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Abstract Traditional frequent pattern mining methods con-
sider an equal profit/weight for all items and only binary
occurrences (0/1) of the items in transactions. High utility
pattern mining becomes a very important research issue in
data mining by considering the non-binary frequency val-
ues of items in transactions and different profit values for
each item. However, most of the existing high utility pat-
tern mining algorithms suffer in the level-wise candidate
generation-and-test problem and generate too many candi-
date patterns. Moreover, they need several database scans
which are directly dependent on the maximum candidate
length. In this paper, we present a novel tree-based candidate
pruning technique, called HUC-Prune (High Utility Candi-
dates Prune), to solve these problems. Our technique uses
a novel tree structure, called HUC-tree (High Utility Can-
didates tree), to capture important utility information of the
candidate patterns. HUC-Prune avoids the level-wise can-
didate generation process by adopting a pattern growth ap-
proach. In contrast to the existing algorithms, its number of
database scans is completely independent of the maximum
candidate length. Extensive experimental results show that
our algorithm is very efficient for high utility pattern mining
and it outperforms the existing algorithms.
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1 Introduction

Data mining techniques can efficiently discover hidden
knowledge from databases. Frequent pattern mining [1, 3,
4, 9, 12–14, 26] plays an essential role in many data min-
ing tasks such as association rule mining, classification,
clustering, time-series mining, graph mining, web mining,
and so on. The initial solution of the frequent pattern min-
ing, the Apriori algorithm [3, 4], is based on the candi-
date generation-and-test methodology and requires several
database scans. In the first database scan, it finds all the 1-
element frequent itemsets and based on that, it generates
candidates for 2-element frequent itemsets. In the second
database scan, it finds all the 2-element frequent itemsets
and based on that, it generates the candidates for 3-element
frequent itemsets and so on. This level-wise candidate gen-
eration process may create the problems of several database
scans and huge candidate pattern generation. Han et al. [14]
solved these problems by introducing a prefix tree (FP-tree)-
based algorithm without candidate set generation and test-
ing. This algorithm is called the frequent-pattern growth or
FP-growth algorithm and needs two database scans.

Although frequent pattern mining plays an important role
in data mining applications, it has two limitations. First, it
treats all items with the same importance/weight/price and
second, in one transaction each item appears in a binary
(0/1) form, i.e. either present or absent. In the real world,
however, each item in the supermarket has a different impor-
tance/price and one customer can buy multiple copies of an
item. Therefore, finding only traditional frequent patterns in
a database cannot fulfill the requirement of finding the most
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valuable customers/itemsets that contribute the most to the
total profit in a retail business.

A high utility mining [36, 37] model was defined for re-
trieving more useful information from a database. We can
measure how useful the itemset is by its utility. This al-
lows us to handle a dataset with different price values for
each item and it more accurately represents real world mar-
ket data. By utility mining several important business area
decisions like maximizing revenue, minimizing marketing
and/or inventory costs can be considered and knowledge
about itemsets/customers contributing to the majority of the
profit can be discovered. In addition to the real world re-
tail market, if we consider examples such as the biological
gene database and web click streams, then the importance
of each gene or website is different and their occurrences
are not limited to binary values. Other application areas,
such as stock tickers, network traffic measurements, web-
server logs, data feeds from sensor networks, and telecom
call records can have similar solutions.

To understand the necessity of high utility patterns in to-
day’s market, we can consider a small example in the real
world market basket databases where different items have
different profit values and where different items in a trans-
action have different selling quantities. Consider an exam-
ple where customer C1 has bought 3 pens, 4 pencils and
1 eraser; customer C2 has bought 1 gold ring; customer C3

has bought 3 loaves of bread and 5 cartons of milk; and cus-
tomer C4 has bought 2 shirts and 1 pair of shoes. According
to our real world profit values, we can assume that the profit
value of a gold ring is much larger than the profit values of
other items mentioned in this example. Therefore, the busi-
nessman gets more profit from customer C2 although the
selling frequency is only one. This example demonstrates
that selling quantity of an itemset is much less important
than its total profit. For this reason, finding high utility pat-
terns is more useful than finding only frequent patterns.

Most of the existing high utility pattern mining algo-
rithms [7, 17, 19, 20, 36, 37] suffer from the level-wise
candidate generation-and-test problem and they need sev-
eral database scans depending on the length of the candi-
date high utility patterns. Therefore, the most challenging
tasks are to efficiently reduce the number of candidates and
number of database scans. In this paper, we propose a novel
candidate pruning technique, called HUC-Prune (High Util-
ity Candidates Prune), which avoids the level-wise candidate
generation-and-test problem by exploiting a pattern growth
mining technique. Our technique first finds the length-one
candidates in one database scan. In the second database
scan, it uses a novel tree structure, called HUC-tree (High
Utility Candidates tree), to capture important utility infor-
mation of the transactions. After that, it discovers all the
candidate high utility patterns by using a pattern growth
mining approach. Finally, a third database scan is needed

to determine the actual high utility patterns from the candi-
date patterns. Therefore, our technique needs a maximum of
three database scans to determine the complete set of high
utility patterns, i.e. its number of database scans is not de-
pendent on the length of the candidate high utility patterns.
We demonstrate that our technique works efficiently for syn-
thetic and real datasets, which can be dense or sparse, and it
outperforms the existing algorithms.

The remainder of this paper is organized as follows. In
Sect. 2, we describe related work. In Sect. 3, we describe the
high utility pattern mining problem. In Sect. 4, we describe
the proposed HUC-Prune technique for high utility pattern
mining. In Sect. 5, experimental results are presented and
analyzed. Finally, conclusions are presented in Sect. 6.

2 Related work

Research about frequent pattern mining problem will be dis-
cussed first, followed by a discussion of the research on fre-
quent pattern mining with weight constraints or weighted
frequent pattern mining and their main challenges. After
that, research on high utility pattern mining and their ma-
jor problems will be discussed.

2.1 Frequent pattern mining

The support/frequency of a pattern is the number of transac-
tions containing the pattern in the transaction database. The
problem of frequent pattern mining is to find the complete
set of patterns satisfying a minimum support in the transac-
tion database. The downward closure property [3, 4] is used
to prune the infrequent patterns. This property says that if a
pattern is infrequent, then all of its super patterns must be in-
frequent. The Apriori [3, 4] algorithm is the initial solution
of frequent pattern mining problem and very useful in asso-
ciation rule mining [3, 4, 18, 25, 28, 30, 32]. However, it suf-
fers from the level-wise candidate generation-and-test prob-
lem and needs several database scans. The FP-growth [14]
algorithm solved this problem by using the FP-tree-based
solution without any candidate generation and using only
two database scans. The FP-array [12] technique was pro-
posed to reduce the FP-tree traversals and it works effi-
ciently, especially in sparse datasets. One interesting mea-
sure h-confidence [15, 35] was proposed to identify the
strong support affinity frequent patterns. CP-tree [26] has
been proposed for efficient single-pass frequent pattern min-
ing. Some other research [9, 13, 23, 34] has been done to de-
termine frequent patterns. This traditional frequent pattern
mining considers equal profit/weight for all items and only
binary occurrences (0/1) of the items in one transaction.
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2.2 Weighted frequent pattern mining

Research has been done on weighted frequent pattern min-
ing [2, 27, 33, 39–41] in binary databases where frequency
of an item in each transaction can be either 1 or 0. Weighted
frequent itemset mining (WFIM) [41] and weighted inter-
esting pattern mining (WIP) [39] showed that the main chal-
lenge in this area is that itemset weighted frequency does not
have the downward closure property. The weight of a pat-
tern P is the ratio of the sum of all its items’ weight value
to the length of P . Consider item “a” has a weight of 0.6
and a frequency of 4, item “b” has a weight of 0.2 and a
frequency of 5, itemset “ab” has a frequency of 3. Then the
weight of itemset “ab” will be (0.6 + 0.2)/2 = 0.4 and its
weighted frequency will be 0.4×3 = 1.2. The weighted fre-
quency of “a” is 0.6 × 4 = 2.4 and “b” is 0.2 × 5 = 1.0. If
the minimum weighted frequency threshold is 1.2, then pat-
tern “b” is weighted infrequent but pattern “ab” is weighted
frequent. As a result, the downward closure property is not
satisfied here. The WFIM and WIP algorithms maintain the
downward closure property by multiplying each itemset’s
frequency by the maximum weight. In the above example,
if “a” has the maximum weight of 0.6, then by multiply-
ing it with the frequency of item “b”, 3.0 can be obtained.
So, pattern “b” is not pruned at the early stage and pattern
“ab” will not be missed. However, pattern “b” is overesti-
mated and will be pruned later by using its actual weighted
frequency. The WCloset [40] algorithm calculates weighted
closed frequent patterns. The DWFPM algorithm [2] is pro-
posed to handle dynamic weights in weighted frequent pat-
tern mining. However, maintaining the downward closure
property in high utility pattern mining is more challenging
as it considers non-binary frequency values of an item in
transactions.

2.3 High utility pattern mining

The Itemset Share approach [5] considers non-binary fre-
quency values of an item in each transaction. Share is the
percentage of a numerical total that is contributed by the
items in an itemset. These authors defined the problem of
finding share frequent itemsets and compared the share and
support measures to illustrate that share measure can pro-
vide useful information about numerical values that are as-
sociated with transaction items, which is not possible by us-
ing only the support measure. This method cannot rely on
the downward closure property. Heuristic methods to find
itemsets with share values above the minimum share thresh-
old were developed. However, share-frequent pattern mining
considers equal profit/weight for all items. Chan et al. [7]
developed a method to discover top-K objective-directed
high utility closed patterns. The definitions used by these re-
searchers are different from those used in our work. They as-

sume the same medical treatment for different patients (dif-
ferent transactions) will have different levels of effective-
ness. They cannot maintain the downward closure property
but they develop a pruning strategy to prune low utility item-
sets based on a weaker anti-monotonic condition.

The theoretical model and definitions of high utility
pattern mining were given in [37]. This approach, called
MEU (mining with expected utility), cannot maintain the
downward closure property. They used heuristics to deter-
mine whether an itemset should be considered as a can-
didate itemset. This approach usually overestimates, espe-
cially at the beginning stages, where the number of can-
didates approaches the number of all the combinations of
items. This is impractical whenever the number of distinct
items is large and the utility threshold is low. Later, the
same authors proposed two new algorithms, UMining and
UMining_H, to calculate high utility patterns [36]. In UMin-
ing, a pruning strategy based on the utility upper bound
property is used. UMining_H was designed with another
pruning strategy based on a heuristic method. However,
some high utility itemsets may be erroneously pruned by this
heuristic method. Furthermore, these methods do not satisfy
the downward closure property and may overestimate too
many patterns. They also suffer candidate generation-and-
test methodology problem.

Based on the definitions of [37], the Two-Phase [19, 20]
algorithm was developed to find high utility itemsets. The
authors have defined the transaction weighted utilization
(twu) and using it they proved that it is possible to maintain
the downward closure property. For the first database scan,
the algorithm finds all the one-element transaction weighted
utilization itemsets and based on that result it generates the
candidates for two-element transaction weighted utilization
itemsets. In the second database scan, it finds all the two-
element transaction weighted utilization itemset, and based
on that result it generates the candidates for three-element
transaction weighted utilization itemsets and so on. At the
last scan, the Two-Phase algorithm determines the actual
high utility itemsets from the high transaction weighted uti-
lization itemsets. This algorithm suffers from the same prob-
lem of the level-wise candidate generation-and-test method-
ology. CTU-Mine [10] proposed an algorithm that is more
efficient than the Two-Phase method only in dense databases
when the minimum utility threshold is very low.

The isolated items discarding strategy (IIDS) [17] for dis-
covering high utility itemsets was proposed to reduce the
number of candidates in every database scan. IIDS shows
that itemset share mining [5] problem can be directly con-
verted to the utility mining problem by replacing the fre-
quency value of each item in a transaction by its total profit,
i.e. multiplying the frequency value by its unit profit. Apply-
ing IIDS, the authors developed efficient high utility itemset
mining algorithms called FUM and DCG+ and showed that
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their technique is better than all previous high utility pat-
tern mining techniques. Nevertheless, their algorithms still
suffer from the candidate set generation-and-test problem of
Apriori, and need multiple database scans. In this paper, we
propose a novel tree-based candidate pruning technique to
address the limitations of the existing algorithms.

3 Problem definition

We adopted similar definitions to those presented in the pre-
vious works [19, 20, 36, 37]. Let I = {i1, i2, . . . , im} be a set
of items and D be a transaction database {T1, T2, . . . , Tn}
where each transaction Ti ∈ D is a subset of I . A pat-
tern or itemset is defined by the set X = {x1, x2, . . . , xk},
where X ⊆ I and k ∈ [1,m]. However, an itemset is called
k-itemset when it contains k distinct items. For example,
“ab” is a 2-itemset and “abde” is a 4-itemset in Fig. 1.

Definition 1 The internal utility or local transaction utility
value l(ip, Tq), represents the quantity of item ip in transac-
tion Tq . For example, in Fig. 1(a), l(“b”, T2) = 4.

Definition 2 The external utility p(ip) represents the unit
profit value of item ip . For example, in Fig. 1(b), p(“c”) = 3.

Definition 3 Utility u(ip, Tq), is the quantitative measure of
utility for item ip in transaction Tq , defined by

u(ip, Tq) = l(ip, Tq) × p(ip) (1)

For example, u(“b”, T1) = 2 × 6 = 12 in Fig. 1.

Definition 4 The utility of an itemset X in transaction Tq ,
u(X,Tq) is defined by,

u(X,Tq) =
∑

ip∈X

u(ip, Tq) (2)

where X = {i1, i2, . . . , ik} is a k-itemset, X ⊆ Tq and 1 ≤
k ≤ m. For example, u(“bc”, T1) = 2 × 6 + 8 × 3 = 36 in
Fig. 1.

Definition 5 The utility of an itemset X is defined by,

u(X) =
∑

Tq∈D

∑

ip∈X⊆Tq

u(ip, Tq) (3)

For example, u(“ab”) = u(“ab”, T2) + u(“ab”, T4) +
u(“ab”, T5) + u(“ab”, T6) = 32 + 16 + 42 + 44 = 134 in
Fig. 1.

Definition 6 The transaction utility of transaction Tq de-
noted as tu(Tq) describes the total profit of that transaction
and it is defined by,

tu(Tq) =
∑

ip∈Tq

u(ip, Tq) (4)

For example, tu(T1) = u(“b”, T1) + u(“c”, T1) +
u(“d”, T1) = 12 + 24 + 16 = 52 in Fig. 1.

However, in the high utility pattern mining problem, we
need to find those patterns with a remarkable contribution to
the total profit. Therefore, we have to quantify the remark-
able amount by using a measure. For this purpose, a mea-
sure, called minimum utility threshold (δ), is described in
the next definition. By using this measure, businessmen or
other users can express their remarkable contribution to the
total profit in a percentage form according to their require-
ments.

Definition 7 The minimum utility threshold δ, is given by
the percentage of total transaction utility values of the data-
base. In Fig. 1, the summation of all the transaction utility
values is 427. If δ is 25% or we can also express it as 0.25,
then the minimum utility value can be defined as

minutil = δ ×
∑

Tq∈D

tu(Tq) (5)

Therefore, in this example minutil = 0.25 × 427 = 106.75
in Fig. 1.

Definition 8 An itemset X is a high utility itemset, if
u(X) ≥ minutil. Finding high utility itemsets means deter-
mining all the itemsets X having criteria u(X) ≥ minutil.

Fig. 1 Example of a transaction
database and utility table
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For minutil = 106.75 pattern “ab” is a high utility pattern,
as u(“ab”) = 134 (calculated in the example of Definition 5)

The greatest challenge in high utility pattern mining is
that the itemset utility does not have the downward closure
property. An item could not derive remarkable profits by it-
self, but if it is sold together with a highly profitable item,
then such pair of items can be also profitable. For exam-
ple, if minutil = 106.75 in Fig. 1, then “e” is a low utility
item as u(“e”) = 90, but “de” is a high utility itemset as
u(“de”) = 134 according to (3) and Definition 8. Accord-
ing to Definition 5 and (3), the definition of itemset util-
ity is based on the actual sum of product calculation sim-
ilar to real world business calculations. Therefore, main-
taining the downward closure property is very challenging
compared to weighted frequent itemset mining for two rea-
sons. First, weighted frequent itemset mining considers the
binary appearance of an item inside a transaction. Second,
the weight of an itemset is calculated using the average of
all the item weights inside it. In high utility pattern mining,
we can maintain the downward closure property by transac-
tion weighted utilization.

Definition 9 Transaction weighted utilization of an item-
set X, denoted by twu(X), is the sum of the transaction util-
ities of all transactions containing X.

twu(X) =
∑

X⊆Tq∈D

tu(Tq) (6)

For example, twu(“bc”) = tu(T1) + tu(T4) = 52 + 37 = 89
in Fig. 1. The downward closure property can be maintained
using transaction weighted utilization. Here, for minutil =
106.75 in Fig. 1 as twu(“bc”) < minutil, any super pattern
of “bc” cannot be a high twu itemset (candidate itemset) and
obviously cannot be a high utility itemset.

Lemma 1 Transaction weighted utilization value of an
itemset X maintains the downward closure property.

Proof Let X be a transaction weighted utilization itemset
and DBX is the set of transactions containing itemset X. Let
Y be a superset of itemset X, then Y cannot be present in
any transaction where X is absent. Therefore, according to
Definition 9, the maximum transaction weighted utilization
value of Y is twu(X). So, if twu(X) is less than minutil, Y

cannot be a transaction weighted utilization itemset. �

Definition 10 X is a high transaction weighted utilization
itemset (i.e. a candidate itemset) if twu(X) ≥ minutil.

Lemma 2 For a database DB and minimum utility thresh-
old, the set of high utility itemsets(S) is a subset of the set of
transaction weighted utilization itemset (TS).

Proof Let X be a high utility itemset. According to De-
finitions 5 and 9, utility(X) must be less than or equal
to twu(X). So, if X is a high utility itemset then it must be a
transaction weighted utilization itemset. As a result, X is a
member of the set TS and S ⊆ TS. �

In our technique, after finding all the high twu patterns
maintaining the downward closure property, we calculate all
the high utility patterns from high twu patterns by perform-
ing the original utility calculation according to (3) for all
high twu patterns.

4 HUC-Prune: our proposed technique

In this section, we develop our proposed technique HUC-
Prune (High Utility Candidates Prune) for high utility pat-
tern mining. For a user-given minimum threshold, HUC-
Prune detects the single-element candidate patterns (high
twu items) in the first database scan. In the second database
scan, it uses a novel tree structure, called HUC-tree (High
Utility Candidates tree), to capture the twu information of
items in transactions. After creating HUC-tree, it mines all
the candidate patterns by using a pattern growth approach.
Finally, a third database scan is used to discover all the high
utility patterns from the candidate patterns.

4.1 Preliminaries

A prefix tree is an ordered tree with any predefined item or-
der such as lexicographic order, frequency ascending order,
frequency descending order, and so on. We can read trans-
actions one at a time from a transaction database, arrange
them in a predefined order, and insert each transaction into
a path of the prefix tree. In this way prefix tree can represent
a transaction database in a very compressed form when dif-
ferent transactions have many items in common. This type
of path overlapping is called prefix sharing. The more the
prefix sharing the more compression we can achieve from
the prefix tree structure.

Definition 11 An HUC-tree (High Utility Candidates tree)
is a prefix tree which stores the candidate items in the twu
value descending order. Each node in an HUC-tree consists
of five fields: item-name, twu value, next node-link, parent-
link, a list of links to its children. The first field represents
the name of the item whose information is represented by
this node. The second field represents the twu value of the
item in the sub-tree rooted at that node. If there is a next
node containing the same item, the third field points to that
next node, otherwise it stores a NULL value. A node may
have zero, one or more than one child. In the fourth field, it
stores a link to its parent node. In the fifth field it stores a list
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Fig. 2 Obtaining candidate
items sort order

Fig. 3 Construction process of HUC-tree

of links to its children or a NULL value if it does not have
any child. However, the root node keeps information in its
list of links to the children and stores a NULL value for its
other fields. An HUC-tree maintains a header table to keep
the candidate items in the twu value descending order. Each
entry in the header table consists of three fields: item-name,
twu value (total twu value of that item in the DB), next node-
link (points to the first node in the HUC-tree). Figure 3(h)
shows the HUC-tree with header table constructed for the
example DB (δ = 25%) presented in Fig. 1.

4.2 Construction process of HUC-tree

In the first database scan, HUC-Prune scans each transaction
Transi and calculates its transaction utility value according
to (4). After that, it adds this value to the twu value of each
item presented in Transi . For example, after scanning T1

in Fig. 1, tu(T1) = 52 is calculated and it is added to the
twu value of items “b”, “c” and “d”. Consider the database
shown in Fig. 1. After the first database scan, the twu values
of the items are displayed in Fig. 2(a). If minutil = 106.75,
then “c” is a low twu item. According to the downward clo-
sure property, any super pattern of “c” cannot be a high twu
itemset. Therefore, neither “c” nor any of its super patterns
can be a high utility itemset according to Lemma 2. There-
fore, we prune the item “c” at this stage without further con-
sideration. Next, we sort the header table in descending or-
der according to the twu values of the items. Figure 2(b)
shows the resultant sorted header table.

In the second database scan, we take only the high twu
items from each transaction and sort them in the header ta-
ble sort order presented in Fig. 2(b) and then insert into the
tree. For the first transaction T1, which contains items “b”,
“c”, and “d”, we first discard the low twu item “c” and then
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arrange it according to the header table order. Initially the
root of HUC-tree contains a NULL value. One new node is
created as a child of root and initialized with item-name “b”
and twu value of 52. In a recursive way, this node now be-
comes the parent and another new node is created as its child
to store the item “d”. This type of operation where a new
node must be created is defined as insert node operation in
an HUC-tree. Figure 3(a) shows the resultant HUC-tree after
inserting T1.

Subsequently, transaction T2 is inserted in HUC-tree as
shown in Fig. 3(b). Before insertion, the items of T2 are
arranged (“b”, “d”, “a”, “e”) in the descending twu value
order presented in the header table. Item “b” gets the pre-
fix sharing with the existing node (child node of the root)
containing item “b”. The twu value of this node becomes
52 + 102 = 154. This type of operation where an existing
node can be found for the item to be inserted and the corre-
sponding twu value must be only updated is defined as up-
date node operation in an HUC-tree. Now the current node
containing item “b” becomes the root for the insertion of the
next item. Hence, we have to insert the next item “d” as its
child. As it already has one child node containing item “d”,
we can perform an update node operation to insert item “d”.
After that, this “d” node becomes the new root with twu
value of 154 (52 + 102) and we have to perform an insert
node operation for item “a” (with a twu value of 102) as
its child. Same operation continues for the last item “e” as
shown in Fig. 3(b).

In summary, the strategy to visit the tree according to the
current transaction is (1) sort the items in the twu value de-
scending order, (2) discard the non-candidate items, (3) per-
form an update node operation if the current root node con-
tains a child with the item to be inserted, otherwise perform
an insert node operation, (4) perform the third step for the
remaining items until the transaction becomes NULL.

By using the above strategy the remaining transactions
(T3 to T8) are also inserted into the HUC-tree as shown in
Figs. 3(c) to 3(h). Figure 3(h) shows the final tree with the
header table for the full database presented in Fig. 1. Fig-
ure 3(h) also shows that the first node of a particular item in
the HUC-tree is pointed by its entry in the header table, the
second node is pointed by the first node, and so on. How-
ever, header table is not shown in every figure for simplicity.
The following property is true for HUC-tree.

Property 1 The twu value of any node in HUC-tree is
greater than or equal to the sum of the twu values of its
children.

4.3 Mining process of HUC-Prune

In this section, we describe the mining process of HUC-
Prune technique using a pattern growth approach. Prefix tree

is first created for a particular item. To create the prefix tree,
all the branches prefixing that item are taken along with the
twu value of that item. After that, conditional tree for that
item is created from the prefix tree by eliminating the non-
candidate items with that particular item.

Consider the database of Fig. 1. If we take δ = 25% in
that database, then minutil = 106.75 according to (5). The fi-
nal HUC-tree created for this database is shown in Fig. 3(h).
We start from the bottom-most item “e” and create its prefix
tree. The prefix tree for item “e” is shown in Fig. 4(a). By
following the node-link of the header table, we can reach
the first “e” node of the HUC-tree. This node contains a twu
value of 102. Hence, a path {“b”: 102, “d”: 102, “a”: 102}
prefixing item “e” is taken from the global HUC-tree and in-
serted into the prefix tree of item “e” according to the strat-
egy of HUC-tree construction process. After that, we can
reach to the next node containing item “e” by following the
node link of the current node. A path {“b”: 38} is taken and
inserted into the prefix tree of item “e”. In a similar fashion,
a path {“d”: 64} is taken for the last node containing item
“e” and inserted into the prefix tree of item “e”.

Subsequently, we create the conditional tree for item “e”
from its prefix tree. The prefix tree for item “e” shows
that item “a” cannot be a candidate itemset along with
item “e”. Therefore, the conditional tree of item “e” (shown
in Fig. 4(b)) is derived by deleting all the nodes contain-
ing item “a” from the prefix tree of “e”. Candidate patterns
(1) {“be”: 140}, (2) {“de”: 166}, (3) {“e”: 204} are generated
here. The prefix tree for itemset “de” is created in Fig. 4(c)
from the conditional tree in Fig. 4(b). It contains one item
“b” and it has a low twu value with “de”, so no conditional
tree is created for itemset “de”.

The prefix tree for item “a” is created in Fig. 4(d). All
the items in the header table show that they have high twu
value with item “a”. Therefore, it is also the conditional
tree for item “a” and candidate patterns (4) {“ab”: 257},
(5) {“ad”: 176}, (6) {“abd”: 176}, (7) {“a”: 257} are gen-
erated. Similarly, the prefix tree (also conditional-tree) for
item “d” is created in Fig. 4(e) and candidate patterns
(8) {“bd”: 228}, (9) {“d”: 308} are generated. The last can-
didate pattern (10) {“b”: 347} is generated for the top-most
item “b”. A third database scan is required to find high util-
ity itemsets from these ten candidate itemsets. The six high
utility itemsets are {“ab”: 134}, {“abd”: 146}, {“b”: 132},
{“bd”: 154}, {“d”: 128} and {“de”: 134}.

4.4 Algorithm description

Figure 5 shows the tree construction and mining algorithm
of HUC-Prune. The main algorithm is described in line 1
to line 31. It calls the tree construction procedure, called
InsertHUC-tree (described in lines 32 to 47), to create the
HUC-tree. Moreover, it calls the mining procedure, called
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Fig. 4 Mining process of
HUC-Prune

Mining (described in lines 48 to 62), to mine the candidates
for high utility patterns.

In line 2, a variable named TU is declared and initialized
to zero in order to store the total transaction utility value
of the DB. In line 3, a list named L is created for storing
all the candidate patterns. A header table named H is cre-
ated in line 4 to keep the candidate items in the twu value
descending order. The first DB scan is demonstrated in the
“for loop” described in lines 5 to 11. In line 6, transaction
utility value of a transaction is calculated and added with
the twu value of each item appeared in that transaction by
using the nested “for loop” described in lines 7 to 9. This
transaction utility value is also added with the TU variable
in line 10. Subsequently, in line 12, the minutil value is cal-
culated by multiplying the TU variable and minimum utility
threshold δ (according to (5)). The “for loop” described in
lines 13 to 17 eliminates all the non-candidate items from H .
In line 18, H is sorted in the twu value descending order. An
HUC-tree T is initialized with the root R, in line 19 and
line 20. The second DB scan is performed in the “for loop”

described in lines 21 to 25. Each iteration of the loop deletes
the non-candidate items from a transaction, sorts the candi-
date items in the order of H and calls the InsertHUC-tree
procedure to insert that transaction into the HUC-tree. The
“for loop” described in lines 26 to 29 creates the prefix tree
of an item and calls the Mining procedure to generate candi-
date patterns prefixing that item. As discussed in Sect. 4.3,
the prefix tree of an item is created by traversing all the paths
prefixing that item with the node-link, taking the paths with
the twu value of that item and inserting into the prefix-tree.
After generating all the candidate patterns prefixing all the
candidate items, HUC-Prune performs the third DB scan to
discover the high utility patterns from the candidate patterns
(line 30).

The InsertHUC-tree procedure described in lines 32 to 47
recursively inserts the elements of a transaction in HUC-
tree. It receives one transaction and the current root of a
sub-tree where the front element of the transaction has to
be inserted as a child. The “if condition” in lines 34 to 36
tests whether the transaction is empty or not. The procedure
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Fig. 5 Tree construction and
mining algorithm of HUC-Prune

returns when the received transaction is empty. In line 37,
the front element, x, of the received transaction is taken to
insert as a child of the current root R and remaining ele-

ments are taken form the transaction for the next recursion.
If the item-name of x is matched with the item-name of any
child node of R, then we can perform the update node oper-
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ation (described in Sect. 4.2). Here, we only need to update
the twu value of the existing node. The twu value of the ex-
isting node is incremented by the twu value of the item to be
inserted. However, it creates a new child node of the current
root if it fails to find any match (insert node operation) in
line 42. The new node is initialized with the item-name and
twu value of x (line 43 and line 44). In line 46, the proce-
dure recursively calls itself with the remaining items of the
transaction and current child node as the root.

The Mining procedure is described in lines 48 to 62. It
receives a pattern “α”, prefix tree T of “α” and header ta-
ble H of prefix tree T . It recursively mines all the candidate
patterns prefixing “α”. The “for loop” described in lines 50
to 54 creates the conditional tree of item “α”. As discussed
in Sect. 4.3, a conditional tree for an item is created from its
prefix tree by deleting the nodes containing non-candidate
items. Accordingly, this “for loop” deletes the items having
twu value less than the minutil value from the prefix tree and
header table of the prefix tree in order to obtain the condi-
tional tree (CT) and header table (HC) of the conditional
tree. Subsequently, for each item “β” in HC, the “for loop”
described in lines 57 to 61 creates a new candidate pattern
“αβ” by joining item “β” in HC with pattern “α” and inserts
it into the candidate pattern list L (line 58). Finally, this “for
loop” creates the prefix tree PTαβ of pattern “αβ”, header
table HTαβ for PTαβ (line 59) and makes a recursive call to
the Mining procedure (line 60).

4.5 Time complexity analysis

The existing algorithms are based on the level-wise candi-
date generation-and-test methodology of the Apriori algo-
rithm. They first scan the database to find the single high twu
items. They then generate all the candidates for 2-itemsets.
The example shown in the mining section has four single
high twu items (“b”, “d”, “a”, and “e”). For 2-itemsets, they
generate all combinations, taking two at a time

(4
2

)
without

knowledge of whether those patterns appear in the database
or not. If the number of single high twu items is 1000, then
these algorithms will generate

(1000
2

)
candidate 2-itemsets.

After scanning the database again, they can find the actual
high twu 2-itemsets. For 3-itemsets, a pattern is considered
as a candidate pattern if all of its sub-patterns are candidate
patterns. For example, pattern “abc” is considered as a can-
didate pattern if patterns “ab”, “bc” and “ca” are candidate
patterns. In this case, pattern “abc” may not appear in the
dataset or it could have very small utility value. Higher or-
der candidates are generated similarly. Therefore, the data-
base must be scanned several times with a huge number of
candidates.

Lemma 3 If N1 is the number of candidate itemsets gen-
erated by HUC-Prune technique and N2 is the number of

candidate itemsets generated by Apriori-based high utility
pattern mining algorithms, then N1 ≤ N2.

Proof A pattern X{x1, x2, . . . , xn} is a high twu itemset
(candidate itemset) iff all of its subsets of length n − 1 are
high twu itemsets in Apriori-based high utility pattern min-
ing algorithms. So, X may not be present in the database or
it could have too low utility value to become a candidate.
In HUC-Prune technique, if X is not present in the database
then it cannot appear in any branch of the tree and therefore
it cannot appear as a candidate. Moreover, after determining
X is a low twu itemset, it is pruned. Therefore, the candidate
set of HUC-Prune contains only the true high twu itemsets;
hence, N1 cannot be greater than N2. �

Observation 1 When the maximum length of the candi-
date patterns increases, Apriori based high utility mining al-
gorithms have to scan database repeatedly. In the example
shown in the mining section, the maximum length of a can-
didate pattern is 3(abd). Existing recent FUM and DCG+
algorithms scan the database at least three times to find all
of the candidate and high utility itemsets. For the Two-Phase
algorithm, one extra scan is required at the last for find-
ing out the high utility itemsets from the candidate itemsets.
Therefore, a total of four database scans are required for this
example. If, the maximum length of candidate patterns is N ,
a total of N database scans could be required for the exist-
ing recent FUM and DCG+ algorithms and a total of N + 1
database scans are required for the Two-Phase algorithm. On
the other hand, number of database scans required for our
technique is totally independent of the maximum length of
candidate patterns. Always maximum three database scans
are required. As the minimum utility threshold decreases,
the number of candidate patterns and their maximum length
also increases. Therefore, as the minimum utility threshold
decreases, running time increases very sharply in Apriori
based algorithms.

5 Experimental results

To evaluate the performance of our proposed technique,
we performed several experiments on synthetic datasets
(T10I4D100K, 20K and 60K) and real life datasets (chess,
mushroom, retail, connect and kosarak) from frequent item-
set mining dataset repository [11] and the UCI Machine
Learning Repository [29]. These datasets do not provide
profit values or the quantity of each item for each trans-
action. As for the performance evaluation of the previous
utility based pattern mining [17, 19, 20], we generated ran-
dom numbers for the profit values of each item and quantity
of each item in each transaction, ranging from 1.0 to 10.0
and 1 to 10, respectively. Based on our observation in real



HUC-Prune: an efficient candidate pruning technique to mine high utility patterns 191

world databases that most items carry low profit, we gener-
ated the profit values using a log-normal distribution. Some
other high utility pattern mining research [17, 19, 20] has
adopted the same technique. Figure 6 shows the external
utility distribution of 2000 distinct items using a log-normal
distribution. Finally, we present our result by using a real-
life dataset (Chain-store) with real utility values [22]. The
performance of our technique was compared with the exist-
ing algorithms Two-Phase [19, 20], FUM and DCG+ [17].
Our programs were written in Microsoft Visual C++ 6.0 and
run with the Windows XP operating system on a Pentium
dual core 2.13 GHz CPU with 2 GB main memory.

5.1 Dataset characteristics

Table 1 shows different important characteristics of the syn-
thetic and real life datasets. The dense or sparse nature of
a dataset is a very useful property [21, 24, 31, 38]. Many
pattern mining algorithms [12–14, 21, 26, 31, 38] have
evaluated their performances by using this characteristic of
datasets. A dataset becomes dense when it has many items
per transaction and the number of distinct items is small.
Consider the chess dataset in Table 1. It has 75 distinct items
and its average transaction length is 37. Therefore, 49.33%

Fig. 6 External utility distribution for 2000 distinct items using log-
normal distribution

of items are present in every transaction. If we take the mea-
sure R = A/D (in Table 1), we know the probability that an
item appears in a transaction. We can tell that a dataset is
dense if R > 10% and sparse if R ≤ 10%.

5.2 Performance analysis in dense datasets

Dense datasets have many long frequent as well as high
utility patterns. Because the probability of an item’s occur-
rence is very high in every transaction, for comparatively
higher thresholds, dense datasets have too many candidate
patterns. It is stated in Observation 1 in Sect. 4.5 that long
patterns need several database scans. When the dataset be-
comes more dense, the number of candidates and total run-
ning time sharply increase in Apriori-based existing algo-
rithms.

The mushroom dataset is a moderately dense dataset with
R = 19.327%. For this dataset, we first compare the number
of candidates. Figure 7 shows the number of candidates for
comparison. The minimum utility threshold range of 10%
to 30% is used here. The number of candidates increases
rapidly below the utility threshold of 20%. For utility thresh-
olds of 10% and 15%, the numbers of candidate patterns are

Fig. 7 Number of candidates comparison on the mushroom dataset

Table 1 Dataset characteristics
Dataset No. of Trans. No. of

distinct
items (D)

Avg.
Trans.
length (A)

Dense/Sparse
characteristic ratio R (%)
R = (A/D) × 100

mushroom 8124 119 23 19.327

chess 3196 75 37 49.33

connect 67557 129 43 33.33

T10I4D100K 100000 870 10.1 1.16

20K 20000 7902 7 0.0885

60K 60000 5949 7 0.1176

retail 88162 16470 10.3 0.0625

kosarak 990002 41270 8.1 0.0196

Chain-store 1112949 46086 7.2 0.0156
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Fig. 8 Execution time comparison on the mushroom dataset

Fig. 9 Number of candidates comparison on the chess dataset

too large for the existing algorithms. According to Lemma 3,
our candidates are only the actual high twu patterns, but can-
didates of the existing algorithms are not only the actual high
twu patterns but also many overestimated twu patterns that
seem to be high twu patterns because their subsets are high
twu patterns. That is why there are a large number of candi-
dates that increase sharply as the minimum utility thresh-
old decreases. Figure 8 shows the running time compari-
son in the mushroom dataset. Since the lower threshold has
too many long candidate patterns and several database scans
are needed for the very large number of long candidate pat-
terns, the time difference between existing algorithms and
our technique becomes larger as δ decreases. It is obvious
that existing algorithms are inefficient for moderately dense
datasets when the utility threshold is low.

The chess dataset is an extremely dense dataset with
R = 49.33%. We first compare the number of candidates.
Figure 9 shows the number of candidates comparison on the
chess dataset. The minimum utility threshold range of 50%
to 70% is used here. It is remarkable that since chess is a
huge dense dataset, a large number of candidate patterns oc-

Fig. 10 Execution time comparison on the chess dataset

cur at a comparatively higher threshold (above 50%). The
number of candidates increases rapidly below the utility
threshold of 60%. For utility thresholds of 50% and 55%,
the numbers of candidate patterns are too large for the ex-
isting algorithms as shown in Fig. 9. Figure 10 shows the
running time comparison on the chess dataset. Due to sev-
eral database scans with a large candidate set, the total time
needed for the existing algorithms is also very large.

The connect dataset is an extremely dense dataset with
R = 33.33% . However, it is much larger than the chess and
mushroom dataset with respect to number of transactions,
number of distinct items and average transaction length (Ta-
ble 1). Figure 11 shows that existing algorithms generate too
many candidate patterns for this dataset. The minimum util-
ity threshold range of 80% to 95% is used here. In contrast
to the mushroom and chess datasets, the number of candi-
dates increases rapidly below the utility threshold of 90%.
For utility thresholds of 80% and 85%, the numbers of can-
didate patterns are too large for the existing algorithms as
shown in Fig. 11. Figure 12 shows the execution time com-
parison on this dataset. The existing algorithms take too
much time for scanning this large dense dataset with a huge
number of candidates. Therefore, existing algorithms are
very inefficient for an extremely dense dataset. On the other
hand, our technique can efficiently handle this huge dense
dataset by avoiding the level-wise candidate generation-and-
test methodology.

5.3 Performance analysis in sparse datasets

Sparse datasets normally have too many distinct items. Al-
though in the average case their transaction length is small,
they normally have many transactions. According to our
time complexity analysis in Sect. 4.5, handling many dis-
tinct items is a severe problem in Apriori-based algorithms.
We will show here that handling a large number of distinct
items and several database scans over long sparse datasets
also make existing algorithms inefficient for sparse datasets.
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Fig. 11 Number of candidates comparison on the connect dataset

Fig. 12 Execution time comparison on the connect dataset

The IBM synthetic dataset T10I4D100K was developed
by the IBM Almaden Quest research group [4, 16] and
obtained from the frequent itemset mining dataset repos-
itory [11]. Here, T represents average size of the trans-
actions, I represents average size of the maximal poten-
tially large itemsets and D represents the number of trans-
actions. T10I4D100K is a moderately sparse dataset with
R = 1.16%. Its other characteristics (number of distinct
items, total number of transactions etc.) are also in a mod-
erate range. Although existing algorithms can handle these
types of datasets, the performance of our technique is bet-
ter than their performance as shown in Figs. 13 and 14. The
minimum utility threshold range of 1% to 5% is used here.
As expected, the differences in candidate patterns and run-
ning time of the existing algorithms and our technique be-
come larger when the minimum utility threshold becomes
low.

Recently, Cooper and Zito [8] have proposed an alterna-
tive model for generating synthetic data. Their dataset gener-
ator programs have been downloaded from http://www.csc.

Fig. 13 Number of candidates comparison on the T10I4D100K
dataset

Fig. 14 Execution time comparison on the T10I4D100K dataset

liv.ac.uk/~michele/soft.html. These programs (written in
Java) can be used to generate a synthetic dataset with h

transactions (h is the number of transactions). The trans-
action sizes are given by the absolute value of a normal
distribution with mean μ and deviation σ . There are two
types of transactions, old and new. A new transaction (cho-
sen with probability α) consists of a mix of new items and
items occurring in previous transactions. An old transaction
consists of only items occurring in previous transactions.
Moreover, If transactions of type old (new) are chosen in a
step we assume that each of them is selected using preferen-
tial attachment with probability PO (PN ) and randomly oth-
erwise [8]. Number of distinct items is represented by n in a
dataset. We have generated two datasets 20K (h = 20,000,
α = 40%, n = 7,902) and 60K (h = 60,000, α = 10%,
n = 5,949) by using the generator programs with μ = 7,
σ = 3 and P = 50% (P = PO = PN ). The datasets, 20K
(R = 0.08858%) and 60K (R = 0.1176%), are also sparse
datasets. The performance of our technique in these datasets
compared with the existing algorithms is shown in Figs. 15
to 18. The minimum utility threshold range of 1% to 5% is

http://www.csc.liv.ac.uk/~michele/soft.html
http://www.csc.liv.ac.uk/~michele/soft.html
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Fig. 15 Number of candidates comparison on the 20K dataset

Fig. 16 Execution time comparison on the 20K dataset

Fig. 17 Number of candidates comparison on the 60K dataset

used here. These experimental results show that our tech-
nique outperforms the existing algorithms in these datasets.
Moreover, it also shows the effect of many distinct items.

The dataset retail is provided by Tom Brijs, and contains
the retail market basket data from an anonymous Belgian
retail store [6, 11]. It is an extreme sparse dataset (R =

Fig. 18 Execution time comparison on the 60K dataset

Fig. 19 Number of candidates comparison on the retail dataset

Fig. 20 Execution time comparison on the retail dataset

0.0625%) with too many distinct items (16,470). Figure 19
shows the comparison of candidate number and Fig. 20
shows the runtime comparison on the retail dataset. The
minimum utility threshold range of 0.6% to 1.4% is used
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Fig. 21 Number of candidates comparison on the kosarak dataset

Fig. 22 Execution time comparison on the kosarak dataset

here. As stated in Observation 1 in Sect. 4.5, Fig. 19 and
Fig. 20 show the effect of too many distinct items in retail
dataset over the existing algorithms.

The dataset kosarak was provided by Ferenc Bodon and
contains click-stream data of a Hungarian on-line news por-
tal [11]. It is a huge sparse dataset with R = 0.0196%. It has
a very large number (41,270) of distinct items and around
1 million transactions. According to our time complexity
analysis in Sect. 4.5, too many candidate patterns are gen-
erated for this large number of distinct items as shown in
Fig. 21. The minimum utility threshold range of 4% to 8%
is used here. Obviously, too much time is needed to han-
dle these candidates and scan this long dataset with them.
A time comparison is shown in Fig. 22. We have compared
the performance of our technique with the existing Two-
Phase and FUM algorithms. As DCG+ maintains an extra
array for each candidate [17], we could not keep its all can-
didates in each pass in the main memory. These experimen-
tal results demonstrate that the existing algorithms are very
inefficient for sparse datasets with many distinct items and
number of transactions.

Fig. 23 Number of candidates comparison on the Chain-store dataset

Fig. 24 Execution time comparison on the Chain-store dataset

5.4 Performance analysis in real life dataset with real
utility values

In this section, we use a real-life dataset adopted from NU-
MineBench 2.0, a powerful benchmark suite consisting of
multiple data mining applications and datasets [22]. This
dataset, called Chain-store, was taken from a major chain in
California and contains 1,112,949 transactions and 46,086
distinct items [17, 22]. The dataset’s utility table stores
the profit for each item. The total profit of the dataset is
$26,388,499.80.

The Chain-store is a large sparse dataset with R =
0.0156%. Figure 23 and Fig. 24 show the comparison
of candidate number and the runtime respectively on this
dataset. The minimum utility threshold range of 0.15% to
0.35% is used here. We have compared the performance of
our technique with the existing Two-Phase and FUM algo-
rithms. As DCG+ maintains an extra array for each can-
didate [17], we could not keep all its candidates in each
pass in the main memory. These figures demonstrate that
our technique outperforms the existing algorithms by means
of using an efficient candidate pruning method. Moreover,
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Table 2 Memory comparison
(MB) Dataset Min. utility HUC-Prune FUM Two-Phase

threshold (%)

mushroom 20 0.283 2.194 2.739

chess 60 0.381 2.872 3.91

connect 85 7.218 45.481 49.71

T10I4D100K 3 5.27 28.69 30.43

20K 2 0.835 6.739 7.682

60K 3 2.74 23.094 25.613

retail 1 6.52 34.892 37.28

kosarak 6 105.372 442.51 451.725

Chain-store 0.25 154.318 513.94 524.126

our technique has easily handled the 46,086 distinct items
and more than 1 million transactions in this real-life dataset.
Therefore, these experimental results also demonstrate the
scalability of our technique to handle large number of dis-
tinct items and transactions.

5.5 Memory usage

Prefix-tree-based frequent pattern mining techniques [2, 12–
14, 26, 31, 39–41] have shown that the memory require-
ment for the prefix trees is low enough to use the gigabyte-
range memory now available. We have also handled our
tree structure very efficiently and kept it within this mem-
ory range. Our prefix-tree structure can represent the use-
ful information in a very compressed form because trans-
actions have many items in common. By utilizing this type
of path overlapping (prefix sharing), our tree structure can
save memory space. Moreover, by using a pattern growth
approach we generate much less number of candidates com-
pared to the existing algorithms. Table 2 shows that our tech-
nique outperforms the existing algorithms in memory us-
age.

6 Conclusions

This paper provides an efficient method for high utility pat-
tern mining in the area of data mining and knowledge dis-
covery. A new candidate pruning technique, HUC-Prune,
and a novel tree structure, HUC-tree, are proposed. The
number of database scans with HUC-Prune is totally inde-
pendent of the high utility candidate pattern length. It re-
quires a maximum of three database scans to calculate the
resultant set of high utility patterns for a user-given mini-
mum utility threshold. Moreover, it prunes a large number of
unnecessary candidate patterns during tree creation time by
eliminating the non-candidate single-element patterns and
also during mining time by using a pattern growth approach.

These are the main reasons for its success over the exist-
ing algorithms where too many candidate patterns are gen-
erated and several database scans are required. HUC-Prune
also outperforms the existing algorithms in memory require-
ments by using an efficient tree-based approach. Extensive
performance analyses show that our technique is very ef-
ficient and it outperforms the existing algorithms for both
dense and sparse datasets.
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