
Appl Intell (2008) 28: 195–205
DOI 10.1007/s10489-007-0062-2

Statistical properties analysis of real world tournament
selection in genetic algorithms

S. Lee · S. Soak · K. Kim · H. Park · M. Jeon

Published online: 16 June 2007
© Springer Science+Business Media, LLC 2007

Abstract Genetic algorithms (GAs) are probabilistic opti-
mization methods based on the biological principle of nat-
ural evolution. One of the important operators in GAs is
the selection strategy for obtaining better solutions. Specif-
ically, finding a balance between the selection pressure and
diversity is a critical issue in designing an efficient selec-
tion strategy. To this extent, the recently proposed real world
tournament selection (RWTS) method has showed good per-
formance in various benchmark problems. In this paper, we
focus on analyzing characteristics of RWTS from the view-
point of both the selection probabilities and stochastic sam-
pling properties in order to provide a rational explanation
for why RWTS provides improved performance. Statistical
experimental results show that RWTS has a higher selection
pressure with a relatively small loss of diversity and higher
sampling accuracy than conventional tournament selection.
The performance tests in a traveling salesman problem fur-
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ther confirm that the comparatively higher pressure and sam-
pling accuracy, which are inherent in RWTS, can enhance the
performance in the selection strategy.
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Diversity

1 Introduction

Genetic algorithms (GAs) are stochastic techniques based
on the mechanisms of natural selection and genetics; since
the introduction of GAs by Holland [1], they have been
widely used in various research areas. One of the most im-
portant issues in genetic algorithms is the tradeoff between
exploration and exploitation. This tradeoff is reflected in
three genetic operators: recombination, mutation, and se-
lection. Generally, recombination and mutation explore the
search space, whereas selection reduces the search area
within the population by discarding poor solutions. How-
ever, selection is of primary importance because it is com-
pletely independent of the other GAs, and the fact that it
affects both exploitation and exploration [17]. Therefore, it
is also important to find a balance between exploration (i.e.,
poor solutions must have chance to go to the next gener-
ation) and exploitation (i.e., good solutions go to the next
generation more frequently than poor solutions) within the
mechanism of the selection strategy. In GAs, there are var-
ious selection methods, such as proportionate selection [1],
linear ranking selection (LRS) [2], exponential ranking se-
lection (ERS) [3], and tournament selection (TS) [4]. Among
these selection schemes, TS is the most popular in genetic
algorithms due to its efficiency and simple implementation.



196 S. Lee al.

Recently, Soak et al. [5–7] introduced a real world tour-
nament selection (RWTS) scheme that can mimic an ac-
tual sporting tournament. Conventional TS selects only one
pair of chromosomes from a population, and only the win-
ner goes into the mating pool, while whole population is
maintained in the competition pool. However, RWTS pairs
all chromosomes in the population, and then only the win-
ners of each competition go into the mating and com-
petition pools for the next level (see Fig. 1). In [5–8],
RWTS was tested for various benchmark problems such as
tree-based optimization, function optimization, multidimen-
sional knapsack, and traveling salesman problems. Experi-
mental results showed that RWTS provides a superior perfor-
mance compared to the conventional TS in all test instances,
except when using edge set encoding in tree-based optimiza-
tion problems, with respect to the solution quality, standard
deviation, and computational time. However, these studies
did not provide any detailed mathematical analysis of RWTS
[5–7], and Lee et al. [8] gave only probability distribution of
RWTS.

The selection process can be analyzed as a two-step pro-
cedure consisting of assigning selection probabilities and
applying a sampling strategy. The analysis of selection prob-
abilities is well described in Julstrom [9] and Bäck [10].
For instance, Julstrom has suggested a selection probability
according to each individual’s rank for two kinds of rank-
based selections and four kinds of tournament selections,
and also shown the equivalence between rank-based selec-
tion and tournament selection at specific parameter settings.
Moreover, we have already derived a numerical formula that
suggests that the selection probability of RWTS can be cal-
culated according to an individual’s rank [8].

An extensive survey regarding sampling strategies such
as roulette wheel sampling (RW) and stochastic universal
sampling (SUS) can be found in [11]. Here, the authors state
that a smaller sampling error is preferable for reducing ge-
netic drift, where the genetic drift causes the population to
be trapped in a local optimum. The effects of genetic drift
are well described in [12, 13]. Recently, Schell et al. [14]
proposed an χ2 measure to analyze the stochastic proper-
ties of sampling algorithms; the χ2 Goodness-of-Fit mea-
sure can provide a calibrated scale of accuracy, ranging from
almost deterministic to fully stochastic sampling algorithms.
They further state that sampling which yields a small sam-
pling error has high sampling accuracy.

Selection pressure is one of the most important character-
istics of the selection strategy, since it is deeply concerned
with the balance between exploitation and exploration [16].
It is defined as the ratio of the best individual’s selection
probability to the average selection probability of all indi-
viduals in the selection pool [17]. In [8], it is shown that
RWTS has a higher selection pressure than a conventional TS
with a tournament size of 2. However, the selection pressure
of TS can be raised by increasing the tournament size [16].

In this paper, we focus on the analysis of characteristics
of RWTS and TS from the viewpoint of both the selection
probabilities and stochastic sampling properties to investi-
gate their selection pressure and sampling accuracy. In TS,
we will examine two cases: the general case (tournament
size of 2), and the special case. The special case is the situ-
ation where the selection pressure of TS is similar to that of
RWTS, achieved by adjusting the tournament size. Further-
more, we will test selection strategies on a traveling sales-
man problem to investigate how these two characteristics af-
fect the performance and the diversity of GAs.

This paper is organized as follows. The two-step and
tournament selections are overviewed in Sect. 2, and RWTS
is described in Sect. 3. Then, an empirical analysis and con-
clusions are given in Sect. 4 and Sect. 5, respectively.

2 Two-step selection and tournament selection

The selection process in genetic algorithms can be divided
into two steps. The first step is to assign a selection probabil-
ity to each individual with regards to its fitness; examples are
given in Sect. 2.1. The expected number ei of the offspring
rate of each individual i for the next generation can easily
be calculated by multiplying the individual’s selection prob-
ability pi into N as ei = N · pi , where N is the population
size.

The second step is sampling, which entails selecting N

individuals from the current population through the use of
a sampling algorithm. In this process, the selection proba-
bilities are reflected in such a way that oi , the number of
offspring of individual i, has the expectation ei , E[oi] = ei .
The absolute differences between oi and ei , |oi − ei |, will
vary according to the stochastic properties of the sampling
process. This difference is referred to as the sampling error.

Generally, there are two kinds of selection methods, the
separate two-step method mentioned above, and a combined
two-step method, such as TS. In the combined case, selection
probabilities and sampling properties are intrinsic to the se-
lection scheme. We will briefly review the separate two-step
method and TS in the remainder of this section.

2.1 Assignment of probability

Various schemes for assigning selection probabilities to in-
dividuals according to their fitness have been discussed in
Bäck [10] and Blickle et al. [15]. In this section, however,
only rank-based algorithms are reviewed.

Linear ranking selection (LRS) was first introduced by
Baker [2]. In this selection process, we let the N individuals
in a population be sorted according to their increasing fit-
ness, from the worst individual ranked 1 to the best ranked
N , where the best individual is assigned a value s, 1 < s < 2,



Statistical properties analysis of real world tournament selection in genetic algorithms 197

and the worst individual is assigned (2 − s). The remaining
individuals are assigned values linearly proportional to their
ranks, with a slope of 2(s−1)

N−1 . Then, the selection probability
of LRS for the ith ranked individual can be given by

pLRS
i = 1

N

(
(2 − s) + 2(i − 1)(s − 1)

N − 1

)
. (1)

Exponential ranking selection (ERS) is identical to LRS, ex-
cept for the non-linear assignment of probabilities to indi-
viduals. In this case, the rank-based values that differ by a
constant ratio r are assigned to the individuals, such that
0 < r < 1.0 (r � 1.0), where the best individual is assigned
a value of 1 and the ith ranked individual is assigned the
value rn−i . Then, the selection probability of ERS for the
ith ranked individual can be given by

pERS
i = rN−i (1 − r)

1 − rN
. (2)

2.2 Sampling

A sampling algorithm is required in a two-step selection
scheme such as rank-based selection in order to select in-
dividuals for recombination. It fills the mating pool with
copies of the current population’s individuals; the copy
process reflects the selection probabilities pi , and the expec-
tation of each offspring oi is E[oi] = ei . Then, in this paper,
two popular methods, RW and SUS, are used for testing.

The mechanism of RW introduced by Holland [1] is as
follows. On the roulette wheel, each solution is assigned to
a slice with a size proportional to its value of probability pi .
A single marker is placed at the edge of the biased roulette
wheel, and the roulette wheel is spun N times to allow the
marker to successively select individuals. However, the RW
sampling has the potential to generate large sampling errors,
in the sense that the final number of offspring allocated to a
string might significantly vary from the expected number.

Thus, in order to reduce the sampling error, Baker intro-
duced SUS [2]. SUS is almost the same as RW, except for the
number of markers. Instead of the single marker used in RW,
SUS makes use of N markers spaced evenly around the edge
of the roulette wheel. The roulette wheel is spun only once,
and all individuals indicated by the N markers are inserted
into the mating pool.

2.3 The χ2 goodness-of-fit measure

The χ2 measure was first introduced by Schell et al. [14] as
a tool for measuring the average accuracy; the average dif-
ference between the expectation of each offspring and the
actual numbers of each offspring obtained by the sampling
algorithms. The stochastic properties of a sampling method

are described by the sample mean, sample variance, and em-
pirical distribution function of the realizations. The details
of this method are as follows.

First, the individuals are grouped into disjoint c classes
{C1, . . . ,Cc}, where Cj ⊂ {1, . . . ,N} and

⋃c
j=1 Cj = {1,

. . . ,N}; let Ej = ∑
i∈Cj

ei and Oj = ∑
i∈Cj

oi denote the
overall expectation and the overall observation, respectively,
which represents the overall number of actual offsprings, af-
ter the sampling process, in each class. Ideally, Ej should be
of the order N/c for 1 ≤ j ≤ c, so that each class contributes
the same average number of offspring. Furthermore, Ej ≥ 10
for 1 ≤ j ≤ c is required to obtain the desired stochastic ac-
curacy. Schell et al. defined the measure for determining the
accuracy of the sampling algorithms as the chi-square test
as

χ :=
c∑

j=1

(Ej −Oj )
2

Ej

. (3)

In the SUS case, χ ≈ 0 because of SUS’s characteristic of
minimizing the differences ei − oi . In the RW case with
the aforementioned constraints (i.e., Ej ≥ 10), however, χ

should be approximately chi-square distributed with c − 1
degrees of freedom, since this is the asymptotic distrib-
ution of χ under multinomial distributed oi when N →
∞. Specifically, on average, χ should be close to its ex-
pectation: χ ≈ E[χ2

c−1] = c − 1. If the population size is
small, the average value is slightly higher because of the
crude approximation of Ej . However, this effect vanishes if
N ≥ 250 [14]. Note that a higher χ implies a lower accu-
racy.

2.4 Tournament selection

Tournament selection is an integral method, where the two-
step selection process is combined into one step, as previ-
ously mentioned. Instead of assigning selection probabil-
ity to each individual, the individuals are randomly copied
into a tournament-list, with size ts ≥ 2. The fittest individual
in the tournament-list is then inserted into the mating pool.
This procedure is repeated until the mating pool is full.

In the following subsections, four kinds of TS will be
briefly reviewed.

2.4.1 Tournament selection with replacement (TSR)

In TSR, an individual is randomly sampled from the popula-
tion, and its copy is inserted into the tournament-list, while
the original individual is kept in the population. This sam-
pling process is repeated ts times, and finally, from among
the ts individuals in the tournament-list, the fittest individual
is inserted into the mating pool.

In order to calculate the selection probabilities of TSR, it
is assumed that all individuals have different fitness, and that
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the population is ordered in such a way that the lowest rank
1 is assigned to the worst individual, and the highest rank N

is assigned to the best of the N individuals. The probability
that the ranks of all sampled ts contestants are lower than or
equal to i is ( i

N
)ts , due to the fact that the contestants are

sampled with replacement, that is, the samplings are inde-
pendent. As a minimum, this implies that more than one ith
ranked individual must be included in the tournament group.
So, the selection probability of the ith ranked individual in
TSR is the difference between the probability that the ranks
of all contestants are lower than or equal to i, and the proba-
bility that the ranks of all contestants are lower than or equal
to i − 1. Thus, the selection probability of TSR for the ith
ranked individual can be given by

p
TSR

i = its − (i − 1)ts

Nts
. (4)

Julstrom [9] has shown that distribution p
TSR

i is equivalent
to pERS

i for certain values of ts and corresponding N,r .

2.4.2 Tournament selection with partial replacement
(TSpR)

In TSpR, the population is copied ts times, and each copy
is randomly permuted. The copies are then concatenated
to a tournament-list of size ts · N . Then, for each tourna-
ment, the ts elements are successively removed from the
tournament-list, and the winner is inserted into the mating
pool.

Let
(

a

b

)
= a!

b!(a − b)!
be the number of possibilities for selecting b elements out
of a. The ith ranked individual has
(

i−1
ts−1

)
(

N−1
ts−1

)

chances of being selected in a single tournament if it is con-
tained in this tournament. Thus, the average selection prob-
ability of that individual can be given by

p
TSPR
i =

(
i−1
ts−1

)
(

N
ts

) . (5)

2.4.3 Tournament selection without replacement (TSoR)

The selection process of TSoR is almost the same as TSR,
except that there is no duplication of individuals in the

tournament-list. Then, as the number of all combinations of
the tournament groups is

( N
ts

)
, the selection probability of

TSoR for the ith ranked individual can be given by

p
TSoR
i =

(
i−1
ts−1

)
(

N
ts

) . (6)

2.4.4 Probabilistic 2-tournament selection (pTS)

pTS was presented by Julstrom [9]. In this case, from a pop-
ulation, two individuals without replacement are chosen at
random, and the tournament winner will be inserted into the
mating pool with a probability q , such that 0.5 < q < 1.0.
Then, with the probability (1 − p), the tournament loser
will be inserted into the mating pool. Thus, the selection
probability of pTS for the ith ranked individual can be given
by

p
TSP

i = 2(i − 1)

N(N − 1)
q + 2(N − i)

N(N − 1)
(1 − q). (7)

Julstrom further posited that the distribution p
TSP

i is equiv-
alent to pLRS

i for certain values 0.5 < q < 1.0, and their
corresponding s.

3 Real world tournament selection

To select a champion from among many players in a sports
game, a tournament method is widely used. If one wins a
competition, then one survives; if not, one is eliminated.
RWTS is derived from such a real world tournament com-
petition.

In RWTS, each individual in the population is sequen-
tially paired with a neighbor without replacement or omis-
sion. If the last individual has no neighbor (i.e., the popu-
lation is odd), this individual competes with an individual
randomly selected from among the same tournament level.
When all competitions in the present tournament level are
completed, only the winners are inserted into the mating
pool and go on to the next tournament level. The process
is repeated until the mating pool is full. Figure 1 shows how
RWTS works with 6 individuals and 8 individuals, respec-
tively. Note that the number inside the box indicates the indi-
vidual’s fitness value, and a dashed line box indicates an in-
dividual selected randomly from the same tournament level
to mate with the individual with no neighbor. As the result
of the tournament competition, all checked individuals (i.e.,
the total is the population size) are inserted into the mating
pool.

In [5–8], RWTS was applied to a minimum spanning
tree, tree-based combinatorial optimization, function opti-
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Fig. 1 Description of RWTS

Fig. 2 Comparison of the distributions of the selection probabilities

mization, traveling salesman, and multidimensional knap-
sack problems. The experimental results showed that RWTS
is superior to the conventional TS with regards to solution
quality, computational time, and stability.

The selection probability of the ith ranked individual has
been previously well described [8]. Here, we give the final
formula as follows

prwts
i = 1

N

| log2 i|∑
k=1

(
2k−1∏
l=1

i − l

N − l

)
, for i = 1, . . . ,N − 1

= | log2 N | + 1

N
, for i = N, (8)

where |x| is the floor of the number x. It is assumed that the
population size is N = 2n, as in Fig. 1(b), and that all in-
dividuals have a different fitness; the population is ordered
in such a way that the worst individual is assigned the low-
est rank 1, and the best individual is assigned the highest
rank N . For N = 2n, RWTS performs tournament competi-
tions on n levels.

4 Empirical analysis

In this empirical analysis, we will show the probability dis-
tribution and stochastic properties of RWTS, and these two
characteristics are then compared with those of TS. Next,
we will present the performance and diversity tests of RWTS
and TS in a traveling salesman problem (TSP). Here, for our
computational experiments, we used a Pentium IV with a
2.4 GHZ CPU and 1 GByte of memory, and Visual C++ as
the program language.

4.1 Probability distribution comparison between RWTS
and TS

In this subsection, we investigate the difference between
RWTS and TS by comparing the selection probability distri-
bution with two tournament sizes, the general case (ts = 2)
and a special case (ts = 8), in which the selection pressure
of TS is similar to that of RWTS. The purpose of the spe-
cial case is to observe the difference between the selection
probability distribution of RWTS and TS under similar se-
lection pressure conditions. Figure 2 shows the distribution
of the selection probabilities of RWTS and TS with pop_size



200 S. Lee al.

(N ) = 256. This distribution was obtained by plotting the
ith probability of the selection strategies (pSS

i ) from i = 1
to i = N , where the superscript SS is the set of rwts, TSR ,
TSpR , TSoR , and TSp . In the graph, the value on the verti-
cal axis indicates the probability that the ranked individual
on the horizontal axis is chosen for the matting pool. Note
that the lowest rank 1 indicates the worst individual, and the
highest rank N indicates the best individual.

Figure 2(a) shows the distribution of the selection proba-
bilities of RWTS and four types of TS (TSR, TSpR, TSoR, and
pTS) with the tournament size ts = 2. In the case of pTS, we
used q = 0.75, which is the middle value between 0.5 and
1.0. From the graph, we can see that below the 85% rank, the
probabilities of RWTS are relatively similar (smaller) with
those of TS; through above the 85% rank, RWTS has sig-
nificantly higher selection probabilities than TS. This higher
value implies that RWTS has a higher selection pressure than
TS at ts = 2.

In order to create a condition of similar selection pres-
sure between RWTS and TS, the selection pressure of TS is
adjusted by increasing the tournament size ts . Figure 2(b) il-
lustrates the adjusted selection probability distributions from
ts = 3 to ts = 10. Note that the gray line indicates the se-
lection probability distribution of RWTS, and the black and
dashed lines indicate those of TS with ts = 8 and the others,
respectively. Theoretically, it is impossible to fit the distri-
bution of pTS to that of RWTS. From the graph, we have
selected ts = 8 is the best choice for making a special case.
In this case, we can see that RWTS has higher probabilities
below the 80% rank than those of TS; specifically, the prob-
ability of TS is zero below the 50%. This means that TS with
ts = 8 has no chance to survive in the population pool at be-
low 50% rank solutions. From these facts, we can predict
that RWTS has a greater potential to provide a higher diver-
sity to populations than TS at similar high selection pres-
sures. A more detailed explanation for diversity will be de-
scribed in Sect. 4.4.

4.2 Stochastic properties comparison between RWTS and
TS

In these numerical experiments, we examine the stochas-
tic properties of RWTS using the χ measure, and then
compare the results with those of conventional TS. Here,
we experimented with several different kinds of random
number generators, and various parameter combinations of
population size, number of classes, and number of tests un-
der the constraints previously mentioned in Sect. 2.3. How-
ever, a comparison of all tests shows only a slight difference
in results; there is no significant difference among the re-
sults of different kinds of random number generators and
among the results of a different number of classes. The re-
sults of the analysis of a large population size displays a very

slightly smaller sampling error than in a small population,
but the difference is negligible. In addition, the results of
large number of tests gives a smoother EDF line, but there
is no difference in sampling error. In this paper, therefore,
we present the results with only one parameter setting in or-
der to compare its results to that of conventional TS [14]; the
random number generator = drand48, the population size
N = 256, the number of classes c = 10, and the number of
tests tn = 256.

Table 1 presents the index sets used for the probability
distributions of RWTS and TSs. The corresponding over-
all expectations that are very close to 256/10. We denote
the results of χ measured by χ(D,S), where D is a type
of TS in pD

i in {TSR,TSpR,TSP , rwts}, and S is a type of
sampling algorithm in {RW,SUS}. For the integral methods
TSR, TSpR, TSoR, pTS, and RWTS, we denote the corre-
sponding statistics as χ(TSRts ), χ(TSpRts

), χ(TSoRts ), χ(pTS),
and χ(RWTS), where subscript ts is the tournament size.

The main objective of the following numerical test is to
estimate the expectation and variance of χ(D,S) from a se-
quence (χ

(D,S)
k )1≤k≤tn such that the mean accuracy and the

spread of the sampling algorithm S are given in terms of
the expectation and the variance of χ . For each test, the
population is generated with both fixed and pairwise dif-
ferent fitness values, and the selection probabilities are as-
signed according to probability distribution D. Then, the
sampling method S is applied to obtain instances of oi , Oj ,
and χ(D,S), respectively.

From the sequence (χ
(D,S)
k )1≤k≤tn, the sample mean and

the sample standard deviation can be calculated as

ê(D,S) = 1

tn

tn∑
k=1

χ
(D,S)
k ,

σ̂ (D,S) =
√√√√ 1

tn − 1

tn∑
k=1

(χ
(D,S)
k − ê(D,S))2.

Here, ê(D,S) and σ̂ (D,S) provide good estimates of the ac-
curacy and spread in terms of the expectation E[χ(D,S)]
and the standard deviation

√
Var[χ(D,S)], respectively. Fi-

nally, the empirical distribution function (EDF) can be com-
pared to the theoretical chi-square distribution χ2

c−1 of RW
by means of the two-sided Kolmogorov–Smirnov (KS) test

EDF(D,S)(t) = 1

tn
· |{χ(D,S)

k ≤ t, 1 ≤ k ≤ tn}|,
t ∈ [0,∞)

where |{·}| refers to the cardinality of {·}.
Figure 3 shows the behaviors of EDF(RWTS) (dark thick

line), EDF(rwts,RW) (gray thick line), and EDF(rwts,SUS)

(dashed thick line), which almost overlap with the left axis
and the upper part of the bounding box in the graph, for
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Table 1 Classes Cj and overall expectations Ej for RWTS

j RWTS TSR2 TSR8 TSpR2

Cj Ej Cj Ej Cj Ej Cj Ej

1 1–110 25.66 1–81 25.63 1–192 25.63 1–81 25.41

2 111–150 26.00 82–114 25.14 193–209 24.90 82–114 25.11

3 151–77 25.52 115–140 25.80 210–220 25.63 115–140 25.80

4 178–198 26.24 141–162 25.95 221–228 25.19 141–162 25.97

5 199–214 25.37 163–181 25.46 229–235 27.74 163–181 25.48

6 215–227 25.63 182–198 25.17 236–240 23.68 182–198 25.20

7 228–237 24.35 199–214 25.75 241–245 27.40 199–214 25.79

8 238–245 24.18 215–229 25.96 246–249 24.92 215–229 26.00

9 246–252 27.70 230–243 25.82 250–253 27.89 230–243 25.86

10 253–256 25.35 244–256 25.34 254–256 23.04 244–256 25.39

j TSpR8 TSoR2 TSoR8 pTS

Cj Ej Cj Ej Cj Ej Cj Ej

1 1–193 25.76 1–81 25.41 1–193 25.76 1–44 25.71

2 194–210 25.46 82–114 25.11 194–210 25.46 45–79 25.87

3 211–221 26.36 115–140 25.80 211–221 26.36 80–109 26.00

4 222–229 26.00 141–162 25.97 222–229 26.00 110–135 25.39

5 230–235 24.22 163–181 25.48 230–235 24.22 136–159 25.79

6 236–240 23.83 182–198 25.20 236–240 23.83 160–181 25.62

7 241–245 27.63 199–214 25.79 241–245 27.63 182–202 26.23

8 246–249 25.18 215–229 26.00 246–249 25.18 203–221 25.22

9 250–253 28.22 230–243 25.86 250–253 28.22 222–239 25.20

10 254–256 23.35 244–256 25.39 254–256 23.35 240–256 24.97

Fig. 3 Comparison of RWTS,
with RW and SUS sampling
based on probabilities

a population size N = 256 and number of tests tn = 256.
These schemes are compared with the theoretical χ2

c−1 dis-
tribution (dark thin line) and the 99 % confidence band un-
der the hypothesis of RW (dashed thin double line). Here,
the range for the values t is [0,18], so the expectation of
χ(D,RW) is c − 1 (= 9). The corresponding estimates of ê,
σ̂ , and the KS statistic are given in Table 2.

The confidence band has been derived from the KS dis-
tribution in [18]. Note that if EDF(D,S) does not lie com-
pletely within this band, the sampling algorithm S is not the
same as the RW sampling with a probability that is greater
than or equal to 99 %. This statistical statement can be con-
firmed by the KS statistic value, which has to be smaller than
about 1.63 for the same level of significance, provided that
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Fig. 4 Comparison of sampling
between RWTS and TS

Table 2 Sample mean and standard deviations for EDF in Fig. 3

RWTS (rwts,RW) (rwts,SUS)

ê 5.359 8.529 0.079

σ̂ 2.462 4.052 0.026

KS 6.791 1.123 16.0

tn ≥ 40. In our work, if the test rejects the RW hypothesis,
the KS value is printed in boldface.

Therefore, from Table 2, we can confirm that RWTS dif-
fers from RW; the relatively high KS value of RWTS illus-
trates the fact that RWTS has a higher accuracy and smaller
spread than the RW sampling. However, RWTS also has
lower accuracy than SUS. Thus, a more symbolic represen-
tation of a comparison of accuracy from among the three
methods is: (rwts,RW) < RWTS < (rwts,SUS). The results
of EDF(rwts,RW) and EDF(rwts,SUS) are almost the same as
[14] in the case of (D,RW) and (D,SUS).

Figure 4 shows a comparison of the behaviors of
EDF(RWTS) and EDF(TS). Note that TSR2, TSR8, TSoR2,
TSoR8, and pTS follow the RW sampling hypothesis stated
above. The corresponding estimates of ê and σ̂ , and the KS
statistic value are given in Table 3. From this table, we can
see that though RWTS has a higher sampling accuracy than
TSR2, TSR8, TSoR2, TSoR8, TSpR8, and pTS, it has a lower
sampling accuracy than TSpR2. Hence, a more symbolic de-
scription of a comparison of the sampling accuracies from
among the four methods is: pTS ≈ TSR2 ≈ TSR8 ≈ TSoR2 ≈
TSoR8 < TSpR8 < RWTS < TSpR2.

In [11], Baker stated that a small sampling error is de-
sirable for reducing genetic drift, where genetic drift causes
solution to converge on a unintended point due to the accu-
mulation of sampling errors. In other words, the difference
between the actual sampling frequency and the calculated
selection probabilities will eventually cause GA to converge
to a local optimum. Based on this statement, RWTS has bet-

ter properties than TS with respect to sampling accuracy, ex-
cept for TSpR2.

4.3 Performance comparison between RWTS and TS

Through the above two subsections, we can determine the
relative characteristics of RWTS and TS with respect to the
selection pressure and sampling accuracy. Now, we test the
performance of RWTS by applying it to TSP, and then com-
paring its performance to the four TS with ts = 2 and ts = 8,
with a population size of 256. The benchmark problem of
TSP is well described in TSPLIB [19]. Here, we have se-
lected the five sample TSP problems, eil51, eil76, eil101,
gr202, and pa561 for the performance tests.

The parameters of a GA test are as follows:

(1) encoding: random key representation [20]
(2) crossover: uniform crossover [21] with 0.6 probability
(3) mutation: swap mutation with 0.1 probability
(4) population size: 256
(5) number of generations: 400

For the encoding scheme, we use a system of random
keys (RK) which is identical to the one proposed by Bean
[20]. An important feature of RK is that all offspring formed
by genetic operations (i.e., crossover and mutation) are fea-
sible solutions. This is accomplished by moving much of the
feasibility issue into the objective function evaluation; if any
random key vector can be interpreted as a feasible solution,
then any subsequent crossover and mutation vector is feasi-
ble. Through the dynamics of the genetic algorithm, the sys-
tem learns the relationships between the random key vectors
and solutions with appropriate objective function values.

As genetic operators, we use a uniform crossover and a
swap mutation. In the uniform crossover scheme, individual
genes of two parents in the string are compared, and then
the genes are swapped with a fixed probability. In the swap
mutation, two random points in the string are selected, and



Statistical properties analysis of real world tournament selection in genetic algorithms 203

Table 3 Comparison of RWTS with TS stochastic properties based on sample mean and standard deviation

RWTS TS

TSR2 TSR8 TSpR2 TSpR8 TSoR2 TSoR8 pTS

ê 5.359 8.802 9.260 3.260 7.352 9.321 8.938 8.916

σ̂ 2.462 4.297 4.178 1.716 8.384 4.435 4.169 4.066

KS 6.791 0.929 1.257 10.920 5.420 0.781 0.641 0.476

Table 4 Experimental results of TSP (population size = 256, number of generations = 400)

Sel. eil51 eil76 eil101

Min. Ave. Max. STD. CPU Min. Ave. Max. STD. CPU Min. Ave. Max. STD. CPU

RWTS 0.63 1.00 1.45 0.19 1.85 0.77 1.00 1.17 0.09 2.81 0.90 1.00 1.12 0.06 3.85

TSR2 0.81 1.17 1.51 0.17 1.88 0.92 1.11 1.30 0.07 2.89 0.99 1.08 1.16 0.04 3.99

TSR8 0.83 1.12 1.45 0.17 1.86 0.89 1.06 1.22 0.10 2.83 0.95 1.05 1.18 0.05 3.86

TSoR2 0.82 1.13 1.44 0.17 1.86 1.06 1.17 1.32 0.07 2.91 0.97 1.11 1.23 0.06 3.98

TSoR8 0.67 1.06 1.52 0.18 1.88 0.77 1.03 1.23 0.11 2.85 0.94 1.01 1.09 0.04 3.92

TSpR2 0.64 0.98 1.20 0.13 1.95 0.87 1.01 1.15 0.07 3.04 0.90 1.00 1.09 0.04 4.14

TSpR8 0.64 1.02 1.44 0.18 2.24 0.80 1.03 1.17 0.08 3.23 0.90 0.98 1.07 0.04 4.29

pTS 1.04 1.35 1.71 0.15 1.86 1.17 1.35 1.50 0.08 2.87 1.13 1.23 1.32 0.05 3.94

Sel. gr202 pa561

Min. Ave. Max. STD. CPU Min. Ave. Max. STD. CPU

RWTS 0.95 1.00 1.03 0.02 8.11 0.99 1.00 1.01 0.01 23.27

TSR2 1.04 1.07 1.11 0.02 8.28 1.03 1.04 1.05 0.00 23.83

TSR8 0.98 1.03 1.08 0.02 8.18 0.98 1.00 1.01 0.01 23.75

TSoR2 1.00 1.08 1.12 0.03 8.32 1.03 1.04 1.04 0.00 23.90

TSoR8 0.95 1.00 1.03 0.02 8.20 0.98 1.00 1.00 0.01 23.89

TSpR2 0.91 0.96 1.01 0.02 8.48 0.95 0.96 0.97 0.01 24.20

TSpR8 0.93 1.00 1.04 0.03 8.61 0.98 0.99 1.00 0.00 24.61

pTS 1.12 1.18 1.22 0.02 8.10 1.06 1.08 1.09 0.01 23.41

then the two genes at these positions are interchanged, where
the individual for mutation is selected with a fixed probabil-
ity. In this test, we use 0.6 and 0.1 as the probabilities for
crossover and mutation, respectively.

All tests were repeated thirty times. Table 4 shows the
results of the performance tests, where Min. indicates the
minimum value of the best values from among the 30 trials;
Ave. indicates the average value of the best values of the 30
trials; Max. indicates the maximum value of the best val-
ues from among the 30 trials; STD. indicates the standard
deviation of the 30 trials and CPU indicates the computa-
tional time (sec) for 256 × 400 evaluations. Here, all values
of Min., Ave., and Max. are normalized based on the RWTS
Ave. value. Since TSP is a minimization problem, smaller
values of Ave. indicate better selection methods from among
the eight selection methods.

From the above results, we can confirm the fact that
RWTS and TSpR outperform the others. Specifically, we can

see that the case of ts = 8 outperforms ts = 2 in TS, except
for TSpR. In TSpR, one possible reason why ts = 2 outper-
forms ts = 8 is that the sampling accuracy with ts = 2 is
higher than that of ts = 8. These results indicate that a com-
paratively high pressure and high sampling accuracy assist
in improving the performance in the selection method. In
literature, it was also mentioned that high pressure [17] and
high sampling accuracy [14] are desirable. However, keep
in mind that the choice of high selection pressure causes a
corresponding loss of diversity.

4.4 Diversity comparison between RWTS and TS

In Sect. 4.1, we suggested that RWTS has the potential to
provide a higher diversity to a population than TS at a sim-
ilarly high selection pressure, where diversity is defined as
the number of different solutions in a population after the
selection operation. This implies that RWTS has a higher
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Fig. 5 Comparison of the
diversity among selection
strategies. Here, ts indicates
tournament size

possibility than TS; that solutions ranging from low fitness

to high fitness can coexist in the same population. In this

subsection, we performed computational experiments based

on diversity to illustrate this fact. The experimental environ-

ment and test problems are the same as in Sect. 4.3 (i.e.,

the performance test), except for the initialization process of

GAs. During initialization, the initial solutions group (i.e.,

the initial population) is identically generated for all tests in

order to obtain a more objective comparison of the selection

strategies.

Figure 5 presents the results of the diversity tests. In the

figure, the subscript of TS denotes the tournament size ts ,

and the high value in the vertical axis indicates high diver-

sity. Each result in these selection strategies is the average of

the results of 5 test problems, and each test problem result

is the average of 30 independent trials. In a comparison of

RWTS and TS with a tournament size of 2 (ts = 2), RWTS

shows the lowest diversity, but similar to the previous sta-

tistical analysis when ts = 8, RWTS shows the highest di-

versity. This result indicates that RWTS can maintain a high

population diversity with respect to a similar selection pres-

sure as TS. Similar results were obtained from the tests with

population sizes of 128, 512, and 1024.

The use of an excessively high pressure is not appropriate

in the selection strategy because it could drive the selection

to a situation of premature convergence. From these results,

we can infer that RWTS does not have an excessively high

selection pressure because there is only a small loss of di-

versity.

4.5 Discussion

From the above four types of empirical analysis, we could
identify several interesting facts regarding the comparison
of the characteristics of RWTS and TS, and also regarding
the relationship between the characteristics of the selection
strategies and the performance of GAs. The five points are
summarized as follows:

(1) RWTS has a higher selection pressure than TS when
ts = 2.

(2) RWTS maintains more diversity than TS in conditions of
similar selection pressure.

(3) RWTS has the highest sampling accuracy than TS, ex-
cept for TSpR when ts = 2.

(4) Comparatively high election pressure in the selection
strategy provides good performance.

(5) High sampling accuracy in a selection strategy provides
good performance.

Point 1 is obviously true, and is easily proved by comparing
the selection probability distributions between RWTS and TS
when ts = 2. Point 2 can be inferred from the comparison
of the selection probability distributions between RWTS and
TS in conditions of similar selection pressure, and is con-
firmed by the diversity tests on a traveling salesman prob-
lem. Point 3 is determined from the stochastic tests. Point
4 could be deduced from the performance tests, especially,
in the comparison of the performance of TS between ts = 2
and ts = 8, except for TSpR. The reason for the exception is
that TSpR has a different sampling accuracy between ts = 2
and ts = 8. However, this point must be carefully considered
because an excessively high pressure is not acceptable; keep
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in mind that this point is true only after being confirmed in
the performance tests. Point 5 could be deduced from the
performance tests, by comparing the performance of TSpR
with that of other TSs.

From Points 1 and 2, we can view RWTS as being more
balanced between exploration (i.e., concerned with diver-
sity) and exploitation (i.e., concerned with selection pres-
sure) than a conventional TS (ts = 2). We suggest that this
balance and the higher sampling accuracy of RWTS provides
a better performance than TS, except for TSpR; TSpR shows
a slightly better performance than RWTS, potentially due to
its higher sampling accuracy than RWTS.

5 Conclusion

RWTS was successfully implemented and applied to vari-
ous benchmark problems [5–8]. In this research, we have fo-
cused on statistical analysis of RWTS and TS from the view-
point of the selection probabilities and stochastic properties
in order to rationally explain what provides a good perfor-
mance in the selection strategy. From four empirical analy-
ses, it was demonstrated that a comparatively high selection
pressure and high sampling accuracy, which are inherent in
RWTS, can provide good performance in the selection strat-
egy. Furthermore, it was shown that RWTS provides more
diversity than TS under the condition of similar selection
pressures. However, from the performance test, we found
that the tournament selection with partial replacement gives
a slightly better performance than RWTS. Then, based on
the collective analysis of all empirical results, we suggest
that this result might come from sampling accuracy.

Moreover, we have demonstrated how each characteristic
of the selection strategy affects the performance. As a future
work, we will investigate the correlation between the char-
acteristics of the selection strategy and its performance.
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