
Appl Intell (2010) 32: 279–291
DOI 10.1007/s10489-008-0145-8

Search intensity versus search diversity: a false trade off?

Alexandre Linhares · Horacio Hideki Yanasse

Published online: 13 September 2008
© Springer Science+Business Media, LLC 2008

Abstract An implicit tenet of modern search heuristics is
that there is a mutually exclusive balance between two de-
sirable goals: search diversity (or distribution), i.e., search
through a maximum number of distinct areas, and, search
intensity, i.e., a maximum search exploitation within each
specific area. We claim that the hypothesis that these goals
are mutually exclusive is false in parallel systems. We ar-
gue that it is possible to devise methods that exhibit high
search intensity and high search diversity during the whole
algorithmic execution. It is considered how distance metrics,
i.e., functions for measuring diversity (given by the mini-
mum number of local search steps between two solutions)
and coordination policies, i.e., mechanisms for directing and
redirecting search processes based on the information ac-
quired by the distance metrics, can be used together to inte-
grate a framework for the development of advanced collec-
tive search methods that present such desiderata of search in-
tensity and search diversity under simultaneous coexistence.
The presented model also avoids the undesirable occurrence
of a problem we refer to as the ‘ergometric bike phenom-
enon’. Finally, this work is one of the very few analysis
accomplished on a level of meta-meta-heuristics, because
all arguments are independent of specific problems han-

A. Linhares (�)
EBAPE/FGV, Praia de Botafogo 190, Rio de Janeiro 22257-970,
Brazil
e-mail: alexandre.linhares@fgv.br

A. Linhares · H.H. Yanasse
Brazilian Institute of Space Research, LAC/INPE, Av Astronautas
1758, S. J. Campos, SP 12227-010, Brazil

A. Linhares
The Club of Rome, Rämistrasse 18, 8001 Zurich, Switzerland
url: www.clubofrome.org

dled (such as scheduling, planning, etc.), of specific solution
methods (such as genetic algorithms, simulated annealing,
tabu search, etc.) and of specific neighborhood or genetic
operators (2-opt, crossover, etc.).

Keywords Modern heuristics · Search methods ·
Combinatorial optimization · Distance metrics ·
Coordination policies

1 Introduction: intensity versus diversity

Combinatorial optimization problems have been of central
concern in fields such as operations research (i.e., in pro-
duction planning; or in logistics network design), computer
science (i.e., in Very Large Scale of Integration design), and
artificial intelligence (i.e., in planning or scheduling prob-
lems). One of the most fruitful approaches to industrial-scale
massively multimodal combinatorial optimization problems
consists of the use of local search heuristics. These meth-
ods must exhibit search intensity and search diversity to be
effective. The goal of search intensity is to find the best so-
lution contained within a relatively small region, while the
goal of search diversity is to sample a large number of dif-
ferent regions, in order to make sure that the search space
has been properly explored, and to locate the region(s) con-
taining the global optimum. Without adequate search inten-
sity, a method may pass close to the optimum solution and
still be unable to find it. Without adequate search diversity,
a method may become deeply absorbed in relatively poor
regions of the search space, unable to find higher quality so-
lutions that reside elsewhere.

The prevailing heuristic models do not exhibit these de-
sirable goals co-existing simultaneously. Consider simulated
annealing [1–3], a thermodynamically-inspired algorithm

mailto:alexandre.linhares@fgv.br
http://www.clubofrome.org

280 A. Linhares, H.H. Yanasse

based on the Gibbs distribution for obtaining configurations
(solutions) at selected temperatures. At high temperatures,
all configurations are equally probable; while at low (close
to zero) temperatures, only the minimum energy (cost) con-
figurations are to be found. Simulated annealing displays
both search diversity and search intensity; but not simulta-
neously. The algorithm gradually advances from the pure
search diversity found at high temperatures (when many re-
gions are probed and few, if any, good solutions are found)
to the pure search intensity found whenever the temperature
reaches zero (at which point no unimproving solution can
be accepted and thus diversity from then on will be absolute
zero). In the process it gradually trades diversity for inten-
sity.

With genetic algorithms [4–7], populations start with a
diverse set of individuals taken from a random sampling of
the ‘population space’, and gradually tend towards intensity,
as the system converges in the direction of a ‘clustered’ set
of individuals, which are akin to each other, losing, over
the course of this process, great amounts of ‘genetic diver-
sity’. A well-known way around this problem is the pro-
posal of fitness sharing [8], where two or more individu-
als that are closer than a predefined distance share their fit-
ness, i.e., “downscaling the fitness of individuals with simi-
lar genes” [9, 10], and, therefore, creating a pressure for high
population diversity. Unfortunately, fitness sharing may fun-
damentally downgrade intensity, to the point of, in extreme
cases, being close to a random selection [9].

A third strategy, tabu search, uses either long-term mem-
ory structures to trigger a mode of search diversity or
intermediate-term memory structures to trigger a mode of
search intensity [11–13]. Thus, both diversity and intensity
are to be expected in these algorithms, but each one alter-
nates at the expense of the other. Similar alternations oc-
cur in scatter search [14, 15], in the initiation and sampling
phases of microcanonical optimization [16, 17], and in the
construction and improvement phases of GRASP [18–20].
(Note that even if solutions found in the construction phase
of GRASP are very diverse, this does not automatically im-
ply that the solutions found after the improvement phase will
preserve such diversity, as solutions may cluster during the
improvement phase.)

These classical local search models present subtle hints
of a mutually exclusive tradeoff between search intensity
and search diversity. A literature review, however, makes
such a view explicit, as numerous studies have taken the,
sometimes tacit assumption of such a mutually exclusive
balance between search diversity and search intensity. In the
context of genetic algorithms (applied to optimization), for
example, one learns that “a high crossover probability will
encourage steady hill-climbing towards the optimal set of
parameter values. On the other hand, a high rate of muta-
tion will result in more searching of the less promising parts

of the search space” [21]. In another method, mechanisms
“designed to increase the pressure for improvement may be
at the expense of population diversity. While such strategies
can improve the results on small to moderate problems, in
large problems they may not allow sufficient exploration of
the solution space” [22]. In other words, as one gets more
intensity, one loses diversity.

Within tabu search: “effective tabu search procedures
keep a balance between intensification and diversification,
that is, between reinforcing attributes associated with good
solutions and driving the search into regions not yet vis-
ited” [23]. Others mention the “interplay between diver-
sification and intensification” [24], “appropriate mixtures
of intensification and diversification” [25], and “intensifica-
tion/diversification tradeoffs” [26].

Similar remarks have appeared in the context of scat-
ter search, where “. . . as indicated by its name, the method
induces a real willingness for maintaining the collec-
tion points as scattered as possible, hence to have a
good diversification. However, intensification can also be
achieved. . .” [15].

Our major claim can be consolidated after the following
quote [27]:

“Two main features have to be balanced in construct-
ing heuristic algorithms:

• The degree of exploitation, that is, the amount of
effort directed to local search in the present region
of the search space (if a region is promising, search
more thoroughly);

• The degree of exploration, that is, the amount of
effort spent to search in distant regions of the space
(sometimes choose a solution in a far region and/or
accept a worsening one, to gain the possibility of
discovering new better solutions).

These two possibilities are conflicting: a good trade-
off between them is very important and must be care-
fully tuned in each algorithm.” ([27]; emphasis ours)

Given such remarks, we have interest for the following hy-
pothesis:

Claim 1 (The intensity versus diversity hypothesis) Local
search intensity and local search diversity are mutually ex-
clusive; that is, metaheuristic algorithms cannot achieve
both of these desirable attributes under perfect simultane-
ous co-existence.

The main objective of this paper is to present the case
that search intensity and search diversity are not mutually
exclusive in parallel systems, and therefore to show that
this hypothesis is remarkably false. Note that our claim is

Search intensity versus search diversity: a false trade off? 281

not that having intensity and diversity in simultaneous co-
existence should necessarily be advantageous in terms of al-
gorithmic performance. At this point it is not known whether
such an advanced method would be practical to develop or
would outperform existing local search models; however,
this, while certainly a relevant (and interesting) empirical
question, is beyond the scope of this paper.

In the following sections, we analyze what search diver-
sity is intended to mean, and present a framework for design-
ing new local search models that comprise high search inten-
sity and high search diversity in simultaneous co-existence.
These new models are based on the application of novel
mechanisms referred to as coordination policies, i.e., guid-
ing principles for coordinating the collective search among
processes; and also on the use of distance metrics between
solutions.

2 Distance and diversity metrics

A combinatorial optimization landscape is defined by the
triple (�,N,Z), where � is a discrete and finite set of so-
lutions, N : � → 2� is a neighborhood operator, and Z :
� → � is the objective function to be minimized. Reacha-
bility under N can be assumed, i.e., for all x, y ∈ �, there
exists a sequence x = s1, s2, . . . , sd = y, where si+1 ∈ N(si)

for all 1 ≤ i < d . If d is the minimum number of elements
in any possible sequence from x to y, then we may say
that dN(x, y) = d , that is, the distance from x to y un-
der operator N is d . Unfortunately, terms such as ‘areas’
or ‘regions’ of the search space are rather fuzzy notions,
as there are no definite boundaries or demarcations in the
search space. An area around p may be formally defined
as A(p,S) : �x{1,2, . . . , n} → 2� , where S is the ‘radius’
of the area, hence x ∈ A(p,S) iff x ∈ � ∧ dN(x,p) ≤ S

(for the selected neighborhood operator N). Thus, to refer
to two processes sharing ‘the same area’ is a notion relative
to S(the size of the area) and to dN(x,p).

Surprisingly, these ‘distance metrics’ have not been used
in local search models (the outstanding exceptions being the
bionomic algorithm [28, 29], the ‘diversity-guided evolu-
tionary algorithms’, which, once again, use distance met-
rics to “alternate between phases of exploration and phases
of exploitation” [10]), and also memetic algorithms, which
may use the Hamming distance to “freeze some genes [. . .]
in order to escape from local attractors” (see [6, 32] and
references therein). Distance metrics can reveal important
facts about a pair of solutions: they give an idea of the work
(and of the time) required to move from one solution to the
other; they are correlated with the probability that the sec-
ond solution will be visited by a process that passed through
the first; finally, they also give a precise measure of simi-
larity between any two solutions. In fact, there is a lack of

an accepted measure of diversity in most modern heuristic
models, and these distance metrics could be one such mea-
sure (obviously considering that they are related to a specific
landscape—see [30]).

Without a notion of distance, a search process may be-
come shortsighted. For example, it is possible for a search
process to gravitate towards a large ‘attractor’ in the search
space, while always keeping a relatively small distance from
a particular solution, thus remaining ‘anchored’ to the local
minima of this region for a long time. In this ‘ergometric
bike’ phenomenon, countless movements may be performed
while the variation in distance remains negligible. Without
a precise measure of distance, it is hard to perceive whether
this phenomenon is occurring, or if the process is exploring
a broader part of the search space. For example, let us con-
sider a particularly pathological case. Suppose for instance
the following configuration:

(i) a ‘basic’ tabu search algorithm with a recency-based
tabu list size of 10 (or other generally used size, such
as 7, or 15, etc.);

(ii) a scheduling problem represented by permutations; and
(iii) the neighborhood structure given by the insertion op-

erator, in which a piece (job/object) is deleted from its
current position and re-inserted in another position of
the permutation.

Let us suppose the algorithm has reached a local minimum,
without loss of generality, at the solution (1,2,3,4, . . . ,

n − 2, n − 1, n). Suppose then the following (obviously
pathological) move sequence

(2,3,4, . . . , n − 2, n − 1, n,1),

(2,3,4, . . . , n − 2, n − 1,1, n),

(2,3,4, . . . , n − 2,1, n − 1, n),

(2,3,4, . . . ,1, n − 2, n − 1, n), . . . ,

(2,3,4,1, . . . , n − 2, n − 1, n),

(2,3,1,4, . . . , n − 2, n − 1, n),

(2,1,3,4, . . . , n − 2, n − 1, n),

(1,3,4, . . . , n − 2, n − 1, n,2),

(1,3,4, . . . , n − 2, n − 1,2, n),

(1,3,4, . . . , n − 2,2, n − 1, n),

(1,3,4, . . . ,2, n − 2, n − 1, n), . . . ,

(1,3,4,2, . . . , n − 2, n − 1, n),

(1,3,2,4, . . . , n − 2, n − 1, n), . . . ,

(1,2,4, . . . , n − 2, n − 1, n,3),

(1,2,4, . . . , n − 2, n − 1,3, n),

(1,2,4, . . . , n − 2,3, n − 1, n),

282 A. Linhares, H.H. Yanasse

(1,2,4, . . . ,3, n − 2, n − 1, n), . . . ,

(1,2,4,3, . . . , n − 2, n − 1, n), . . . ,

(1,2,3,4, . . . , n − 2, n,n − 1).

In this example, (n2 − n)/2 movements are made while still
preserving a distance of only one movement to the orig-
inal local minimum! While such a pathological trajectory
of radius 1 is extremely unlikely, note that the number of
solutions—hence the probability of an event of this nature—
grows exponentially on the size of the radius, it clearly
demonstrates the importance of using precise distance met-
rics in local search metaheuristics.

Another important function of distance metrics comes
from the recent analysis of the landscape of combinator-
ial optimization problems. Many researchers have consid-
ered the relation involving cost structure and distance, that
is, the minimum number of applications of a given neigh-
borhood operator needed to transform a solution into an-
other, between locally optimal solutions. Boese, Kahng and
Muddu [31], in studying the traveling salesman problem
(TSP) and the graph bisection problem, argue for a big-
valley structure where locally optimum solutions tend to get
increasingly closer to each other as they approach the global
optimum. New studies followed with similar analysis for the
n/m/P/Cmax flowshop and other problems [32–34]. In a re-
lated study, Mak and Morton [35] have analyzed the relation
between the k-opt and the 2-opt metrics for the TSP.

2.1 What is search diversity?

This “ergometric bike” trajectory demonstrates that distance
metrics do not by themselves compute the diversity of subset
E. The enumerated solutions, even if numbering on the or-
der of billions, may still be stuck to a small-diameter attrac-
tor and exhibit a pathologically small diversity. This exam-
ple points to the suggestion of the following diversity metric
based on the explored trajectory diameter:

Diversity(E) = max
∀y∈E
∀x∈E

dN(x, y).

This metric has the property of growing as a function of
the diameter of E. That is, the farthest that two explored
solutions encounter themselves apart, the higher the diver-
sity. The use of this metric can prevent the ergometric bike
phenomenon from occurring, if one fixes the recently ex-
plored solutions and only accepts diversity-increasing move-
ments. However, despite this favorable property, this initial
proposal does not provide a good diversity measure for a
number of reasons:

(i) first, the maximum distribution obtainable by this func-
tion equals the maximum distance between any two so-
lutions in �, which makes diversity a function of the

size of �. For example, in a 100-city TSP under the in-
sertion operator, the maximum distance between a pair
of solutions is 99 movements. In a 10 000-city TSP, the
maximum distance would be 9999 movements. It is de-
sirable to have a measure of diversity which is indepen-
dent of problem size. Let us label this property as Re-
quirement 1 for an adequate diversity metric.

(ii) Another problem with this metric is that it is possible
to rapidly reach the maximum diversity measured, sim-
ply by creating a single, iterative, distance-increasing
trajectory at each step. This is trivial to do with most
neighborhood operators (see for instance [37, 38]). In
the 10 000 city TSP, it would be possible to achieve the
maximum diversity in merely 9999 movements. But of
course 9999 solutions can not count for high diversity
in a space containing on the order of 10 000! solutions.
This leads us to Requirement 2 for an adequate metric,
as it clearly shows that merely computing the explored
trajectory diameter does not lead to an adequate diver-
sity measure.

2.2 Requirements for a measure of diversity

Let us look beyond the two initial requirements presented
above and formalize the requirements of domain and co-
domain of the function:

Requirement 3 The domain of the function should be the set
of explored solutions, E. It is necessary, in order to compute
the diversity of the explored space, to have as the domain of
such computation the whole set of explored solutions.

Requirement 4 The co-domain of the function should be the
closed interval [0,1]. This should enable a precise numeri-
cal estimation of diversity which is independent of problem
size. It should be also clear that diversity should equal 0 iff
|E| = 0 and that diversity equals 1 iff E = �.

In the next section, we review new metrics for diversity
that meet these initial requirements and also point out some
additional requirements.

2.3 The structure of diversity

As shown, diversity is not synonymous (or even propor-
tional) to distance trajectory. Let us now look at a proposal
that respects the four requirements above. Let us label the
following metric as the pragmatic diversity metric.

Diversity(E) = 1 − max
∀y∈�/E
∀x∈E

dN(x, y)

maxx∗,y∗∈� dN(x∗, y∗)
.

This formula yields the maximum distance obtainable from
an unexplored solution to an explored solution (measuring

Search intensity versus search diversity: a false trade off? 283

the maximum diameter of “open unexplored space”), di-
vided by the maximum possible distance between any two
candidate solutions (diameter of the search space). The lat-
ter measure is of course a constant, and is usually trivial to
compute. But the former measure may be NP-hard, as dis-
cussed below. Note that the limit cases where E = ∅ and
E = � must be specifically addressed. That is, we should
take it by definition that:

If E = ∅ then max
∀y∈�/E
∀x∈E

dN(x, y) = max
x∗,y∗∈�

dN(x∗, y∗)

If E = � then max
∀y∈�/E
∀x∈E

dN(x, y) = 0.

This measure has the four properties entailed above: At
the start of execution of the algorithm, |E| = 0, and thus
diversity = 0. If all solutions have been explored, that is, if
E = �, then diversity = 1. It is proportional to the size of
the largest “empty space”. This is the most notorious insight
of the model: a measure of diversity can only be obtained if
we have an idea of the size of the largest unexplored areas.

Let us consider the computational complexity of this di-
versity metric. If computation of d is NP-Hard, as it is in
the case for the TSP under the widely used 2-opt opera-
tor [36], then the diversity problem is also NP-Hard. For-
tunately, there are numerous neighboring functions that are
efficiently computable. In this case it is uncertain if the di-
versity metric is in fact an NP-hard problem, which leads us
to a first open problem:

Open Problem 1 Is the proposed pragmatic diversity mea-
sure computable in polynomial-time for a polynomial-time
neighborhood operator?

The reader should notice that, though the number of po-
tential pairs of solutions (x, y) can grow exponentially large
on the size of the problem—and hence present a de facto
intractable problem, this does not immediately mean that
the measure is NP-hard, because NP-Hardness is a property
emanating from the size of the set E of explored solutions,
not from the size of a specific solution. For example, in the
100-city TSP, a solution is of size 100 indexes. The expo-
nential growth of the TSP search space is derived from this
fact. However, a subset E of explored solutions may be very
large and still keep the diversity computation under polyno-
mial time (as a function of the size of E). Thus this remains
an open research problem for further study.

The measure presented above attends to the previous re-
quirements. However, it would also be desirable to have an-
other measure of diversity that should be independent of the
size of E.

It would be especially exciting to have the following in-
formation: what is the maximum diversity that can be ob-
tained if we explore M solutions? If we had such informa-
tion it might be possible to develop algorithms that could

iteratively increase the diversity of the explored solution
space. The thought of maximizing diversity at each move-
ment, given a set E, leads us to a theoretically achievable
diversity metric:

Diversity(E)

= 1 −
max∀y∈�/E

∀x∈E

dN(x, y)

maxx∗,y∗∈� dN(x∗, y∗),∀∑ ∈ 2�, |∑ | = |E| .

This formula yields the maximum distance to the farthest
unexplored solution, divided by the maximum possible
distance theoretically obtainable in any subset of � with
size |E|.

(i) At start, |E| = 0, and thus diversity = 0;
(ii) If all solutions have been explored, diversity equals 1;

(iii) Diversity is still proportional to the diameter of the
largest “empty space”, but now it is also a function of
the size of the explored space, such that:

(iv) Diversity is automatically decreased as |E| increases to
a new level of potential empty-space possibility. That
is, if a new move was executed, or a new generation in
a genetic algorithm was construed, and the “maximum
empty space” remained constant, while it was possible
to have had obtained a greater diversity in a space of
such size, then this would be captured in this metric.

Therefore, the use of this metric would enable the develop-
ment of new algorithms theoretically capable of iteratively
maximizing search diversity. There are, however, additional
computational complexity concerns. The reader may have
noticed that it seems that this problem belongs (at least) to
the class of NP-hard problems, given that it demands an ex-
ponential number of subsets of � to be explored in order
to compute the diversity function. Therefore we present the
second open problem and the conjecture that this problem is
hard to compute.

Open Problem 2 Is the proposed theoretically achiev-
able diversity measure computable in polynomial-time for
a polynomial-time neighborhood operator?

We conjecture that this is not true. In the next section, we
turn attention to a framework for local search models that
exhibit simultaneous intensity and diversity, based on the in-
troduction of new control mechanisms termed coordination
policies.

3 A framework for the simultaneous coexistence of
intensity and diversity

To defend the feasibility of employing search intensity and
search diversity simultaneously, in the following sections let

284 A. Linhares, H.H. Yanasse

us consider two assumptions: First, assume that there is a set
of concurrent search processes, that each of these processes
tends to explore the search space with high intensity. The
other postulation assumes that there is a distance metric be-
tween solutions that is computable in polynomial-time. Let
us analyze the first assumption: as an intensive local search
based process—such as those considered in [11] or in [17]
approaches an area, it tries, during a predetermined time
window, to find the best possible solution contained in that
area. This is mostly a trivial assumption: for all practical
purposes, these search processes could be simple instanti-
ations of tabu search designed to explore the search space
intensely [11, 17].

This basic assumption in explicit form is:

Claim 2 The proposed model exhibits high search intensity
during the course of its execution.

The model may exhibit a remarkably intensive behavior,
continuously searching for high quality solutions within re-
stricted regions of the search space. And as it may be as-
sumed that this can occur during the entire execution of the
algorithm [11], intensity (under the proposed model) can be
preserved during the run (instead of alternating with diver-
sity, as we will see). But this does not provide an automatic
guarantee against an ergometric bike trajectory. It is now
necessary to show that when we consider collective search
models, then search diversity can also be shown to exist dur-
ing the whole execution. In order to show that, consider two
proposals: first, let us have a set of processes executing in
parallel. Second, let us implement a ‘boundary’ of access
for each process. Thus, while multiple processes conduct the

search, the distance between processes is computed, such
that an artificial ‘boundary’ may protect each process’s area
(in order to guarantee the preservation of search diversity).
Thus, in case a particular process attempts to cross another
process’s boundary, this attempted movement should be re-
jected. The size of this boundary can obviously be made to
vary with the size of the problem (this is discussed in detail
below).

The suggested coordination policies, i.e., guiding princi-
ples to coordinate the collective search (based on the dis-
tances measured between search processes), may be classi-
fied in two categories: distribution coordination policies and
redistribution coordination policies. In the distribution co-
ordination policies, certain points act as detractors, main-
taining a specific minimum distance between processes, and
thus enforcing a high systemwide distribution. These are the
policies considered in this paper, but there are also redis-
tribution coordination policies, which have some points act-
ing as attractors to other processes, bringing these processes
closer to potentially better regions of the search space [38].
Let us consider two distribution coordination policies.

3.1 Uniform non-overlap

The first policy is referred to as the uniform non-overlap
coordination policy (Fig. 1). This policy designates a spe-
cific area to each search process; these areas, surrounding
the solutions explored by the processes, are set to a uniform
size, and may not be entered by other processes (hence its
name). Under this policy, there can be no overlapping be-
tween these areas, and thus, there is a guaranteed distrib-
ution of the processes along the search space—this formal

Fig. 1 A schematic look at the proposed framework (under the
uniform non-overlap coordination policy): By employing coordina-
tion policies and distance metrics, we may enforce processes to
maintain a minimum distance between each other (the boundaries
of each process are represented by circles). These mechanisms not

only prevent the wasteful duplication of search effort, but also guar-
antee high levels of search diversity throughout the execution, as
the pressure for maintaining large distances will make the largest
empty regions tend to be explored in a relatively small amount of
time

Search intensity versus search diversity: a false trade off? 285

Fig. 2 Under the non-uniform
ordered non-overlap with
closest-cost distribution policy,
the best search processes have
increasingly smaller areas,
which concentrate the
exploration of the search space
in proportion to their perceived
quality, potentially taking
advantage of spaces with
big-valley structure

guarantee, it should be mentioned, is not achieved in the
classic models of either genetic algorithms—or “genetic al-
gorithm species”, as in [39], simulated annealing, or even
of tabu search (though the latter may incorporate long-term
memory structures devised specifically for search diversifi-
cation, it cannot provide a formal, mathematical, guarantee
that the search will be suitably distributed along the search
space, as it cannot precisely measure such distribution, for
there is simply no function analogous to DN(x,p)—or any
measure of diversity for that matter).

Suppose, for instance, that process P2 attempts a move-
ment that will bring it into the area demarcated by the radius
of process P1. In order to prevent this, the movement can be
rejected, or, alternatively, process P1 can be moved outside
of the area corresponding to P2. In the first case, P1 acts as
detractor, while in the second case P2 is the detractor. The
‘winning’ process can be decided either by the quality of the
best solutions found by each process, or by the quality of the
current solution under exploration. The number of interde-
pendent search processes can obviously be made to scale as
the number of available processors grows, enabling thus a
greater distribution of the search.

There is, however, a high computational cost associ-
ated with computing the distance between all pairs of
processes—especially if the distance metrics are not com-
putable in linear time. One way around this is to devise in-
cremental distance metrics, avoiding the entire computation
of the distances at each movement. Calculating the distances
using only the incremental information associated with each
operation could bring down the complexity considerably,
and additional gains can even be achieved: to further reduce
the computational complexity (for any neighborhood opera-
tor selected), one may opt to reduce the number of distance
computations from O(p2) to O(p), where p is the number
of processes. This can be done either by sampling pairs of
processes in a random manner, or by adopting one of the

‘faster’ coordination policies presented in [38] which care-
fully select which pairs of processes will be evaluated.

3.2 Non-uniform distribution policies

The same policy may also be used in a Non-Uniform re-
gion size (Fig. 2). That is, the size of the areas allocated to
each process may vary according to some specific variable.
A candidate for such variable is the cost function obtained
by the processes: one may use the order of the processes as
a guide for establishing the total size of their areas.

As we have seen, the proposal of non-overlapping coor-
dination policies is intended to obtain a search process that
is simultaneously intensive and diverse (therefore showing
that these desiderata are not mutually exclusive). A second
proposal for coordination policies, whose goal would be to
explore the search space more intelligently, may come from
the previously mentioned ‘big-valley’ hypothesis: a correla-
tion between solution quality and distance to the optimum
that has been observed for some combinatorial optimization
problems [31]. This correlation suggests that areas in which
solutions of high quality have been found may be explored
with more intensity than those areas in which no solution of
high quality has been found. This idea should be explored in
landscapes that exhibit a big-valley structure.

The non-uniform ordered non-overlap with closest-cost
policy is thus a prime candidate for distributing search
processes over the search space. There are a number of rea-
sons for this. The policy holds all the advantages of the uni-
form ordered non-overlapping policy, with the possibility
of increased adaptability if the best processes are allowed
smaller areas than the worst processes: The regions of the
search space which are perceived to contain higher quality
solutions are explored in proportion to this higher perceived
quality: a process that has found highest quality solutions
holds a small area, and thus enables other processes to ex-

286 A. Linhares, H.H. Yanasse

plore the vicinity of that area, while the processes occupy-
ing the perceived worst areas have correspondingly larger
sizes, disabling access to those supposedly inferior quality
regions. This policy seems appropriate for landscapes dis-
playing big-valley structure, because the obvious tendency
is for processes to cluster around the higher quality areas of
the search space, while still preventing the wasted duplica-
tion of search effort of having two processes visit the same
solution.

From these ideas, the following claim holds:

Claim 3 The proposed model exhibits high search diversity
during the course of its execution.

By using these coordination policies (and the underlying
distance metrics), one is able to stipulate precisely the mini-
mum distance to be kept among processes. This leads to two
conclusions: First, diversity would be guaranteed by the cal-
culations of distance between search processes. In this way,
we can indirectly control the size of the unexplored search
areas, which will maximize diversity. Second, these policies
would have the added advantage of preventing the undesir-
able duplication of search effort (should the areas of distinct
processes overlap). Claim 3, together with Claim 2, leads to
the following conclusion:

Claim 4 There are reasons to believe that the intensity ver-
sus diversity hypothesis is false: high local search intensity is
not mutually exclusive with high local search diversity, and
both may be obtained simultaneously.

In most local search models, we have that, in some moments,
intensity is achieved at the expense of diversity; while at
other moments, diversity is achieved at the expense of inten-
sity: but that may be a false tradeoff. Though some thinkers
have argued that intensity and diversity are “conflicting al-
ternatives”, high levels of both may indeed be achieved si-
multaneously, and such a fact opens a largely unexplored ter-
ritory for innovations in heuristics research. In the next sec-
tion we prove that there are polynomial-time metrics readily
available for use.

4 Polynomially computable metrics

In this section we provide polynomial time metrics that can
be used with permutation operators.

4.1 The 2-exchange operator

While the 2-opt operator is one of the most used for the TSP,
other operators are even more popular for different sequenc-
ing problems, such as the 2-exchange and the insertion op-
erators used in many scheduling applications. In this section

we present a linear time algorithm that transforms π into σ

using the minimum number of 2-exchange operations.
The reader should note that, contrary to what its name

suggests, this problem is different from the optimum ex-
change sorting problem studied previously [41, p. 198], in
which one is concerned with a comparison-exchange tree
(which is a data structure used to study the performance of
distinct exchange sorting algorithms, such as quicksort, bub-
blesort, or mergesort). We refer the reader to [41] for details.

The 2-exchange operator switches two positions i and
j in a permutation, that is, it transforms permutation
(π1, . . . , πi, . . . , πj , . . . , πn) to (π1, . . . , πj , . . . , πi, . . . ,

πn). Let I denote the identity permutation (1,2, . . . , n). We
present the following linear time algorithm for computing
the minimum 2-exchange distance between π and σ = I .

d = 0;
for i = 1 to n do

if πi 	= σi then begin
2-EXCHANGE(i, σ−1(πi));//σ−1(i) denotes the
position on permutation σ

d = d + 1; // in which element i
is found

end;
return d;

This algorithm is trivial and it runs in linear time. What
is not trivial to prove is that it indeed performs the minimum
number of 2-exchange movements between π and σ = I .
To prove the optimality of the algorithm, let us now state the
problem in a graph theoretical form referred to as the switch
graph. Let G = (V ,E) be a directed graph with vertex set
V = (v1, v2, . . . , vn) and edge set E. Let each vertex vi ∈ V

be associated with a position i in the permutation π . The
edges of G point from position i of π to the position in σ

that element πi appears. That is, directed edge vivj ∈ E if
and only if j = σ−1(πi). In Fig. 3 the switch graph for per-
mutations π = (2,4,3,5,1,8,7,6) and σ = I is displayed.

Note that, since each vertex sends and receives a directed
edge, the switch graph consists of one or more independent
cycles. The size of the cycles ranges from {1,2, . . . , n}, and
the number of distinct cycles can be at most n, in the case
of n self-cycles (i.e., vertices pointing to itself). Note that
this is precisely the desired goal, i.e., to put each element in
its correct position. Thus, we are concerned with increasing
the number of cycles with the minimum number of opera-
tions possible. The problem can now be stated in terms of
the switch graph.

Let B be the number of cycles in the switch graph be-
tween permutations π and σ , and consider Proposition 1.

Proposition 1 Given B < n, it is always possible to in-
crease the number of cycles by one unit by means of one
2-exchange movement.

Search intensity versus search diversity: a false trade off? 287

Fig. 3 Switch graph of permutations π and I

Proof Given that B < n, it is always possible to break a cy-
cle CM+N of size M + N into two distinct cycles CM and
CN , for any combination of M 	= 0 and N 	= 0, in a single
exchange operation: select vertices vi, vj ∈ CM+N ; and, af-
ter the 2-exchange operation, the vertices that pointed to vi

and vj now point to vj and vi , respectively. Thus, the cycle
CM+N is broken into two distinct cycles CM and CN , where
M equals the number of edges on the path from vi to vj in
CM+N , and N equals the number of edges on the path from
vj to vi in CM+N . �

Proposition 2 One 2-exchange movement can increase the
number of cycles by at most one unit.

Proof When two elements exchange positions in the permu-
tation, 2 edges are deleted from the graph, and 2 edges are
inserted. It is necessary to delete 2 edges in order to break a
cycle; hence, each movement increases the number of cycles
by at most one unit. �

Let T (CS) be the minimum number of applications of the
2-exchange operator to transform any S-sized cycle CS into
S self-cycles. Then, we have

Lemma 1 T (CS) = S − 1.

Proof Follows trivially from Propositions 1 and 2. �

Let D2-exchange(π,σ) equal the desired 2-exchange dis-
tance metric between permutations π and σ . Then, we have

Theorem 2 D2-exchange(π,σ) = n − B .

Proof It follows from lemma 1 that each S-sized cycle
needs (S −1) movements to be transformed in S self-cycles.
The desired distance metric can be directly obtained by the

number of S-sized cycles in the switch graph, measured by

D2-exchange(π,σ) =
n∑

S=1

(S − 1)αS

=
n∑

S=1

SαS −
n∑

S=1

αS = n − B,

where αS is the number of S-sized cycles between permuta-
tions π and σ . �

Since the presented algorithm always places one element
in its correct position, it always breaks a cycle into two (with
the new cycle having size exactly one). This leads to the
proof of correctness of the algorithm.

4.2 The insertion operator

The insertion operator for permutations deletes one element
from the permutation, and inserts it in a new position: either
between two elements, or at the first or last positions, main-
taining the order of the other elements intact. Once again,
the metric devised here deals with fixed permutations. How-
ever, the extension to cyclic problems is readily attainable,
as, in such case, it should suffice to maintain one element in
a fixed position of the permutation (for example, by keeping
element 1 fixed in the first position of the permutation). Note
that, despite what the name suggests, the insertion distance
metric considered here is not the previously studied number
of moves of sorting by insertion [41, Sect. 5.2.1], in which
the number of moves refers to the overall running time of
the algorithms. We refer the reader to [41] for details.

It is not trivial to see that the permutation (8, 5, 6, 9, 4, 2,
1, 7, 3) requires 6 insertions while (1, 8, 5, 2, 6, 3, 9, 4, 7)
requires 4. This problem is more general than that consid-
ered in [42] for the leading element insertion distance, which
is referred to as head insertions, and considers only inser-
tions of the very first element of the permutation. They have
shown that:

Theorem 3 The number of insertions required to sort a per-
mutation σ by head insertions is n−k, where k is the largest
integer such that the last k entries of σ form an increasing
subsequence [42].

In our more general case, to order by insertion the per-
mutation (1, 8, 5, 2, 6, 3, 9, 4, 7), for example, the insight
needed is that the subsequence (1, 5, 6, 9) already appears in
the correct order, but the remaining elements are in incorrect
positions in relation to this subsequence. We refer to such a
subsequence as a correct subsequence. A maximal correct
subsequence is one such that no element of the permutation
can be added to it while the subsequence remains in correct

288 A. Linhares, H.H. Yanasse

order. A maximal correct subsequence with the largest size
possible (i.e., maximum number of elements) is denoted as a
maximum correct subsequence. In this example, the subse-
quence (1, 5, 6, 9) is a maximal correct subsequence, but
is not maximum (interested readers should also consider
the maximum partial order algorithm [44]). The following
lemma enables us to establish a link between the insertion
distance and the maximum correct subsequence.

Lemma 2 If a permutation contains a maximal correct sub-
sequence of size K, it is always possible to order it in n − K

insertions.

Proof Relative to the maximal correct subsequence, there
are n − K incorrect positions in the permutation. Each one
of these positions can be corrected by inserting it in the right
position on the maximal correct subsequence by one appli-
cation of the insertion operator. Thus, n − K insertions are
sufficient to order this permutation.

Thus, given a maximal correct subsequence of size
K,n − K insertions are sufficient to order the permutation.
(This does not prove, however, that this is the number of
necessary insertions to order the permutation.) �

It is important to maximize K , i.e., to find a maximum
correct subsequence. A maximum correct subsequence can
be obtained in polynomial time, as shown next. We will
construct a graph (G,V) that may be traversed as a set of
trees, where each tree represents one of the maximal cor-
rect subsequences. First, create a set of nodes where each
node vi corresponds to a position i in permutation π . Next,
create a set E of edges by placing one directed edge vivj

iff (1) i < j and, (2) πi < πj and, (3) ¬∃k : i < k < j and
πi < πk < πj . Conditions 1 and 2 enforce that positions i

and j belong to a correct subsequence while condition 3
avoids transitivity. Note that G is directed and does not in-
clude cycles and may thus be traversed as a set of trees where
the nodes that do not receive edges are the roots of the trees.
In Fig. 4, the associated traversal-tree for the example per-
mutation π = (1,8,5,2,6,3,9,4,7) is shown.

Lemma 3 The maximum correct subsequence equals the
maximum height, H , of all the traversal-trees contained
in G.

Proof Each path from the nodes to the leaves represents a
maximal correct subsequence. Therefore, the maximum cor-
rect subsequence will be given by the maximum height of
the trees contained in G. �

Lemma 4 It is necessary to perform at least n − H inser-
tions.

Fig. 4 The traversal-tree of G for π = (1,8,5,2,6,3,9,4,7)

Proof Consider a maximum correct subsequence. If one ele-
ment of the permutation is deleted, the size of maximum cor-
rect subsequence cannot be larger than the original; in fact,
it can only remain either equal to the original or equal to the
original minus one. If an element is included in the permu-
tation, the size of the maximum correct subsequence cannot
be smaller than the original. It can be equal to the original
or equal to the original plus one. An insertion movement is
equivalent to these two steps being carried out successively.
Hence, an insertion movement can augment the maximum
correct subsequence in at most one element. As the maxi-
mum correct subsequence has size H , it is necessary to carry
out at least n − H insertions to order the permutation. �

Since we know that n − H insertions are sufficient to
order the permutation, this leads us to the desired distance
metric:

Theorem 4 The insertion distance of a permutation π of n

integers is n − H .

Proof Follows from Lemmas 2, 3 and 4. �

This algorithm enables us to prove the correctness of
the desired metric, but it demands O(n2) time. Fortunately,
there is a algorithm available for “determining the longest
subsequence in a sequence” [43]—so our concern here is
limited to the demonstration of correctness of the metric.

A final comment concerns the distribution of the in-
sertion and the 2-exchange distance metrics. Solutions
that are far from each other under one landscape may be
close under another landscape. For example, the sequence
(2,3,4,5,6, . . . , n,1) requires (n − 1) 2-exchanges versus

Search intensity versus search diversity: a false trade off? 289

Fig. 5 Distributions of the insertion and the 2-exchange distance met-
rics

2 reversals versus 1 insertion move. On the other hand, the
sequence (n, . . . ,6,5,4,3,2,1) requires (n − 1) insertions
versus �n/2� 2-exchanges versus a single reversal. Figure 5
displays the frequency of each distance metric, obtained
from the distance of 500 random fixed asymmetric per-
mutations to the identity permutation. To ‘smoothen’ the
curves, the size of the permutations was taken uniformly
from the interval [90,110]. This figure clearly shows that
there is a strong statistical tendency for two distinct solu-
tions to be closer under insertion than under 2-exchange
operations (since the reversal operator is NP-hard, we were
unable to provide comparisons). We have found out that this
relation also holds for cyclic and symmetric problems, and
it might imply that search algorithms may be better served
by the insertion operator than by the 2-exchange operator,
a hypothesis that we leave as an open problem for further
research.

5 An example

Let us provide a simple example which may clear the ex-
position. Consider the gate-matrix layout problem, a prob-
lem that we have shown to be NP-Hard [45]. A gate ma-
trix layout circuit consists of a set of gates (vertical wires)
with transistors (dots) that are used to interconnect the gates.
There must be horizontal wires known as tracks intercon-
necting all the gates that share transistors at the same posi-
tion. If we model the problem as a matrix problem, we are
given a binary I × J matrix P = {pij }, with pij = 1 if gate
j holds a transistor at position i, otherwise pij = 0. The
wiring between gates is represented by the ones intercon-
necting the leftmost and rightmost gates, hence, the resultant
matrix holds the consecutive-ones property.

One basic feature of the problem is that the sequencing
of the gates does not alter the underlying logic equation im-
plemented by the circuit. The number of tracks is the only
variable determining the overall circuit area, since the num-
ber of gates is constant. Therefore, it is essential to sequence

Fig. 6 The gate matrix layout problem, and an optimum solution,
given by the permutation (2 4 3 1 5 7 6)

the gates in order to minimize the number of tracks, i.e., the
number of necessary physical rows to implement the circuit,
given by

Zπ
GMLP(P) = max

J∈{1,...,J }

I∑

i=1

pπ
ij .

Therefore, GMLP is the problem of minπ∈� Zπ
GMLP (P),

where P is an instance of GMLP. The problem is displayed
in Fig. 6, from matrix form to the final optimized VLSI lay-
out.

Consider, for instance, that local search methods are em-
ploying the insertion operator. In this case, we can generate
new, non-minimum solutions, with a known distance from
the optimum (as given by Sect. 4).

For example, the permutation (2 4 7 5 1 3 6) demands
4 insertions in order to be retransformed to the optimum. It
generates 5 tracks, yielding almost twice the minimum inte-
grated circuit size. The permutation (2 1 3 4 5 7 6) demands
3 insertions, and generates 4 tracks, also more than the min-
imum.

Notice, however, that a lower number of necessary inser-
tions does not imply that less tracks will be generated: the
permutation (2 7 4 3 1 5 6) yields 5 tracks, while only requir-
ing one insertion to achieve the global minimum. However,
since at each point there are n2 possible insertions, the prob-
ability that the optimum will be achieved rapidly increases
as the distance to the optimum solution decreases.

Consider, now, that the system is maximizing the diver-
sity of the solutions being explored, as given by D(E) in
Sect. 2.3 above, by using one of the suggested coordination
policies. Move selection will hence be done by attempting to
improve the quality of each solution being explored, as long
as it does not violate the space allocated to another solution
under exploration. This leads us to our major proposal: the
higher the diversity between solutions becomes, the higher
the probability that at least one of these solutions lies closer
to the optimum (and, as a corollary, that the optimum may
be found).

290 A. Linhares, H.H. Yanasse

6 Discussion

This work criticizes the assumption that there may be a mu-
tually exclusive tradeoff between search intensity and search
diversity in parallel systems. There are three contributions
in this work. First, it is argued that search intensity and
search diversity are not mutually exclusive. Even leading re-
searchers have argued for ‘finding the right balance between
intensity and diversity’, and this idea of a ‘balance’, or of
a supposed tradeoff, between these desiderata immediately
presupposes their mutual exclusion. By introducing a frame-
work for collective models in which intensity is achieved at
the process level, while diversity is achieved at the collec-
tive, systemwide level, it is demonstrated that, for systems
with multiple search processes, these desiderata can co-exist
simultaneously throughout the whole execution of the sys-
tem (instead of alternating, or of gradually moving from di-
versity towards intensity).

A second contribution consists of the control mechanisms
referred to as coordination policies. These are general prin-
ciples for guiding the distribution (and also re-distribution)
of search processes along the search space. Some additional
coordination policies for re-distribution of search processes
are presented in [38].

Finally, we also discuss innovative uses of distance met-
rics: by employing such metrics, it is possible to compute,
for example, the distance between the current solution be-
ing explored and the best solution found. It is also possi-
ble to more clearly see whether a search process is explor-
ing many distinct regions of the solution space or if it is
instead gravitating around some point. Still another possi-
bility is the development of tabu distances: instead of us-
ing lists of previous steps, there could be a “trail” of previ-
ously visited solutions (acting as ‘detractors’) and a corre-
sponding distance (‘radius’) to be kept from each of these
solutions, thus guaranteeing a high search diversity over the
course of the search (and obviously countering the ergomet-
ric bike phenomenon). The distance metrics also enable the
calculation of how much the processes are dispersed over
the search space, and also, in case two (or more) processes
cluster around a small area, to drive one (or more) out of
that area, in order to eliminate the wasteful duplication of a
computationally valuable search effort.

As an anonymous referee pointed out, perhaps the most
promising line of further research lies with another sense of
‘tradeoff’. We have been discussing the theoretical sense of
a tradeoff between intensity versus diversity; but the compu-
tational costs involved in circumventing this tradeoff might,
at least theoretically, turn out to be prohibitive, which leads
us to a practical or concrete tradeoff: One question con-
cerns whether it is possible to obtain diversity and inten-
sity; another question concerns whether it is beneficial to do
so. In fact, one may argue that the tradeoff may really re-
side in information theory: at each point one wants to ‘ask

the question which will reduce uncertainty the most’; under
this perspective intensity and diversity are secondary; and
information—and all the computational costs of obtaining
such valuable information—becomes the primary issue.

The skeptical reader could argue that this paper does not
present a specific optimization problem and a specific local
search strategy—it does not demonstrate that simultaneous
intensity and diversity is indeed advantageous in terms of
algorithmic performance. This is done in order to discuss
these issues in general, to discuss issues that are indepen-
dent from problems or solution methods. Whether or not
greater performance is to be expected is a significant em-
pirical question, but it does not alter the fact that the very
idea of a mutually exclusive balance between diversity and
intensity needs revising—and that is the central thesis here,
which deserves to be truly scrutinized by the research com-
munity. Because the proposed framework is detached from
the heuristics underlying the search processes, from the dis-
tance metrics employed (which vary from operator to oper-
ator), and even from the optimization problem being solved,
it deserves to be discussed independently (successful exper-
iments have been carried out in [40]). This work is hence
one of the very few analysis accomplished on a level of
meta-meta-heuristics, because all arguments are indepen-
dent of specific problem handled (such as scheduling, plan-
ning, TSP, etc.), of specific solution methods (such as ge-
netic algorithms, simulated annealing, tabu search, etc.) and
of specific neighborhood or genetic operators (2-opt, BOX
crossover, etc.). We hope some of the insights brought out
here will eventually open exciting unexplored territory for
further heuristics research.

Acknowledgements Part of this work was executed when Dr. Lin-
hares was visiting the Centre de Recherche sur les Transports (CRT) of
the Université de Montréal, Canada; a visit for which the authors are
grateful to Dr. Gilbert Laporte. We are grateful for the comments of the
anonymous referees, and we appreciate financial support from grant
#97/12785-8 of the FAPESP foundation, from the PROPESQUISA
program of the Getulio Vargas Foundation and also from grants from
the CNPq Foundation. The authors would like to thank three anony-
mous referees for numerous improvements in the paper, and for the
mention of the use of the Hamming distance in memetic algorithms.

References

1. van Laarhoven PMJ, Aarts EHL (1988) Simulated annealing: the-
ory and applications. Kluwer Academic, Norwell

2. Debuse JCW, Rayward-Smith VJ (1999) Discretisation of contin-
uous database features for a simulated annealing data mining al-
gorithm. Appl Intell 11:285–295

3. Ansari N, Sarasa R, Wang GS (1993) An efficient annealing algo-
rithm for global optimization in Boltzmann machines. Appl Intell
3:177–192

4. Ombuki BM, Ventresca M (2004) Local search genetic algorithms
for the job-shop scheduling problem. Appl Intell 21:99–109

5. Ghosh S, Ghosh A, Pal SK (2003) Incorporating ancestors’ influ-
ence in genetic algorithms. Appl Intell 18:7–25

Search intensity versus search diversity: a false trade off? 291

6. Mendes A, Linhares A (2004) A multiple population evolutionary
approach to gate matrix layout. Int J Syst Sci 35:13–23

7. Beasley JE (2000) Population heuristics. In: Pardalos PM, Re-
sende MGC (eds) Handbook of applied optimization. Oxford Uni-
versity Press, London

8. Goldberg DE, Richardon J (1987) Genetic algorithms with shar-
ing for multimodal function optimization. In: Grefenstette JJ (ed)
Genetic algorithms and their applications (ICGA’87). Lawrence
Erlbaum Associates, Hillsdale, pp 41–49

9. Ursem RK (2001) When sharing fails. In: Proc. of the third
congress on evolutionary computation, pp 873–879

10. Ursem RK (2002) Diversity-guided evolutionary algorithms. In:
Proc. of parallel problem solving from nature VII, pp 462–471

11. Glover F (1989) Tabu search—Part I. ORSA J Comput 1:190–206
12. Glover F, Laguna M (1997) Tabu search. Kluwer Academic, Dor-

drecht
13. Laguna M, Barnes JW, Glover F (1993) Intelligent scheduling

with tabu search—an application to jobs with linear delay penal-
ties and sequence-dependent setup costs and times. Appl Intell
3:159–172

14. Glover F (1977) Heuristics for integer programming using surro-
gate constraints. Decis Sci 8:156–166

15. Cung V-D, Mautor T, Michelon P, Tavares A (1997) A scatter
search based approach for the quadratic assignment problem. In:
Proc of the IEEE international conference on evolutionary compu-
tation, pp 165–170

16. Linhares A, Torreão JRA (1988) Microcanonical optimization ap-
plied to the traveling salesman problem. Int J Mod Phys C 9:133–
146

17. Linhares A, Yanasse HH, Torreão JRA (1999) Linear gate assign-
ment: a fast statistical mechanics approach. IEEE Trans Comput-
Aided Des Integr Circuits Syst 18:1750–1758

18. Feo TA, Resende MGC (1995) Greedy randomized adaptive
search procedures. J Glob Optim 6:109–133

19. Argüello MF, Bard JF, Yu G (1997) A GRASP for aircraft routing
in response to groundings and delays. J Combin Optim 1:211–228

20. Resende MGC, Ribeiro CC (1997) A GRASP for graph planariza-
tion. Networks 29:173–189

21. Backhouse PG, Fotheringham AF, Allan G (1997) A comparison
of a genetic algorithm with an experimental design technique in
the optimization of a production process. J Oper Res Soc 48:247–
254

22. Dowsland K (1996) Genetic algorithms: a tool for OR? J Oper Res
Soc 47:550–561

23. Laguna M, Glover F (1993) Bandwidth packing: a tabu search ap-
proach. Manag Sci 39:492–500

24. Rochat Y, Taillard ED (1995) Probabilistic intensification and
diversification in local search for vehicle routing. J Heuristics
1:147–167

25. Jain AS (1998) A multi-level hybrid framework for the deter-
ministic job-shop scheduling problem, PhD thesis, University of
Dundee, Dundee, Scotland, UK

26. Glover F (1990) Tabu search: a tutorial. INTERFACES 20:74–94
27. Colorni A, Dorigo M, Maffioli F, Manniezzo V, Righini G, Trubian

M (1996) Heuristics from nature for hard combinatorial optimiza-
tion problems. Int Trans Oper Res 3:1–21

28. Christofides N (1994) The bionomic algorithm. In: Proc of the as-
sociazione Italiana di ricerca operativa conference, Savona, Italy

29. Maniezzo V, Mingozzi A, Baldacci R (1998) A bionomic ap-
proach to the capacitated p-median problem. J Heuristics 4:263–
280

30. Jones T (1995) One operator, one landscape. Santa Fe Institute
Technical Report 95-02-025. Santa Fe Institute, Santa Fe, NM
87501

31. Boese KD, Kahng AB, Muddu S (1994) A new adaptive multi-
start technique for combinatorial global optimizations. Oper Res
Lett 16:101–113

32. Merz P, Freisleben B (1999) Fitness landscapes and memetic al-
gorithm design. In: Corne D, Glover F, Dorigo M (eds) New ideas
in optimization. McGraw-Hill, New York

33. Reeves CR (1999) Landscapes, operators, and heuristic search.
Ann Oper Res 86:473–490

34. Mendes A, França P, Moscato P (2002) Fitness landscapes for the
total tardiness single machine scheduling problem. Neural Netw
World 2:165–180

35. Mak K-T, Morton AJ (1995) Distances between traveling sales-
man tours. Discrete Appl Math 58:281–291

36. Caprara A (1999) Sorting permutations by reversals and Eulerian
cycle decompositions. SIAM J Discrete Math 12:91–110

37. Linhares A (2004) The structure of local search diversity. WSEAS
Trans Math 3:216–220

38. Linhares A (2001) Industrial pattern-sequencing problems: some
complexity results and new local search models. PhD thesis, Na-
tional Institute of Space Research, São José dos Campos, Brazil

39. Jelasitya M, Dombib J (1998) GAS, a concept on modeling
species in genetic algorithms. Artif Intell 99:1–19

40. Linhares A (2004) Minimization of open orders: a re-distribution
coordination policy. Int J Prod Res 42:1189–1205

41. Knuth D (1975) The art of computer programming, vol. 3. Sorting
and searching. Addison-Wesley, New York

42. Aigner M, West DB (1987) Sorting by insertion of leading ele-
ments. J Combin Theory Ser A 45:306–309

43. Chen S, Smith SF (1996) Commonality and genetic algorithms.
The Robotics Institute CMU-RI-TR-96-27, Carnegie Mellon Uni-
versity

44. Orlowski M, Pachter M (1989) An algorithm for the determination
of a longest increasing subsequence in a sequence. Comput Math
Appl 17:1073–1075

45. Linhares A, Yanasse HH (2002) Connections between cutting-
pattern sequencing, VLSI desing, and flexible machines. Comput
Oper Res 29:1759–1772

Alexandre Linhares is a Research Professor at the Getulio Vargas
Foundation in Rio de Janeiro, Brazil. The Brazilian Computing Soci-
ety gave him the honorable mention “for the great scientific contribu-
tion” in his Ph.D. Thesis. His work appears in international journals
such as Artificial Intelligence, Biological Cybernetics, Behavioral and
Brain Sciences, Cognitive Science, IEEE Transactions on Evolution-
ary Computation, Computers & Operations Research, Minds and Ma-
chines, International Journal of Systems Science, Journal of Air Trans-
port Management, among others.

Horacio Hideki Yanasse is the head of the Special Technologies Cen-
ter of the Brazilian Institute of Space Research. He holds a Ph.D. in
Operations Research from the Massachusetts Institute of Technology.
His work appears in the major OR outlets, such as Management Sci-
ence, Operations Research, Discrete Applied Mathematics, Journal of
the Operational Research Society, European Journal of Operational Re-
search, among many others. He is the editor of the Brazilian Operations
Research Journal, Pesquisa Operacional.

	Search intensity versus search diversity: a false trade off?
	Abstract
	Introduction: intensity versus diversity
	Distance and diversity metrics
	What is search diversity?
	Requirements for a measure of diversity
	The structure of diversity

	A framework for the simultaneous coexistence of intensity and diversity
	Uniform non-overlap
	Non-uniform distribution policies

	Polynomially computable metrics
	The 2-exchange operator
	The insertion operator

	An example
	Discussion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

