
predefined small positive value. ‖ · ‖2 denotes the l2-norm.
We randomly choose an Nr subset of the representative sam-
ples in (21), (22) and then apply (28) to each selected sam-
ple to see how many false classification will occur. We judge
effectiveness of the retrained neural network by the rate of
false classification pf . In other words, if the rate of false
classification is below θp , then we conclude that the re-
trained neural network is effective enough to be deployed at
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Fig. 10 A sequential and a
parallel retraining structure.
(a) Sequential retraining
structure. (b) Parallel retraining
structure. Each of S and E
designates the frame index
where the first retraining
process is activated and
terminated, respectively. Here,
after finishing the r th retraining
process, wr is employed as new
neural weights to reflect the
recent environmental knowledge

next objection recognition process. In real situations, how-
ever, as discussed above, we have to deal with the problem of
getting stuck in local minima where the rate of false classifi-
cation is higher than θp . In this case, neural weights wc are
initialized again by the Nguyen-Widrow method [33] and
are adjusted to learn the given training set as the case of ini-
tial training. On the surface, initialization of neural weights
may seem to discard the past knowledge obtained so far, but
this is not the case because the training set includes the past
knowledge as well as the current one.

4.5 Parallel processing framework for object recognition
and retraining

Retraining in parallel to object recognition is more rea-
sonable than a sequential retraining viewed from seamless
processing. In the case of sequential retraining, as shown in
Fig. 10a, the object recognition process suspends during the
retraining process and resumes after the retraining process
is done. Let us assume that the total r number of retrainings
occurred and the ith retraining required ti time. Then the
object recognition process is interrupted by the retraining
process for a total of

∑r
i=1 ti time, which leads to degrada-

tion of the overall system performance. In contrast, in case
of Fig. 10b, a constant object recognition process is achieved
without being interrupted due to parallel retraining; each re-
training is activated at the frame index where DoA of the
current neural network falls below θs .

In an ideal case, the retrained neural network can be as-
sumed to be deployed in the object recognition process soon
after the frame index where a request for retraining is issued.
To be specific, if the retraining process is initiated at the nth
frame index, then the retrained network is expected to be
employed immediately at the (n + 1)th object recognition
process, if retraining can be done within a very short time.
However, as is often the case with real situations, each re-
training requires a certain amount of time, which is likely to
bring about a delay when applying the newly retrained net-
work to object recognition. For this reason, the previously

retrained network expressed by wr−1 is utilized for cur-
rent object recognition process during r th retraining process.
Let Tavg denote the average time required to perform object
recognition per input image. The time requirement, or de-
lay, for r th retraining amounts to �tr/Tavg frames as the
worst-case. Here, we define �x as the ceiling of x, which
represents the smallest integer not less than x. Under the
assumption that tr is significantly shorter than Tavg, paral-
lel retraining may show no big difference compared to a se-
quential one from the standpoint of seamless object recogni-
tion. Through various experiments, however, we found that
tr and Tavg turned out to be similar in most cases, except for
some special cases arising from changes in parameters. The
worst-case of average delay in real application was found to
be five frames, still considered to be acceptable extent in a
practical system. Table 5 summarizes the whole procedure
of retraining.

5 Experimental results

In this section, we demonstrate the overall performance en-
hancement of the neural network through retraining. The
performance was measured by using inner elevator images
obtained in daytime and nighttime. We also present the ef-
fects of varying OutIQ size Nout on the performance of the
neural network.

5.1 Image sets and parameter setting

For experiments, we prepared all possible scene images that
might appear in real environments. These images are divided
into two sets: ‘DAY’ image set which contains 271 images
obtained in daytime and ‘NIGHT’ image set that contains
282 images obtained in nighttime. Because the natural light
source cannot have influence on illumination in the night-
time, as shown in Fig. 11b, we assume that there is almost no
illumination change in NIGHT, thereby considering only the
effects of the artificial light source. Unlike NIGHT, illumi-
nation condition of DAY changes severely due to the natural
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Table 5 Retraining phase
Retraining(Sn

pos, S
n
neg,wl , {Qm | m = l, . . . , n})

1: wc ← w

2: Calculate DoA = 1/(
∑n

m=l Qm + 1)

3: If DoA < θs then

4: BP learning using Sn = {Sn
pos, S

n
neg} as training set

5: wc ← wl + �w

//evaluation of the retrained neural network

6: Choose Nr test samples {xi | m = 1, . . . ,Nr } among the representative ones in Sn

7: pf ← 0

8: For all xi do

9: If ‖(wc)Txi − od‖2 > εe then pf ← pf + 1/Nr

10: Endfor

11: If pf > θp then initialize weights in wc by Nguyen-Widrow method and train again

12: return wc

Fig. 11 Example images for
the experiments. (a) Scene
images from DAY. (b) A scene
image from NIGHT

Table 6 General parameter setting for experiments

Nobj Nout Nrep θs θe θi θp rmin rmax θa θc θu η

50 70 10 0.2 0.01 100 0.3 0.1 1.5 0.8 0.65 0.3 0.4

light source and the movement of the elevator (Fig. 11a);
thus some images of DAY showed great changes in over-
all pixel intensities without normalization techniques such
as a white balancing. Table 6 shows the parameter set used
in the experiments. Among those parameters, Nout is fairly
associated with the suppression of outliers, so we examined
the effects of Nout by varying its size. The other parameters
which were determined empirically are not crucial factors
that affect the system performance and kept constant during
all experiments.

5.2 Performance enhancement of the neural network

Our experiment was carried out using the image set DAY for
the purpose of demonstrating the performance enhancement
by the neural network retraining. We measured the num-
ber of candidates passed through the neural network that
were retrained during the recognition process. For perfor-
mance comparison, we also measured the number of candi-
dates passed through the neural network that were not re-
trained. Figure 12 shows the average number of candidates

passed through each element of the CPEs. Through adap-
tive thresholding followed by connected component label-
ing, 1265 candidates were extracted initially, many of which
were further eliminated by the size filtering, producing a
result in which 82.05 candidates survived. Although the
number of candidates entering the neural network was the
same, however, there was a huge difference in the number
of candidates surviving through the neural network accord-
ing to whether or not retraining was done. With a retrained
neural network, an average of 6.18 candidates were left,
from which we could conclude that most ambiguous can-
didates were rejected by the neural network because there
are actually five target objects corresponding to the numbers
from one to five in a scene image. On the other hand, 24.66
candidates remained active when we employed the neural
network without allowing the retraining process.

Table 7 shows precision and recall performance of the
neural network tested by DAY image set. Both precision and
recall were enhanced due to the on-line retraining; the preci-
sion, especially, was greatly improved. Here, we also present
the F1 score, which can be interpreted as a harmonic mean
of the precision and recall, where an F1 score reaches its
best value at one and worst score at zero:

F1 = 2 · (precision · recall)/(precision + recall). (29)

Consequently this revealed that the performance of the
neural network as a classifier could be greatly enhanced
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Fig. 12 The number of
candidates surviving after
passing each component in the
experiment over the DAY image
set

Table 7 Precision and recall
performance True False False Precision Recall F1

positive positive negative

Non-retrained 1294 1007 41 0.562 0.969 0.712
neural network

Retrained 1309 60 26 0.957 0.981 0.968
neural network

Table 8 Rejection statistics

aAT + CC = Adaptive
thresholding + Connected
component labeling

Frame
index

AT + CCa Size
filtering

Neural
network

Template
matching

Outlier
rejection

1 1187 76 27 12 5

2 1157 95 26 8 5

13 1169 79 4 4 4

22 1295 85 10 8 5

23 1252 80 13 7 4

44 1322 84 6 6 5

55 1227 80 6 6 5

103 1016 89 12 7 4

133 1273 97 6 5 4

160 1064 70 6 6 5

168 1117 60 6 6 4

218 1479 88 12 6 4

224 1504 75 6 5 4

through the retraining process by allowing the system to
adapt to varying environments.

We also examined the rejection status on a frame-by-
frame basis in Table 8. The first column represents process-
ing frame index and the second to the sixth column represent
the number of candidates survived from each component in
the CPEs. In the first frame where the retraining process was
not yet performed, many candidates (i.e., 27 candidates) in-
cluding false ones passed through the neural network with-

out being filtered out. However, the number of candidates re-
maining was significantly reduced (i.e., 4 candidates) at the
13th frame after three retraining processes were done. In the
22nd frame, the number of candidates increased again due
to environment or illumination changes; however, as shown
in the rejection status of the 44th frame, in accordance with
to our expectation it soon decreased by following several re-
training processes. In subsequent frames, we could observe
analogous phenomena, and this fluctuation in the number
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Fig. 13 (Color online) Performance improvement by the retrained
neural network. 1st row: non-retrained case, 2nd row: retrained case.
(a–c) DAY: Recognition results at frame 42, 127, 181. (d–e) NIGHT:

Recognition results at frame 179, 219. Each of red, green, and yellow
square indicates outlier, correctly recognized, and miss-recognized ob-
ject, respectively

Fig. 14 False positives arising from an imperfect outlier rejection at
frame 59 in a non-retrained case. The white square in the right image
is falsely-recognized button

of candidates survived from the neural network is thought
to be an inevitable thing accompanied by the environmental
changes which are beyond our control.

Figure 13 directly illustrates the effect of retraining un-
der varying lighting conditions and different view angles.
The red and green squares correspond to candidates which
go through the neural network and template matching, but
red squares indicate the outliers that are removed by the out-
lier rejection component in the CPEs and the green ones are
the recognized objects. The yellow square indicates a miss-
recognized case, which is caused by over-filtering at pre-
processing stage. One might think that the retraining process
is unnecessary if the outlier rejection component works well
enough to eliminate all the falsely classified candidates as
shown in Fig. 13(a–d) (i.e., all target objects were correctly
recognized in the 1st row). Unfortunately, however, we are
not convinced that it works as perfectly as this in all sit-
uations, because it is predicated on the partial prior knowl-
edge of the control panel model. As might be expected, with-
out retraining, we could often find an instance in which the
green square was not placed on the target object, as if the
white square in Fig. 14. This corresponds to false positives.
The total number of false positive Nf was listed in Table 10,
showing a far better result when retraining process was al-
lowed compared to the non-retraining case. Thus, practical
advantage of retraining is that it can play an important role

Table 9 Retraining statistics

No. of
iterations

Elapsed time
(s)

pf
a

1 3 0.062 0

2 10 0.187 0

3 5 0.094 0

4 4 0.078 0.05

5 5 0.093 0

6 3 0.062 0

7 4 0.094 0

8 4 0.078 0

9 6 0.125 0

10 18 0.359 0

11 8 0.172 0

12 6 0.125 0

13 6 0.125 0

14 13 0.281 0.6

15 8 0.187 0

16 7 0.156 0

17 8 0.172 0

18 10 0.204 0

apf = The rate of false classification after retraining

in alleviating the work load assigned to the outlier rejection
component, thereby helping to reduce the false positives.

5.3 Retraining time and DoA

As mentioned in Sect. 4.4, the efficacy of the retrained
neural network was regularly evaluated on the basis of
false classification pf whenever each retraining process was
completed. Table 9 shows retraining statistics acquired dur-
ing the recognition process; total iterations and the elapsed
time required to retrain the neural network; the rate of false
classification pf . At the 14th retraining, pf of the retrained
neural network showed a higher value 0.6 than a predefined
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Fig. 15 Elapsed time for each
retraining process. Maximum
time is 0.359 s and minimum
one is 0.062 s

Fig. 16 The history of degree
of adaptability over the DAY
image set

threshold θp , and thus the retraining process turned out to
be a failure, thereby having to be repeated with another set
of weight initialization. Here, the neural weights do not pre-
serve the former knowledge any more due to initialization;
therefore, it was expected at the outset that more time would
be required to learn a given training set, compared with the
case of learning with the former neural weights as initial
ones.

The results shown in Fig. 15 were consistent with our
expectation except one special case, which corresponded
to the 10th retraining process where 0.359 s was required.
This undesirable case originated from the fact that the neural
weights were placed around a gentle slope in the underlying
error landscape, thus many iterations (i.e., total 18 iterations)
were required to satisfy the RMS error criterion for termi-
nating the retraining process. Nevertheless, the average of
elapsed time to retrain the neural network can be concluded
as being reasonable for a real-time system.

DoA, representing the effectiveness of the current neural
network, was calculated every frame and its oscillating char-
acteristic is shown in Fig. 16. This oscillation seems consis-
tent with the fluctuation in the number of candidates shown
in Table 8. Directly after each retraining process, DoA was
observed to have an abrupt increment up to one, elucidating
that the retrained neural network was adapted successfully
to the current environment.

5.4 Effects of various OutIQ sizes on the total system
performance

We now evaluate the total system performance by varying
the OutIQ size with other parameters being fixed as in Ta-
ble 6. One may speculate that it would be better for OutIQ
to have a larger size in that the more negative examples are
provided by OutIQ, the more outliers are likely to be sup-
pressed. However, it may lead to a long training time due
to increased training samples; therefore, it is desirable to es-
tablish an adequate size of OutIQ.

Experiments were carried out over the DAY and NIGHT
with three different OutIQ sizes; (a) 50, (b) 100, and (c) 130.
The most important thing is the outlier occurrence rate Ro,
or the average number of outliers per frame in each ‘no re-
training’ and ‘retraining’ case of DAY and NIGHT as shown
in the second row in Table 10. This figure clearly shows the
effects of varying OutIQ size and also effectiveness of re-
training.

5.4.1 Experiment over the DAY set

Effects of the OutIQ size on the total system performance
were verified by plotting the number of outliers occurring
in DAY on a logarithmic scale (Fig. 17a). As might be ex-
pected, the three size instances could be sorted in descending
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Table 10 Summary of the experimental results

No retraining Nout 50 Nout 100 Nout 130

DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT

Noutlier 1002 493 110 69 95 55 88 49

Ro 3.70 1.75 0.41 0.24 0.35 0.20 0.32 0.17

Nretr – – 23 16 22 12 20 11

Tr (s) – – 0.13 0.08 0.16 0.09 0.17 0.11

Nf 27 1 3 0 2 0 0 0

DAY = The image set obtained in daytime
NIGHT = The image set obtained in nighttime
Noutlier = The number of outliers
Ro = Outlier occurrence rate (i.e., Noutlier /total number of frames)
Nretr = The total number of retraining performed
Tr = Average elapsed time for retraining
Nf = Total number of false positives
(−) = Not applicable

Fig. 17 Performance
comparison with varying OutIQ
size in the experiment over the
DAY image set. (a) The number
of outliers vs. frame. (b) Outlier
occurrence rate vs. frame

order according to Noutlier (i.e., (a)–(b)–(c)). As a result, we
found that:

• The outlier occurrence rate decreases with increasing
OutIQ size.

• The average time required for the retraining process in-
creases with increasing OutIQ size.

• The total number of retraining processes performed in-
creases with decreasing OutIQ size.

As shown in Fig. 17b, Ro of case (c) was the smallest of the
three cases only after about 50 frames, and Ro of case (b)
was smaller than that of case (a) only after about 170 frames.
In short, on the average 0.43, 0.35 and 0.32 outliers occurred
per image in case (a), (b) and (c), respectively. It is natural
to take a long time to retrain the neural network if the num-
ber of training samples increases due to an enlarged OutIQ
size. The relationship between the total number of retrain-
ing processes and the OutIQ size can be interpreted in that
more frequent retraining processes were needed to adapt to
the current environment when the OutIQ size was small be-
cause the negative samples that were included in the training
set were reduced.

5.4.2 Experiment over the NIGHT set

We also conducted an analogous experiment over the
NIGHT image set and its result showed a consistent ten-
dency with the result of the DAY (Fig. 18). However, since
the natural light source could not affect the illumination con-
dition at night, variation of the illumination condition was
not serious compared to DAY. Thus we found that the total
number of outliers was severely diminished up to half of the
daytime case.

6 Conclusions

A retrainable framework approach to object recognition in
a visually dynamic environment has been presented. First,
in order to extract object candidates, basic image process-
ing techniques including adaptive thresholding, connected
component labeling, and template matching were applied to
an input image. An on-line retraining neural network as a
primary component of the proposed method, serving as a bi-
nary classifier, has then been employed as a practical tool
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Fig. 18 Performance
comparison with varying OutIQ
size in the experiment over the
NIGHT image set. (a) The
number of outliers vs. frame.
(b) Outlier occurrence rate vs.
frame

for coping with varying illumination conditions. The new
training samples for retraining the neural network were pro-
vided by graph partitioning, which can detect and eliminate
outliers efficiently based on a predefined model, or a prior
knowledge.

Furthermore, since we adopted a parallel retraining
mechanism that can enable the system to perform object
recognition and network retraining concurrently, the object
recognition process was carried out seamlessly without be-
ing interrupted by the retraining process. We also took an
immediate action on a failure of the retraining process for
obtaining high reliability. The performance enhancement of
the retrained neural network over a non-retrained one was
verified by experiments over daytime and nighttime images,
being represented by a quantitative difference in the number
of outliers that occurred. The proposed method can also be
applied to other problems of recognizing arbitrary 2D ob-
jects where the relationship between the target objects can
be utilized as prior knowledge.
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