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Abstract This paper proposes a novel Memetic Algorithm
consisting of an Adaptive Evolutionary Algorithm (AEA)
with three Intelligent Mutation Local Searchers (IMLSs)
for designing optimal multidrug Structured Treatment Inter-
ruption (STI) therapies for Human Immunodeficiency Virus
(HIV) infection. The AEA is an evolutionary algorithm with
a dynamic parameter setting. The adaptive use of the lo-
cal searchers helps the evolutionary process in the search
of a global optimum. The adaptive rule is based on a phe-
notypical diversity measure of the population. The proposed
algorithm has been tested for determining optimal 750-day
pharmacological protocols for HIV patients. The pathogen-
esis of HIV is described by a system of differential equa-
tions including a model for an immune response. The mul-
tidrug therapies use reverse transcriptase inhibitor and pro-
tease inhibitor anti-HIV drugs. The medical protocol de-
signed by the proposed algorithm leads to a strong immune
response; the patient reaches a “healthy” state in one and
half years and after this the STI medications can be discon-
tinued. A comparison with a specific heuristic method and a
standard Genetic Algorithm (GA) has been performed. Un-
like the heuristic, the AEA with IMLSs does not impose any
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restrictions on the therapies in order to reduce the dimension
of the problem. Unlike the GA, the AEA with IMLSs can
overcome the problem of premature convergence to a subop-
timal medical treatment. The results show that the therapies
designed by the AEA lead to a “healthy” state faster than
with the other methods. The statistical analysis confirms the
computational effectiveness of the algorithm.

1 Introduction

Medical treatments for Human Immunodeficiency Virus
(HIV) have greatly improved during the last two decades.
Typically they can prolong the time before the onset of
Acquired Immune Deficiency Syndrome (AIDS) for tens
of years. Particularly, the prevailing medical practice is to
prescribe Highly Active Anti-Retroviral Therapy (HAART)
which can keep the viral load low and maintain high CD4+
T-cell counts. This therapy is a combination of three or more
drugs which are called “cocktails”. Some patients develop
resistance to one or more of the drugs in which case it is
necessary to change the composition of HAART. Some-
times there are severe side effects from the medications
which again lead to stopping or a change of medications.
The cost of HAART is often prohibitively high in devel-
oping countries. Due to these and other reasons, the search
for alternative treatments is very active. This paper studies
dynamic multidrug therapies that stimulate an immune re-
sponse which can suppress HIV by itself after the therapy
has ended.

Human immunodeficiency viruses infect CD4+ T-cells,
which are an important part of the human immune sys-
tem, and other target cells. The infected cells produce a
large number of viruses. Currently the two most impor-
tant categories of anti-HIV drugs are Reverse Transcriptase
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Inhibitors (RTIs) and Protease Inhibitors (PIs). A typical
HAART cocktail consists of one or more RTIs and a PI. The
reverse transcriptase inhibitors prevent HIV from infecting
cells by blocking the integration of the viral code into the
target cells. Protease inhibitors interfere with the replication
of viruses by infected cells. Viruses are still produced, but
they are non infectious, that is, they are not capable of infect-
ing cells. In practice, RTIs cannot block viruses completely
from infecting target cells. Also, some infectious viruses are
produced under a PI medication. Each drug has a maximum
efficacy which depends on many factors like virus strains
present. By varying the dosage it is possible to change the
efficacy of the medication between no effect and the maxi-
mum efficacy.

Many differential equation models of HIV pathogenesis
have been developed. Some of these models used to design
dynamical drug treatments are presented in [1–7]; see also
the collection [8]. In the long term pathogenesis of HIV an
immune response can play an important role. The models in
[3, 4] do not contain an immune response while the mod-
els in [1, 2, 5–7] do. The immune mechanism responding to
HIV is not yet very well understood and due to this the pro-
posed models vary. For our study of designing medical treat-
ments to stimulate a strong immune response it is mandatory
to model immune systems as well.

Already tens of papers have been written on using control
techniques for planning HIV therapies. The papers [1, 9–13]
consider only RTI medication while the papers [14, 15] con-
sider only PIs. In [16–19] all effects of a HAART medica-
tion are combined to one control variable in the model. In
[20–25] dynamical multidrug therapies based on RTIs and
PIs are designed. In these therapies the dosage of both med-
ications can change independently of each other. This paper
studies these kinds of dynamical multidrug therapies.

In the considered control approaches the amount of med-
ications can be either continuous or on-off-type. The second
type is called Structured Treatment Interruption (STI) and it
has been extensively studied in medical literature, see [26]
and references therein. The main argument to use STI med-
ications instead of continuously varying dosage is to lower
the risk of HIV mutating to strains which are resistant to the
current medication regime. Studies of continuously varying
medical therapies have been more common, see [1, 7, 9–12,
14, 15, 22, 23, 25, 27, 28]. Structured treatment interruption
schedules have been considered in [1, 17–20, 24]. Here STI
medications using RTIs and PIs are studied.

This paper considers the design of STI multidrug thera-
pies for HIV using the same model problem as in [20] where
the therapies were constructed using a heuristic optimiza-
tion method. The medical rationale of this model problem
is to find STIs which expose the immune system to such a
level of HIV and infected cells that it stimulates a strong im-
mune response. This is a delicate task, since too low a level

of HIV does not stimulate a response and too high a level
impairs it. With a strong response the immune system can
subdue the HIV after initial therapy. This was observed for
the first time in the case of “Berlin patient” who interrupted
HAART medications twice and after stopping medications
permanently the viral load stayed low [29]. The heuristic
method in [20] restricts the length of treatment periods and
off treatment periods to be a multiple of five days and then
it performs consecutively the optimization of STI for 30 day
subperiods until 750 days is reached. Due to these simplifi-
cations the heuristic can lead to suboptimal treatment sched-
ules far from an optimal. In order to increase the robustness
and quality of therapies, this paper proposes a computational
intelligence algorithm for the original model problem with-
out making any simplified restrictions.

In [24], a Genetic Algorithm (GA) was used to design
STI therapies based on a different HIV model when the car-
dinality of the combinatorial optimization problem was very
modest. The algorithm led to satisfactory results in this case.
Nevertheless, for a more complex and accurate model and
therefore for an objective function having a large number of
variables to be optimized, a GA could easily fail. Due to the
multimodality of the fitness landscape and the high cardinal-
ity of the decision space, a GA would probably stagnate or
converge to a suboptimal solution [30–34]. In order to avoid
these two undesirable behaviors, a proper tuning of the al-
gorithm’s parameters, such as the size of the population and
the probability of the mutation, would be required. On the
other hand, as happens in many hard to solve problems [30],
any static set of parameters having the values fixed during
an optimization run seems to be inappropriate for the fol-
lowing two reasons. The first one is that a parameter tuning
must be done by running trial simulations; this process, that
is in general time consuming, can lead to an unacceptable
calculation time for hard to solve problems. The second one
is that different values of parameters might be optimal at
different stages of the evolutionary process [35–40].

This paper proposes a Memetic approach [30, 41–43]
consisting of an Adaptive Evolutionary Algorithm (AEA)
with three Intelligent Mutation Local Searchers (IMLS) for
designing optimal STI multidrug HIV therapies. The adap-
tive rules are based on a dynamic measurement of the pheno-
typical diversity of the population and thus on the state of the
phenotypical convergence of the algorithm. The AEA adap-
tively chooses the size of the population and the probability
of mutation. Moreover it makes use of three Intelligent Mu-
tation Local Searchers [41] adaptively executed according
to the necessities of the evolutionary process. These three
local searchers have different features and they have the role
of increasing the population diversity [44], improving the
performance of some solutions during their “life-time” [45,
46], executing the “endgame” hill climb [45] to finalize the
optimization process [41]. The main idea of the AEA with
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IMLSs is to prevent the premature convergence and stag-
nation by a control based on the fitness values of the pop-
ulation. This control has to dynamically balance the needs
of exploration and exploitation taking into account the state
of the evolution [47]. The goal of this adaptive control is
achieved by means of the combination of two different algo-
rithmic philosophies: the use of adaptive conventional para-
meters (e.g. dynamic “aggressiveness” of the mutation) and
the adaptive use of Intelligent Mutation Local Searchers.

This paper is organized in the following six sections. Sec-
tion 2 describes a differential model for the pathogenesis of
HIV and formulates the problem of designing HIV therapies
as an optimization problem. Section 3 presents the heuristic
algorithm previously proposed to solve the problem formu-
lated in Sect. 2. Sections 4 and 5 describe and comment on
the proposed AEA with IMLSs analyzing the problem of the
parameter setting of the algorithm. Section 6 contains the
description of the experimental design, the optimized med-
ical therapy, the associated pathogenesis of HIV, and the al-
gorithmic performance of the AEA with IMLSs. A statistical
analysis showing the superiority of the proposed algorithm
is also presented in Sect. 6. The conclusions in Sect. 7 dis-
cuss the numerical results, the efficiency of each algorithmic
component and the practical implications on the medical
research of the novel computational intelligence algorithm
proposed here.

2 HIV model and optimization problem

In this paper, the pathogenesis of HIV is modeled with a sys-
tem of Ordinary Differential Equations (ODEs) described in
[1, 20, 21]. This model is a combination of the two target
models in [48] and the immune response model in [2]. It
captures many of the observed behavioral properties of long
term HIV dynamics described in [2, 48]. The time dependent

control variables are the efficacies of the Reverse Transcrip-
tase Inhibitor (RTI) and Protease Inhibitor (PI) medications
denoted by εα and εβ , respectively. The system of ODEs
describing the model reads

Ṫ1 = λ1 − d1T1 − (1 − εα)k1V T1,

Ṫ2 = λ2 − d2T2 − (1 − f εα)k2V T2,

Ṫ ∗
1 = (1 − εα)k1V T1 − δT ∗

1 − m1ET ∗
1 ,

Ṫ ∗
2 = (1 − f εα)k2V T2 − δT ∗

2 − m2ET ∗
2 ,

(1)
V̇ = (1 − εβ)NT δ(T ∗

1 + T ∗
2 ) − cV

− [(1 − εα)ρ1k1T1 + (1 − f εα)ρ2k2T2]V,

Ė = λE +
(

bE

T ∗
1 + T ∗

2

T ∗
1 + T ∗

2 + Kb

− dE

T ∗
1 + T ∗

2

T ∗
1 + T ∗

2 + Kd

)
E

− δEE.

Each state variable is associated with a compartment and
they have the following meanings: T1 is uninfected CD4+
T-cells, T2 is uninfected target cells of second kind, T ∗

1 is in-
fected T-cells, T ∗

2 is infected target cells of second kind, V is
human immunodeficiency viruses, and E is immune effec-
tors. We use milliliter (ml) as a volume unit. The parameter
values are given in Table 1. In practice, HIV medications are
not perfectly efficient, that is, some target cells are infected
under a RTI medication and some infectious viruses are pro-
duced under a PI medication. For the efficacies εα and εβ

this means that they satisfy the inequalities 0 ≤ εα ≤ εmax
α

and 0 ≤ εβ ≤ εmax
β for some maximum efficacies εmax

α < 1
and εmax

β < 1. In the considered model problem, their values
are εmax

α = 0.7 and εmax
β = 0.3.

Most of the terms in the model (1) have straightforward
interpretations [2, 48]. The diagram in Fig. 1 shows the in-
teractions between the compartments. The positive terms λ1,
λ2, and λE in the first, second, and last equation in (1) cor-
respond to the production of new T-cells, type 2 cells, and

Table 1 Parameter Values for
the HIV Model Value Unit Value Unit

λ1 10000 cells/ml day λ2 31.98 cells/ml day

d1 0.01 day−1 d2 0.01 day−1

k1 8.0 × 10−7 ml/viruses day k2 1.0 × 10−4 ml/viruses day

m1 1.0 × 10−5 ml/cells day m2 1.0 × 10−5 ml/cells day

ρ1 1 viruses/cells ρ2 1 viruses/cells

δ 0.7 day−1 c 13.0 day−1

f 0.34 – NT 100.0 viruses/cells

λE 1.0 cells/ml day δE 0.1 day−1

bE 0.3 day−1 dE 0.25 day−1

Kb 100 cells/ml Kd 500 cells/ml
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Fig. 1 A diagram of the HIV model, where the compartments are: T1 uninfected T-cells, T2 uninfected type 2 cells, T ∗
1 infected T-cells, T ∗

2 infected
type 2 cells, V viruses, and E immune effectors. The function r is r(T ∗

1 , T ∗
2 ) = bE(T ∗

1 + T ∗
2 )/(T ∗

1 + T ∗
2 + Kb) − dE(T ∗

1 + T ∗
2 )/(T ∗

1 + T ∗
2 + Kd)

immune effectors, respectively. For example, T-cells are pro-
duced by bone marrow. The negative terms containing coef-
ficients d1, d2, δ, c, and δE present the death/clearance of
cells/viruses. The HIV infection of T-cells is described by
the terms with (1 − εα)k1V T1. In the first equation of (1),
the minus sign means that infection decreases the number of
healthy cells. The product V T1 can be considered to present
the probability of HIV to encounter T-cells. Other product
terms have similar interpretations. The coefficient (1 − εα)

means that higher RTI efficacy reduces the probability of in-
fection. Particularly, a perfectly efficient RTI (εα = 1) would
completely prevent the infection of T-cells. The most com-
plicated term in the model is

(
bE

T ∗
1 + T ∗

2

T ∗
1 + T ∗

2 + Kb

− dE

T ∗
1 + T ∗

2

T ∗
1 + T ∗

2 + Kd

)
E.

The first quotient presents the stimulation of immune effec-
tor production due to the presence of infected cells while the
second quotient describes how a high amount of infected
cells impairs the production [2]. The concentration of in-
fected cells has to be in a parameter dependent range for the
production rate to be larger than the clearance rate, that is, to
have a strengthening immune response. Thus, the anti-HIV
therapy cannot be so strong that the amount of infected cells
falls below the range in which an immune response occurs.
On the other hand, if the medication is too inefficacious then
the response is impaired by a high concentration of infected
cells.

Without any medication (εα = εβ = 0) the model (1) has
several steady states, that is, such states that all time deriv-
atives Ṫ1, Ṫ2, Ṫ ∗

1 , Ṫ ∗
2 , V̇ , and Ė in (1) are zero. For the pa-

rameters given in Table 1 they are described and analyzed
in [1, 20]. A particularly interesting state is the so-called
“healthy” steady state given by

T1 = 967839 cells/ml, T2 = 621 cells/ml,

T ∗
1 = 76 cells/ml, T ∗

2 = 6 cells/ml, (2)

V = 415 viruses/ml, and E = 353108 cells/ml.

Under the model (1) and the given parameters a person with-
out an HIV infection has the T-cell count T1 equal to a mil-
lion cells per milliliter. The value of T1 in (2) is close to that
which is the reason for calling this state “healthy”. Further-
more, the viral load V in (2) is reasonably low.

A Highly Active Anti-Retroviral Therapy (HAART) can
lead to a low viral load, but it cannot completely clear HIV;
see [48], for example. Therefore, it is not a realistic goal
to try to eradicate HIV using therapy. It can be claimed
that a person infected with HIV can live in the “healthy”
state (2) for a long time without medical problems due to
HIV and without any medication for HIV. Hence, it would
be highly desirable to design multidrug therapies which
would steer the medical condition towards the “healthy”
state. Once a neighborhood of this state is reached the ther-
apy can be discontinued due to the local asymptotic stability
of (2).

Our aim is to find effective multidrug therapies by mini-
mizing a sum

J =
4∑

i=1

wiJi, (3)

where

J1 =
∫ T

0
V dt, J2 =

∫ T

0
E dt,

(4)

J3 =
∫ T

0
ε2
α dt, J4 =

∫ T

0
ε2
β dt.

In (4), T is a given time horizon, V is the number of free
viruses, E is the measure of the immune response, εα is the
efficacy of RTI, and εβ is the efficacy of PI. Thus, J1 and
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J2 measure the amount of viruses and immune effectors, re-
spectively, over the time interval [0, T ]. Similarly, J3 and J4

measure the amount of the RTI and PI medications, respec-
tively, over the same time interval. The minimization of J

can be seen as a scalarized multiobjective optimization prob-
lem [49]. Here the same weights w1 = 0.1, w2 = −1000,
w3 = w4 = 20000 in (3) are used as in [20]. Thus, the aim
is to minimize the amount of viruses and medications while
trying to maximize the immune response. The goal is to steer
the state to the “healthy” state by finding a dynamical med-
ication which minimizes J .

This paper considers Structured Treatment Interruption
(STI) schedules for medications. Thus, either a patient re-
ceives the maximum dose of a medicine or none at all. For
the schedule to be practical the decision to take medication
is made for one day intervals. Thus, the RTI medication can
be described by a vector α containing binary numbers telling
whether the RTI medication is taken on ith day (αi = 1) or
not (αi = 0), i = 0, . . . , T . In the same way the PI medica-
tion can be defined using a vector β . The efficacies change
linearly from one day to the next. These transition periods
can be considered as the time required for the drug to be
fully absorbed and conversely the time required for the drug
to be cleared from the body. Thus, at time t the efficacies
are

εα = [(i + 1 − t)αi + (t − i)αi+1]εmax
α

and

εβ = [(i + 1 − t)βi + (t − i)βi+1]εmax
β ,

where i = �t�, that is, i is the largest integer less than or
equal to t .

We denote the spaces for the vectors α and β by

DT +1
1 = {0, 1}T +1,

where the subscript 1 signifies that the medications are fixed
for one day periods and the superscript T + 1 means that the
medication decision has to be made for T + 1 days which
also includes the starting day for the medications. Now the
optimal control problem for finding a dynamical multidrug
therapy defined by the vectors α and β reads

min
α∈DT +1

1 ,β∈DT +1
1

J (α,β) (5)

subject to the state equation (1) and a given initial condition
which is chosen to be the acute infection

T1 = 106 cells/ml, T2 = 3198 cells/ml,

T ∗
1 = 10−4 cells/ml, T ∗

2 = 10−4 cells/ml, (6)

V = 1 viruses/ml, E = 10 cells/ml.

The time discretization of the state (1) is performed using
a second-order backward differentiation formula (BDF2)
[50]. For the numerical results 30 minute time steps are used,
that is, for each day 48 time steps are performed.

The cardinality of the decision space D = (DT +1
1 )2 is

given by card(D) = 22·(T +1), since it can be easily seen that
card(DT +1

1 ) = 2T +1. Thus, the cardinality of the decision
space is very high and this can make the solution of the
optimization problem very difficult. Moreover, since each
evaluation of the objective function J requires the solution
of a system of differential equations, it is computationally
expensive (each fitness evaluation takes about 0.2 seconds
on a PC with a 3 GHz processor). Finding a suitable opti-
mization algorithm is therefore a challenging task because
the global optimization process can be very time consuming
and moreover there is a quite high risk that, due to the pres-
ence of many variables, the algorithm could converge to a
suboptimal solution.

3 Background: the heuristic method

The solution to the optimization problem (5) was approx-
imated using the following heuristic method for 750 day
period (T = 750), proposed in [20]. The first step for the
heuristic is to restrict the therapies so that they can change
only every five days instead of every day. This means that
the optimization problem (5) is replaced by

min
α∈DT +1

5 ,β∈DT +1
5

J (α,β), (7)

where DT +1
5 is given by

DT +1
5 = {(0 0 0 0 0)T , (1 1 1 1 1)T }�(T +1)/5�,

and �(T + 1)/5� = 151 for T = 750. Therefore, the cardi-
nality of the decision space is reduced to 22�(T +1)/5�. Nev-
ertheless the cardinality is still very high and the reduced
problem (7) is difficult to solve.

The second step for the heuristic method is to consider a
sequence of subperiods instead of the whole period [0, T ].
More precisely, 750 days are divided into 25 separate 30 day
periods. Then, the heuristic optimizes the medications for
each subperiod consecutively by using the HIV pathogene-
sis from the previous subperiods with the optimized medica-
tions as medical history. In the following, we describe this
procedure more precisely. We denote the vectors defining
the RTI and PI medication schedules for the kth subperiod
by αk and βk , respectively. They both consist of 30 binary
numbers belonging to the space

D30
5 = {(0 0 0 0 0)T , (1 1 1 1 1)T }6.
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Now the optimization problem for the kth subperiod reads

min
αk∈D30

5 ,βk∈D30
5

J 30k(α,β),

where α =

⎛
⎜⎜⎜⎝

α1

...

αk

0

⎞
⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎝

β1

...

βk

0

⎞
⎟⎟⎟⎠ (8)

and J 30k is the same objective function as in (3) except that
the integrations are performed over the time interval [0,30k]
instead of [0, T ]. In (8), αi and βi , i = 1, . . . , k − 1, are the
optimized medications from the previous subperiods. Thus,
each optimization problem finds a medication schedule for
a 30 day interval while the medication up to that interval is
obtained from the previous optimizations. Each 30 day inter-
val contains six five day intervals. Thus, for one medication
there are 26 possible on-off-combinations for a 30 day inter-
val and the cardinality of the decision space for both med-
ications together is (26)2 = 4096. This cardinality is suffi-
ciently small so that an exhaustive search can be performed
to solve the optimization problems in (8) for k = 1, . . . ,25.

The heuristic method computes and compares all solu-
tions belonging to a drastically restricted decision space,
since its cardinality is reduced from 21502 to 25 × 212, that
is, by the factor 1.37 × 10447. This reduction is motivated
by empirical observations made with the specific case un-
der study. Therefore, it can lead to unsatisfactory results in
other cases. Under other model parameters corresponding to
a different person’s physiology the medication for five day
periods might not offer enough flexibility for stimulating
strong immune response. Also, the subperiod simplification
and fairly short subperiods may cause lack of robustness,
that is, the heuristic may fail in finding an existing medica-
tion schedule stimulating a strong immune response. Thus,
the use of the heuristic in a general case is questionable with-
out extensive further study.

4 Adaptive evolutionary algorithm with intelligent
mutation local searchers

In order to solve the problem in (5), a computational intelli-
gence approach is proposed in this paper. Instead of making
hypotheses reducing the cardinality of the decision space,
the optimal solution search is carried out in the original de-
cision space D by means of an intelligent evolutionary al-
gorithm which aims to find the global optimum of J (α,β)

without performing a large number of objective function
evaluations.

In [51] the methods of performing the control of the al-
gorithmic parameters are classified into three categories:

• deterministic parameter control: this rule modifies the
strategy parameter in a deterministic way without any
feedback from the search,

• adaptive parameter control: this takes place when there
is some form of feedback from the search that serves as
inputs to a mechanism used to determine the direction or
the magnitude of the change to the strategy parameter,

• self-adaptive parameter control: the parameters to be
adapted are encoded into the chromosomes and undergo
mutation and recombination.

Following the definition given in [51], an Adaptive Evolu-
tionary Algorithm (AEA) with Intelligent Mutation Local
Searchers (IMLS) [41] is proposed for performing the min-
imization of the objective function J in (3).

This AEA with IMLSs consists of the following. The first
set of sampling points (α,β) of the decision space D is cho-
sen pseudo-randomly under uniform distribution. This sam-
pling concerns a set of Spop pairs of vectors whose genes are
binary numbers which represent the on-off medication for
each day of the therapy. In our evolutionary process, each
individual is made up then of a pair of the chromosomes α

and β .
With the first generation, the fitness function J is calcu-

lated for all the individuals of the initial population and the
following index is calculated (see [34]):

ξ = min

{∣∣∣∣Jbest − Javg

Jbest

∣∣∣∣,1

}
(9)

where Jbest and Javg are respectively the best and average fit-
ness among the fitness values of the population. The index ξ

is a fitness based measurement of the phenotypical diversity
of the population and it can be seen as a measurement of the
state of the phenotypical convergence of the algorithm (see
for details [34] and [52]). If ξ ≈ 1 there is a high pheno-
typical diversity and therefore the convergence conditions
are far; if ξ ≈ 0 there is a low phenotypical diversity and
means that the convergence is approaching. The index ξ is
thus used, as will be shown, to adaptively tune the algorith-
mic parameters in order to handle the multivariate fitness
landscape of J .

At each subsequent generation, the individuals undergo
ranking parent selection [53, 54] using the stochastic uni-
versal sampling algorithm [55] and the selected individuals
undergo the two-point crossover [56]. This leads to Spop/2
crossovers at each generation which are performed in the
following way. For the first chromosome of two parent so-
lutions αpar1 and αpar2, two different cutting points are cho-
sen pseudo-randomly and each chromosome is divided in
three substrings. The crossover is performed exchanging the
middle substring between the chromosomes, as shown in the
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following example:

αpar1

αpar2

0 1 1
... 0 0 0 1 0 0

... 1

1 1 1
... 0 0 1 0 0 1

... 0
→

αoff1

αoff2

0 1 1
... 0 0 1 0 0 1

... 1

1 1 1
... 0 0 0 1 0 0

... 0

In the same way, the two-point crossover is also applied to
the chromosome β . The choice of the two point crossover
is due to one empirical consideration based on the physi-
cal meaning of the problem. In fact, it has been observed
that the best individuals contain many zeros in the tail of
the chromosome and many ones in the head of the chromo-
some. This genotype means that the patient is supposed to
take the medicines according to the medications α and β

at the beginning of the therapy and to discontinue the ther-
apy as soon as possible (the minimization of J3 and J4). It
is thus clear that a recombination operator which is explo-
rative in the same way on all the bits of the chromosomes
(e.g. the uniform crossover) risks spoiling the genotype of
good solutions and on the other hand a one point crossover
technique could turn out not explorative enough in such a
high cardinality decision space.

When all the crossovers are executed the mutation prob-
ability is calculated by means of the following formula:

pm = pmax
m · (1 − ξ). (10)

The role of this dynamic mutation probability is to increase
the explorative pressure in the presence of low phenotypi-
cal diversity (ξ ≈ 0) and to decrease it in the presence of
high phenotypical diversity (ξ ≈ 1). The value pmax

m is a pa-
rameter that has been tuned, as will be shown in Sect. 5, by
analyzing its effect on the algorithmic performance.

For each newly generated offspring individual a pseudo-
random number between 0 and 1 is generated by means
of a uniformly distributed probability function. The muta-
tion occurs on the offspring individual under analysis if this
pseudo-random number is smaller than pm.

The bit-wise mutation operator which changes one 0 to 1
and vice versa has been implemented making use of the mu-
tation clock operator. The position of the bit where the mu-
tation is applied depends on the position of the previously
mutated bit and on a random number returned by a proba-
bility function (for details see [57, 58]). The fitness function
J is then calculated for all the offspring individuals and the
population made up of both parents and offspring are sorted
according to the their fitness value.

In order to explore the neighborhood of the best solutions
and, therefore, to increase the search pressure in the direc-
tions of the search the AEA makes use also of three Intelli-
gent Mutation Local Searchers (IMLSs) [30, 41] adaptively
activated by a criterion based on the value of ξ . The condi-
tions for the use of the IMLSs are the following:

(a) If (ξ < 0.5)

the Increasing Diversity IMLS is applied to N ID =
round(pr ID ·Spop · (1− ξ)) individuals of the population
and the solutions returned by the IMLS are inserted in
the starting population. pr ID is a parameter to be tuned
(see Sect. 5) which represents the maximum proportion
of the population undergoing this IMLS.

(b) If (0.1 < ξ < 0.5)

the Greedy Descent IMLS is applied to one individual
of the population pseudo-randomly chosen.

(c) If (ξ < 0.01)

the Steepest Descent IMLS is applied to the best indi-
vidual of the population.

The three IMLS are described in the following.
The Increasing Diversity IMLS picks out one candidate

solution and pseudo-randomly changes 5 bits. The mutated
individual is inserted in the population with a probability
given by the following formula (see [44]):

P(accept) =
{

1, if 	E > 0,

ekn	E/(Jbest−Javg), otherwise
(11)

where 	E = |Joriginal − Jmutated| is the difference between
the fitness values of the individual before and after the muta-
tion and kn is a normalization factor. It is important to notice
that the newly mutated solution does not replace the original
one but it is simply inserted in the population. The condition
ξ < 0.5 means that this operator is activated when the phe-
notypical diversity of the individuals is decreasing and then
the phenotypical convergence is approaching. The meaning
of this local searcher is that, in the case of decreasing of the
phenotypical diversity (it could correspond to a convergence
to a suboptimal solution) some good individuals which in-
crease the population diversity are introduced. It can be ob-
served from (11) that the Increasing Diversity IMLS could
accept solutions which are not as good. This feature makes
this local searcher highly explorative and its role can be cru-
cial in a condition of suboptimal convergence. This IMLS
is computationally rather cheap (each application costs one
fitness evaluation) and it is applied to several individuals of
the population taking into account the current phenotypical
diversity. The maximum population rate which undergo the
Increasing Diversity IMLS is given by pr ID (see Sect. 5).

The Greedy Descent IMLS picks out one candidate solu-
tion and pseudo-randomly changes 2 bits. If the mutation is
successful, meaning the mutated individual has better per-
formance than the original one, the newly mutated individ-
ual replaces the original one and the local searcher exits
from the loop, otherwise 2 other bits are chosen pseudo-
randomly and the process is repeated for the original indi-
vidual. A stop criterion ensures the exit from the loop after a
certain number (in our case 50) of unsuccessful trials. This
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local searcher aims to help the evolutionary process improv-
ing in a Lamarckian logic the performance of some candi-
date solutions. The greedy ascent pivot rule ensures that the
computational cost of this operator will not be excessive.
The conditions concerning the coefficient ξ (0.1 < ξ < 0.5)
have been given according to the following semi-empirical
consideration. If ξ ≥ 0.5 the phenotypical diversity is rather
high and the evolutionary operators do not really need the
help of a local searcher, that can turn out unnecessary, in
consideration of its computational cost compared to the cost
of one ordinary mutation. If 0.1 < ξ < 0.5, the Greedy De-
scent IMLS is really effective because it suggests to the evo-
lutionary process new good search directions. If ξ ≤ 0.1 the
phenotypical diversity is quite low and therefore a conver-
gence, to an optimal or suboptimal solution, is likely ap-
proaching. Since due to its inner structure a greedy local
searcher could suggest a wrong search direction [59], its use
in phenotypical convergence conditions could spoil the right
search direction taken by the evolutionary algorithm. It is
important to remark that if ξ ≈ 0, the role of exploring the
decision space in order to jump out from a possible subop-
timal basin of attraction is entrusted on an aggressive muta-
tion probability, on the Increasing Diversity IMLS and, as it
will be shown, on a large population size that are for this aim
more effective and computationally cheaper than the Greedy
Descent IMLS. Each application of this IMLS has a compu-
tational cost compared between 1 and 50 fitness evaluations.

The Steepest Descent IMLS works on the best individ-
ual of the population. For a given solution (α,β), each bit
is flipped one-by-one and, thus, an auxiliary population of
2 · (T +1) individuals having a genotype differing by one bit
(hamming distance equal to one) from the starting solution is
obtained. The value of the fitness function J is calculated for
all these 2 · (T +1) individuals. If the best individual among
the mutated ones has a higher fitness value than the starting
solution, the replacement occurs. Otherwise, this operator
fails and there is no replacement. The condition ξ < 0.01
is given because of two reasons: the first is that this opera-
tor is computationally very expensive and the use of it must
be done only in extreme conditions, the second is that this
operator aims to “end the game” [45] in the optimization
process. In fact, if ξ < 0.01 the phenotypical convergence
is almost reached notwithstanding the aggressive mutation,
the Increasing Diversity IMLS and the large population size.
When the convergence is approaching an evolutionary algo-
rithm is less efficient than at the beginning of the optimiza-
tion process [30] and therefore, even if expensive (each ap-
plication of this IMLS costs 2 · (T + 1) fitness evaluations),
the Steepest Descent IMLS can likely be more efficient (and
quicker) than several generations of evolutionary algorithm.

The main idea is that local searchers with different fea-
tures (e.g. different pivot rule and individual of application)

should explore the decision space from different perspec-
tives [44, 59–61] following the necessities of the optimiza-
tion process. By the pivot rule of a local searcher we mean
the criteria for accepting an improving point [41]. A local
searcher employing a steepest descent pivot rule selects the
search direction after having explored the entire neighbor-
hood of the current best point. A local searcher employing a
greedy descent pivot rule selects the search direction as soon
as an improved neighbor solution has been found.

These IMLSs are supposed to “compete and cooperate”
[62] in order to support the evolutionary algorithm in con-
vergence to the global optimum. The IMLSs work on the
same population of individuals attempting to enhance the
performance one or more solutions and thus “cooperate” in
the search for the global optimum. At the same time, the
IMLSs have different working principles in detecting the
search directions and thus they “compete” in the sense that
the individuals enhanced by the local searchers will compete
in surviving in the subsequent generation.

It is important to remark that the three IMLSs work on
a different amount of bits. The exact number of bits (5,
2, 1) has been set on the basis of preliminary tests and ac-
cording to the following algorithmic philosophy. The idea is
that the Increasing Diversity IMLS, which is supposed to be
the most explorative operator, works on 5 bits, the Steepest
Descent IMLS, which is supposed to be the most exploita-
tive operator,works on only 1 bit (it tries to enhance one so-
lution exploiting almost all the genotype), the Greedy De-
scent IMLS, which is supposed to be between the previous
ones in terms of exploration/exploitation, works on 2 bits.

The value of the population size is then updated in or-
der to perform the survivor selection. The population size is
calculated according the following formula:

Spop = Sf
pop + Sv

pop · (1 − ξ), (12)

where Sf
pop and Sv

pop are the fixed minimum and maximum
sizes of the variable population, respectively. The coeffi-
cient ξ is then used to dynamically set the population size
[35, 38, 63] in order to inhibit premature convergence and
stagnation. If ξ ≈ 1 the population is phenotypically highly
diverse and, thus, a small number of solutions need to be
exploited, if ξ ≈ 0 the population is converging and a larger
population size is required to increase the exploration. The
Spop best individuals of the population are thus selected to
survive for the subsequent generation [64, 65].

The index ξ is then updated according to (9) for the sub-
sequent generation. The algorithm is stopped when ξ = 0
and the Steepest Descent IMLS fails for a given number of
generations (in our case 10).

As explained in [34], the index ξ is fitness based and thus
does not ensure a correct guess on the genotypical conver-
gence of the algorithm. In other words, it would return the
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Fig. 2 Pseudocode of the AEA with IMLSs

value 0 if all the population is made up of individuals hav-
ing different genotypes but the same fitness values (plateau
areas of the decision space, saddle points etc.). On the other
hand, this index requires a low computational cost compared
to any genotypical indicator (e.g. measurement of the geno-
typic distance in fitness sharing) and it is very easy to calcu-
late. Moreover, if ξ ≈ 1 guessing that the algorithm requires
a higher exploitation is always correct since this condition
means that the best individual has much better performance
than the average. In this case it is desirable to exploit the
available genotype by reducing the population size and the
proportion of individuals undergoing mutation. On the con-
trary, the condition ξ ≈ 0 always means that the population
is made up of individuals having very similar performance.
In this case the crossover would likely not let a better indi-
vidual be generated and thus a higher exploration is required
using mutation, a large population size and local searchers.

Finally, it is important to remark that a wrong guess on
the convergence does not necessarily imply failure of the al-
gorithm. If for example the population is entirely contained
in a suboptimal plateau of the fitness landscape, the AEA
with IMLSs tries to use the maximum of the explorative re-
sources for escaping this undesired condition and hopefully
detect solutions having higher performance. More specifi-
cally, a large population size gives the algorithm more avail-
able genotypes, an aggressive mutation gives more chances

to find a better solution outside the plateau, the Increasing
Diversity IMLS attempts to explore new genotypes and thus
new areas of the decision space.

Figure 2 shows the pseudocode of the AEA with IMLSs.

5 Parameter setting

As highlighted in [30], to implement an adaptive system for
parameters control does not necessarily mean that the al-
gorithms contain fewer parameters compared to a standard
evolutionary algorithm (as in the case of [63]). On the other
hand, the algorithmic performance of an adaptive algorithm
is not so sensitive to its parameters [30] unlike the traditional
evolutionary algorithms whose success is heavily influenced
by a proper parameter setting (e.g. population size, mutation
probability etc.). In our case two parameters, that is pmax

m

and pr ID, have been tuned by performing test simulations.
The parameter under study has been changed while the other
parameters have been left unchanged.

For pmax
m in (10), the AEA with IMLSs has been run for

10000 fitness evaluations for the values 0.1, 0.2, 0.3, 0.4,
0.5, 0.6. During these runs pr ID has been kept constant and
equal to 0.2. The AEA with IMLSs has been run 5 times for
each of the previous values. For these six values of pmax

m ,
the best fitness values have been saved at the end of each
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generation. The Average Best Fitness is defined here as the
average value over the 5 available simulations for the best
fitness values at each generation. Figure 3 shows the com-
parison of the algorithmic performance for the several val-
ues of pmax

m under examination. Since the population size is
variable, the algorithmic performance is expressed in terms
of fitness evaluations. The results show that, even though the
trends are rather similar among each other, the best perfor-
mance has been obtained for pmax

m = 0.4 and this value has
therefore been chosen. According to our interpretation, the
values 0.1,0.2,0.3 lead to better results in the first genera-
tions because the algorithm is more exploitative but this ef-
fect is gradually reduced in the following generations when
a higher explorative pressure is required. As shown, after
10000 fitness evaluations the worst results are for pmax

m =
0.1. In this case, it is quite evident that the algorithm could
prematurely converge. With the values 0.5,0.6, the improve-
ments are slower than in the case with pmax

m = 0.4. This is
probably due to an explorative mutation which spoils the
genotype of some good candidate solutions.

A similar simulation test has been run in order to tune
pr ID (pmax

m has been kept constant and equal to 0.4). The
algorithmic performance has been studied for pr ID equal
to 0.1,0.2,0.3 as shown in Fig. 4. Also in this case, for

Fig. 3 Algorithmic performance for several values of pmax
m

Fig. 4 Algorithmic performance for several values of pr ID

each value of pr ID, 5 simulations for 10000 fitness evalu-
ations have been performed. The results show that the al-
gorithm with pr ID = 0.1 is better at the beginning of the
optimization process but the choice pr ID = 0.2 seems to be
much better after the first generations. Moreover the choice
pr ID = 0.2 led to better results than pr ID = 0.3 for all of the
simulation. It is important to remark that pr ID = 0.3 means
that at most 30% of the population undergoes the Increas-
ing Diversity IMLS. This operator is computationally rather
cheap but still needs to perform one fitness evaluation each
time it is activated.

The results show that the value 0.3 is too high. This is
probably because the Increasing Diversity IMLS fails too
many times and does not produce a sufficient pay-off for
the computational resources spent. The value 0.1 leads to an
algorithm which is not explorative enough and after a first
stage which exploits the initial population diversity it slows
down. The value 0.2 for pr ID has therefore been chosen.

6 Numerical results

Here STI therapies are designed and compared for a 750 day
time horizon after an acute HIV infection using the heuristic
method described in Sect. 3, the AEA with IMLSs and a
standard GA. The algorithmic parameters related to the GA
and the AEA with IMLSs are shown in Table 2.

The standard GA makes use of the same parent selec-
tion, crossover technique and mutation technique described
for the AEA with IMLSs in Sect. 4. Moreover the GA has
fixed population size and mutation probability. Each of these
values has been set as the mean value of the corresponding
range of variability for the AEA with IMLSs (see Table 2).
The standard GA does not make use of any IMLS.

For both the standard GA and the AEA with IMLSs 50
experiments have been performed. The heuristic method has
been performed only once since it is a deterministic method
and the fitness is not noisy. Figure 5 shows the optimized

Table 2 GA and AEA with IMLSs parameter setting

Parameter GA AEA with IMLSs

Size of initial 1000 1000

population pseudo-

randomly generated

Population size 450 dynamic

for subsequent between 100 and 800

generations

Mutation 0.2 dynamic

probability between 0 and 0.4

Fitness 100 000 100 000

evaluations
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Fig. 5 Optimal STI multidrug
medication for HIV obtained by
the heuristic method.
(a) Reverse transcriptase
inhibitor (RTI) medication.
(b) Protease inhibitor (PI)
medication (a)

(b)

Fig. 6 Optimal STI multidrug
medication for HIV obtained by
the GA. (a) Reverse
transcriptase inhibitor (RTI)
medication. (b) Protease
inhibitor (PI) medication

(a)

(b)

Fig. 7 Optimal STI multidrug
medication for HIV obtained by
the AEA with IMLSs.
(a) Reverse transcriptase
inhibitor (RTI) medication.
(b) Protease inhibitor (PI)
medication. (a)

(b)

medications obtained using the heuristic method. Figures 6
and 7 show the best optimization results over the 50 ex-
periments for the GA, and the AEA with IMLSs, respec-
tively. The upper plots show the vectors α defining the Re-
verse Transcriptase Inhibitor (RTI) medication and the lower
plots show the vectors β the Protease Inhibitor (PI) medica-
tion. The therapies obtained using the GA and the AEA with
IMLSs start after a few days. The heuristic proposes a ther-
apy starting immediately after the HIV infection which is
probably a suboptimal solution caused by the limitation to
consider only 30 day subperiods. The medications given by
the GA do not have clear medication and rest periods, but the
two other medications have some more apparent on and off
periods. Another measure of the quality of medications apart

from the objective function J is how early medications can
be discontinued. For all therapies the last medications are
PIs. The medications given by the heuristic method and the
AEA with IMLSs are discontinued after 590 and 546 days,
respectively, while the medication suggested by the GA re-
quires more than 700 days. Thus, in this sense the AEA with
IMLSs gives more effective medication than the heuristic
and the solution given by the GA is far from optimal.

Table 3 shows the values of the objective functions Ji

and the weighted sum objective function J for the heuristic
method and the best results over the 50 experiments for the
standard GA and the AEA with IMLSs. The results in Ta-
ble 3 show that the value of the objective function J is much
lower in the case of the AEA with IMLSs. According to the
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Table 3 Values of the
multi-objective function and its
components

J1 J2 J3 J4 J

[107] [108] [1011]

Heuristic 1.2924 0.7057 204.8215 32.2203 −0.7057

GA 2.5457 0.4430 159.4852 25.1438 −0.4429

AEA with IMLSs 0.9307 1.0135 170.1952 28.3505 −1.0134

(a) (b)

(c) (d)

(e) (f)

Fig. 8 STI control solutions obtained by the GA, the heuristic method and the AEA. (a) Uninfected CD4+ T-cells. (b) Uninfected target cells of
second kind. (c) Infected CD4+ T-cells. (d) Infected target cells of second kind. (e) Viral load. (f) Immune response
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weighted sum fitness J , the AEA with IMLSs therefore has
clearly outperformed both the heuristic and the GA. More-
over, considering that J1, J3 and J4 have to be minimized
and, on the contrary, J2 has to be maximized as the weight
of this objective function is negative, the solution given by
the AEA with IMLSs strictly dominates the solution given
by the heuristic method. The comparison between the AEA
with IMLSs and the GA shows that, although the value of
J for the AEA with IMLSs is more than twice as small,
this solution does not dominate the one given by the GA.
In fact, the solution given by the GA offers slightly better
performance in terms of the quantity of medications (J3 and
J4) that the patient should take but much worse performance
than the AEA with IMLSs with respect to viruses and im-
mune effectors. For the considered STI therapies it is much
more important that the therapy stimulates a strong immune
response quickly than the minimal use of medications. In
this sense the fact that the GA proposes a smaller quantity
of medications than the AEA with IMLSs is of minor inter-
est.

Figure 8 shows the behavior of the state variables in the
model (1) for the optimized STI medications. The therapies
proposed by the heuristic method and the AEA with IMLSs
causes clear dips in the amount of uninfected T-cells dur-
ing the first 50 days and then again around the 280th day
and the corresponding abrupt increases in the infected T-
cells and viruses. For the therapy designed by the GA the
behavior of the infected and uninfected T-cells as well as
viruses is much more oscillatory due to short breaks in the
medications. The last plot in Fig. 8 shows clearly the ther-
apy given by the AEA with IMLSs stimulates a stronger im-
mune response than the two other optimized therapies. In
particular, Fig. 8(f) shows that in the AEA with IMLSs de-
signed therapy the amount of immune effectors E reach the
neighborhood of the steady state value 353108 cells/ml af-
ter about 550 days while for the other therapies designed
by the heuristic method and the GA this require around 600
and 700 days, respectively. Thus, the steady state value of
E is approximately reached when the medications are dis-
continued. The therapy proposed by the AEA with IMLSs is
thus very beneficial for the patient since it leads to a quick
immune response (the healthy state is reached within 550
days) and it allows interruption of the medical treatment in
a rather short time (546 days) which reduces possible side
effects. In this sense, the medical protocol proposed in this
paper is a valuable improvement over that in [20].

In order to analyze the algorithmic behavior of the AEA
with IMLSs, the diagram of the coefficient ξ vs fitness eval-
uation is shown in Fig. 9 in the best case over the 50 ex-
periments. In Fig. 9 also shown is each threshold value for
activating the three IMLSs. As expected the trend of ξ is os-
cillatory and it is shown how the algorithm converges to the
final solution when ξ approaches zero. It is important to no-
tice that from the given trend of ξ it is possible to determine

Fig. 9 Behavior of ξ in the most successful experiment

Fig. 10 Behavior of Spop and pm in the most successful experiment

Fig. 11 Behavior of N ID in the most successful experiment

the population size, the mutation probability and the number
of individuals undergoing Increasing Diversity IMLS. Fig-
ure 10 shows the behavior of the population size Spop and
the mutation probability pm for the same generations shown
in Fig. 9. Since the trend of Spop and pm are proportional,
they are represented in Fig. 10 by a unique trace and two
differently scaled y-axes.

Figure 11 shows the trend, for the same most successful
experiment over the 50 carried out, of the number N ID of
individuals undergoing Increasing Diversity IMLS.
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Table 4 Statistical comparison
of the performance of the GA
and the AEA with IMLSs

Method Jmax Jmin J̄ σ σ/J̄

GA −4.1454 × 1010 −4.4290 × 1010 −4.2806 × 1010 8.7098 × 108 0.0203

AEA with IMLSs −9.9252 × 1010 −1.0134 × 1011 −1.0006 × 1011 4.5854 × 108 0.0046

Fig. 12 Comparison of the algorithmic performance between the AEA
with IMLSs and the standard GA

As mentioned above, 50 experiments have been per-
formed for both the standard GA and the AEA with IMLSs.
Each of these experiments have been stopped after 100 000
fitness evaluations. For each experiment and for both the GA
and the AEA with IMLSs the best fitness values at the end
of each generation and at the end of the optimization process
have been saved. The average best fitness values (see Sect. 5)
have been calculated over the 50 available data for each gen-
eration. Figure 12 shows and compares the algorithmic per-
formance of the GA and the AEA with IMLSs. Figure 12
shows that for all 50 experiments the standard GA prema-
turely converged after about 60 000 fitness evaluations to a
suboptimal solution. On the contrary, the AEA with IMLSs
continued the optimization process without being trapped in
a basin of attraction. In order to make a comparison between
the GA and the AEA with IMLSs, the best fitness value af-
ter 100 000 has been averaged over the 50 experiments thus
obtaining a final average optimal J̄ . The values of standard
deviation, absolute (σ ) and relative to J̄ (σ/J̄ ) have also
been given in Table 4. The final fitness values have also been
reported for the values of the maximum (worst) Jmax and
minimum (best) Jmin, over these 50 experiments.

The results show that, according the average best fitness
value J̄ , the AEA with IMLSs outperforms the standard GA.
Moreover the value of standard deviation is smaller in the
case of the AEA with IMLSs and therefore the proposed
algorithm is probably more robust than the standard GA.

According to our interpretation, the smaller value of σ is
mainly due to the use of the local searchers and in partic-
ular to the Steepest Descent IMLS. As highlighted above,
the evolutionary algorithms are efficient in finding solutions

near the optimum but they are not very efficient in finaliz-
ing the optimization process [30]. In our case, the Steepest
Descent IMLS deterministically finalizes the optimization
process (with steepest descent pivot rule) and thus ensures
that it will return to the same optimal value for different so-
lutions falling in the same basin of attraction. Therefore, if
over different simulations this local searcher processed solu-
tions belonging to the same basin of attraction, it converged
every time to solutions that possess the same fitness value.
This would explain the small standard deviation in Table 4.

It is also interesting to note that the GA tends to prema-
turely converge to a set of solutions, similar among each
other and having a fitness value J ≈ 4.3 × 1010. In fact, as
can be seen from Table 4, the value of σ is also relatively
small for the GA. This effect is probably due to the presence
of a strong basin of attraction in the fitness landscape which
attracts the population of the GA to converge on it.

The values of Jmin and Jmax have been reported in order
to compare the performance of the two algorithms in terms
of tolerance intervals. Unfortunately the data generated by
an optimization method cannot be approximated by a nor-
mal (Gaussian) distribution and therefore a general analy-
sis must be carried out. Well known tolerance interval esti-
mates, for a certain confidence level, are the ranges which
should contain a certain percentage of random data. If this
range is bounded from both the sides we talk about two-
sided tolerance interval. If this range is bounded just from
one side then we talk about one-sided tolerance interval. In
other words, for N random values it is possible to predict,
with an established confidence level, the proportion of the M

forthcoming random values which will fall within the inter-
val bounded by the smallest and the largest random values
among the N values previously sampled (two-sided toler-
ance interval). Analogously, it is possible to predict, with an
established confidence level, the proportion of the M forth-
coming random values which will be smaller than the largest
value among the N previously sampled or larger than the
smallest value among the N previously sampled (one-sided
tolerance interval).

In our application, the range is given ([Jmin, Jmax]), the
confidence level is established and the corresponding pro-
portion of data can be calculated. Following the procedure
given in [66, 67] for a two-sided tolerance interval the pro-
portion γ of a set of data which falls within a given interval
with a given confidence level δ has been determined by:

γ ≈ 1 − a

n
, (13)
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where n is the number of available samples and a is the pos-
itive root of the equation

(1 + a) − (1 − δ) · ea = 0. (14)

In the case of one-sided tolerance interval

γ ≈ 1 − b

n
, (15)

where

b = − ln(1 − δ). (16)

In our case, taking into account that n = 50, it is possible
to state that with a confidence level δ = 0.95 a proportion
γ = 0.9086 of data falls within the interval [Jmin, Jmax].
This value of γ is obviously valid for both the GA and the
AEA with IMLSs. In other words, since most of the data
would fall within the tolerance intervals and since the Jmin

for the GA is much larger than the Jmax for the AEA with
IMLSs, it is possible to state that it is highly improbable that
the GA could outperform the AEA with IMLSs even once.
Moreover, considering the one-sided tolerance interval, with
a confidence level δ = 0.95 a proportion γ = 0.9418 of data
returned by the AEA with IMLSs will not be larger than
Jmax. Since Jmax is much smaller than the optimal value
given by the heuristic (see Table 3), it is also quite improb-
able that the AEA with IMLSs gives worse results than the
heuristic.

7 Conclusion

This paper presented an Adaptive Evolutionary Algorithm
(AEA) with three Intelligent Mutation Local Searchers
(IMLSs) for designing optimal Structured Treatment Inter-
ruption (STI) multidrug therapies for HIV. The AEA with
IMLSs minimizes a weighted sum objective function based
on a dynamic model of the HIV pathogenesis in a human
body. The model includes two different types of target cells,
infected cells, viruses and an immune response. Further-
more, it describes the effects of the Reverse Transcriptase
Inhibitor (RTI) and Protease Inhibitor (PI) therapies which
are currently the most commonly used anti-HIV medica-
tions. The AEA with IMLSs is able to construct a medical
protocol for an HIV patient that stimulates a patient’s im-
mune response so much that medical therapy can be discon-
tinued after one and a half years.

The results given by the AEA with IMLSs and a stan-
dard GA have been compared with the results presented in
the literature which were obtained using a heuristic method.
The AEA with IMLSs outperformed both other approaches
in terms of the optimality of the solution and therefore led to
a more efficient medication schedule. In particular, the med-
ical treatment designed by the proposed algorithm is very

promising since it leads to a strong immune response and a
“healthy” medical condition after one and half years. More-
over the proposed protocol allows the patient to discontinue
the therapy about one month and a half earlier than with the
protocol given by the heuristic method and about six months
earlier than with the protocol designed by the standard GA.
This earlier termination of medications reduces the likeli-
hood of side effects caused by drugs. In addition, the overall
amount of medicines in the protocol designed by the AEA
with IMLSs is smaller than in the one obtained by the heuris-
tic method in the literature. This leads to a reduced cost of
treatment which is particularly helpful in developing coun-
tries.

From the optimization point of view the results are also
good. The AEA with IMLSs does not impose any restric-
tions for the structure of the therapies like the heuristic
method does based on specific properties of the problem un-
der study. The problems related to stagnation and conver-
gence to a suboptimal solution are solved using the adap-
tation and the IMLSs. As the numerical results show, due
to the size of the decision space and to the behavior of the
fitness function, a standard GA usually converges to a sub-
optimal solution. For this class of problems the results show
that the AEA with IMLSs has the following properties. The
implemented adaptation can dynamically balance the explo-
ration and exploitation following the needs of the evolution-
ary process and, therefore, preventing stagnation and prema-
ture convergence. The Increasing Diversity IMLS and the
related adaptive rule can increase the population diversity
when it is required, “refreshing” the genotype of the popula-
tion. The Greedy Descent IMLS assists in the optimization
to finding new promising search directions using a Lamarck-
ian logic. The Steepest Descent IMLS helps the algorithm to
find the optimal solution when population is rather near to it
which is usually a difficult task for evolutionary algorithms.
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