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Abstract The work presented here is about employing a
theory of updates to study geometrically observable changes
that occur in spatial information about image sequences of a
dynamic scene. The logical framework consists of a formal-
ism for specifying the geometrical content of a scene, as well
as the changes that occur in this geometry, and an algorithm
for constructing a description for such changes from logical
deductions. In this approach, a database state represents the
available sensor data at a particular time instant. Transitions
in sensor data are modeled by changes in the database and
interpreted based on axioms encoding commonsense spatial
reasoning. The main contribution of this work is that it pro-
vides the theoretical foundations for symbolically interpret-
ing long sequences of sensor data transitions. For testing the
framework and its implementation, the problem of interpret-
ing rotational movements of objects in a sequence of images
was used. Our experiments show that the system correctly
interprets rotational movements for objects of different col-
ors and provides satisfactory results for interpreting such
movements from perceptually indistinguishable objects.

M.V. dos Santos (�)
Ryerson University, 350 Victoria Street, Toronto, Ontario M5B
2K3, Canada
e-mail: m3santos@ryerson.ca

R.C. de Brito · P. Santos
Centro Universitario da FEI, Sao Paulo, Brazil

R.C. de Brito
e-mail: rod.coura@uol.com.br

P. Santos
e-mail: psantos@fei.edu.br

H.-H. Park
Chung-Ang University, Seoul, South Korea
e-mail: hohyun@cau.ac.kr

Keywords Logic · Knowledge representation · Qualitative
spatial reasoning · Machine vision · Reasoning about
actions and change

1 Introduction

Although people are able to interpret image sequences of
a dynamic scene effortlessly, this is still a challenging task
for artificial vision systems. One reason is that low-level vi-
sion tasks, such as segmentation, object recognition, catego-
rization, and 3D analysis are still performed unsatisfactorily.
The other reason is that we do not have high-level knowl-
edge structures and reasoning mechanisms for enabling far-
reaching interpretations, i.e., interpretations that may in-
clude propositions about parts of a scene not yet seen. In
this paper we focus on the task of extending a computer’s
“understanding” of a scene beyond single-object recogni-
tion. Our problem is then to provide a logical account which
allows for the interpretation of low level predicates denot-
ing visual information about image sequences of a dynamic
scene (scene for short) in terms of high level predicates rep-
resenting commonsense concepts about space.

Our approach is inspired by some standard techniques
from the fields of qualitative spatial reasoning, logic-based
image understanding, and image sequence interpretation. In
the following, we provide an overview of the basic literature
of each of these fields.

1.1 Qualitative spatial reasoning (QSR)

Qualitative spatial reasoning (QSR) aims at the logical for-
malization of space from elementary entities such as regions
[1], line segments [2, 3], directions [4, 5] amongst others [6,
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7]. The purpose of this field is to provide clear represen-
tations and efficient automated reasoning methods for han-
dling commonsense knowledge about space.

The approach to the representation of space and sensor
transitions presented in this paper has been inspired by the
QSR theory called region connection calculus (RCC), and
also by its extension: the region occlusion calculus (ROC).
RCC [1, 8, 9] is a many-sorted first-order axiomatization
of spatial relations based on a (reflexive and symmetric)
dyadic primitive relation of connectivity (C/2) between two
regions. Informally, assuming two regions x and y, the re-
lation C(x, y) (read as “x is connected with y”) is true if
and only if the closures of x and y have a point in com-
mon. From C/2 other basic relations can be defined, such
as relations representing when two objects are disconnected,
equal, partially overlapping each other, externally connected
to each other, and relations for different kinds of tangential
overlaps.

RCC has been applied in a variety of domains [10–15].
A rigorous analysis of the computation complexity (includ-
ing a description of tractable subclasses) of RCC is pre-
sented in [16].

Due to its versatility in representing various niches of
spatial knowledge, allied to its emphasis on spatial regions,
RCC provides some useful insights on expressing high-level
knowledge about image sequences, since objects are picked
out as spatial regions in images and are usually engaged
in complex spatial arrangements. As we shall see later in
this paper, the basic part of the spatial reasoning theory
developed in this paper assumes three RCC-style relations
based on simple measurements executed on snapshots of the
world.

The RCC, however, is independent of any observer’s
viewpoint. In contrast, the lines-of-sight calculus [17] takes
the observer into account in order to define object interposi-
tion. Likewise, the Region Occlusion Calculus (ROC) [18]
uses RCC to represent object occlusion. However, occlusion
in ROC is a static concept, defined on a fine-grain level of
description, which makes it hard to be applied on noisy vi-
sion data. In contrast the present paper follows the dynami-
cal definition of interposition, defined in terms of qualitative
changes in the sensor data as proposed in [19].

A solid theoretical and a deep philosophical investiga-
tion of qualitative spatial change is described in [20, 21],
whereby a theory of movement is proposed that combines
a theory of time, a theory of space, a theory of objects
and a theory of position. A key point in that work is the
construction of spatial theories from the concept of domi-
nance, whereby the extreme points of subsequent time inter-
vals where fluents hold obey a priority criteria. That frame-
work also allows for the combination of sequences of spatial
events to define movements and their occurrence conditions.
The implications of assuming a theory of dominance in the

framework described in the present paper is an interesting
issue for future investigations.

The problem of characterizing complex object behavior
in space-time has also been tackled by research on spa-
tiotemporal databases [22, 23]. In [22], Erwig and Schnei-
der define spatiotemporal predicates from a combination of
pointset topology and temporal logic in order to cope with
the integration of various kinds of data-sets into spatial data-
bases. They propose a set of canonical spatiotemporal pred-
icates that are lifted from purely spatial predicates using a
temporal function. These canonical predicates are combined
in order to build more complex structures (called develop-
ments). In [23] Erwig proposes a set of control structures
(combinators in his terminology) to rule the construction of
patterns of spatiotemporal predicates.

In a similar way, the work reported in this paper uses
the spatiotemporal predicates proposed in [24] to build more
complex patterns in order to describe sequences of images.
The procedure for constructing these patterns is ruled by a
general logic for state change (described in Sect. 3).

1.2 Logic-based image understanding

A rigorous logical account of image depiction was first pro-
posed by Reiter and Mackworth [25]. Their approach is
based on three sets of axioms that constrain the image in-
terpretation process. Therefore, image interpretation is exe-
cuted as a constraint satisfaction procedure.

The SIGMA system [26] uses the ideas set forth on the
Reiter-Mackworth approach to, allied with an hypothesis-
based reasoning [27], generate abductive explanations for
aerial images. Some of the properties of the language un-
derlying this system were explored in [28], which has been
recently revisited in [29].

However, the origins of our work lies on the logic-
based sensor data interpretation framework proposed in
[30], where an attempt is made to supply a logical account
of the transition from a robot’s raw sensor data to symbols
denoting the existence, location and shapes of objects. This
earlier work, however, assumes the interpretation of static
scenes described in an absolute frame of reference. On the
other hand, the work presented in [19, 24, 31] assumes that
the changes in a dynamic world, represented from the view-
point of an observer, form the central element for sensor
data interpretation. These approaches, however, fall short of
interpreting sequences which include more than two snap-
shots. A solution to this issue is proposed in the present pa-
per.

Following similar precepts, [32] presents a system for
assimilating scenes using spatiotemporal histories (i.e., re-
gions of space-time representing the temporal development
of topological relations amongst objects). This model is
based on earlier approaches for automatically building event
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models from visual input [33]. Also based on histories, the
work proposed in [34] evaluates multiple possibilities of his-
tories for explaining a given video sequence, electing (by a
voting criteria) the most consistent one as the interpretation
of the sequence.

In contrast to space-time regions representing the tem-
poral evolution of the scene via histories, the present pa-
per employs a logic of action and state change whose path-
semantics elicits the changes that occur in spatial objects
in a dynamic scene. Explicit use of logic semantics is usu-
ally missing from the research on image sequence evalua-
tion, whose literature we overview below.

1.3 Image sequence evaluation

Systems for interpreting image sequences by high-level con-
cepts date back to the late seventies [35]. Since then, a large
number of approaches have been proposed. Some classical
examples are: the ALVEN system [36, 37] for the abstrac-
tion of motion concepts from sequences of images from the
human heart; and the VITRA system [38, 39] whose purpose
is to link image sequence evaluation and natural language
processing. Understanding sequences of traffic scenes based
on optical flow has been investigated by [40–42] and [43].
Other related approaches are surveyed in [44] and [45].

In particular, [46] proposes a solution to tracking vehi-
cles under occlusion from a static viewpoint which has many
characteristics in common with our solution for object in-
terposition. In that paper, the authors propose that, in order
to track vehicles under interposition, contextual knowledge
about occlusion is needed. A set of occlusion predicates is
introduced, along with transition predicates constituting this
contextual knowledge. A scene where there is occlusion be-
tween two vehicles is thus interpreted by comparing its tem-
poral development to a transition diagram representing the
possible changes in situations involving interposition.

Some other approaches for image understanding are char-
acterized by the use of physical features of the observed
scenes. One such system was proposed in [47], whose pur-
pose was to recover the causal structure of scene elements,
i.e., how they interact and respond to forces. Physical causal-
ity is obtained by analyzing the connectivity and free space
between scene elements. Most of this research has been ap-
plied to the explanation of complex machines [47, 48] and
to the problem of understanding images of object manipula-
tion [49].

Closer to the framework developed in this paper, [50–52]
propose a system for describing visually observed motion
events from sequences of video images. Their scene inter-
pretation process is based on notions of support, contact and
attachment between scene objects; the system uses these no-
tions to segment sequences of snapshots of the world into
distinct events, such as dropping, throwing, picking up, and

putting down. Four naive physical constraints, inspired by
[53], are assumed in the interpretation process: the sub-
stantiality constraint, which states that objects cannot pass
through each other, the continuity constraint stating that any
change in the location of an object is due to a continuous
motion, the gravity constraint that states that unsupported
objects fall, and the ground plane constraint which states
that the ground supports every object.

Similarly, the present work explicitly assumes the sub-
stantiality and the continuity constraints, as well as a similar
use of motion verbs. In contrast to our framework, the sys-
tem proposed in [50] assumes that scene objects are always
visible, change in their size does not occur, and they never
appear or disappear from the scene. Some of these restric-
tions are relaxed in the present research.

A framework for understanding dynamic scenes based on
conceptual spaces [54] is proposed in [55]. That approach
assumes the task of sensor interpretation in terms of three
processes: on one level, a sub-conceptual area concerned
with processing data from the sensors generates a descrip-
tion of the observed dynamic scene that is further input into
the conceptual level, whose task is to generate a high-level
description of the scene. This high-level description adopts
the logic-based language proposed in [56], whose defini-
tions constitute the third module in the system: the linguistic
area. The framework developed in the present work resem-
bles the formalism constituting this linguistic area. The sys-
tem described in [55], however, assumes that the observer
is static and that the objects in the environment are never
occluded. The latter constraint is relaxed here.

1.4 This work in outline

In this work we employ a theory of updates to study changes
that occurred in the spatial information contained in image
sequences of a dynamic scene (scene, for short). A scene
is then a chronological sequence of snapshots of the envi-
ronment taken by a static camera. Changes that occurred in
the environment are represented by differences between im-
age regions in consecutive camera snapshots. In practice, a
database state represents the available sensor data at a par-
ticular time instant. Transitions in sensor data are modeled
by changes in the database and interpreted based on axioms
encoding commonsense spatial reasoning.

To decrease the complexity of the spatial representation,
thus eliciting the state changes underlying the reasoning
process, the logical framework presented here includes a
minimal spatial theory. Specifically, the logical framework
consists of a formalism for specifying the geometrical con-
tent of a scene described by two functions: one that gives
the distance between two images of objects and another
that gives the area of each object image, and an algorithm
for constructing a logic expression describing changes that
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occurred in the scene. The main contribution of our ap-
proach, therefore, is that it provides the theoretical founda-
tions for symbolically interpreting long sequences of sensor
data transitions as database state transitions. Therefore, this
work focuses on employing a theory of state change to inter-
pret geometrically observable changes occurring in dynamic
scenes. As such, distance information in this paper repre-
sents simply a case study of a broader work. In fact, every-
thing developed in this paper could be extended in ways first
hinted in [19]. Therefore, starting from a simplified spatial
theory allows us to make explicit the update structure under-
lying the reasoning process.

The rest of this paper is organized as follows. We first
motivate our work providing in Sect. 2 an example of the
class of problems we aim to address. Then we present in
Sect. 3 our research methods. There we propose a formal-
ism, called T -logic, to account for the interpretation of ob-
servable changes occurring in dynamic scenes. T -logic is
an instance of the Transaction Logic (T R) [57, 58], a gen-
eral logic of state change that accounts for the phenomenon
of updating arbitrary logical theories. We also introduce an
inference system which allows us to verify if a given for-
mula is true in a given scene. Later in Sect. 3.3, we provide
details about the implementation of this framework; the ex-
periments we have performed to test our implementation are
shown in Sect. 3.4. We present the results of our experiments
in Sect. 4, and finally discuss the contributions of this paper
in Sect. 5.

2 Motivating example: interpreting sequences of
snapshots

To illustrate the classes of problems this paper addresses,
Fig. 1 depicts a sequence of snapshots taken by a camera
from an egocentric viewpoint.

Such image sequence can be interpreted as follows: as-
sume that symbols p and q represent the spatial regions of
the cylindrical objects depicted in Fig. 1. Thus, the transition
from D1 to D2 (in Fig. 1) can be interpreted as “the spatial
regions p and q are approaching each other”. Similarly, the
transition from D2 to D3 can be informally interpreted as
“the spatial region q is merging into the spatial region p”,
from D3 to D4 as “the spatial region q is emerging from
spatial region p ”, from D4 to D5 as “p and q are reced-
ing from each other” and from D5 to D6 as “p and q are
approaching each other”. Interpreting such pairs of transi-
tions was the purpose of the work described in [19, 24]. In
a broader sense, however, the transitions from D1 to D6
should be interpreted as “the objects represented by p and q

are rotating around each other”.
Dynamic scenes may include objects that perform intrin-

sic movements, and objects that perform extrinsic move-
ments. The former relates to movements that are perceived

Fig. 1 A chronological sequence of snapshots

by the observer as changes of individual images of a sin-
gle object in one snapshot with respect to its image in pre-
vious snapshots in the sequence. The latter regards move-
ments that are perceived as changes in an object’s position
with respect to another (or others). In this work, we focus
on extrinsic object movement. For example, when attempt-
ing to interpret a dynamic scene, such as the one depicted
in Fig. 1, it is more important for us to be able to determine
that object q and p are rotating around each other, than to
find out that p, q , or both are performing rotations around
their center of gravity.

To facilitate the treatment of extrinsic object motion, and
to reduce the inherent complexity of dealing with object’s
shapes, this work assumes the environment is populated only
by cylindrical objects. In fact, approximating object’s shapes
to cylinders is a traditional assumption in Computer Vision
[59–61]. The high-level interpretation of the motion of ar-
bitrary shaped objects depends on the assumption of mod-
els of shapes, which is one of the most elusive problems in
qualitative spatial reasoning [6]. The investigation of rea-
soning about the dynamics of complex spatial objects (such
as strings, holes and elongated objects) is the subject of our
current investigations [62, 63].
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3 Methods

In the context of qualitative spatial reasoning [7, 64], it has
become apparent that a qualitative theory about observer-
relative motion of objects in a dynamic environment is an
essential part of an image interpretation system. In the re-
search reported in this article we intend to show that a theory
of updates (i.e., actions and state change) provides a suitable
logic foundation for the interpretation of geometrically ob-
servable changes in dynamic scenes.

The following materials were developed in this study:

1. a logical formalism, called T -logic, for specifying
changes in image sequences;

2. an algorithm that employs logical deductions for infer-
ring changes that occurred in image sequences; and

3. a computer vision prototype system which uses items 1
and 2 above as foundations for interpreting scenes.

3.1 T -logic

In this work we develop T -logic, a specialized theory that
provides a logical account for specifying, proving, and rea-
soning about object spatial relations of a scene (i.e., a se-
quence of images). T -logic is a dialect of the general lan-
guage of Transaction Logic (T R) [57] and was specifically
designed to provide support for scene interpretation. In this
section we introduce the basic concepts underlying T -logic.

3.1.1 Syntax

We assume a many-sorted first-order language with sorts for
spatial regions, physical objects and real numbers. The syn-
tax includes also two infinite, enumerable sets of symbols: a
set of function symbols and a set of predicate symbols. Con-
stants, propositions, and terms are defined as usual in first-
order logic. We adopt the Prolog convention that variables
begin in upper-case, and predicate symbols (and constants)
in lower-case roman letters. Atomic formulas are also called
atoms. The logic extends first-order logic with a new con-
nective, ⊗, called serial conjunction; given two first order
formulas a and b, a ⊗ b means: “a occurs before b”. In this
paper we use the function term i(X) that maps a physical
body in the world to its spatial region in the camera snap-
shot.

Like classical logic, the underlying language has a Horn-
like fragment (called serial-Horn [57]) with both a proce-
dural and a declarative semantics. Serial-Horn rules, or rules
for short, are formulas of the form p ← a1 ⊗ a2 ⊗ · · · ⊗ an,
where each ai is an atomic formula. A finite set of rules is
a rulebase. A formula of the kind ai ⊗ · · · ⊗ an is called a
serial goal. The rule above may be read as “to compute p,
it is sufficient to compute a1 ⊗ a2 ⊗ · · · ⊗ an”. Later in this
section we show examples on how to use rules to specify
commonsense concepts about the movement of objects in
space.

3.1.2 Semantics

In this work, formulas are interpreted on paths (i.e., se-
quences of states), as in Process Logic [65]. A state is a set
of spatial regions as noted by visual sensors in a particular
time instant. To refer to states, we assume a countable col-
lection D of symbols, called state identifiers, whereby each
identifier in a collection is denoted by the symbol Di (for
a natural number i). A path represents a history of elemen-
tary changes on the world, and formulas represent what is
true during periods of history. Classical connectives have
their usual interpretations, except that they are interpreted on
paths. For instance, α ∧ β means that α and β are both true
on a path. The non-classical connectives allow a formula to
relate to parts of a path. For instance, α ⊗ β means that a
given path can be split in two, where α is true on the prefix
of the path and β is true on the suffix. Hence, it is convenient
to define a split of a path π to be any pair of sub-paths, π1

and π2, such that π1 = 〈D1 · · ·Di〉 and π2 = 〈Di+1 · · ·Dn〉,
where Di ,1 ≤ i ≤ n. In this case we shall write π = π1 ◦π2.
Moreover, we shall use the notation state to denote a con-
stant that is true on any state, i.e., on any path of length 1.
Hence, k⊗state≡ state⊗ · · · ⊗ state

︸ ︷︷ ︸

k

denotes a for-

mula which is true on any path of length k. In Sect. 3.2.2,
we shall use this particular kind of formula when interpret-
ing dynamic scenes.

Next we present some examples illustrating the underly-
ing syntax of the language.

Example 1 (Simple formulas) Assume X and Y are two dis-
tinct variables ranging over spatial regions, and p, q and
w are three spatial regions of distinct objects detected at a
given instant in the sensor data (i.e., p, q and w are images
of objects). Based on these assumptions, we show in Table 1
some simple formulas representing commonsense concepts
about space.

Example 2 (Rules) In the context of this paper, rules rep-
resent scene scripts, i.e., descriptions for events involving
composite movements of objects (or images of objects).1

For instance, for two given objects o1 and o2, we can write
that o1 is passing by o2 (from left to right) if the image of o1

is initially approaching the image of o2, then it occludes the
image of o2 on the left, then it emerges on the right of the
image of o2, and finally recedes from the image of o2. For-
mally, this case is represented by instantiating the following

1Henceforth, we shall use the term scene script when referring to this
kind of formula.
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Table 1 Simple formulas
denoting commonsense
concepts about space

approaching(p, q) “p is approaching q”

static(p, q) “p and q are static”

approaching(p, q)∨ approaching(p,w) “p is approaching q or w”

(∃ X) approaching(X,b) “some X is approaching b”

¬(∃ XY) static(X,Y ) “no object image is static”

approaching(p, q)⊗ static(p, q) “p is approaching q and then they are static”

formulae (for unifications O1/o1 and O2/o2):

passingBy(O1,O2)

← approaching(i(O1), i(O2)) ⊗ mergeL(i(O1), i(O2))

⊗ emergeR(i(O1), i(O2)) ⊗ receding(i(O1), i(O2)).

(1)

3.1.3 Primitive state operations

The general logic of T R [57] does not commit to a partic-
ular semantics of database state. One can think of T R as a
logical framework, which can be instantiated as distinct spe-
cific logics in many ways. In T R, a pair of oracles, called
state and transition oracles, isolates elementary database
operations from the logic used for combining, programming,
and reasoning with them. The state oracle specifies a set of
primitive state queries, i.e., the static semantics of states; and
the transition oracle specifies a set of primitive state transi-
tions, i.e., the dynamic semantics of states. In our approach,
we specialize these oracles to provide us basic operations
for interpreting visual sensor data. More specifically, here
the state oracle encodes definitions used to translate visual
sensor data into logic predicates describing spatial relations
amongst objects. The state transition oracle encodes defini-
tions used to translate transitions in sensor data into predi-
cates describing higher-level commonsense concepts about
space.

For the purposes of this work, in order to formalize the
concepts of state data and state transition oracles we intro-
duce the following functions. Function dist/3 defines the
length of the shortest line separating any two distinct bound-
aries of object images in a state. Thus, dist(x, y,D) means
“the distance between regions x and y in state D”. Function
area(x,D) defines the area of an object image, discharging
noisy regions (whose area is less than a given area threshold)
and background region (whose area is greater than another
given threshold). Thus, area(x,D) means “the area of object
x in D”, as described in Sect. 3.3. Future work shall tackle
the task of defining these functions in terms of qualitative
distances [66, 67] in order to avoid rounding errors, keeping
the theory on the knowledge level [68]. Function tlc(x,D)

defines the coordinates of the leftmost top pixel of the im-
age. Thus, tlc(x,D) means “the coordinates of the top-left
corner of the image of object x in D”.

As we shall see in Definition 1, function area/2 helps us
identify the relation ar(x), “area of an object image”; and
function tlc(x,D) helps us identify the relation left(x, y),
meaning “x is to the left of y”.

Similarly, function dist/3 helps us identify three dyadic
relations on images of objects: disC(x, y), meaning “x is
disconnected from y”; extC(x, y), meaning “x is externally
connected to y”; and co(x, y), meaning “x is coalescent
with y”, as first defined in [24]. The relations extC, disC,
and co form a jointly exhaustive, pairwise disjoint set of re-
lations about distance, conform proved in [19].

The relations extC, disC, and co follow the example of
RCC relations [1], however, the former are used to bridge
the gap between sensor data and qualitative representation
and reasoning, while the latter constitute an ontology about
space assuming connectivity as the sole primitive. There-
fore, it is worth pointing out that the relation coalescent
is not equivalent to its RCC counterparts (such as equal-
ity, partial overlap and tangential), since coalescing repre-
sents a state whereby two regions cannot be distinguished
(for instance, two image blobs of objects under occlusion),
whereas the RCC relations assume that the regions can al-
ways be individualized.

Definition 1 (State oracle) Let δ, γ , and ω be a pre-defined
distance, minimal and maximal area values, respectively. Let
also dist and area be functions, dist : S ×S ×D → , area :
S × D → , where S is the set of object images, D is the
set of state identifiers, and  is the set of real numbers. For
any pair of spatial regions x and y in a state D, the state data
oracle, Od , defines a mapping from x and y to one (and only
one) relation disC, extC or co, and to some relations ar and
left as follows:

disC(x, y) ∈ Od(D) ↔ dist(x, y,D) > δ,

extC(x, y) ∈ Od(D)

↔ dist(x, y,D) ≤ δ ∧ dist(x, y,D) �= 0,

co(x, y) ∈ Od(D) ↔ dist(x, y,D) = 0,

ar(x) ∈ Od(D) ↔ γ < area(x,D) < ω,

left(x, y) ∈ Od(D) ↔ tlc(x,D) < tlc(y,D).

The diagram in Fig. 2 depicts a conceptual neighbor-
hood diagram (CND) [69] for relations disC, extC and co,
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Fig. 2 Conceptual Neighborhood Diagram for the relations disC, extC
and co

whereby arrows represent continuous transitions between
these relations. The concept of continuous transitions, in
this context, means that given two edge-connected relations,
holding on spatial regions, there is no other possible relation
(amongst disC, extC and co) that characterize the state of
these regions.

Given a state identifier, the objective of this oracle is to
inform what relations hold for objects in that state. There-
fore, the state oracle provides a mapping from state identi-
fiers (i.e. snapshots of the world) to ground instances of the
relations presented in Definition 1.

It is worth pointing out that the reason for assuming dis-
tance as a primitive function is that the displacement be-
tween objects in the environment is a feature that can be
easily extracted from the visual sensor data. It is for this rea-
son, also, that the relations disC, extC and co (among the
various possible relations between spatial regions) have a
special status in this work.

Let us now consider elementary changes in the world. In
our approach, elementary transitions are ground predicates
denoting elementary perceptual changes in the world (as in-
troduced in [19]). Therefore, assuming that two spatial re-
gions x and y represent the images of two distinct objects,
we use the following predicates to denote elementary transi-
tions in spatial relations:

• approaching(x, y), meaning “x and y are approaching
each other”;

• receding(x, y), “x and y are receding from each other”;
• mergeR(x, y), “x is merging into the right of y”;
• mergeL(x, y), “x is merging into the left of y”;
• emergeR(x, y), “x is emerging to the right of y”;
• emergeL(x, y), “x is emerging to the left of y”;
• static(x, y), “x and y are static” (i.e. the distance separat-

ing them does not change in two subsequent states);
• approachobs(x), “x approaches the observer”;
• recedeobs(x), “x recedes from the observer”;
• static(x), “x is static.” (i.e. the area of x does not change

in two subsequent states).

Here, left/right relations are mirrored on the observer’s
left/right sides.

In this context, given two states, the purpose of the state
transition oracle is to inform what elementary transitions

in spatial relations explain the difference in sensor data be-
tween the states. Formally:

Definition 2 (State transition oracle) Let D1 and D2 be
states, and i(a) and i(b) be the images of objects a and b

respectively. Then,

approaching(i(a), i(b)) ∈ Ot (D1,D2)

↔ (disC(i(a), i(b)) ∈ Od(D1)

∨ extC(i(a), i(b)) ∈ Od(D1))

∧ co(i(a), i(b)) /∈ Od(D2)

∧ dist(i(a), i(b),D1) > dist(i(a), i(b),D2),

receding(i(a), i(b)) ∈ Ot (D1,D2)

↔ dist(i(a), i(b),D1) < dist(i(a), i(b),D2)

∧ (extC(i(a), i(b)) ∈ Od(D1)

∨ disC(i(a), i(b)) ∈ Od(D1)),

static(i(a), i(b)) ∈ Ot (D1,D2)

↔ dist(i(a), i(b),D1) = dist(i(a), i(b),D2),

mergeR(i(a), i(b)) ∈ Ot (D1,D2)

↔ (disC(i(a), i(b)) ∈ D1 ∨ extC(i(a), i(b)) ∈ D1)

∧ left(i(a), i(b)) ∈ D1 ∧ co(i(a), i(b)) ∈ D2,

mergeL(i(a), i(b)) ∈ Ot (D1,D2)

↔ (disC(i(a), i(b)) ∈ D1 ∨ extC(i(a), i(b)) ∈ D1)

∧ left(i(b), i(a)) ∈ D1 ∧ co(i(a), i(b)) ∈ D2,

emergeR(i(a), i(b)) ∈ Ot (D1,D2)

↔ co(i(a), i(b)) ∈ D1 ∧ (disC(i(a), i(b)) ∈ D2

∨ extC(i(a), i(b)) ∈ D2) ∧ left(i(b), i(a)) ∈ D2,

emergeL(i(a), i(b)) ∈ Ot (D1,D2)

↔ co(i(a), i(b)) ∈ D1 ∧ (disC(i(a), i(b)) ∈ D2

∨ extC(i(a), i(b)) ∈ D2) ∧ left(i(a), i(b)) ∈ D2,

approachobs(i(a)) ∈ Ot (D1,D2)

↔ ar(i(a)) ∈ Od(D1) ∧ ar(i(a)) ∈ Od(D2)

∧ area(i(a),D1) < area(i(a),D2),
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recedeobs(i(a)) ∈ Ot (D1,D2)

↔ ar(i(a)) ∈ Od(D1) ∧ ar(i(a)) ∈ Od(D2)

∧ area(i(a),D1) > area(i(a),D2),

static(i(a)) ∈ Ot (D1,D2)

↔ ar(i(a)) ∈ Od(D1) ∧ ar(i(a)) ∈ Od(D2)

∧ area(i(a),D1) = area(i(a),D2).

In this way, the state transition oracle provides a built-
in view to the transitions between spatial relations that have
occurred during two consecutive states.

In a general way, the state data and the state transition
oracles encode the axioms for sensor data assimilation pre-
sented in [19].

The relations presented in Definition 2 also form a con-
ceptual neighborhood diagram, such as that shown in Fig. 2
[19]. In this context, the predicates static are necessary to
guarantee the constraints of the dynamic qualitative simula-
tion [70], since there is always a possibility of a static state
happening between any transition from one relation to an-
other. More specifically, static/2 guarantees this restriction
for the binary predicates (representing transitions on dis-
tance) and static/1 for the unary predicates (that encode the
transitions on the object’s area).

It is worth noting that the axioms above hold only on im-
ages of objects. The mapping from predicates on images
to their relative relations on bodies is accomplished by a
second set of axioms that connect a disjunctive set of hy-
potheses on physical objects to explain a given state tran-
sition. The work presented in [19] describes this process in
detail for pairs of images, and not on arbitrary long image
sequences as we shall see further in this paper. However, an
example on the mapping from images to bodies is in order.
The axiom below (see (2)) is responsible for connecting hy-
potheses about physical objects and their relative images and
illustrates two important issues: the representation of occlu-
sion and the existence of multiple possible explanations.

{occluded(A,B) ∨ touching(A,B)}
← mergeR(i(A), i(B)) ∨ mergeL(i(A), i(B)). (2)

According to (2), the occlusion between two objects A

and B (occluded(A,B)) can be inferred from the case where
their respective images (i(A) and i(B)) are merging. How-
ever, this is not the only possibility related to merging im-
ages as the objects could also be touching each other. These
issues are discussed at length in [19], we shall now concen-
trate on the interpretation of long sequences of images.

Example 3 below shows that complex scripts describing
elaborate scenes can be specified in the formalism. In the
example, a set of Horn rules specifies a script for a scene in

Fig. 3 An object ‘C’ moving around and between objects ‘A’ and ‘B’

which an object moves between two other objects, perform-
ing semi rotations around each of the latter, developing an
∞-shaped pattern around them, as shown in Fig. 3.

Example 3 (An object rotating around and passing be-
tween two objects) An object c is moving in an “∞”-
shaped pattern around objects a and b if it initially rotates
clockwise around a, then moves away from a, approach-
ing b, then rotates counter-clockwise around b, as repre-
sented by the formulae below,2 where: drawing∞(C,A,B)

means “C is moving in an ∞-shaped pattern around A

and B”; rotationCW(A,B) means “A is rotating clock-
wise around B”; rotationCW(A,B) means “A is rotating
counter-clockwise around B”; passInFrontRL(A,B) means
“A is passing in front of B from right to left (of the ob-
server’s view point)”; passBehindLR(A,B) is analogous
to passInFrontRL; and, beginInFr(A,B), beginBhd(A,B),
endInFr(A,B), endBhd(A.B) represent transitions that oc-
cur at the beginning (end) of a “passing in front (behind)”
movement. They serve as constraints that must be satisfied
before (after) a mergeRL(LR) occurs.

drawing∞(C,A,B)

← rotationCW(C,A) ⊗ receding(i(C), i(A))

⊗ approaching(i(C), i(B)) ⊗ rotationCCW(C,B),

rotationCW(A,B)

← passInFrontRL(A,B) ⊗ passBehindLR(A,B),

rotationCCW(A,B)

← passInFrontLR(A,B) ⊗ passBehindRL(A,B),

passInFrontRL(A,B)

← beginInFr(A,B) ⊗ mergingRL(i(A), i(B))

⊗ endInFr(A,B),

2Due to space limitations, we do not provide rules specifying a counter-
clockwise rotation. However, it is not difficult to see that they are anal-
ogous to the ones specifying a clockwise rotation.
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beginInFr(A,B)

← approachobs(i(A)) ∧ approaching(i(A), i(B))

∧ static(i(B)),

mergingRL(i(A), i(B))

← mergeR(i(A), i(B)) ⊗ emergeL(i(A), i(B)),

endInFr(A,B)

← recedeobs(i(A)) ∧ receding(i(A), i(B))

∧ static(i(B)),

passBehindLR(A,B)

← beginBhd(A,B) ⊗ mergingLR(i(A), i(B))

⊗ endBhd(A,B),

beginBhd(A,B)

← recedeobs(i(A)) ∧ approaching(i(A), i(B))

∧ static(i(B)),

mergingLR(i(A), i(B))

← mergeL(i(A), i(B)) ⊗ emergeR(i(A), i(B)),

endBhd(A,B)

← approachobs(i(A)) ∧ receding(i(A), i(B))

∧ static(i(B)).

Notice that according to predicate rotationCW/2, an ob-
ject rotates clockwise around another stationary object if it
passes first in front of the object from right to left (from the
observer’s view point), then behind it from left to right.

3.2 A deductive algorithm for interpreting image
sequences

We begin by introducing the SDL-style resolution procedure
that underlies the deductive algorithm for image sequence
interpretation proposed later in this section.

The SDL-style refutation procedure designed for T -logic
differs from the inference system introduced in [57] where
the path is a byproduct of the refutation procedure; here the
path is given. In other words, in [57] the resolution may up-
date the world state, thus creating a path, i.e., a sequence of
world changes, whereas in our approach the path is given
and the task of the refutation procedure is to determine the
unsatisfiability of a formula in this path.

3.2.1 SDL-style resolution

The inference system manipulates expressions called se-
quents, which have the form

P,π1 ◦ π2 � (∃)φ,

where P is the background theory, consisting of a rule-
base specifying high (abstraction) level predicates repre-
senting commonsense concepts about space (e.g., see Ex-
ample 3), and the pair of oracles (Definitions 1 and 2);
π1 = 〈D1 · · ·Di〉 and π2 = 〈Di+1 · · ·Dn〉 are splits of a given
path π and φ is a serial-goal. The informal meaning of a se-
quent is that formula (∃)φ can be proved from state Di and
along π2, i.e., from the last state of π1 followed by sequence
of states π2.

Let the expression ←G0, denote a goal clause, where
G0 is the sequent

P, 〈D1〉 ◦ 〈D2 · · ·Dn〉 � (∃)φ. (3)

A SDL-style refutation of ← G0 is a sequence of goal
clauses ←G0 · · · ←Gn where Gn is the empty clause, i.e.,
the sequent P, 〈D1 · · ·Dn〉 ◦ 〈〉 � (), where 〈〉 denotes the
empty path, and () denotes the empty formula. This sequent
is an axiom of the inference system, which states that the
empty formula is true on any path. Each ←Gi+1 is ob-
tained from ←Gi by using the following axiom and infer-
ence rules.

Definition 3 (Inference System)

Axiom: P,π1 ◦ π2 � (), for any path split π1 and π2.
Inference rules: In rules 1–3, σ is a variable substitution, a

and b are atomic formulae, and φ and rest are serial goals.

1. Applying rule definitions: Suppose a ← φ is a rule in
P whose variables have been renamed so that the rule
shares no variables with b ⊗ rest. If a and b unify with
m.g.u. σ , then

P,π1 ◦ π2 � (∃)(φ ⊗ rest)σ

P,π1 ◦ π2 � (∃)(b ⊗ rest)

2. Querying the world state: If bσ and restσ share no vari-
ables, and Od(Di ) |=c (∃)bσ , then

P,π1 ◦ π2 � (∃)restσ

P,π1 ◦ π2 � (∃)(b ⊗ rest)
,

where π1 = 〈D1 · · ·Di〉.
3. Verifying a state transition: If bσ and restσ share no

variables, and
Ot (Di ,Di+1) |=c (∃)bσ , then

P,π ′
1 ◦ π ′

2 � (∃)restσ

P,π1 ◦ π2 � (∃)(b ⊗ rest)
,

where:
π1 = 〈D0 · · ·Di〉, π2 = 〈Di+1Di+2 · · ·Dn〉,
π ′

1 = 〈D0 · · ·DiDi+1〉, and π ′
2 = 〈Di+2 · · ·Dn〉.
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Each inference rule consists of two sequents, and has the
following interpretation: if the upper sequent (Gi+1) can be
inferred, then the lower sequent (Gi ) can also be inferred.

The inference rules above capture the roles of scene
scripts (i.e., serial-Horn rules), the state oracle and the tran-
sition oracle, as follows:

Rule 1 deals with serial-Horn rule definitions. Informally,
this rule replaces an instance of the rule ‘head’ by an
instance of its body. Notice that the path split does
not change.

Rule 2 deals with state tests. It says that a condition b sat-
isfied in Di can be added to the front of the formula
rest. Notice that the path split does not change.

Rule 3 deals with tests on a pair of states (i.e., the last state
of π1 and the first state of π2). Informally, b is at-
tached to the front of rest, so that the first (left-
most) state of π2 is removed from the path split and
added to the (right-most) end of π1, i.e., the for-
mula b can be proved from Di and in the path split
〈Di+1 · · ·Dn〉.

Given the similarities between this inference system and
T R’s proof system, the proofs of correctness and complete-
ness ([71], Appendices A and B) are parallel.

It is worth pointing out that, in a sequent, the leftmost
atom of the serial-goal is always selected.

Example 4 (Proving formulas using the inference system)
Suppose a scene consists of three sequential snapshots of
objects a and b (whose images are represented by the terms
p and q respectively); hence the path 〈D1,D2,D3〉. Assume
in the first state, D1, p is disconnected from q; in D2, they
are also disconnected, but the distance separating them is
smaller; and in D3, p and q are externally connected. That
is,

disC(p, q) ∈ Od(D1),

disC(p, q) ∈ Od(D2),

co(p, q) ∈ Od(D3), (4)

dist(p, q,D2) > dist(p, q,D1)

tlc(p,D2) < tlc(q,D2).

Let us then prove that approaching(p, q) ⊗ mergeL(p, q)

is true in the path 〈D1,D2,D3〉. That is, let us prove that
initially p is approaching q , and p is merging q on the left:

P, 〈D1〉 ◦ 〈D2,D3〉 � approaching(p, q) ⊗ mergeL(p, q)

if P, 〈D1,D2〉 ◦ 〈D3〉 � mergeL(p, q)

by Inference Rule 3 and (4)

if P, 〈D1,D2,D3〉 ◦ 〈〉 � ( ) by Inference Rule 3 and (4).

This deduction succeeds because the bottom-most sequent
is an axiom.

3.2.2 The deductive algorithm

We now consider the problem of providing a formal algo-
rithm for image sequence interpretation. More specifically,
given a sequence of changes that took place in the world,
such as those depicted in Fig. 1, our objective is to provide a
logic-based method which allows us to find an explanation
for those changes. Therefore, we want to obtain a T -logic
formula, say Δ, which explains the changes in the path (i.e.,
sequence of snapshots) π .

The process which we use to obtain Δ can be informally
described as follows: let us assume all we have initially is
the background theory P, consisting of a set of scene scripts
specifying high level predicates representing commonsense
concepts about space (see Example 2), and the given path
π = 〈D1,D2 · · ·Dk〉 of length k. The objective is then to find
a formula Δ which is true in the path π . If Δ exists, then
it can be represented as φ1 ⊗ φ2 ⊗ · · · ⊗ φk−1, where each
φi is a formula of the form a1 ∧ a2 ∧ · · · ∧ an, where ai ∈
Ot (Dj ,Dj+1), (1 ≤ j < k). Therefore, Δ can be seen as an
explanation for the state transitions in π .

An intuitive approach to obtain the transition predi-
cates φi,1 ≤ i < k, is to input the first and second states
to the transition oracle and obtain the set of predicates,
say {a1, a2, . . . , an}, representing the elementary transitions
noted in the state change. In effect, we can denote this set
using the ground formula φ1 = a1 ∧ a2 ∧ · · · ∧ an. Then we
would do the same for the second and third states in the se-
quence, thus obtaining φ2, which represents the other state
change. Notice that the T -logic formula φ1 ⊗φ2 is an expla-
nation for the changes that occurred in the first three states
of the path. If we repeat this procedure with all states of the
path, adding in each iteration the transition predicates output
from the transition oracle to the tail of the serial conjunction
a1 ⊗ a2 ⊗ · · ·, we would eventually build the serial conjunc-
tion φ1 ⊗ φ2 ⊗ · · · ⊗ φk−1, which is a formula that explains
all the changes in the path.

For instance, in Example 4, we have seen how to
use the inference rules presented in Sect. 3.2.1 to prove
that approaching(p, q) ⊗ mergeL(p, q) is true in π =
〈D1D2D3〉. Now suppose we were interested in obtain-
ing this formula instead of the state changes it forces. We
would first input D1 and D2 to the transition oracle and
obtain as a result the ground predicate approaching(p, q),
which represents the elementary transition that took place
in the path split (assuming the transition oracle does not in-
clude any other elementary transition in the returned set).
Then we would do the same for D2 and D3, thus obtaining
mergeL(p, q), which represents the other state change. At
this point, there are no more states in the path to be ana-
lyzed, and concatenating the two elementary transitions we
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obtain: approaching(p, q)⊗mergeL(p, q). We have already
proved that this formula is true in the given path; hence it is
an explanation for the changes in the path.

Algorithm 1 formalizes the process described above.

Algorithm 1 (Deductive algorithm) This algorithm is an
extension of the SDL-style resolution presented in Defini-
tion 3.

From a given path π , we can obtain k⊗state, which is
a T -logic constant formula3 also true in π . From π we can
also obtain the goal clause ←G0, where G0 is the sequent:

P,π � k⊗state , where π = 〈D1〉 ◦ 〈D2 · · ·Dk〉.
To find a serial-goal Δn which is true in the same path

π , a refutation of the form ←G0,Δ0 · · · ←Gn,Δn is con-
structed, where:

• each Gi is a sequent,
• each Δi is a serial-goal,
• Gn is the sequent P,π � (), i.e., the axiom of the inference

system presented in Sect. 3.2.1, and
• Δ0 is the empty formula.

Assume

Gi = P, 〈D1 · · ·Dj 〉 ◦ 〈Dj+1 · · ·Dn〉 � m⊗state,

m ≥ 1.

There are two inference rules to obtain ←Gi+1,Δi+1 from
←Gi,Δi :

Rule A: If Ot (Dj ,Dj+1) = {a1, a2, . . . an}, then Δi+1 =
Δi ⊗ a1 ∧ a2 ∧ · · · ∧ an. To obtain Gi+1, we use
inference rule 3 on Gi :

Gi+1 = P〈D1 · · ·Dj Dj+1〉 ◦ 〈Dj+2 · · ·Dn〉
� m−1⊗state.

Rule B: If the background theory includes formula d ← φ

and φ produces the same changes in the path split
〈D1 · · ·Dj 〉 as Δi , i.e., P, 〈D1 · · ·Dj 〉 � Δi ∧ φ,
then Δi+1 = d . In this case, since no state tran-
sition was detected, Gi+1 = Gi .

Example 5 (Obtaining the explanation for the changes in a
path) In this example we show how the procedure intro-
duced above works. Let the background theory P include
rule (1) of Example 2, and the aforementioned pair of ora-
cles. Notice that Rule (1) is a script for a scene in which an
object is passing by another, as illustrated in Fig. 4.

3Recall that k⊗state≡ state⊗ · · · ⊗ state
︸ ︷︷ ︸

k

.

Let also i(a) and i(b) be two distinct images of objects a

and b, respectively. The sequence in Fig. 4 can be interpreted
as follows:

P, 〈D1〉 ◦ 〈D2D3D4D5〉 � 5⊗state, ()

if P, 〈D1D2〉 ◦ 〈D3,D4D5〉 �
4⊗state,approaching(i(a), i(b))

from Rule A, assuming:

approaching(i(a), i(b)) ∈ Ot (D1,D2)

if P, 〈D1D2D3〉 ◦ 〈D4D5〉 �
3⊗state,approaching(i(a), i(b))

⊗ mergeL(i(a), i(b))

from Rule A, assuming:

mergeL(i(a), i(b)) ∈ Ot (D2,D3)

if P, 〈D1D2D3D4〉 ◦ 〈D5〉 �
2⊗state,approaching(i(a), i(b))

⊗ mergeL(i(a), i(b))

⊗ emergeR(i(a), i(b))

from Rule A, assuming:

mergeR(i(a), i(b)) ∈ Ot (D3,D4)

if P, 〈D1D2D3D4D5〉 ◦ 〈 〉 �
state,approaching(i(a), i(b))

⊗ mergeL(i(a), i(b)) ⊗ emergeR(i(a), i(b))

⊗ receding(i(a), i(b))

from Rule A, assuming:

receding(i(a), i(b)) ∈ Ot (D4,D5)

if P, 〈D1D2D3D4D5〉 ◦ 〈 〉 � ( ),approaching(i(a), i(b))

⊗ mergeL(i(a), i(b)) ⊗ emergeR(i(a), i(b))

⊗ receding(i(a), i(b))

from the definition of state

if P, 〈D1D2D3D4D5〉 ◦ 〈 〉 � ( ),passingBy(a, b)

from Rule B and formula (1).

The following theorem shows that, given a path π

and a background theory P, if the method presented in
Algorithm 1 provides an expression Δ which explains the
changes in the path according to P, then in every model of
P, π satisfies formula Δ according to the semantic theory of
Transaction Logic, the language upon which the theory of

T -logic is based. In order to provide a formal statement for
this theorem we assign to Algorithm 1 a function symbol:
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Fig. 4 A scene in which an
object passes by another

comp : P × path → δ, where P is a set of background theo-
ries, each consisting of a rulebase and a pair of oracles (state
and transition oracles); path is a set of sequences of states,
i.e., a set of paths; and δ is a set of serial-Horn formulas.
Therefore, if the algorithm is correct, then comp(π,P) pro-
vides an explanation Δ for a given path π and background
theory P.

Theorem 1 (Correctness of the algorithm) Let π be a path
and P a background theory, then the following statement is
true:

if comp(π,P) = Δ then P,π |= Δ.

In the expression above, the statement P,π |= Δ ex-
presses a form of logical entailment in T R called execu-
tional entailment [71]. Informally, this statement means that
π is an execution path of Δ. That is, if one performs a refu-
tation of Δ using T R’s proof theory [71], then π can be
derived from this refutation.

Proof We prove that Δ explains the changes on π by induc-
tion on the structure of π .

• Base case (one state transition): Assume π is represented
by the path split 〈D0〉 ◦ 〈D1〉. If we apply inference rule
A, then comp(π,P) = Δ = a1 ∧ · · · ∧ an, where ai are
the elementary perceptual changes that have occurred be-
tween the two states.4 Moreover, since π can be derived
from a (SDL-style) refutation of Δ, then Δ is true in π .
Formally, P,π |= Δ.

• General case (n state transitions): Assume π is rep-
resented by the path split 〈D0D1 · · ·Dn−1〉 ◦ 〈Dn〉 and
comp(〈D0D1 · · ·Dn−1〉,P) = Δn−1. From the base case,
if rule A can be applied, then comp(π,P) = Δn = Δn−1 ⊗
φ, where φ is a formula that explains the transition be-
tween Dn−1 and Dn; i.e., P,π |= Δn−1 ⊗ φ. Therefore,
it follows from the soundness and completeness of the
T R proof system [71] that the method presented in Algo-
rithm 1 provides correct explanations for any path π . �

In the next section we present a prototype implementa-
tion of the framework introduced in this section.

4Notice that if we apply inference rule B instead of rule A, then no
state transition takes place; only the sequence of predicates denoting
the movement of objects in space represented by Δ gets replaced by
another, logically implied, predicate.

3.3 A computer vision prototype system for image
sequence interpretation

Figure 5 shows the major components of the computer vi-
sion prototype system which was implemented.

The prototype consists of two modules: Module 1 and 2
in Fig. 5. Module 1 performs information extraction. It takes
raw image data as input, performs Blob Coloring on the data
and creates a region map. This region map is then input to
Module 2, which performs the high-level interpretation of
the image sequence. In a nutshell, the region map is input to
the State Oracle, which outputs the logical relations amongst
spatial regions in the image. These relations are then input
to the Transition Oracle, which determines the transitions
that occurred between pairs of snapshots. The Inference En-
gine then uses these transitions, together with scene scripts
(i.e., serial-Horn rules) provided by the user, to output an in-
terpretation for the geometrically observable changes in the
scene.

3.3.1 Image segmentation

Image segmentation and object detection were implemented
using the Blob Coloring technique [59], because this partic-
ular technique also facilitates the calculation of other image
features, such as area of an object, perimeter, centroid, and
the like.

The image segmentation process was designed to work
as follows:

In the first step, Red Green Blue (RGB) pixel compo-
nents of image data were loaded into a tridimensional ma-
trix (image height × image width × pixel RGB values). To
avoid using color as the basis for pixel comparison and
thus provide a faster algorithm for region map creation, the
tridimensional encoding was transformed into a more sim-
ple, bi-dimensional, gray level encoding (image height ×
image width × pixel gray level).

In the second step, a Blob coloring technique was used
for labeling regions of the image. The result of this process
was then stored in a third matrix. In this matrix, each entry
(h,w) represents the region in which pixel (h,w) is located
in the image.

In the next step, information about area, color, and loca-
tion of the objects (regions) was extracted. The calculation
of the area of an object was based on the summation of the
number of pixels in the respective region. The color of each
of the regions was determined by correlating the region with
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Fig. 5 The computer vision
prototype system

the respective object in the original matrix. Each object’s lo-
cation in the image was determined by the first pixel of the
region of the respective object. The information obtained in
this last step was then stored in a table (henceforth called
InfoTable). Each line in the InfoTable contains information
about the area, color and location of a region. Table 2 shows
an example of such table. Notice that small values for area
represent noise in the image.

3.3.2 The oracles

The state oracle was implemented as a procedure that re-
ceives features of a given scene stored in TableInfo (see Ta-
ble 2) and, based on these features, detects the objects in the
scene by filtering out noise (objects with area less than 200
pixels) and ignoring scene background (objects with area
greater than 5000 pixels), determines the distance between
pairs of object images in the scene, compares it with a pre-
defined δ threshold, and determines which of the relations
mentioned in Definition 1 hold for the objects in the scene.

The transition oracle was implemented in a similar way.
Based on Definition 2, a procedure was implemented that
takes two states and two object images and finds which tran-
sition predicates hold for the objects in the states.

3.3.3 The inference engine

The Inference Engine consists of two modules: a translator,
which converts scene scripts (i.e., serial-Horn rules provided
by the knowledge engineer describing composite moments
of objects) into finite state machines; and a controller, that
identifies when the state changes in the machine entails a
particular scene script. States in such state machine repre-
sent state changes specified in the body of the respective
serial-Horn rule. Once the controller receives a transition
from the Transition Oracle, it searches for a state machine
that has a state from which that transition is possible. If such

state machine is found, the controller allows the state transi-
tion to occur in that machine. Then it waits for more transi-
tions.

When a state machine reaches a final state, the controller
then notifies that a given scene script has been identified.

3.3.4 Other considerations regarding the operation of the
system

The implementation of the deductive algorithm introduced
by Definition 1 is as follows.

Features extracted from a scene are stored in InfoTable
(see Table 2) and supplied as input to the state oracle. This
oracle then relates image spatial regions with concepts about
space and connectivity amongst these regions.

To consistently identify regions across subsequent scenes,
a comparison of object colors, areas and locations was used.
As stated earlier, it was assumed that a notion of continuity
should prevail in regards to the values of such parameters
[51]. That is, an object would not perform a great jump or
simply disappear in a sequence. Therefore, a minimal vari-
ance was allowed for the aforementioned parameters.

Once the second scene has been analyzed, the transition
oracle verifies and stores which transitions took place in the
pair of scenes. This analysis is based on the spatial relations
returned from the state oracle and on the built-in functions
that calculate distance between objects and the area of ob-
jects. These transitions are then passed to the controller of
the inference engine which then operates as described above.

It is important to notice that, by using a state machine as
the conceptual model for the inference engine, it is possi-
ble not only to process long sequences of scenes, but also
to know in advance what will be the next transition between
scenes, and consequently, what are the possible spatial rela-
tions which will occur in the next scene.
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Table 2 Features extracted
from an image Region Area Color (R,G,B) Location (row,column)

0 7663 (255, 255, 255) (0, 0)

1 1 (139, 106, 215) (76, 34)

2 3 (177, 172, 255) (76, 31)

3 9 (105, 97, 255) (76, 22)
.
.
.

.

.

.

Fig. 6 Schematic figure of the
rotation event

Fig. 7 Schematic figure of the
anti-rotation event

3.4 The experiments

The objective of the experimental procedure was to verify if
the system can properly interpret two types of movements:
rotation and anti-rotation from any snapshot sequence where
only one of this events was present in any particular se-
quence. In a rotation two objects rotate around a common
fixed axis (Fig. 6). An anti-rotational movement is similar
to a rotation up to the point where one of the objects gets oc-
cluded by the other (Fig. 7). At that point the de-occlusion of
the object occurs at the same side where the occlusion took
place. This particular type of rotation was used to verify how
the system would behave when attempting to interpret am-
biguous movements.

Below we provide the scene scripts (serial-Horn rules)
for rotation and anti-rotation. Figure 8 shows the respective
state machine(s):

rotation(A,B)

← events1(i(A), i(B)) ⊗ mergeR(i(A), i(B))

⊗ emergeL(i(B), i(A)) ⊗ events2(i(A), i(B)),

rotation(A,B)

← events1(i(A), i(B)) ⊗ mergeL(i(A), i(B))

⊗ emergeR(i(B), i(A)) ⊗ events2(i(A), i(B)),

antirotation(A,B)

← events1(i(A), i(B)) ⊗ mergeR(i(B), i(A))

⊗ emergeR(i(B), i(A)) ⊗ events2(i(A), i(B)),

antirotation(A,B)

← events1(i(A), i(B)) ⊗ mergeL(i(B), i(A))

⊗ emergeL(i(B), i(A)) ⊗ events2(i(A), i(B)),

events1(i(A), i(B))

← approachobs(i(A)) ∧ recedeobs(i(B)),

events2(i(A), i(B))

← approachobs(i(B)) ∧ recedeobs(i(A)).

Based on these two types of movement six situations

were analyzed:
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Table 3 Results for pairs of
objects with distinct colors,
where rot and antRot stand for
rotation and anti-rotation
respectively

Set 1 Set 2 Set 3 Set 4 Set 5

rot antRot rot antRot rot antRot rot antRot rot antRot

Distant objects + + + + + + + + + +

Close objects + + + + + + + + + +

Table 4 Results for pairs of
objects with the same color
(perceptually indistinguishable)

Set 1 Set 2 Set 3 Set 4 Set 5

rot antRot rot antRot rot antRot rot antRot rot antRot

Distant objects – – + + + + – – + +

Close objects – – – – – – – – – –

1. two objects of different colors, and distant from each
other;

2. two objects of same color, distant from each other;
3. two objects different colors, close to each other; and
4. two objects of same color, close to each other.

By “distant from each other” we mean that in the initial
state the two objects are disconnected (disC, according to
Definition 1), whereas “close to each other” means that the
objects are externally connected (extC, according to Defini-
tion 1) at the initial state of the image sequence.

It is worth noting that in each of the experiments, both
rules: for rotation and anti-rotation, were available to the
system. Therefore, what we expect to show here is whether
the system is capable of disambiguating between two possi-
ble explanations for a single image sequence. We also want
to evaluate the extent to which our system, built with simple
image processing techniques added to qualitative relations
about space and continuity constraints, is capable of solv-
ing the challenging problem of anchoring symbols to sensor
data from perceptually indistinguishable objects [72].

4 Results

Our empirical results are presented in Tables 3 and 4, and
summarized in Table 5. In Tables 3 and 4 a “+” means “the
rotational (anti-rotational) movement was interpreted cor-
rectly at the end of the image sequence”.

Table 3 shows the results of the interpretation of rota-
tion and anti-rotation from data-sets obtained from scenar-
ios with two objects of distinct colors. In this case the system
was capable of interpreting all data-sets correctly.

The results obtained from perceptually indistinguishable
objects (objects of the same shape, size and color) are pre-
sented in Table 4. There we note that the system had a degra-
dation in performance: it correctly interpreted 60% of the
data-sets for distant objects and completely misinterpreted
the data-sets from close objects. The reason for this loss in

Table 5 Summary of the results

Close objects Distant objects

Same 0% 60%

color

distinct 100% 100%

color

performance relates to the use of fixed thresholds for en-
coding the variances on area and position (cf. discussed at
the end of Sect. 3.3). For close objects, the variance in the
area was so minimal that it was not possible to find one
set of thresholds to represent the change in area caused by
the movement in depth, e.g., when an object rotates around
another. Similarly, the results relative to the distant-objects
data-sets suffer from the rigidity of the thresholds on the
variance of area and position; however, in this case, the
thresholds seem to complement each other allowing 60% of
the cases to be properly interpreted.

Table 5 presents a summary of all the above results.

5 Discussion and open issues

This paper tackles the problem of image sequence evalua-
tion [41] from a logic-based perspective following the lines
proposed in [19, 24]. The context that motivates the develop-
ment of this work is the investigation of inference methods
that best operate on space perceptions and how space can be
represented to facilitate spatial inference.

In particular, the present paper extends the spatial rea-
soning theories proposed in [19, 24] (which accounts for
the interpretation of pairs of snapshots of the world) allow-
ing the evaluation of dynamic scenes. More specifically, we
take as starting point the work proposed in [24], that defines
events based on pairs of snapshots of the world, such as ap-
proaching, receding, splitting and merging, and build events
such as passing by and rotating, which involve sequences
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Fig. 8 State machines for
rotation and anti-rotation

of the former. In order to accommodate events of sequences
of snapshots we use, as underlying formalism, Transaction
Logic (T R) [57, 58] whose semantics defines models based
on paths of states, following the ideas proposed in process
logic [65].

The use of transaction logic to account for the semantics
of image sequence interpretation is justified by the fact that
the language underlying this work makes assertions about a
changing world. That is, formulas in the proposed language
are interpreted along sequences of states, i.e., paths. This
feature of the logic naturally relates to the problem of dy-
namic scene interpretation.

In the present paper we used the machinery of T R to
define an algorithm for inferring changes that occurred in
image sequences. The algorithm works by, first, proposing
an arbitrary sequence of formulas (a serial conjunction of
formulas) to explain a given sequence of images, that are
considered as states in the algorithm. The algorithm, then,
substitutes each formula in this sequence by a conjunction of
atomic formulas that are explanations for each state change.

We show correctness of the algorithm by recurring to the
soundness and completeness proof of T R, as the algorithm
uses T R proof system to build the explanations for the state
changes.

The proposed approach was implemented as a four-stage
process: first, a blob coloring algorithm provides region
maps from a static camera observing rotation events. In a
second stage, these region maps are input to the logical sys-
tem that generates a description of each snapshot (provided
by a state oracle). Third, the interpretation of pairs of snap-
shots is output by the transition oracle. Finally, the interpre-
tation of the entire image sequence is provided.

We tested the implementation of the proposed framework
on the task of interpreting sequences of images showing two
contrasting events: some sequences show a pair of objects
rotating around a fixed axis, and some others show a move-
ment that we called “anti-rotation”, in which two objects
start rotating around each other but do not complete the rota-
tion movement. We tested the system with objects of distinct
colors and with objects of the same color. With the latter we

wanted to verify the extent to which our system could dis-
ambiguate rotation and anti-rotation from two perceptually
indistinguishable objects.

The results show that the interpretation of image se-
quences containing objects of different colors was 100% ac-
curate. It has become evident that the correct interpretation
of scenes with objects of the same color depends on the sim-
ilarity of the sequences, since in this case variance in area
and position are the two features used for interpreting a dy-
namic scene. Another factor that affects the interpretation of
the movements of objects of the same color is the distance
between objects. The closer the objects, the smaller are the
variances on area and position. Consequently, the more dif-
ficult it is to identify such objects.

Taken in isolation, the experimental results presented in
Sect. 4 could be interpreted as consequences of the short-
comings of the low-level vision processes, and thus over-
shadowing the impact of our approach on the scene interpre-
tation process. However, it is important to place these results
into perspective: on the one hand, we have assumed only the
distance sub-theory of the approach developed in [19] (leav-
ing aside theories about depth and size, for instance); on the
other hand, we have used one of the simplest algorithms for
segmenting images (blob coloring), without paying much at-
tention to noise filtering. Nevertheless the results show that,
even under these restrictions, the framework proposed is ca-
pable of interpreting a rotation event from sequences of im-
ages. Moreover, the possibility to represent more complex
object behaviors, such as the ∞-shaped pattern of Exam-
ple 3, suggests that these behaviors could also be interpreted
from vision data using the ideas developed in this paper.

It may be argued that the information used is very limited
in scope, as only distance information is assumed. However,
this is a work about updates with respect to a spatial theory
defined on sensor data, and not on the spatial theory itself
(which has been investigated elsewhere [19]). Therefore, the
use of distance information is just a case study for a broader
work on spatial reasoning and image sequence evaluation.
In this sense, everything developed here could be extended
using the more complete theory defined in [19]. Having a
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simple spatial theory allowed us to concentrate on the inves-
tigation of the update (i.e., state change) phenomena under-
lying the reasoning process.

It may also be argued that our proposed formalism for
logical inference is overly sophisticated with respect to the
underlying computational model (implemented as a finite-
state automata). However, it is important to notice that the
finite-state automata represents the rules of the rotation do-
main, which serves as an example of application for the
framework proposed. As put forth in [73]: for the logicist
tradition in AI, it is not paramount to have a one-to-one
correspondence between the logic description of the system
and its implementation. Moreover, logic formalism forces
the computational procedures, not the other way around. In
other words, the encoding of the rules about rotation (our
application example) into finite-state automata does not im-
ply that every domain modeled using the approach proposed
here should have the same computational realization. Thus,
the assumption of a more complex spatial theory could lead
to more complex computational procedures to be developed,
without changing the underlying logical framework.

The present work does not take into account reasoning
about actions and change (RAC) [56]; therefore, this work
assumes perception as a passive process. The integration of
the ideas developed above with a RAC formalism (the situ-
ation calculus) is subject of our current investigations. It is
worth noting also that the knowledge needed in the interpre-
tation process (i.e. the scene scripts discussed in Sect. 3.1)
is hand-coded, we plan to investigate how the methods for
inductive learning protocol behavior [74] and mathematical
axioms [75] could be used to generate basic spatial axioms
to support the image interpretation process discussed in this
paper.

On the practical front, an important future extension of
the research presented here is the replacement of the blob
coloring algorithm with more robust image segmentation
methods, such as [76, 77], in order to improve the input to
the logic-based image interpretation method.

One issue for future investigation is how our method
could operate on-the-fly, e.g., as part of a computer vision
system for a robot that roams around. In our prototype, the
method has been implemented as an off-line process.

6 Conclusion

In this paper we introduced a logical formalism to account
for the problem of interpreting sequences of images. This
formalism brings together the notion of path semantics [57]
and the spatial reasoning theory proposed in [24] providing,
thus, a rigorous logical account for image sequence inter-
pretation. There two main contributions of this work. First,
a method was proposed for obtaining a logic formula that ex-
plains the geometrically observable changes that occurred in

an image sequence. This method is an extension of the infer-
ence engine proposed [57] that provides a sound and com-
plete account for the state update phenomenon. We show
that the correctness of the proposed framework follows from
these results. Second, the present work extends the qualita-
tive spatial reasoning theory proposed in [19, 24, 31] by in-
corporating rules that account for the interpretation of long
sequences of transitions, rather than only interpreting subse-
quent pairs of states. Our experiments show that the system
correctly interprets rotational movements for objects of dif-
ferent colors and provides satisfactory results for interpret-
ing such movements from perceptually indistinguishable ob-
jects.
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