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Abstract Periodicity detection has been used extensively
in predicting the behavior and trends of time series data-
bases. In this paper, we present a noise resilient algorithm
for periodicity detection using suffix trees as an underly-
ing data structure. The algorithm not only calculates sym-
bol and segment periodicity, but also detects the partial (or
sequence) periodicity in time series. Most of the existing al-
gorithms fail to perform efficiently in presence of noise; al-
though noise is an inevitable constituent of real world data.
The conducted experiments demonstrate that our algorithm
performs more efficiently compared to other algorithms in
presence of replacement, insertion, deletion or a mixture of
any of these types of noise.

Keywords Time series · Periodicity detection · Suffix tree ·
Segment periodicity · Sequence periodicity · Noise resilient

1 Introduction

Periodicity detection in time series databases has recently
been an active research area and already received the at-
tention of several research groups. It is a process of find-
ing whether a given series, or a pattern within the series, is
repeating itself at regular intervals or not. Periodicity detec-
tion is used in predicting future events or trends in the time
series; it is a crucial step towards better and more effective
decision making.
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Periodic patterns are frequently found in time series such
as road traffic pattern, power consumption over time, trans-
action record, weather information, geological and astro-
nomical observations, patient physiological data, DNA se-
quences, and so on. Periodicity detection is useful to pre-
dict the behavior and the future trends of the time series [4].
Periodic pattern mining is also a useful tool in predicting
the stock price movement, computer network fault analysis
and detection of security breach, earth-quake prediction, and
gene expression analysis [17, 18].

Time series consists of a sequence of ordered val-
ues collected, generally, after uniform interval of time.
Let T be a time series of length n and Di be a feature
collected at time i, then the time series can be repre-
sented as T = D0,D1,D2, . . . ,Dn−1. For periodicity de-
tection, generally, the time series is discretized into finite
symbols taken from an alphabet set, denoted

∑
. For in-

stance, if
∑

contains {a, b, c}, then a possible time se-
ries T = D0,D1,D2, . . . ,Dn−1 can be discetized as T =
aabacabbc.

Three types of periodicity are considered in the time se-
ries literature. The first type is called the segment or full-
cycle periodicity, where the time series is a result of approx-
imate repetition of a segment of the series. The second type
is symbol periodicity, where it is calculated if the individual
symbols of a time series are getting repeated periodically.
Thirdly, we have the partial periodicity, where a pattern (of
length ≥ 1) in the time series is getting repeated period-
ically. For example, the time series T = abcabcabbabc

exhibits the segment periodicity, Pseg(p, st) = (3,0), of
3 starting at position zero because the pattern abc is
of length 3, and it is repeating regularly. Similarly, the
time series T = abcdabbdabcdabbd contains the sym-
bol periodicity of 4 for symbol a starting at position
zero, i.e., Psym(char,p, st) = (a,4,0). The latter series T
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also contains Psym(b,4,1), Psym(d,4,3), Psym(c,8,2), and
Psym(b,8,6). The same series T = abcd abbd abcd abbd

exhibits the partial periodicity of 4 for the pattern ab ∗ d or
for the pattern ab{b, c}d , starting at position zero.

Various researchers have presented separate algorithms
for detecting each of these types of periodicity. However,
very few attempts have been made to capture all three types
of periodicity using a single algorithm. We have presented
our periodicity detection algorithm using suffix trees as an
underlying structure that allows us to efficiently capture all
the three types of periodicity. It starts with building the suf-
fix tree of the given time series, which helps us in capturing
the collection of occurrences (which we call occurrence vec-
tor) of all the repeating patterns in the time series. We then
check if the repetitions are periodic and calculate the peri-
odic strength (confidence) of these patterns.

Another problem not considered by most of the existing
approaches is that they do not perform well in the presence
of noise in the data. Since noise is an inevitable component
of real world time series, it is a vital argument to state that
the algorithm should be noise resilient and be able to detect
the periodicity, even in the presence of a reasonable amount
of noise.

Three basic types of noise generally considered in time
series analysis are replacement, insertion and deletion (or
any mixture of them). While some algorithms may accom-
modate the replacement noise, most algorithms perform
poorly in the presence of insertion and deletion noise.

In this paper, we improve our previous algorithm by in-
corporating the time tolerance window so as to make it more
resilient to insertion and deletion noise. The reported exper-
imental evaluation demonstrates that the algorithm is more
resilient to insertion and deletion noise than other existing
algorithms.

The rest of the paper is organized as follows. Section 2
presents the related literature in the periodicity detection
field. Our approach is explained in Sect. 3. Section 4 con-
tains the results of experimental evaluation, while the paper
is concluded with mention of future work in Sect. 5.

2 Related work

Time series analysis has received considerable attention of
the research community; and, there are some approaches out
there capable of detecting different types of periodicity from
a time series data. For instance, Indyk et al. [1] presented
their periodic trends algorithm which can find the segment
periodicity only, i.e., to detect if the entire time series can be
achieved by the repetition of a sequence of symbols. For ex-
ample, the time series abcabcabc has the segment periodic-
ity of 3. Their algorithm favors the larger periods. Recently,
Elfeky et al. [2] presented two algorithms to find symbol and

segment periodicity in time series data. Their algorithms fa-
vor the shorter periods.

The methods developed by the above mentioned re-
searchers ([1] and [2]) use the shift and compare approach,
where they compare the (right) shifted copy of the time se-
ries with the original time series to see how many matches
there are, and what symbols these matches are for. Indyk et
al. [1] use naive approach, while Elfeky et al. [2] use con-
volution based approach that reduces the time complexity to
O(n logn).

Our algorithm does not favor any period size, i.e., the pe-
riod size does not influence the accuracy of the algorithm.
We prefer the shorter periods and longer sequences as far as
their strength is acceptable and conclude that the sequences
of multiple-length would have at least the same periodic
strength. For example, if a sequence (ab) is periodic with
period 5 (say p), then we conclude that it is also periodic
with period 10 (2p), 15 (3p), and so on. Similarly, we pre-
fer the larger sequences. For example, if a time series is peri-
odic for the sequence abc ∗ ∗ with period value of 5 starting
at position 0 with periodicity strength of 0.8, then the sub-
sequences abc, ab, a, b and c all would be periodic with
period 5 starting, respectively, at positions 0, 0, 0, 1 and 2,
with periodicity strength greater than or equal to 0.8.

Unlike the work of Elfeky et al. [2], we do not need two
separate algorithms to find the symbol and segment peri-
odicity. Our single algorithm can detect both segment and
symbol periodicity in just a single pass over the data once
the series is represented using the suffix tree structure.

Unlike both the works of Indyk et al. [1] and Elfeky
et al. [2], our algorithm may also find the periodicity of se-
quences comprising of more than one symbol. We believe
that the periodicity of such sequences carries more useful
and interesting information than that of single symbol. More
importantly, it results in reporting much fewer numbers of
periods. For example, for a sequence abcabcabc, the sym-
bol periodicity detection algorithm of Elfeky et al. [2] would
report 5 periods; representing them using the three-tuple
form (symbol, period, starting position), they are (a, 3, 0),
(b, 3, 1), (c, 3, 2), (a, 3, 3), and (b, 3, 4). On the other hand,
our algorithm would report only a single period (abc, 3, 0),
which is clearly easier to handle and much more useful and
meaningful information.

There are some researchers, e.g., [6–8], who do use the
linear distance-based algorithm like us. However, since they
are not using suffix trees, but the simple sequence, they do
miss certain useful periods because they only consider the
adjacent inter-arrivals. For example, consider a symbol that
occurs in series at positions 0, 3, 5, 8, 10. Since their al-
gorithms (like ours) use the linear distance, they miss the
period 5 starting from 0. But, this is not the case with our
algorithm because the period of 5 is captured in the lower
(or deeper) level node of the tree or for the larger sequence.
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Fig. 1 Noise resilience of previous algorithms

Also, the algorithms described in [6–8] require another pass
over the time series in order to output the periodic patterns,
while our algorithm requires only a single pass over the se-
ries to detect and report the periods existing in the series.

Elfeky et al.’s convolution based algorithm [2] performs
poorly in the presence of insertion and deletion noise, which
he improved in his most recent publication [13] using the
time warping concept. Papadimitriou et al. [14] presented
their algorithm for periodicity detection using wavelet trans-
form which runs in linear time but can only detect periods
which are of powers of two. Our previous algorithm called
Suffix Tree Basic (STB) [15] uses suffix tree as an underly-
ing data structure to find symbol, sequence and partial pe-
riodicity using a single algorithm, but its performance also
degrades when insertion and deletion noise are introduced
in the time series.

Elfeky et al. [13] presented a comparison of existing al-
gorithms for noise resilience, where they compared how the
existing algorithms perform, especially in the presence of in-
sertion and deletion noise. They presented their algorithm,
called WARP, which uses the time warping concept to ex-
pand and shrink the time axis.

Although, their algorithm performs well in the presence
of noise, it is only capable of detecting the segment (or full-
cycle) periodicity in the time series, while our algorithm
can detect symbol, segment as well as partial (sequence)
periodicity. With the improvements presented in this pa-
per, our algorithm can accommodate insertion and deletion
noise at least as effectively as the WARP algorithm of Elfeky
et al. [13].

Figure 1 shows how existing algorithms (WARP, Convo-
lution (CONV) and AWSOM) perform in the presence of
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Fig. 2 The suffix tree for the
string abcabbabb$

difference combination of replacement (R), insertion (I) and
deletion (D) noise.

3 Suffix tree based noise resilient (STNR) algorithm

Based on the above analysis, we developed our algorithm
for periodicity detection; the proposed algorithm uses suffix
trees as an underlying data structure. In the following sub-
sections, we would give a brief discussion on suffix trees
and how we adapted the concept for periodicity detection.
Later, we would explain how the algorithm accommodates
the noise in the data.

3.1 Suffix trees

Suffix tree is a commonly used data structure [3] that
has been proved to be very useful in string processing,
e.g., [3, 9–11]. It can be efficiently used to find a substring
in the original string, find the frequent substring; it can also
be used to solve other substring matching problems. Each of
the branches of the suffix tree represents a suffix of the orig-
inal string. Hence, a suffix tree for a string of length n has n

branches, and thus n leaf nodes. For example, Fig. 2 shows
the suffix tree for the string abcabbabb$ where $ denotes
the terminating symbol.

Each leaf node in the tree has an integer value showing
the starting position of the substring achieved through the
path from the root to that leaf in the original string. Since
there are exactly n suffixes for a string, each starting at one
of the index positions, there are n leaf nodes in the tree. Each
internal node (nodes that are neither leaf nor the root) has the
integer value representing the length of the substring so far

achieved while traversing from the root to the node. A suffix
tree can have a maximum of 2n nodes, but mostly having
periodicity and repetition in the time series; there are less
than 2n nodes in the suffix tree for these series.

We use the well-known Ukonen algorithm [5] to con-
struct the suffix tree for a given time series; this algorithm
runs in linear time. The algorithm gives us the collection
of ‘edges’, each having the starting node number, end node
number, the first character index and the last character index
and the value. For example, the edge from the root with la-
bel ab in Fig. 2 is represented as: starting node number: 0,
end node number: 1, first character index: 0, last character
index 1, and the value: 2. Thus, this edge can be represented
in five-tuple (0, 1, 0, 1, 2). The subsequent edge labeling b is
represented as (1, 4, 2, 2, 3), and the edge labeling cabbabb$
is represented as (1, 5, 2, 9, 0). The algorithm for the suffix
tree traversal is presented in Fig. 3.

3.2 Periodicity detection

Once we have the marked and labeled suffix tree, we in-
voke the periodicity detection algorithm given in Fig. 4. The
process articulated in the invoked algorithm traverses the
tree in bottom-up fashion using explicit stack [12]. During
the traversal, each leaf node passes its value to the parent.
The internal nodes after receiving the values from all of their
children collect these in the collection called the occurrence
vector. An occurrence vector is represented in our algorithm
as ‘occur_vect’. The tree in Fig. 2 after performing this step
is presented in Fig. 5, where each internal node has its own
occurrence vector. In fact, this vector shows the index posi-
tions in the original time series where this sequence or pat-
tern (starting from the root to the node in question) appear.



STNR: A suffix tree based noise resilient algorithm for periodicity detection in time series databases 271

Fig. 3 Suffix tree traversal
algorithm

SuffixTreeTraversal
1. Initialize rootOccurSt and rootOccurLength and stack ‘s’
2. With each children edge ‘e’ (edges having stn = 0 of the root edge

2.1. Sort children edges
2.2. e.pntVal = 0 // parent value
2.3. e.pntOccurSt = rootOccurSt
2.4. e.pnOccurLength = rootOccurLength
2.5. push e to stack ‘s’

3. while (stack is not empty)
3.1. e = s.pop()
3.2. if edge is already marked

3.2.1. if e does not originate from root AND e carries more than ‘w’% leaves
3.2.1.1. CalculatePeriod for e

3.2.2. if e.pntOccurSt is blank
3.2.2.1. e.pntOccurSt = e.occurSt
3.2.2.2. e.pntOccurLength = e.occurLength

3.2.3. else
3.2.3.1. Join&Sort(e.pntOccurSt, e.pntOccurLength, e.occurSt, e.occurLength)

3.3. else if edge has not been marked yet
3.3.1. if e leads to leaf e.val = N − (e.lci − e.fci) + 1 + e.pntVal

3.3.1.1 occur.add(e.val)
3.3.2. else e.val = e.lci − e.fci + 1 + e.pntVal

3.3.2.1. find and sort all children edges of e

3.3.2.2. With each child edge ‘ce’
ce.pntVal = e.val
ce.pntOccurSt = e.occurSt
ce.pnOccurLength = e.occurLength
s.push(ce)

3.3.3. mark ‘e’

Recall that there are a maximum of 2n nodes in the suffix
tree representing a string of length n and there are n leaf
nodes in the suffix trees; hence, the tree should have signifi-
cantly less than n such vectors. If there are x < n such vec-
tors, and yk represents the length of the occurrence vector k,
then yk < n, where 0 ≤ k ≤ (x − 1).

The second step is to calculate another vector from each
of these occurrence vectors, which we call the difference
vector (or ‘diff_vect’ in our algorithm). Let V be the occur-
rence vector of length m, V = v0, v1, . . . , vm−1. The differ-
ence vector D would always have the length (m − 1), and
would be D = v1 − v0, v2 − v1, . . . , vm−1 − vm−2, which is
calculated by simply taking the difference of the consecu-
tive values, and thus called the difference vector. Actually,
the difference vectors contain the candidate periods. Each
of these periods (with some exceptions mentioned later) is
checked and the corresponding periodic strength is calcu-
lated.

Consider the occurrence and difference vectors presented
in Table 1. For each candidate period, we calculate the pe-
riodicity strength or confidence τ(p, st) where p represents
the period value, st is the starting position of the periodic
sequence.

Let vj and sj represent the j th entry in the difference
and occurrence vectors of a pattern ptn, respectively, and i

be a positive integer. The algorithm checks each and every

Table 1 Occurrence and difference vectors for the sequence ab

Index occur_vect diff _vect

0 0 3

1 3 9

2 12 4

3 16 5

4 21 3

5 24 3

6 27 11

7 38 7

8 45 3

9 48

subsequent entry (sk) in the occurrence vector, starting from
sj , and increments count(p, st) by 1 if and only if:

sk = (sj + ivj ) ± t t;
0 ≤ (i × vj × max(occur_vect)), 0 ≤ t t ≤ vj ,

where t t represents the time tolerance threshold value. The
count(p, st) represents the frequency count of the occur-
rence of a sequence starting from st with a period value p.
If the length of the time series is n, then the periodicity
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Fig. 4 Periodicity detection
algorithm

CalculatePeriod: Edge e

1. if length of the pattern > half of series length then return
2. current = e.st; // initialize current with the starting node of the edge
3. for (i = 1; i < e.len; i++)

3.1. diffValue = current.next.value − current.value;
/*ignore this occurrence if period < length of pattern OR period > 33% of series length OR
period starting position > half of series length */

3.2. if (diffValue < e.value OR diffValue == 1 || diffValue > (0.33 × T .Length) OR
current.value > (0.5 × T .Length))

3.2.1. current = current.next;
3.2.2. continue;

3.3. Initialize p as candidate period
3.4. p.val = diffValue;

p.stops = current.value;
p.fci = p.stPos;
p.length = e.value;

3.5. if (p exists in PeriodCollection)
3.5.1 current = current.next;
3.5.2. continue;

3.6. p.foundPosCount = 0;
3.7. initialize A, B, C, sumPerVal = 0;

preSubCurValue = −5;
initialize currStPos = p.stops;
subCurrent = current;

3.8. for (j = i; j <= e.len; j++)
3.8.1. A = subCurrent.value − currStPos;
3.8.2. B = Round(A/p.val);
3.8.3. C = A − (p.val × B);
3.8.4. if (C >= (−1× tolWin) AND C <= tolWin)

3.8.4.1. if(Round(((preSubCurValue − currStPos)/p.periodValue)) NOT EQUALS B)
3.8.4.1.1. preSubCurValue = subCurrent.value;
3.8.4.1.2. currStPos = subCurrent.value;
3.8.4.1.3. p.foundPosCount++;
3.8.4.1.4. sumPerVal += (p.val + C);

3.8.5. subCurrent = subCurrent.next;
3.9. initialize y with zero;
3.10. if(((T .Length − 1 − p.stops)%p.val) >= e.value) then y = 1;

else y = 0;
3.11. p.conf = p.foundPosCount /Floor(((T .Length −1 − p.stops)/p.val) +y);
3.12. if (p.conf >= minConfidence)

3.12.1. p.avgVal = (sumPerVal −p.val)/(p.foundPosCount −1);
3.12.2. Add this period ‘p’ to period collection

3.13. current = current.next;

strength τ is calculated as:

τ(p, st) = count(p, st)

�n−st
p

+ y� ,

y =
{

1 iff ((n − st) mod p) > edges value,
0 otherwise.

The periodicity strength is the ratio between the fre-
quency of occurrences of a sequence and the maximum pos-
sible number of occurrences for the same sequence. For ex-
ample, for the sequence abcabbabc$, τ (3, 2, c) is 2

3 , as there
are 2 occurrences of c, while the maximum possible occur-
rences are 3.

3.3 Noise resilience

Most algorithms for periodicity detection do not perform
well in the presence of insertion and deletion noise. The rea-
son for this is the expansion or contraction of the time axis
of the data due to these types of noise.

Assume a time series T , without noise, looks like T =
abc abd abb aba, exhibiting the periodicity of 3 for the pat-
tern ab starting from position zero. Then, assume that due to
the insertion noise a value c is inserted at position 5. The dis-
torted time series would look like T ′ = abc abc dab bab a.

Now, if we apply a regular algorithm that compares the
time series after every three position for p = 3, it would lose
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Fig. 5 The suffix tree for the string abcabbabb$ with substring occurrences

the track after the noise. But, if we invoke our algorithm to
look for the occurrence of pattern within some time toler-
ance window (say ±1 in the considered case), it would still
be able to find the period 3 for the pattern ‘ab’, starting from
position zero.

As the insertion and deletion noise ratio is increased in
the data, the periodicity detection gets more and more chal-
lenging, making it tougher for the algorithm to find the em-
bedded periods in the series. The case of deletion noise is
more severe; here few values from the original series are
missed (or removed).

Consider the same original series T = abc abd abb aba,
and assume that we introduce the deletion noise of 1 char-
acter at position 4; then, the distorted series would look like,
T ′ = abc ada bba ba. Again, the traditional algorithms
would find it very difficult to detect that there is a period
3 for the pattern ab starting from position zero. But, if we
contract the time axis by 1 (having time tolerance window of
±1), we can find that there are 3 out of 4 occurrences of the
pattern ab with the period of 3 starting from position zero.
The situation becomes worse as the noise ratio is increased.

Our algorithm works by first setting the ‘anchor’ at the
expected position (determined by p.val × B in step 3.8.3.
of the periodicity detection algorithm presented in Fig. 4).
Then, the algorithm determines whether the occurrence lies
within the time tolerance window of the expected position. If
so, the occurrence is counted as valid and frequency count is
increased. For example, we get the occurrence vector which
looks as follows: (2, 5, 8, 18).

Assume we are calculating period 3 starting at position
2 with time tolerance of ±1. Since we keep on updating the
currStPos with the last valid position found (based on the as-
sumption that the time axis expansion/contraction can start
at any position), assume that we have checked until occur-
rence value 8 and we are then checking 18. For this, A =
18 − 8 = 10, B = Round( 10

3 ) = 3, C = 10 − (3 × 3) = 1.
Since C = 1 is within the time tolerance window of ±1, it
would be counted as a valid occurrence.

It is important to keep on updating the currStPos with
the last valid occurrence found, as otherwise the algorithm
may still lose track; consider the series T = abcd abcd

abcd abcd , and assume that after deletion noise it becomes
T ′ = abcd abca bcab cd , it is very clear that for the pattern
abc with p = 4, time tolerance window of ±1, the algorithm
can’t find the last occurrence if the anchor is set statically at
the first position. This is because the occurrence vector for
abc is (0, 4, 7, 10), and with static anchor at first occurrence
0, the expected positions are (0, 4, 8, 12). The occurrence
7 would be caught as it lies within time tolerance window
of ±1, but it can not find the occurrence 10. For this, we
have implemented the algorithm with the dynamic anchor
that moves with each valid occurrence. Hence, in this case,
the anchor would move from 0 to 4, 4 to 7, and 7 to 10. When
we consider occurrence 10 with anchor at 7, it lies within the
time tolerance window (7 + 4 = 11, 11 − 1 = 10). Another
important point is to consider the fact that there might be
a case where we have more than one occurrence within the
time tolerance window.
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Suppose the occurrence vector is (2, 7, 12, 17, 18, 22).
If the time tolerance (tolWin) is ±1, p = 5, stops = 2, then
both 17 and 18 are within tolWin of the expected position 17
when the anchor is at position 12. To avoid this, we have
step 3.8.4.1. in the algorithm presented in Fig. 4. Finally, be-
cause of the moving anchor, we cannot set the period value
with the first difference as we used to do in our previous
algorithm [15], because there is a possibility that the first
difference is due to some noise in the data. Consider the oc-
currence vector (2, 8, 13, 18, 23, 28), where the first dif-
ference is 6 = (8 − 2), while as the series progresses the
regular difference is mostly 5. Hence, we calculate the aver-
age difference of valid occurrences and set it as the average
period value. Experiments have shown that not considering
this step results in misleading periods in the results.

3.4 Redundant period pruning

We do not calculate the periodicity for all the periods, rather
the algorithm detects and avoid the redundant period, thus
significantly improves the period calculation space. The pe-
riod pruning approaches that our algorithm uses are ex-
plained in our previous work called STB and presented
in [15].

4 Experimental analysis

We performed various experiments to analyze the behav-
ior of the algorithm in the presence of noise. Experiments
are performed with replacement, insertion, deletion and a
mixture of these types of noise in the data. We compared
our algorithm with four existing algorithms: WArping foR
Periodicity detection WARP [13], Convolution based algo-
rithm CONV [2], Adaptive handSome Off-stream Mining
AWSOM [14] and our previous algorithm STB [15]. The
obtained results show that the algorithm proposed in this pa-
per performs quite well compared with the other algorithms.

4.1 Accuracy

In order to test the accuracy, we test the algorithm for var-
ious period sizes, distributions (uniform and normal), and

time series length. The algorithm was able to detect the pe-
riodicity in the data with 100% confidence. This is similar
to our previous algorithm STB [15], and the other popular
algorithms described in the literature.

4.2 Real data analysis

For real data experiments, we used the Walmart data (de-
noted WALMART) which contains the record of hourly num-
ber of transactions performed at a Walmart store. The data
contains the record of around 15 months of data with the ex-
pected period value of 24; the number of transactions are
discretized into five levels; very low (0 transaction), low
(less than 200 transactions), medium (between 200 to 400
transactions), high (between 400 to 600 transactions) and
very high (between 600 to 800 transactions) mapped, re-
spectively, to symbols a, b, c, d and e.

The Walmart data is plotted in Fig. 6 (reproduced
from [2]). This is the same dataset used in [2]. We run our
algorithm with periodicity threshold values ranging from 0.8
to 0.4 and observed: (1) the number of periods captured by
the algorithm, (2) the dominating period, (3) the periodic
pattern of the dominating period, (4) the number of index
values filled by the symbols, and (5) the number of don’t
care values represented by *. The results are presented in
Table 2.

As expected, the proposed algorithm finds more periods
at the lower periodicity threshold. The expected period 24
is captured immediately even at the periodicity threshold

Fig. 6 Hourly number of transactions in a Walmart store [2]

Table 2 Periodicity detection algorithm output for Walmart data

Periodicity threshold No. of periods Dominating period Sequence No. of index filled No. of ‘*’ (don’t care)

0.8 4 24 (1/4) AAA*******************AA 5 19

0.7 8 24 (4/8) AAA***BBBC************AA 9 15

0.6 11 24 (5/11) AAAA*BBBBC************AA 11 13

0.5 18 24 (8/18) AAAABBBBBC********DD**AA 14 10

0.4 27 24 (12/27) AAAABBBBBCCDD*****DDCAAA 19 5
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Table 3 Covolution based
algorithm [2] output for
Walmart data

Periodicity threshold No. of periods No. of periods No. of patterns

(segment periodicity) (symbol periodicity) (period = 24)

0.8 4 2328 6

0.7 101 2460 7

0.6 532 2728 10

0.5 1054 3164 13

Table 4 Raw output of the algorithm run on 15 months Walmart data

Series Length: 10992

Periodicity Threshold: 0.6

Period StPos StPos (Mod) Threshold SymbolString

24 7 7 0.64 BB

24 32 8 0.62 BC

24 142 22 0.74 AAAAAA

24 1895 23 0.7 AAAAA

24 2333 5 0.63 BBB

168 222 54 0.6 BBBCC

168 5491 115 0.73 DB

336 4450 82 0.6 DDDDDDDDD

3022 5393 2371 1 CCCC

3023 5392 2369 1 CCCCC

3186 5391 2205 1 CCCCCC

Number of Periods: 11

Period Count

24 5

168 2

336 1

3022 1

3023 1

3186 1

of 0.8. The periodic pattern keeps on materializing as the
periodicity threshold is lowered. One important observation
from the above results is that the algorithm never filled the
middle index positions in the sequence. The reason may be
inferred from the data plot in Fig. 6. The peak hours are ob-
viously not periodic on daily basis, rather they are periodic
mostly weekly, which is captured in our results at the period
of 168 (24×7); it is the second most dominating period, and
it usually fills the middle index positions. Another important
observation is that our algorithm results in very few yet ac-
curate, meaningful, useful and non-redundant periods. For
the same data, the algorithms in [2, 13] produce hundreds of
periods, most of which are redundant. Table 3 presents the
number of periods detected by convolution based segment
and symbol periodicity detection algorithm [2] and number

Fig. 7 Resilience to noise of the suffix tree based noise resilient algo-
rithm

of unique patterns of period 24 which is similar to the num-
ber of index filled in Table 2.

As reported in Table 2, the algorithm can be used to
capture the periodic trends in the data. For example, in
case of Walmart data, it shows that the initial and the clos-
ing hours generally have the least number of transactions.
The number of transactions increases as the day progresses,
which is also evident in Fig. 6, which demonstrates that the
data follows the normal distribution. As presented in the
results of Tables 2 and 3, our algorithm produces signif-
icantly lesser number of periods without missing out any
non-redundant period. This is because our algorithm does
not calculate redundant periods, e.g., those which are mul-
tiple of an existing periods or which represent the pattern
whose super-pattern has already been found periodic with
same period value. Since algorithms like [2, 13] do not
check redundant periods during the algorithm, they must
be checked after the main algorithm has finished. Finally
the Table 4 presents how the raw output of the algorithm
looks.

4.3 Noise resilience

For our experiments, we used a synthetic time series of
length 10,000 containing 4 symbols with the embedded pe-
riod size of 10. Symbols are uniformly distributed and the
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Fig. 8 Resilience to noise of STNR compared with WARP, CONV, AWSOM, STB

time series is generated in the same way as done in [2].
We introduced 7 combinations of replacement, insertion and
deletion noise and gradually increased the noise ratio from
0.0 to 0.5, and note the confidence (periodic strength) at
which the actual period of 10 is detected. The time tolerance
window for all the experiments is ±2. Figure 7 presents the
result of this experiment.

For most of the combinations of noise, the algorithm
detects the period at the confidence higher than 0.5. The
worst results are found with the deletion noise, which is
quite understandable; actually, the deletion noise not only
disturbs the actual periodicity, but also affects the pat-
terns in the data by removing some of the symbols at ran-
dom.
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In the next set of experiments, we compared the re-
silience to noise of our STNR algorithm with the other al-
gorithms based on each of the 5 combinations of noise,
i.e., replacement, insertion, deletion, insertion-deletion, and
replacement-insertion-deletion. The results of this set of ex-
periments are presented in Fig. 8.

The results plotted in Fig. 8 demonstrate the consistent
superiority of our algorithm over most of the other algo-
rithms described in the literature. Further, our algorithm
compares favorably with WARP; it even performs better
than WARP for certain noise ratios. This turns our algorithm
into a more attractive choice because it is capable of detect-
ing different types of periodicity.

5 Conclusion and future work

In this paper, we have presented a novel algorithm that uses
suffix tree as the underlying structure and also employs the
concept of time tolerance window for noise resilience. Our
single algorithm can detect symbol, sequence (partial) and
segment (full-cycle) periodicity as well as present the pat-
terns that are periodic. The algorithm reports only the sig-
nificant periods by ignoring the redundant and repeating pe-
riods. It is important to note that if there is a periodic pattern
in the data, which satisfies our definition of periodicity, the
algorithm would find it which means that during the period
pruning, no useful period is ignored. Another important as-
pect of the algorithm is that it detects the redundant period
ahead of time; before calculating its strength which saves
a significant amount of time and is contrary to other ap-
proaches where the redundant periods are pruned after the
main algorithm completion. We tested the algorithm on both
real and synthetic data in order to test its accuracy, effective-
ness of reported results, and the noise resilience characteris-
tics. The algorithm uses the concept of timetolerancewindow
where an occurrence found within a specified tolerance win-
dow is counted valid during periodicity detection. The algo-
rithm can accommodate various combinations of noise and
report the periods with acceptable degree of confidence. It
performs well in comparison with existing algorithms. Be-
sides higher noise ratio (>= 0.5), STNR performs better
than existing approaches.

As future work, we plan to extend our work to con-
sider the online periodicity detection in continuous stream
of data. Moreover, we want to adapt the algorithm to detect
the periodicity within subsequences of the time series as pre-
sented in [16]. Although the Ukonen’s suffix tree construc-
tion algorithm has been proved to perform in linear order
of space and time [3, 5], an online periodicity detection al-
gorithm using disk-based suffix tree is our next goal. There
are disk based implementations of the suffix tree construc-
tion [19, 20], which might be used to devise an online al-
gorithm that can detect periodicity in very large time series
database.
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