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Abstract Volatility clustering degrades the efficiency and
effectiveness of time series prediction and gives rise to large
residual errors. This is because volatility clustering suggests
a time series where successive disturbances, even if uncor-
related, are yet serially dependent. Traditional time-series
forecast model such as grey model (GM) or auto-regressive
moving-average (ARMA) has often encountered the over-
shoot effect, thus leading to the deterioration of its pre-
dictive accuracy. To overcome the overshoot and volatility
clustering problems at the same time, an adaptive neuro-
fuzzy inference system (ANFIS) is combined with a nonlin-
ear generalized autoregressive conditional heteroscedastic-
ity (NGARCH) model that is adapted by quantum minimiza-
tion (QM) so as to tackle the problem of overshooting situ-
ation and time-varying conditional variance residual errors.
The proposed method significantly reduces large residual er-
rors in forecasts because the overshoot and volatility cluster-
ing effects are regulated to trivial levels. Two experiments
using real financial and geographic data series, respectively,
compare the proposed method and a number of well-known
alternative methods. Results show that forecasting perfor-
mance by the proposed method produces superior results,
with good speed of computation. Goodness of fit of the pro-
posed method is tested by Ljung-Box Q-test. It is concluded
that the ANFIS/NGARCH composite model adapted by QM
performs very well for improved predictive accuracy of ir-
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regular non-periodic short-term time series forecast and will
be of interest to the science of statistical prediction of time
series.
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1 Introduction

Time-series forecasting uses a set of historical values, i.e.
a “time series,” to predict future values. Time series values
can represent any data series that is distributed over time,
for example monthly air temperature, daily electricity con-
sumption or hourly stock volume. A prediction model based
on a long history of observations is considered the best way
to forecast long-run trends in a long-term and reasonably
consistent time series. It is much more difficult to construct
predictors that are capable of forecasting non-periodic short-
term time series [1]. In practice, predictions are obtained by
forecasting a value at the next time instant based on a pre-
diction algorithm [1]. The autoregressive moving-average
(ARMA) is a traditional method very suitable for forecast-
ing regular periodic data like seasonal or cyclical time series
[2]. On the other hand, ARMA does not work well on ir-
regular or non-periodic data sequences such as international
stock prices or future volume indices [3]. This is because
ARMA lacks a learning mechanism and cannot tackle large
fluctuations in a complex time series.

The mathematical models associated with traditional
forecasting methods are linear and fail when the data they
model is highly nonlinear. In order to better model ir-
regular dynamic behavior, new intelligent methodologies
such as artificial neural networks, knowledge-based systems

mailto:brchang@nttu.edu.tw


32 B.R. Chang, H.-F. Tsai

and genetic algorithms have attracted attention. In particu-
lar, neural networks are finding extensive use for financial
forecasting. For example, the back-propagation neural net-
work (BPNN) [4] and radial basis function neural network
(RBFNN) [5] have been successfully applied to time se-
ries forecasting but require a large amount of pattern/target
training data to capture the dynamics of the time series. Pro-
viding a BPNN or RBFNN with insufficient (scarce) train-
ing data leads to premature completion of training typically
characterized by over-fit or under-fit, producing a system
which cannot guarantee adequate prediction results with a
specified level of accuracy.

An alternate predictor, the grey model [6], has been
widely applied to non-periodic short-term forecasts and
its performance on time series prediction is better than
Holt-Winters smoothing [2] or ARMA. However, grey
model commonly encounters the overshoot phenomenon [1]
whereby huge residual errors emerge at the inflection points
of a data sequence, i.e. when the slope changes from positive
to negative and vice versa. For example, Fig. 1 compares the
actual monthly TAIEX stock price index for 31 months (Jan-
uary 1999 to July 2001) with the grey model prediction. The
grey model predictions (marked by “∗”) reveal the overshoot
problem at the turning point regions of sample numbers 7,
14, 25, 26 and 27. Clearly, the overshoot phenomenon seri-
ously weakens grey model prediction accuracy.

The adaptive neuro-fuzzy inference system (ANFIS) [7]
has been widely applied to random data sequences with
highly irregular dynamics [8], e.g. forecasting non-periodic
short-term stock prices [1]. The success of ANFIS can be

attributed to two factors: (a) the designated distributive in-
ferences stored in the rule base; (b) the effective learning
algorithm for adapting the system’s parameters [7]. AN-
FIS is a Sugeno-type fuzzy inference system in which the
parameters associated with specific membership functions
are adaptable using either a back propagation gradient de-
scent algorithm alone or in combination with a least squares
method [9]. This allows the fuzzy system to quickly fit a
time series that might be a non-periodic short-term data se-
quence. However, volatility clustering effects [10] in the
data sequence prevent ANFIS from reaching desired lev-
els of accuracy. This is because ANFIS itself cannot re-
solve conditional heteroscedasticity [10] (non-constancy of
the variance of a measure, i.e. time-varying variance) in
residual errors within a data sequence to overcome volatility
clustering effects. In application to non-periodic short-term
forecast, ANFIS predictions make large residual errors due
to high residual variance, consequently degrading predic-
tion accuracy. Obviously, whether or not time-varying con-
ditional variance [11] in residuals is resolved, conditional
heteroscedasticity significantly affects a model’s goodness
of fit. Thus, how to deal with the problem of volatility clus-
tering is an important and interesting issue.

A model called generalized autoregressive conditional
heteroscedasticity (GARCH) [11] was introduced to capture
the changes in time-varying conditional variance and im-
prove the generalization or stability of the forecast. Further,
the same study presented a revised version called a nonlin-
ear generalized autoregressive conditional heteroscedastic-
ity (NGARCH) [11] for resolving volatility clustering ef-

Fig. 1 Overshoot phenomenon
in grey model prediction
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fects. In our present study, a scheme is proposed to remedy
situations of nonlinear conditional heteroscedasticity by in-
corporating NGARCH into an ANFIS system, which will be
denoted below as the ANFIS/NGARCH composite model.
To do so, an adaptation called quantum minimization (QM)
[12] is applied to tuning the coefficients of a linear combina-
tion of ANFIS and NGARCH so that large residual error is
compensated by NGARCH and near-optimal solutions can
be obtained.

2 ANFIS/NGARCH composite model resolving
volatility clustering

2.1 Volatility clustering problem

Volatility commonly means the risk or uncertainty measure
associated with a financial time series and is generally asso-
ciated with the standard deviation of that time series. A cer-
tain characteristic commonly associated with financial time
series is called volatility clustering, in which large changes
tend to follow large changes, and small changes tend to fol-
low small changes. In either case, the changes from one
period to the next are typically of an unpredictable sign.
Volatility clustering, or persistence, suggests a time series
model where successive disturbances, even if uncorrelated,
are yet serially dependent. Thus large disturbances, either
positive or negative, can be used to construct the variance
forecast of the next period’s disturbance based on histor-
ical information about volatility clustering. For example,

the backward-difference values of the monthly equity vol-
ume index futures at the London derivatives market for 48
months (Jan. 1999 to Dec. 2002) are shown in Fig. 2 with
its zero mean value (solid line). Volatility clustering can be
seen in this plot, for example clusters of small changes oc-
cur around samples number 1 to 15 and 36 to 38, while clus-
ters of large changes occur around samples number 16 to 36
and 39 to 48. The statistical methodology called Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) is
well suited to dealing with the problem of volatility clus-
tering in financial time series. Generally speaking, we treat
heteroscedasticity as time-varying variance, i.e. volatility.
The word conditional suggests a dependence on the obser-
vations of the immediate past, while autoregressive repre-
sents a feedback operation to incorporate past observations
into the present. In other words, GARCH includes past vari-
ances in the explanation of future variances and allows users
to model the serial dependence of volatility. Conventionally,
GARCH is formulated as a linear function of the residuals
themselves and the conditional variance of residuals. How-
ever, by considering the capabilities of the type of model and
matching it to the reality being modeled, then for more ac-
curate estimation or prediction of time-varying conditional
variances of residuals, a nonlinear type of GARCH is best
taken into account. Since our goal is the handling of volatil-
ity clustering in nonlinear time series, the nonlinear GARCH
(NGARCH) is considered the superior approach and will be
discussed in the following section.

Fig. 2 Data sequence shows
volatility clustering effect
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2.2 NGARCH resolving volatility clustering

Generally speaking, a time series can be viewed as a se-
quence of random observations that may reveal some degree
of correlation from one observation to the next. We can use
this correlation structure to predict the future values of a ran-
dom sequence on the basis of the historical observations. To
analyze the correlation structure, it is necessary to decom-
pose the time series into a deterministic component (i.e. the
forecast) and a random component (i.e. the residual error
associated with the forecast) [13]. To represent an observed
time series, this decomposition can be expressed as in the
equation

y(t) = f (t − 1,x) + eresid(t), (1)

where a deterministic component f (t − 1,x) represents the
forecast of the current response as a function of any in-
formation known at time t − 1, including past residuals
{eresid(t − 1), eresid(t − 2), . . .}, past observations {y(t −
1), y(t − 2), . . .} and any other relevant explanatory time se-
ries data vector x, while a random component eresid(t) stands
for the residual error in the mean of y(t). The random distur-
bance eresid(t) represents single-period-ahead forecast error.

In order to explain how random disturbance eresid(t) is
associated with time-varying conditional variances, an or-
dinary ARMAX/NGARCH composite model [11] is pre-
sented to demonstrate its structure. Note that this compos-
ite method consists of a conditional mean model and a
variance model, with ARMAX representing the conditional
mean model and NGARCH representing the conditional
variance model. In contrast with (1), a deterministic compo-
nent f (t − 1,x) is calculated from ARMAX and a random
component eresid(t) is determined by NGARCH.

ARMAX(r,m,Nx) encompasses autoregressive (AR),
moving-average (MA) and regression (X) models, in any
combination, as expressed below

yarmax(t) = Carmax +
r∑

i=1

Rarmax
i y(t − i) + eresid(t)

+
m∑

j=1

Marmax
j eresid(t − j)

+
Nx∑

k=1

βarmax
k X(t, k), (2)

where Carmax = a constant coefficient, Rarmax
i = autoregres-

sive coefficients, Marmax
j = moving average coefficients,

eresid(t) = residuals, yarmax(t) = responses, βarmax
k = re-

gression coefficients, X = an explanatory regression matrix
in which each column is a time series and X(t, k) denotes an
element at the t th row and kth column of the input matrix.

NGARCH(p, q) describes nonlinear time-varying condi-
tional variances and Gaussian residuals eresid(t). Its mathe-
matical formula is

σ 2
ntvcv(t) = Kng +

p∑

i=1

G
ng
i σ 2

ntvcv(t − i)

+
q∑

j=1

A
ng
j σ 2

ntvcv(t − j)

×
[

eresid(t − j)√
σ 2

ntvcv(t − j)

− C
ng
j

]2

(3)

with constraints

p∑

i=1

G
ng
i +

q∑

j=1

A
ng
j < 1,

Kng > 0,

G
ng
i ≥ 0, i = 1, . . . , p,

A
ng
j ≥ 0, j = 1, . . . , q,

where Kng = a constant coefficient, Gng
i = linear-term coef-

ficients, Ang
j = nonlinear-term coefficients, Cng

j = nonlinear-

term thresholds, σ 2
ntvcv(t) = a nonlinear time-varying condi-

tional variance and eresid(t −j) = j -lag Gaussian distributed
residual in ARMAX.

In the presence of conditional heteroscedasticity, this
composite model can perform ARMAX and NGARCH sep-
arately over every period in a time series. For simplicity as
employed in [14], it is possible to merge the outputs of AR-
MAX and NGARCH linearly to attain better results as

yComposite Model(t)

= f (yARMAX(t), eresid(t))

= Cf1 · yARMAX(t) + Cf2 · eresid(t), (4)

where f is defined as a linear function of ARMAX and
NGARCH outputs, yARMAX(t) and eresid(t). Cf1 and Cf2

in (4) are the coefficients of a linear combination of
ARMAX and NGARCH outputs. The resulting residual

eresid(t) at time t is obtained from a product of
√

σ 2
ntvcv(t)

in (3) and a normalized random number randn(1) where
0 ≤ randn(1) ≤ 1.

2.3 ANFIS coordinated with NGARCH to improve
regression

Two basic aspects of the efficiency and effectiveness of the
ARMAX/NGARCH composite model need to be discussed
here. First, the conditional mean component of the compos-
ite model, ARMAX, is suitable to fit regular or periodic time
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series, for instance monthly temperature predictions in a lo-
cal area [15] or seasonal power consumption predictions in
a metropolitan area [16]. Strictly speaking, ARMAX can-
not fit data sequences very well for irregular or non-periodic
time series due to the lack of a dynamic learning mecha-
nism. So, we propose an improved approach, i.e. to replace
ARMAX with ANFIS for the conditional mean component
of the composite model because ANFIS has its own self-
adaptive learning ability to fit irregular or non-periodic time
series. Second, when we apply the ANFIS system individ-
ually to forecasting a time series and this time series is as-
sociated with serial dependence, its performance is consid-
erably impeded by volatility clustering effects. For instance,
as shown in Fig. 3, large residual errors have occurred in the
ANFIS prediction at sample numbers 9, 12, 21, 24 and 28
among the forecasts of monthly equity volume index futures
for the 24 months from Jan. 2001 to Dec. 2002. We therefore
incorporate the conditional variance component, NGARCH,
into the ANFIS system to help alleviate volatility clustering
effects because NGARCH can tackle nonlinear time-varying
conditional variances of residuals.

To summarize, based on the relative efficiencies of the
available modeling systems and the statistical nature of the
reality being modeled, we suggest that ARMAX is substi-
tuted by ANFIS in the conditional mean component of the
composite model to enhance data fitting of irregular non-
periodic time series, with the conditional variance compo-
nent NGARCH cooperating with the conditional mean to
overcome the problem of volatility clustering. This proposed
composite model is rewritten as ANFIS/NGARCH. Like-
wise, a linear combination of ANFIS and NGARCH is rec-
ommended so that the ANFIS/NGARCH composite model
operates separately and is adapted dynamically to improve
the accuracy of irregular non-periodic time series prediction.
Formulation of the linear combination [14] is expressed as

yProposed Composite Model(t)

= g(yANFIS(t), eresid(t))

= Coef 1 · yANFIS(t) + Coef 2 · eresid(t), (5)

where g is defined as a linear function of the ANFIS and
NGARCH outputs, respectively, eresid(t) and yANGARCH(t),
while Coef 1 and Coef 2 are respectively the coefficients of
the linear combination of the ANFIS and NGARCH outputs.

Another question is how to determine the coefficients
(i.e. Coef 1 and Coef 2) of the linear combination of AN-
FIS and NGARCH. The following discussion assists us in
choosing the best way to estimate optimal or near-optimal
coefficients. Simple regression in statistics is often used to
estimate the coefficients of a linear regression. However, it
cannot capture the correct behavior of a non-stationary data
sequence or a data sequence with very low correlation. This
is because a long-term level produced by simple regression

cannot express correctly the behavior of a non-stationary
data sequence. Further, a data sequence with a very low cor-
relation implies highly nonlinear dynamics such that simple
regression is not able to explain adequately a sequence’s cor-
relation. An alternative is to consider a nonlinear learning
system, e.g. an artificial neural network (ANN), to handle
the coefficient estimation. Even though ANNs are frequently
used to model nonlinear systems, they may have trouble
with over-fitting or under-fitting results due to inappropri-
ate parameters (weights) chosen after training [17]. When
the observations are sparse, learning in an ANN may con-
verge to a premature state in which a local optimum is ob-
tained rather than the global optimum. In contrast, quantum-
minimized adaptation can outperform an ANN for obtain-
ing globally optimal or near-optimal coefficients when few
observations are available for modeling. A novel adaptation
mechanism, called quantum minimization (QM) [12], is pre-
sented in the next section and will be exploited to search for
optimal or near-optimal coefficients Coef 1 and Coef 2 in (5).

3 Quantum minimization adapting ANFIS/NGARCH

Several methods have been proposed for general constraint
optimization [18], yet the lack of an efficient algorithm for
quadratic-programming (QP) may turn optimization into a
problem with NP complexity. Even though artificial neural
networks can be applied to handling optimization, ANNs
can not guarantee efficiency when dealing with the NP com-
plexity problem efficiently. In recent years, quantum com-
puting (QC) [19] has offered a promising paradigm for so-
lution of complex problems [20] such as large-number fac-
torization and exhaustive search. A basic feature of QC in-
volves a digital representation of processed information (in-
cluding both the free parameters and the cost-function com-
putation). Optimization processes based on QC have to scan
exhaustively the set of possible bit configurations in the
search space.

3.1 Quantum-based optimization

Based on the possibility of superposed states, it is possi-
ble that QC can outperform classical computing paradigms
[19]. In the quantum-based representation, a quantum bit (a
“qbit”), ψ , is allowed to be both state ‘0’ and ‘1’ simultane-
ously. Each state is characterized by a complex number, γi ,
indicating the probability amplitude of the state:

|ψ〉 =
n∑

i=1

γi |ψi〉, (6)

n∑

i=1

‖γi‖2 = 1, (7)
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Fig. 3 Forecasts using ANFIS
approach exhibit some big
residual errors

where “ket” notation |•〉 has been used for the qbits ψi; the
probability amplitudes, γi , have to satisfy (7).

Thus, for a system with n state bits, a classical computer
requires N = 2n locations for storing all possible configura-
tions, whereas a quantum computer uses just n qbits to rep-
resent the whole system state. The basic advantage deriving
from superposed states means a quantum computer can ex-
plore all of the cost configurations in a single computational
run. This is usually achieved by a two-step process: first, an
initial state prepared suitably as

|ψ0〉 = 1√
2n

n⊗

i=1

(|0〉 + |1〉), (8)

where ⊗ denotes the state direct product [19]; thus |ψ〉 com-
prehends all possible states, which are equiprobable. Sec-
ondly, feeding the initial state |ψ〉 to the cost-function al-
gorithm supports an exhaustive scanning of the cost space,
thus obtaining a superposition of all possible cost values.
By contrast, a classical computer would face an exponen-
tial computational overhead. Grover’s algorithm [21] is one
of the best-known QC techniques proposed so far: it tack-
les the (NP-complete) problem of searching an input string
within an unsorted database. For an input string including
n bits and N = 2n possible states, this database searching
problem can obviously be solved in O(logN) probes if the
database is sorted, but no classical algorithm can succeed in
the general case with probability better than, say 50%, with-
out probing more than half the entries of the database [12].

By Grover’s algorithm [21], however, the number of repe-
titions grows as O(

√
N). Thus Grover’s method does not

break the NP-completeness barrier, yet it has represented a
popular basis for a large variety of algorithms. In practice, a
quantum method for minimization is described in [12]. The
number, R, of repetitions for convergence of that algorithm
is given by:

R = 22.5
√

N + 1.4 lg2 N ∼= 22.5
√

N, (9)

where lg indicates the binary logarithm. Theory shows that
a single run of the minimization algorithm [12] obtains a
valid solution with probability of at least 1/2. Therefore, to
increase the success probability one merely applies the ba-
sic algorithm in a series of l > 1 different runs. With this
approach, the total number of repetitions, i.e., the computa-
tional cost for the quantum machine, is denoted by R(l) and
the associated probability of success becomes P

(l)
qc .

R(l) = lR, (10)

P (l)
qc ≥ 1 − 1

2l
. (11)

It is seen, then, that the quantum QC techniques discussed
above increase their relative effectiveness as the difficulty of
the problem increases.

3.2 Quantum minimization (QM)

Quantum minimization (QM) with optimization success
probability of at least 1/2 just in a single probe for an
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unsorted database can be realized by a quantum minimum
searching algorithm [12]. A quantum exponential searching
algorithm [22] is called by a quantum minimum searching
algorithm as a subroutine to serve in a fast database search-
ing engine.

3.2.1 Quantum exponential searching algorithm

Based on the quantum exponential searching algorithm of
[22], where the search problem is to find the index i such
that Tdb[i] = x, we shall modify their algorithm for finding
a solution even though the number t of solutions is known.
For simplicity, we assume firstly that 1 ≤ t ≤ 3N/4.

Step 1: Initialize m = 1 and set λ = 8/7. (Any value of λ

strictly between 1 and 4/3 will do.)
Step 2: Choose an integer j uniformly at random such that

0 ≤ j < m.
Step 3: Apply j iterations of Grover’s algorithm [21] start-

ing from initial state

|�0〉 =
∑

i

1√
N

|i〉.

Step 4: Observe the register: let i be the outcome.
Step 5: If Tdb[i] = x, the problem is solved: exit.
Step 6: Otherwise, set m to min(λm,

√
N) and go back to

Step 2.

3.2.2 Quantum minimum searching algorithm

We secondly use the minimum searching algorithm of [12]
in which the minimum searching problem is to find the index
i such that Tdb[i] is minimum where Tdb[0, . . . ,N − 1] is
an unsorted table of N items, each holding a value from an
ordered set.

Step 1: Choose threshold index 0 ≤ i ≤ N − 1 uniformly at
random.

Step 2: Repeat the following (2a, 2b, and 2c) and interrupt it
when the total running time is more than 22.5

√
N +

1.4 lg2 N . Then go to stage 3.
(a) Initialize the memory as

∑
j

1√
N

|j 〉|i〉. Mark
every item j for which Tdb[j ] < Tdb[i].

(b) Apply the quantum exponential searching algo-
rithm of [22].

(c) Observe the first register: let i′ be the outcome.
If Tdb[i′] < Tdb[i], then set threshold index i to
i′.

Step 3: Return i.

This process is repeated until the probability that the
threshold index selects the minimum becomes sufficiently
large.

3.3 ANFIS/NGARCH adapted by QM dealing with
non-stationary signal

For a non-stationary or highly nonlinear time series such as
a random walk [2], it is very difficult to analyze the series
dependence characteristics of the data sequence by a tradi-
tional autocorrelation function (ACF) or partial autocorrela-
tion function (PACF). This is because the covariance of the
data sequence is not constant and actually varies with time.

3.3.1 Information of signal deviation

For non-stationary signals, the signal difference (or devi-
ation) of (12) can provide precious information about the
short-run dynamics of the currently applied data sequence.
A signal deviation δo(k) is defined as the backward differ-
ence between two consecutively adjacent observations, o(k)

and o(k − 1), as

δo(k) = o(k) − o(k − 1). (12)

The following profiles two aspects associated with signal
difference. First, signal deviation is intended to transform
two raw signals into a difference value (i.e. signal devia-
tion) that can maintain a high signal-to-noise ratio (SNR)
[23] whether or not disturbance exists in the raw signal. This
implies that signal deviation makes the system immune to
the noise interference which disturbs raw signals [24]. Sec-
ond, based on transformation, the transformed signal turns
out to be a signal sequence with weak stationary property
(i.e. approximately constant covariance among the signals)
[25]. In other words, we treat these signal deviations as a
stationary-like time series on which traditional time series
analysis might work. However, traditional analysis is still in-
valid if the effect of volatility clustering has occurred during
the stationary-like time series. Moreover, when modeling
a non-periodic short-term regression based on insufficient
signal deviations, traditional analysis does not work either.
Therefore, the ANFIS/NGARCH composite model adapted
by quantum minimization (denoted as the QM-AFNG sys-
tem) as shown in Fig. 4 can deal with a short-term time se-
ries with volatility clustering. This is done by modeling the
transformed signal deviations as short-term regression and
we subsequently applying trained regression to forecast the
future value or estimating the function value.

3.3.2 QM-AFNG forecasting based on signal deviation

Single-step-look-ahead prediction, as shown in Fig. 5, can
be arranged by adding the most recent predicted signal devi-
ation δô(k + 1) of (13) to the observed current output o(k).
The summation results in a predicted output ô(k + 1) at the
next period as expressed in (14) [26]. The function h in
(13) represents a predictor that includes a data preprocessing
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Fig. 4 Diagram of QM adapting ANFIS/NGARCH outputs (denoted as QM-AFNG)

Fig. 5 Prediction using QM-AFNG system

unit, a QM-AFNG system and a summation unit, as shown
in Fig. 5. A data preprocessing unit is used to calculate sig-
nal deviations of (12) as

δô(k + 1) = h(o(k), o(k − 1), . . . , o(k − s),

δo(k), δo(k − 1), . . . , δo(k − s)), (13)

ô(k + 1) = o(k) + δô(k + 1). (14)

Let’s turn back and examine again the QM-AFNG system
as shown in Fig. 4. In order to construct an ANFIS-based
prediction, the most recent predicted deviation δô(k + 1) at
next period is assigned as the output of the QM-AFNG sys-
tem. As shown in Fig. 5, the most recent observations and
their deviations, {o(k), o(k −1), . . . , o(k − s), δo(k), δo(k −
1), . . . , δo(k − s)}, have been specified as inputs of the
QM-AFNG system. The square-root of nonlinear condi-
tional heteroscedasticity σ̂ngarch(k), not eresid(t), is derived
from the variation sequence of true observations {δoanfis(k),
δoanfis(k − 1), δoanfis(k − 2), δoanfis(k − 3), . . .}. Based on
the QM-AFNG structure, one can form the function p of
the ANFIS output, δôanfis(k + 1), and the square-root of
NGARCH’s output, σ̂ngarch(k + 1), as presented below and
shown in Fig. 4.

δôqm-afng(k + 1) = p(δôanfis(k + 1), σ̂ngarch(k + 1)) (15)

A weighted-average function is assumed to combine both
δôanfis(k + 1) and σ̂ngarch(k + 1) to attain a near-optimal re-
sult δôqm-afng(k + 1).

δôqm-afng(k + 1) = wanfis · δôanfis(k + 1)

+wngarch · σ̂ngarch(k + 1)

s.t. wanfis + wngarch = 1.

(16)

Here, the linear combination of two nonlinear functions,
δôanfis(k + 1) and σ̂ngarch(k + 1), can also optimally approx-
imate an unknown nonlinear target δôqm-afng(k + 1). The
reason for the approach of (16) is that individual nonlinear
function implemented by soft-computing [27] is fast and ef-
fective, speeding convergence and reducing computational
time.

3.3.3 Weight-seeking by quantum minimization

Let Wafng = [wanfis wngarch]T denote a weight-vector of
wanfis and wngarch. A digital cost-function (DCF) [28] is de-
fined as

DCF = ‖Wafng‖2

2
+ KDCF ·

l−1∑

k=0

‖y(k + 1) − y(k) − o(k)

− δôqm-afng(k + 1)‖2, (17)

KDCF: a regulation coefficient which can be used for mea-
suring accuracy when the cost is minimized. We are hereby
seeking a promising searching method, e.g. the quantum
searching algorithm, for an optimization search in an un-
sorted weight-space to look for the appropriate weights in
(16) to minimize the DCF of (17) so as to obtain better ac-
curacy for non-periodic short-term time series forecasting.

The reason why quantum approaches are appealing when
applied to searching problems is that quantum computing
involves a digital representation of processed information
such that it is feasible to scan exhaustively the set of possi-
ble bit configurations in the search space. Thus, the quantum
minimization mentioned above is employed for adapting the
weights wanfis and wngarch for forecasting δôanfis(k + 1) and
σ̂δo(k + 1), respectively, as per (16). In other words, apply-
ing quantum computing to the optimization search in the
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weight-space first requires one to express the weights in a
digital representation which is encoded as 8-bit values and
which varies in the range [−100,100] for 256 discrete val-
ues. The set of digital weights to be optimized are stored as
a set of qbits that are prepared during an initial, equiprob-
able superposition. Then, the initial state is fed to the cost-
function supports for an exhaustive scanning of the weight-
space.

4 Experimental results and discussions

4.1 Criteria for measuring accuracy

A critical point in time series prediction is what criterion can
be used to measure the accuracy of the predicted results. Be-
cause of the wide applications of time series prediction, the
question of whether accuracy is “good enough” is largely
dependent on user-specified criteria. Measurement of fore-
casting performance is highly dependent on how rigidly the
criteria are specified for measurement of the degree of ac-
curacy. The question of reasonable accuracy for a time se-
ries forecast is commonly evaluated by the use of four well-
known criteria [29]: (a) mean absolute deviation (MAD);
(b) mean absolute percent error (MAPE); (c) mean squared
error (MSE); (d) Theil’U inequality coefficient (Theil’U).
Specifically, they are defined as

MAD =
∑l

t=1 |ytc+t − ŷtc+t |
l

, (18)

MAPE = 100

l

l∑

t=1

∣∣∣∣
ytc+t − ŷtc+t

ytc+t

∣∣∣∣%, (19)

MSE =
∑l

t=1(ytc+t − ŷtc+t )
2

l
, (20)

Theil’U =
√

MSE

MS
=

√√√√
∑l

t=1(ytc+t − ŷtc+t )2/l
∑l

t=1 y2
tc+t / l

, (21)

where l = the number of periods in forecasting, tc = the
current period, ytc+t = a desired value at the tc + t th period
and ŷtc+t = a predicted value at the tc + t th period.

4.2 Two experiments and their verifications

As shown in Figs. 6 to 11, the forecasting abilities of our
proposed method and several alternative methods are com-
pared in experiments wherein each predictive methodology
is applied to two actual historical sets of time series data:
(i) the forecast of international stock price indices; (ii) the
forecast of equity index futures and options. The alterna-
tive methods used are grey model (GM), auto-regressive

moving-average (ARMA), back-propagation neural net-
work (BPNN), ARMA/NGARCH composite model (AR-
MAXNG), adaptive neuro-fuzzy inference system (AN-
FIS), and the ANFIS/NGARCH composite model adapted
by quantum minimization (QM-AFNG). Single-step-look-
ahead prediction methodology is employed in all experi-
ments. In single-step-look-ahead design, a small number of
the most recent observed data are collected as a sliding win-
dow (i.e. data queue) for modeling an intermediate predictor
to predict the next period output. Once the next period’s
sampled datum is obtained, we drop a datum at the bottom
of the data queue and add the most recent sampled datum
into the data queue at the top position, thereby forming the
new data queue used for the next prediction. This process
continues until the task is terminated. To simplify compar-
ison of the tested methods as plotted curves, only the three
most representatives of our tested models are shown in the
figures. Thus GM, ARMA and the proposed QM-AFNG are
illustrated in Figs. 6 to 11, where “•” represents the sequen-
tial output of the GM prediction, “◦” represents the sequen-
tial output of the ARMA prediction and “− ∗ −” represents
the sequential output of the QM-AFNG prediction. All six
methods, however, are compared for goodness-of-fit in Ta-
bles 1 to 8.

First, as shown in Figs. 6 to 9, the forecast of international
stock price indices of four markets (New York Dow-Jones
Industrials Index, London FTSE-100 Index, Tokyo Nikkei
Index and Taipei Taiex Index) [30] have been tested with 36
points, 36 points and 12 points taken from the most recent
historical data as training, testing and validating samples, re-
spectively. In addition, comparative performance is obtained
by comparing the actual sampled values and the predicted
results of international stock price monthly indices over 48
months from Jan. 2002 to Dec. 2005 for (a) mean absolute
deviation (MAD), (b) mean absolute percent error (MAPE)
×100, (c) mean squared error (MSE) (unit = 105) and (d)
Theil’U inequality coefficient (Theil’U). Forecasting perfor-
mance of all six methods is summarized in Tables 1 to 4,
showing QM-AFNG obtains the best prediction results. The
goodness of fit of QM-AFNG prediction modeling for the
four markets is tested by the Ljung-Box Q-test [31] with p-
values of 0.5082, 0.3239, 0.4751 and 0.3702, where each
p-value is greater than the level of significance (0.05).

Figures 10 and 11 show comparative forecasts of two
typhoon moving paths (Nari typhoon for September 6–19,
2001 and Mindulle typhoon for June 28–July 3, 2004) [32].
Likewise, modeling for the second experiment takes train-
ing, testing and validating samples from the most recent his-
torical data by 14 points, 14 points and 7 points, respectively.
Performance evaluation is again made by comparison of the
actual and predicted values for MAD, MAPE, MSE and
Theil’U. Tables 5 to 8 summarize prediction performance of
our alternative methods and show that QM-AFNG achieves
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Fig. 6 Forecasts of monthly
New York D.J. industry index

Fig. 7 Forecasts of monthly
London FTSE-100 index

superior results. The goodness of fit of QM-AFNG predic-
tion modeling for the futures and options data is also tested
by Ljung-Box Q-test with p-values of 0.1948 and 0.2375, in
which each p-value is greater than the level of significance
(0.05).

4.3 Discussion

Computational complexity and predictive accuracy are two
critical issues which must be considered when modeling
complex time-series. Regarding the computational cost of
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Fig. 8 Forecasts of monthly
Tokyo Nikkei index

Fig. 9 Forecasts of monthly
Taipei Taiex index

the various models tested, the proposed method requires the
greatest computational effort to find the optimal ANFIS and
NGARCH combination. In fact, the amount of time required
depends on the computational complexity of the quantum
minimum searching algorithm. Consequently, quantum min-
imum searching costs around O(

√
N + ld2(N)) for search-

ing an unsorted database where an input string includes n

bits and N = 2n represents all possible states.
As indicated, (5) represents a plane in a three-dimensional

space where the two coefficients Coef 1 and Coef 2 can be
viewed as slopes associated with the plane. The second co-
efficient Coef 2 normally attains a very small real value, e.g.
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Fig. 10 Forecasts of Nari
typhoon moving path

Fig. 11 Forecasts of Mindulle
typhoon moving path

0.0528, which is used to adjust the conditional standard de-

viation of the residuals. In consequence, the first coefficient

Coef 1 gains a real value, e.g. 0.9472, which is always big-

ger than the second one. Since the predicted outputs are very

sensitive to the changes in slopes (i.e. coefficients), the co-

efficients should be captured as precisely as possible so as

not to lose the generality of a set of complex time-series

data. This will result in a best-fit model for a complex time-

series, improving prediction based on analysis of the series’

dynamic properties.

The experimental results have shown that the proposed

method produces the most satisfying solutions and thus is an
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Table 1 The comparison between different prediction models based on Mean Absolute Deviation (MAD) on international stock price monthly
indices

Methods Mean Absolute Deviation (MAD)

New York London Tokyo Taipei Average Standard

D.J. Industrials FTSE-100 Nikkei TAIEX Deviation

Index Index Index Index

GM 340.5970 153.8277 477.2157 355.1361 331.6941 133.4688

ARMA 339.7215 153.7628 439.8190 321.1152 313.6046 118.6282

BPNN 279.1350 134.5064 453.7069 277.5879 286.2341 130.6313

ARMAXNG 320.7695 152.3504 437.0319 317.9291 307.0202 117.0952

ANFIS 284.5725 145.3118 441.5919 296.1719 291.9120 121.0616

QM-AFNG 218.7492 111.3910 406.3961 239.9533 244.1224 121.9447

Table 2 The comparison between different prediction models based on Mean Absolute Percent Error (MAPE) on international stock price monthly
indices

Methods Mean Absolute Percent Error (unit = 10−2) (MAPE)

New York London Tokyo Taipei Average Standard

D.J. Industrials FTSE-100 Nikkei TAIEX Deviation

Index Index Index Index

GM 3.65 3.54 4.49 6.49 4.54 1.365903

ARMA 3.61 3.53 4.14 5.81 4.27 1.060138

BPNN 2.98 3.06 4.19 5.05 3.82 0.98877

ARMAXNG 3.52 3.50 4.12 5.77 4.23 1.067813

ANFIS 3.06 3.31 4.13 5.40 3.98 1.054214

QM-AFNG 2.51 2.63 3.68 4.27 3.27 0.847600

Table 3 The comparison between different prediction models based on Mean Squared Error (MSE) on international stock price monthly indices

Methods Mean Squared Error (unit = 105) (MSE)

New York London Tokyo Taipei Average Standard

D.J. Industrials FTSE-100 Nikkei TAIEX Deviation

Index Index Index Index

GM 1.9582 0.40063 3.2209 1.7472 1.8317 1.154842

ARMA 1.8230 0.38832 2.9384 1.4737 1.6559 1.050823

BPNN 1.2652 0.30656 3.0189 1.0461 1.4092 1.148844

ARMAXNG 1.8170 0.38527 2.9193 1.4772 1.6497 1.043777

ANFIS 1.3550 0.38494 2.8912 1.1683 1.4499 1.048775

QM-AFNG 0.9488 0.25307 2.2140 0.7886 1.0511 0.830373

attractive approach to modeling complex time-series. This
is because quantum-based minimization applied to global
minimum searching has greatly enhanced the optimal tuning
of the two coefficients for combining the above-mentioned
models, resulted in overcoming both the overshoot and
volatility clustering effects at the same time. Results show
highly improved predictive accuracy which significantly
outperforms such well-known systems as auto-regressive
moving-average, back-propagation neural network and sin-

gle fuzzy inference. These improved results are attributable
to improved accuracy of the coefficients when they are ob-
tained by quantum-based searching, due to the superior abil-
ity of quantum-based searching to find the best coefficients
from a large group of possible states.

Apparently quantum-based searching is definitely capa-
ble of handling the task of finding multiple parameters for
optimizing highly nonlinear model [33] very well. In or-
der to tackle overshoot predicted results and resolve volatil-
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Table 4 The comparison between different prediction models based on Theil’U Inequality Coefficient (Theil’U) on international stock price
monthly indices

Methods Theil’U Inequality Coefficient (Theil’U)

New York London Tokyo Taipei Average Standard

D.J. Industrials FTSE-100 Nikkei TAIEX Deviation

Index Index Index Index

GM 0.0435 0.0414 0.0501 0.0721 0.0518 0.014048

ARMA 0.0420 0.0408 0.0479 0.0662 0.0492 0.011734

BPNN 0.0349 0.0362 0.0485 0.0558 0.0439 0.010051

ARMAXNG 0.0409 0.0406 0.0477 0.0663 0.0489 0.012070

ANFIS 0.0362 0.0411 0.0475 0.0590 0.0460 0.009854

QM-AFNG 0.02877 0.0319 0.0389 0.0512 0.0377 0.009951

Table 5 The comparison between different prediction models based on Mean Absolute Deviation (MAD) on futures and options volumes monthly
indices of equity products

Methods Mean Absolute Deviations (MAD)

Nari Typhoon Mindulle Typhoon Average Standard

Moving Path Moving Path Deviation

GM 0.2053 0.1796 0.1925 0.018173

ARMA 0.3060 0.2197 0.2629 0.061023

BPNN 0.2784 0.6654 0.4719 0.27365

ARMAXNG 0.2772 0.6389 0.4581 0.255761

ANFIS 0.2210 0.5402 0.3806 0.225708

QM-AFNG 0.1884 0.0937 0.1411 0.066963

Table 6 The comparison between different prediction models based on Mean Absolute Percent Error (MAPE) on futures and options volumes
monthly indices of equity products

Methods Mean Absolute Percent Error (MAPE)

Nari Typhoon Mindulle Typhoon Average Standard

Moving Path Moving Path Deviation

GM 0.0047 0.0043 0.0045 0.000283

ARMA 0.0075 0.0056 0.0066 0.001344

BPNN 0.0059 0.0087 0.0073 0.00198

ARMAXNG 0.0055 0.0085 0.0070 0.002121

ANFIS 0.0050 0.0072 0.0061 0.001556

QM-AFNG 0.0043 0.0028 0.0036 0.001061

ity clustering effect simultaneously, the forecasting sys-
tem herein is well organized as a least structure to form a
linear combination of two distinct functions (models) for
simplicity purpose [14] and their combinative coefficients
have found optimally by quantum-based searching. Even
though only two optimal parameters have been discovered
to complete the model via quantum technique, this work has
stressed a novel approach in view of introducing the least
structure (i.e. the minimum cost) with excellent performance
(i.e. the best accuracy) according to the above discussion
over computational complexity and predictive accuracy.

5 Conclusions

When using the ANFIS approach alone, volatility clustering
degrades the effectiveness and efficiency of time series pre-
diction by inducing large residual error. Dealing with this
flaw has become an urgent issue. This study has proposed
a method that incorporates a nonlinear generalized autore-
gressive conditional heteroscedasticity (NGARCH) into an
ANFIS approach so as to correct the crucial problem of
time-varying conditional variance in residual errors. In other
words, we have constructed a linear combination of ANFIS
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Table 7 The comparison between different prediction models based on Mean Squared Error (MSE) on futures and options volumes monthly
indices of equity products

Methods Mean Squared Error (MSE)

Nari Typhoon Mindulle Typhoon Average Standard

Moving Path Moving Path Deviation

GM 0.0648 0.0703 0.0676 0.003889

ARMA 0.2165 0.1614 0.1890 0.038962

BPNN 0.1421 0.1405 0.1413 0.001131

ARMAXNG 0.1497 0.1812 0.1655 0.022274

ANFIS 0.0816 0.1372 0.1094 0.039315

QM-AFNG 0.0599 0.0575 0.0587 0.001697

Table 8 The comparison between different prediction models based on Theil’U Inequality Coefficient (Theil’U) on futures and options volumes
monthly indices of equity products

Methods Theil’U Inequality Coefficient (Theil’U)

Nari Typhoon Mindulle Typhoon Average Standard

Moving Path Moving Path Deviation

GM 0.0022 0.0023 0.0023 7.07E−05

ARMA 0.0034 0.0028 0.0031 0.000424

BPNN 0.0036 0.0025 0.0031 0.000778

ARMAXNG 0.0038 0.0029 0.0034 0.000636

ANFIS 0.0025 0.0023 0.0024 0.000141

QM-AFNG 0.0018 0.0017 0.0018 7.07E−05

and NGARCH as a time series predictor, in which the coef-
ficients of the combined methods are adapted automatically
by quantum minimization; by this adapting method, both the
enhancement of generalization and the stability of the pro-
posed predictor are achieved simultaneously. In this manner,
large residual error is significantly reduced because the ef-
fect of volatility clustering is regulated to a trivial level. In-
stead of an artificial neural network (ANN), quantum mini-
mization (QM) is employed to adjust and optimize the coef-
ficients for the linear combination of ANFIS and NGARCH,
since QM can perform this function with fewer sampled
data. Experimental comparison of a range of systems shows
that the ANFIS/NGARCH composite model adapted by QM
provides superior prediction accuracy and good computation
speed for irregular non-periodic short-term time series fore-
cast.
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