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Abstract This paper investigates the interactions between

agents representing grid users and the providers of grid re-

sources to maximize the aggregate utilities of all grid users

in computational grid. It proposes a price-based resource al-

location model to achieve maximized utility of grid users

and providers in computational grid. Existing distributed re-

source allocation schemes assume the resource provider to

be capable of measuring user’s resource demand, calculat-

ing and communicating price, none of which actually exists

in reality. This paper addresses these challenges as follows.

First, the grid user utility is defined as a function of the grid

user’s the resource units allocated. We formalize resource

allocation using nonlinear optimization theory, which incor-

porates both grid resource capacity constraint and the job

complete times. An optimal solution maximizes the aggre-

gate utilities of all grid users. Second, this paper proposes a

new optimization-based grid resource pricing algorithm for

allocating resources to grid users while maximizing the rev-

enue of grid providers. Simulation results show that our pro-

posed algorithm is more efficient than compared allocation

scheme.

Keywords Computational grid . Resource allocation .

Agent . Optimization

1. Introduction

A grid computing environment is one in which applications

can utilize multiple computational resources that may be dis-
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tributed at widespread geographic locations [1–3]. Resource

management and scheduling is a complex undertaking due to

large-scale heterogeneity present in resources, management

policies, users, and applications requirements in these envi-

ronments [12, 19, 20]. The resource owners and end-users

have different goals, objectives, strategies, and demand pat-

terns. Grid resources are owned and managed by different

organizations with different access policies and cost models

that vary with time, users, and priorities. There are many grid

users distributed in the grid, which will be competing for the

use of the available grid resources. The issues that grid al-

location mechanism should be addressed are as follows. (1)

efficient grid resource allocation to the different grid users

taking into account their different needs and performance re-

quirements; (2) the crucial notion of fairness; (3) the ability

to implement the allocation scheme in a distributed manner

with minimal communication overheads; and (4) the issue of

pricing the resources in such a way that the grid providers’

revenue will be maximized if the grid users are allocated

resources according to (1) and (2) above. This paper is tar-

get to solve above issues by using utility-based optimization

scheme.

In the context of networks, pricing has been extensively

used in the literature as a means to arbitrate resource al-

location [13–15]. In order to adopt a price-based approach,

utility functions are used to characterize the resource require-

ments and the degree of satisfaction of individual users. The

goal of the network is to appropriately allocate resources to

maximize an objective function that depends on user utili-

ties. For example, the total aggregated utility over all users

may be maximized (called the social welfare) subject to cer-

tain resource constraints. Both of Kelly’s work [9, 11] and

Low’s work [10] are to maximize the aggregate user util-

ities over flow rate subject to capacity constraints. In or-

der to eliminate the coupling of users through shared links,
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system optimization is decomposed into subsidiary optimiza-

tion problems for users and networks respectively, by using

price per unit flow as a Lagrange multiplier that mediates be-

tween these two sub problems. The main difference between

Kelly’ s work [9, 11] and Low’s work [10] is that they pro-

pose different mechanisms. Kelly allows the users to decide

their payments and the network allocates the rate, while in

Low’s approach, users decide the rate and pay what the net-

work charges. But unfortunately, the utility functions used in

Kelly [9] and Low [10] are abstract utility function without

concrete parameters, so all behaviors of utility function only

are analyzed in qualitative sense, and can not conduct experi-

ments to evaluate effects of utility function on system perfor-

mance. Thus, although reasonable assumptions can be made

on the behavior of utility functions, such an approach cannot

be used to provide concrete numerical answers. Hence, This

paper proposes to consider measurable characteristics to for-

mulate utility functions. Two important attributes that affect

grid task agents, cost and completion time are considered in

this paper.

In this paper, we propose a price-based resource allocation

model to achieve maximized aggregated utility of grid users.

Our original contributions are: First, we propose to use mea-

surable characteristics to formulate utility functions, rather

than abstract utility function used in [9, 10]. The grid user

utility is defined as a function of the grid user’s the resource

units allocated. The function value can be understood as the

perceived quality, user satisfaction, etc. Second, we present a

new optimization-based grid resource-pricing algorithm for

allocating resources to grid users while maximizing the rev-

enue of grid providers. Through simulation results, we show

that our proposed algorithm is more efficient than conven-

tional allocation scheme.

The remainder of the paper is structured as followings.

Section 2 analyses related works. Section 3 describes grid

agents in grid market. Section 4 presents grid resource al-

location for joint grid user and grid provider optimization.

Section 5 describes an iterative algorithm that computes the

price and resource allocation. In section 6 the experiments

are presented and discussed. Section 7 concludes the paper.

2. Background and related works

This section reviews the current status of different economic

models for trading resources to manage resources based

on a computing economy. To realize the full potential of

Grid economy, the Gridbus project [4] has been develop-

ing technologies that provide end-to-end support for allo-

cation of resources based on resource providers and con-

sumers quality of service (QoS) requirements. One of the

key components of Gridbus system is the Grid Market Di-

rectory (GMD). R. Wolski [5] investigates ‘G-commerce’

computational economies for controlling resource allocation

in Computational Grid settings. He defines hypothetical re-

source and resource producers, then measure the efficiency

of resource allocation under two different market conditions:

commodities markets and auctions. In [13], Richard J. La

et al investigate achieving the system optimal rates in the

sense of maximizing aggregate utility in a communication

network. This is done by decomposing the overall system

problem into subproblems for the network and for the in-

dividual users by introducing a pricing scheme. The users

are to solve the problem of maximizing individual net util-

ity, which is the utility less the amount they pay. In [14]

Yi Cui and Yuan Xue target the problem of optimal network

resource allocation in overlay multicast. They propose a dis-

tributed algorithm, which maximizes the aggregate utility

of all multicast members, subject to both network and data

constraints. They then implement the algorithm in a series

of protocols purely depending on the coordination of end

hosts. In [15] Nan Feng et al considered a radio resource

management problem with user centric and network centric

objectives. They used a utility function as the user-centric

metric and for the network-centric counterpart. They intro-

duced an explicit pricing mechanism to mediate between

the user-centric and network-centric resource management

problems. Users adjusted their powers in a distributed fash-

ion to maximize the difference between their utilities and

their payments. Carsten Ernemann [17] addresses the idea

of applying economic models to the scheduling task. In [17]

a scheduling infrastructure and a market-economic method

is presented. The efficiency of this approach in terms of re-

sponse and wait time minimization as well as utilization is

evaluated by simulations with real workload traces. In [18],

H. Yaiche et al present a game theoretic framework for band-

width allocation for elastic services in high-speed networks.

The framework is based on the idea of the Nash bargain-

ing solution from cooperative game theory, which not only

provides the rate settings of users that are Pareto optimal

from the point of view of the whole system. They conclude

the pricing of elastic connections based on users’ bandwidth

requirements and users’ budget. The bargaining framework

can be used to characterize a rate allocation and a pricing

policy that takes into account users’ budget in a fair way and

such that the total network revenue is maximized. Buyya [19,

20] have proposed and developed a distributed computational

economy-based framework, called the Grid Architecture for

Computational Economy (GRACE), for resource allocation

and to regulate supply and demand of the available resources.

This economic-based framework offers an incentive to re-

source owners for contributing and sharing resources; and

motivates resource users to think about trade-offs between

the processing time (e.g., deadline) and computational cost

(e.g., budget), depending on their QoS requirements. In [21],

Jonathan Bredin et al formulate the hosts’ resource-allocation
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problem as a game with the players being agents competing

for a resource from a common server. They show how to

compute the unique positive Nash equilibrium explicitly un-

der perfect information when there are two or more players.

They develop an optimal agent bidding strategy that plans

an agent’s expenditure over multi-task itineraries. Their bid-

ding strategy minimizes execution time while preserving a

prespecified budget constraint. In [22], O. Ercetin et al. study

the caching model in the framework of Content Delivery Net-

works. The objective is to minimize the user latency by intel-

ligently distributing the content and serving the user requests

from the most efficient surrogates. They use price-directed

market based algorithms to achieve this goal. They model the

agents with a self-maximizing behavior and define the prob-

lem as a non-cooperative game played among the publishers

and the surrogates. In [30], the proposed model adopts three

types of agents: grid resource agents, grid user agent and

grid service agents. Grid service agents act as both a buyer

of grid resources and a seller of grid services for grid users.

Grid resource allocation optimization is distributed to two

market levels: service market and resource market. Interac-

tions between three agent types are mediated by two level

market mechanisms. Compared with [30], this paper applies

grid resource agents and grid user agents to negotiate with

each other, the main objective is to maximize the utility of

grid users and the revenue of resource providers.

The above economic models for network and grid com-

puting fields can be improved both conceptually and com-

putationally. Our target is to solve the problem of optimal

resource allocation in computational grid. An optimal solu-

tion should maximize the aggregate utilities of all grid users,

subject to various constraints, such as the grid resource ca-

pacity, job complete times. At same time, the grid provider

adjusts the unit price in order to maximize its revenue, which

is measured as the sum of the individual payments. The grid

user utility is defined as a function of the grid user’s the re-

source units allocated. It was also described how the agents

can be assigned proper utility functions, with which they

made a natural trade-off between money and resource. Fur-

thermore, based on our theoretical framework, we propose

an iterative algorithm that computes the price and resource

allocation.

3. Grid agents in grid market

The grid market consists of two economic agent types: the

grid resource agents that represent the economic interests of

the underlying resources of the computational grid, the grid

task agents that represent the interests of grid user using the

grid to achieve goals. Grid market has information about the

locations of current resource providers in the grid and their

prices. Whenever a grid resource agent in the grid decides

to sell its resources, change it’s pricing structure, or update

available capacity, it will spawn an agent to find grid markets

and update the advertised information. The grid market then

provides this information to other agents wishing to know

about resource providers. Whenever a new grid task agent is

created, it is first given an endowment of electronic cash to

spend to complete its task. If that agent either refuses to make

a purchase under that level of availability or that price struc-

ture, or if the task agent does not purchase all of the available

capacity, the resource agent offers the remaining capacity to

the next task agent [6–8]. We assume that when a task agent

purchases a portion of the resource, it is guaranteed that the

task agent continues to receive resource uninterrupted from

the resource agent until its task is completed. The price that

the agent pays, per second of resource capacity, is the same

for as long as he continues to use the purchased resource. The

agent makes no guarantee to the resource provider and may

leave the queue or leave the processor at any time. The user

makes this decision by keeping up-to-date on the resources

and prices offered by other resource providers on the grid.

This can be done by periodically spawning agents that travel

to grid markets and return with price and resource quotes. A

grid resource agentis used at the source node in the grid and

is deployed at the entry node. The Grid resource agents have

varied computational resource capacity, and the computa-

tional resource capacity is shared among the grid task agents.

The grid resource agents charge the task agents for the portion

of the computational resource capacity occupies. We assume

that the grid resource agents of a grid does not cooperate, due

to high messaging and processing overheads associated with

cooperative allocating. Instead, they act non-cooperatively

with the objective of maximizing their individual profits [16,

21, 22]. The grid resource agents compete among each other

to serve the task agents. The task agents do not collaborate

either, and try to purchase as much computational resource as

possible with the objective of maximizing their net benefit.

The agents communicate by means of a simple set of signals

that encapsulate offers, bids, commitments, and payments

for resources. We couple the resources and payments with

the offers and requests respectively. This reduces the number

of steps involved in a transaction (committing agents to their

payments and offers ahead of the market outcome), and so

increases the speed of the system’s decision making. To en-

force these rules the interactions between the two agent types

are mediated by means of market mechanisms. In our market

mechanisms, agent communication is restricted to setting a

price on a single unit of a known grid resource. Therefore,

agents set their prices solely on the basis of their implicit

perception of supply and demand of grid resource at a given

time. When a resource is scarce, grid task agents have to

increase the prices they are willing to buy, just as resource

agents decrease the price at which they are willing to offer the

resource. In our model, agents perceive supply and demand
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in the market through resource pricing algorithm that will be

described in Section 5.

Grid resource agents sell the underlying resources of the

grid. A grid task agent that represents the grid user makes

buying decisions within budget constraints to acquire com-

putation resources. The offers placed on the grid market by

grid resource agents are allocated to grid task agent. Grid

task agents buy computation resources solely on the basis of

the most recent price information they have. Grid task agents

initiate compete for grid resource by signaling that they wish

to buy resources to complete certain tasks. The task agent

retains a vector of prices that it is willing to pay for resources

[24, 25, 29, 31]. The task agenttries to maintain its resources

at a level optimal units that is discovered through gradient

climbing adaptation to the behavior of the market described

in Section 4. The price paid for each resource agent should

be as low as possible without failing to obtain the resource.

Therefore the task agent makes a request for each resource

that it needs separately. If a request was rejected, the agent

increases the price it will send to resource agent at the next

negotiation. If a request was accepted, the agent reduces the

price it pays for that resource in subsequent negotiations.

Grid task agents and grid resource agents do not commu-

nicate directly with one another or among themselves. All

interactions are by the means of grid market. The grid mar-

ket also broadcasts the prices at which trades are agreed, so

the agents have more information upon which to base their

trading behavior. The negotiation between agents is medi-

ated by means of a grid market. It allows multiple grid task

agents and grid resource agents to negotiate simultaneously,

it provides a dense set of market price information and it al-

lows supply and demand to be reconciled at the same time.

Grid markets provides a means to complete institutionally

mediated bargaining in one shot that would take an indeter-

minate time using iterated market allocation algorithms. The

grid markets use price-directed allocation algorithm that will

be described in Section 4. In this algorithm an initial set of

prices is announced to the task agent. In each iteration, grid

resource tasks individually determine their optimal allocation

and communicate their results to the grid resource agent. Grid

resource agents then update their prices and communicate the

new prices to the task agents and the cycle repeats. Prices are

then iteratively changed to accommodate the demands for

resources until the total demand equals to the total amount

of resources available. The task agent’s utility maximization

is also considered.

4. Grid resource pricing and allocation optimization

In this section, we set up the mathematical models for optimal

grid resource allocation and pricing based on the framework

developed in the above section.

First gives notations to be used in the following sections:

c j : capacity of grid resource j represented by grid resource

agent j
x j

i : resource units allocated to task agent i by grid resource

agent j
t j
i : the time taken by the i-th grid task agent to complete

j-th job, the measurement unit is second

Ti : time limits given by the i-th grid task agent to complete

all jobs

u j
i : money paid to the grid resource agent j by grid task

agent i , the measurement unit is grid dollars

qi j : is the size of its grid task agent’s j th job

p j : the price of the resource unit in resource agent j .

Ei : the endowment given to a task agent i

4.1. Problem formulation

Suppose c j is the capacity in computational units of j th grid

resource agent, which were shared by grid users. Let x j
i be

the resource units allocated to task agent i by resource agent

j . We assume that grid users receive a utility equal to U (x j
i ) if

the allocated grid resource unit is x j
i . Given complete knowl-

edge and centralized control of the system, a natural prob-

lem for the grid market to try to solve is maximizing the

aggregated utility function. We now formulate the problem

of optimal resource allocation in computational grid as the

following constrained non-linear [13–15]:

(Grid)

Max
∑

i

U
(
x j

i

)
s.t. c j ≥

∑
i

x j
i

(4.1)

The constraint implies that the aggregate resource units

do not exceed the total capacity of grid resource. By non-

linear optimization theory, there exists a maximizing value

of argument x j
i for the above optimization problem (4.1), and

we can apply the Lagrangian method to solve such a problem.

Let us consider the Lagrangian form of this optimization

problem:

L
(
x j

i ; λ
) =

∑
i

U
(
x j

i

)−λ

( ∑
i

x j
i − c j

)

=
∑

i

(
U

(
x j

i

) − λx j
i

) + λc j

(4.2)

where λ is Lagrangian multiplier. Hence, at a maximum of

L over x j
i the following conditions hold: U ′(x j

i ) = λ Thus,

given that the grid knows the utility functions U of all the grid

task agents, this optimization problem can be mathematically

tractable through the above procedure. However, in practice,

Springer



Appl Intell (2006) 25:147–158 151

it is not likely to know all the U, and it is also infeasible for

computational grid to compute and allocate resource in a cen-

tralized fashion. Solving the objective function (4.1) requires

global coordination of all grid users, which is impractical in

distributed environment such as the computational grid. In

order to achieve a distributed solution, we decompose the

problem into the following two problems GU (4.3) and GP

(4.4), seek a distributed solution where the grid provider does

not need to know the utility functions of individual grid user.

Suppose that grid task agent i may choose an amount to pay

per unit time, u j
i , and receives grid resource allocation x j

i

proportional to u j
i , the relation can be represented as

x j
i = u j

i

p j

where p j is regarded as a charge per unit resource for grid

task agent i . For a completed time, the task agent optimization

problem (GU) can be written as (4.3).

(GU)

MaxU
(
u j

i

)
s.t. Ti ≥

∑
j

t j
i

(4.3)

Constraint is a completed time constraint, which says that

the aggregate sum of all times of each task agent cannot ex-

ceed its total time limits. Ti is time limits given to a grid

task agent. GU objective is to choose optimal u j
i . The grid

resource provider, given the amounts that the grid task agents

are willing to pay, u = (u1, u2 . . . un), attempts to maxi-

mize the function
∑

u j
i log(x j

i + 1). So the Grid resource

provider’s optimization problem can be formulated as fol-

lows:

(GP)

Max
∑

u j
i log

(
x j

i + 1
)

s.t. c j ≥
∑

i

x j
i

(4.4)

4.2. Optimal grid resource allocation

Grid task agents want to complete a set of jobs in a given

sequence by purchasing resources from grid resource agents

located throughout the grid. An agent begins with an en-

dowment of Ei to spend to complete its task and wishes to

minimize the total time taken to complete a sequence of jobs

given its budget constraint. We assume that there are K types

of resources and that each agent may needs many types to

complete a job. Assume that there is a set K = {1, 2, . . . K}
of different types of resources that the grid allocates at each

grid task agent in order to complete the task. For example,

if computing tools, databases, are the two types of resources

that the grid allocates in order to complete the task, then K
= {1,2}. In this case, k = 1 refers to storage systems and k
= 2 refers to databases. The agent’s task can be represented

as the sequence {qi j } j=K
j=1 , where qi j is the size of i th task

agent’s j th job.

Let u j
i be the price paid to j th resource agent per time unit

by the i th task agent. Let ui be the total investment of the i th
task agent, which is defined in (4.5). N grid task agents com-

pete for grid resources with finite capacity. The resource is

allocated using a market mechanism, where the partitions de-

pend on the relative payments sent by the grid task agents. We

assume that each task agent submits u j
i to the grid resource

agent. Then, u j = [u j
1 . . . u j

N ] represents all payments of grid

task agents for j th resource agent. Let p j denote the price of

the unit computational resource in resource agent j . Let the

pricing policy, p = (p1, p2, . . . , pn), denote the set of unit

computational resource prices of all the resource agents in

the grid.

ui =
∑

j

u j
i (4.5)

Let x j
i be the fraction of resource units allocated to task

agent i by resource agent j . If i th task agent’s payment in the

j th resource agent is u j
i , then the total computation resource

units allocated to task agent i is

x j
i = u j

i

p j
. (4.6)

The i-th agent receives resources proportional to its pay-

ment relative to the sum of the resource agent’s revenue, c j

is the capacity in computational units of j th grid resource

agent. u j
i is the amount that the i th agent pays for resource

j , r j
i is the capacity that i-th agent pays receives.

r j
i = c j

u j
i

p j
(4.7)

Grid task agent needs to complete a sequence of jobs in

a specified amount of time, Ti , while minimizing the cost

accrued. The goal of each task agent is to complete its

job as quickly as possible when spending the least possi-

ble amounts of money. qi j is the size of i th task agent’s j th

job. c j is the capacity in computational units of j th grid re-

source agent. The time taken by the i th agent to complete its

job is:

t j
i = qi j

c j x
j

i
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The utility function U (u j
i ) of the grid task agent is defined

as (4.8).

U
(
u j

i

) = −
∑

j

u j
i − K

(
N∑

j=1

qi j p j

c j u
j
i

− Ti

)
(4.8)

Where u j
i is the money which task agent i paid to the

resource agent j , K is the relative importance of costs and

times to complete grid task, an agent with larger value of K
would indicate a greater preference to reduce its completion

time. When K is 1, meaning that costs and times are equally

important. For a completed time, the task agent optimization

problem (GU) can be written as (4.9).

(GU)

Max

(
−

∑
j

u j
i − K

(
N∑

j=1

qi j p j

c j u
j
i

− Ti

))

s.t. Ti ≥
∑

j

t j
i

(4.9)

Grid system optimization is distributed to two subprob-

lems (4.3) and (4.4): optimization of task agent and resource

agent. The following Theorem 1 is to prove that (4.1) can be

solved by two subproblems optimization. u j
i

∗
is the solution

to the task agent optimization problem (4.3). x j
i

∗
is the solu-

tion to grid resource provider’s optimization problem (4.4).

Theorem 1. There exist x j
i

∗
, u j

i

∗
, p j such that (1) u j

i

∗
solves

GU (p j ); (2) x j
i

∗
solves GP (u j

i )

Proof:

For (GU)

MaxU
(
u j

i

)
s.t. Ti ≥

∑
j

t j
i

We take derivative and second derivative of U (u j
i ) with

respect to u j
i :

U ′(u j
i

) = dU
(
u j

i

)
du j

i

= K
N∑

j=1

qi j p j

c j
(
u j

i

)2
− 1

U ′′(u j
i

) = d2U
(
u j

i

)
d
(
u j

i

)2
= −K

N∑
j=1

p j qi j

c j
(
u j

i

)3
(4.10)

U ′′(u j
i ) < 0 is negative due to 0< u j

i . The extreme point

is the unique value minimizing the agent’s cost under com-

pleted time limits. The Lagrangian for the task agent’s utility

is L(u) (4.11).

L
(
u j

i

) = −
∑

j

u j
i − K

(
N∑

j=1

qi j p j

c j u
j
i

− Ti

)
+ λ

( ∑
j

t j
i

)
(4.11)

where λ is the Lagrangian constant. From Karush-Kuhn-

Tucker Theorem we know that the optimal solution is given
∂L(u)

/
∂u = 0 for λ > 0.

∂L
(
u j

i

)/
∂u j

i

= −1 + K
qi j p j

c j
(
u j

i

)2
− λ

qi j p j

c j
(
u j

i

)2
(4.12)

Let ∂L(u j
i )
/

∂u j
i

= 0 to obtain (4.13)

u j
i =

(
(K − λ)qi j p j

c j

)1/2

(4.13)

Using this result in the constraint equation, we can deter-

mine θ = K − λ as

(θ )−1/2 = Ti∑N
k=1

( pk qik

ck

)1/2
(4.14)

We substitute (4.13) into (4.14) to obtain (4.15)

u j∗
i =

(
qi j p j

c j

)1/2

∑N
k=1

(qik pk

ck

)1/2

Ti
(4.15)

u j
i

∗
is the unique optimal solution to the optimization prob-

lem (GU).

For (GP)

Max
∑

u j
i log

(
x j

i + 1
)

s.t. cj ≥
∑

i

x j
i

(4.16)

We take derivative and second derivative with respect to

x j
i :

U ′(x j
i

) = u j
i

/
x j

i + 1 U ′′(x j
i

) = −u j
i

/(
x

j

i
+ 1

)2 (4.17)

U ′′(x j
i ) < 0 is negative due to 0< x j

i . The extreme point

is the unique value maximizing the revenue of grid resource
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provider. The Lagrangian for GP problem is L(x)

L
(
x j

i

) =
∑

u j
i log

(
x j

i + 1
) + λ

(
c j −

∑
i

x j
i

)

=
∑ (

u j
i log

(
x j

i + 1
)−λx j

i

) + λc j

(4.18)

Where λ is the Lagrangian constant. From Karush-Kuhn-

Tucker Theorem we know that the optimal solution is given
∂L(x)

/
∂x = 0 for λ > 0.

∂L(x j
i )
/

∂x j
i

= u j
i

/
x j

i + 1 − λ (4.19)

Let ∂L(x)
/
∂x = 0 to obtain (4.20)

x j
i = u j−λ

i

/
λ (4.20)

Using this result in the constraint equation, we can deter-

mine λ as

c j = 1

λ

n∑
k=1

u j
k − n (4.21)

λ =
∑n

k=1 u j
k

c j + n
(4.22)

We substitute (4.22) into (4.20) to obtain (4.23)

x j
i

∗ = u j
i (c j + n)∑n

k=1 ui
k

− 1 (4.23)

Grid resource agent j at iteration n
Receives grid computation demand x j

i from grid task agents;

If ci ≥ ∑
j x j

i

Then

pc(n+1)
j = max{ε, pc(n)

j + η(x j pc(n)
j − c j )}; // Computes a new price

// x j = ∑
i x j

i ,η > 0 is a small step size parameter, n is iteration number.

Return new price pc(n+1)
j to all grid task agents;

Else Return Null;

Grid task agent i at iteration n
Receives from the grid resource agent j the price pc j ;

u j
i

∗ = Max{U (u j∗
i )}; // calculates u j

i

∗
to maximize U (u j

i )

If Ei ≥ ∑
j u j

i + ∑
k vk

i

Then x j
i (n + 1) = u j

i

∗(n)/
pc(n)

j
; //Calculates its optimal computation resource demand x j

i (n + 1)

Return x j(n+1)
i to grid resource agents;

Else Return Null;

x j
i

∗
is the unique optimal solution to the optimization

problem (GP). �

5. Grid resource pricing scheme

The decomposition of Grid problem (4.1) into GU (4.3) and

GP (4.4) problems suggests that solving Grid problem can

be achieved by solving GU (4.3) and GP (4.4) problems via

an iterative algorithm. In each iteration, the grid userindi-

vidually solves its fees to pay (4.9), adjusts its grid resource

demand and notifies the grid about this change. After the

new grid resource demand is observed by the grid resource

agent, it updates its price accordingly and communicates the

new prices to the grid task agent, and the cycle repeats. To

illustrate how grid task agentadjusts its fees to pay, we define

the demand function D(p) : R → R, which is defined as the

quantity of resource that the agent would desire if the price

is p. D(p) can be obtained by optimal solution u j
i

∗
to GU

(4.3) problem.

D(p) = u j
i

∗/
p j

The iterative algorithm that computes the price and re-

source allocation is then given as follows.

Algorithm 1 Grid resource unit price calculation and re-

source allocation

This algorithm is consistent with the law of supply and

demand: if the demand for grid resource exceeds the capacity

supply C j , then the price p(n+1)
j is raised; otherwise, the price

is reduced.
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Fig. 1 Experimental Topology

6. Experiments

6.1. Experiments settings

Simulation studies were carried out to evaluate the

performance of proposed grid resource pricing and allocation

algorithm. We provide performance analysis comparing

our pricing algorithm and R. Buyya proposed deadline

and budget constrained scheduling algorithm [26, 27]. We

provide simulation results using an ns-2 simulator. Grid

task agents have a utility function defined as U (u j
i ) =

− ∑
j u j

i − (
∑N

j=1
qi j p j

c j u
j
i

− Ti ), which is a simple version of

Eq. (4.8) where K = 1. The resource agent updates its price

per unit every 200 msec. The resource agent forwards the

price to task agents, the resource price is put in a packet.

Whenever the new price packet passes to task agent, the task

agent calculates the utility. According to allocation policy, if

the price becomes higher than its maximum willingness to

pay, task agent does not buy grid resource. The task agent can

be informed the price for the next iteration by the next price

packets. We use the BRITE generator [28] to setup network

topology (Fig. 1). We first generate an AS-level topology

consisting of 10 nodes. Each node in the AS-level topology

generates a router-level topology of 50 nodes. Therefore, the

size of our experimental network is 500 nodes. The band-

widths of all links are uniformly distributed between 1 and

10 Mbps. In this experiment there were resources with the

different price and capability. The grid resources

are shared among task agents. Each task agent has an

associated time limit, before which it should finish its job.

Processor capacity can be expressed as MIPS (Million In-

structions Per Second). The resource costcan be expressed in

grid dollar that can be defined as processing cost per MIPS.

Processor capacity varies from 220 to 580 MIPS. The ini-

tial value of the task price denoted by p varies from 10 to

500 grid dollars. All parameters are summarized in Table 1.

In our experiments the following parameters will be varied:

task agent’s budget denoted by B, the completed time limit

denoted by T , and the size of grid nodes denoted by S. The

descriptions of task agents are listed in Table 2. There are

eight types of task agents with different budget and time lim-

its and task size. During the time of experiment, grid resource

requests are generated by the grid user agents. After this ini-

tial period, the number of tasks that is statistically expected

to be generated during an interval of 100 time units is con-

sidered in the result. To allow grid task agents to complete

tasks, an additional margin of 300 time units is provided.

Each measurement is run 6 times with different seeds. These

experimental configurations are to bring up performance of

resource allocation algorithm as many as possible. Comple-

tion times and resource allocation efficiency are two mea-

surement criteria to measure in the experiment. Completion

times measure the time observed by the grid task agent to

access the requested grid resources and complete the task. It

Table 1 Experiment parameters

Num of cluster Processor capacity Initial price

( MIPS) (grid dollar)

1 370 300–500

2 220 10–100

3 370–380 200–500

4 510–580 100–500

5 340–390 20–200

6 270–275 10–300

7 410–475 100–400

8 220 20–300

9 370–380 200–500

10 270–275 10–300

Table 2 The description of the task agents

Types of task Time limits Budget (B) Task size

agent (T)(ms) (grid dollar) (Kb)

1 100 1000 10

2 200 500 30

3 300 100 20

4 400 500 50

5 100 500 50

6 200 1000 60

7 300 500 40

8 400 100 30
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is influenced by the size of the grid and resource capacity,

budget, and processing delay. Processing delay means the

time elapsed during the task was processed.Resource alloca-

tion efficiency indicates the ratio of accepted grid resource

requests to all sent grid resource requests. It is influenced by

resource capacity, budget, time limit and the size of the grid.

6.2. Comparison results

In this subsection we compare deadline and budget con-

strained (DBC) scheduling algorithm, which was presented

by R. Buyya in [26, 27] and non-market algorithm Round-

Robin scheduling algorithm with our method to investi-

gate performance of our joint optimization pricing method.

The experiments are to study characteristics of algorithm in

terms of task completion time and resource allocation effi-

ciency. Resource allocation based on a deadline and budget

constraint-scheduling algorithm (DBC) is intent to complete

the task as quickly as possible, within the budget available.

A description of the core of the algorithm follows:

1 For each resource, calculate the next completion time

for an assigned job, taking into account previously as-

signed jobs.

2 Sort resources by next completion time.

3 Assign one job to the first resource for which the cost per

job is less than or equal to the remaining budget per

job.

4 Repeat all steps until all jobs are assigned.

Graphs corresponding to our method are labeled as “opti-

mal”, deadline and budget constrained scheduling is denoted

as “DBC”, and Round-Robinscheduling algorithm is denoted

as “Robin”.

The value of system load expresses the extent to which the

whole system is busy. If in a certain period of time the number

of jobs submitted to the system is small and the lengths of

jobs are short, then the system load is light; otherwise, the

system load is heavy. System load influences the performance

of scheduling inherently. Some experiments are done under

different system loads to investigate the performance of the

algorithms. First two experiments are to measure effect of

system load on completion times and allocation efficiency

respectively. Load factor vary from 0.05 to 0.9. It can be

seen from Figs. 2 and 3 that price based strategy has better

resource allocation efficiency and use less time to complete

tasks

when compared to the Robin and DBC strategy especially

at higher loads. Before load factor reach 0.5, price based

schemes and DBC perform well. When load factor reach

0.5, the completion time of Round-Robin increase sharply.

After load factor reach 0.5, the completion time using price-

directed allocation can be as much as 15% shorter than that

Fig. 2 Completion time comparison

Fig. 3 Resource allocation efficiency comparison

using the DBC schedule. The reason is that at low loads,

the task entering the grid is less than grid resource available.

In such case, the task can be accepted and executed at the

same as it is submitted. However, at higher loads, priced

based strategy selects the best available resource for a task,

which in this case is the least loaded and therefore the fastest.

It helps acquiring higher grid resource utility and revenues.

Round-Robin performs worst because resources are allocated

arbitrarily.

The following four experiments are to measure effect of

network latency on completion times and allocation effi-

ciency under different grid size respectively. Network latency

refers to the time elapsed between the sending of a message

to a router and the return of that message. For the completion

time criteria in general, lower network latency leads to faster

completion times. The X-axis shows a change in network

latency. From the results in Fig. 4, under small size grid

(S = 150), After network latency reach 0.005,the comple-

tion time using price based allocation can be as much as 8%

shorter than that using the DBC allocation. When changing

the size of grid by S = 500 (Fig. 5), Round-Robin alloca-

tion takes more time to allocate appropriate resources, the

completion time is as much as 30% longer than that using

the price based allocation. This effect could be caused by

an increasing network latency leads to longer times to com-

plete tasks; as the times get shorter with decreasing grid size,

the overall processing gets faster. Considering the resource
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Fig. 4 Network latency effect on completion time under S = 150

Fig. 5 Network latency effect on completion time under S = 500

Fig. 6 Network latency effect on allocation efficiency under S = 150

allocation efficiency, from the results in Fig. 6 and Fig. 7,

under small size grid (S = 150), the resource allocation ef-

ficiency of price-directed allocation as much as 5% larger

that using the DBC allocation. When increasing the size of

grid by S = 500, the resource allocation efficiency of Round-

Robin allocation is as much as 17% less than that using the

price-directed allocation. When network latency reach 0.1,

the resource allocation efficiency reduce to nearly 25% in all

scenarios.

The last four experiments are to measure the effect of

different combinations of budget and time limits constraint

on completion times and allocation efficiency under different

grid size respectively. The X-axis shows changes in grid size

values. Firstly, considering the completion time, as shown in

Fig. 8, Fig. 10, both strategies spend more time to complete

Fig. 7 Network latency effect on allocation efficiency under S = 500

Fig. 8 Completion time under B = 1000, T = 100

Fig. 9 Allocation efficiency under B = 1000, T = 100

Fig. 10 Completion time under B = 500, T = 400

tasks when grid size increases. For both strategies, smaller

grid size leads to faster completion times. From the results in

Fig. 8, budget and time limits constraint are set by B = 1000

and T = 100 respectively, this represents large budget and

low time limit. Under small size grid (S = 100), completion

time of two method is near, when the size of grid increases

(S = 500), the completion time using price method can be as

much as 18% shorter than that using DBC. When changing
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Fig. 11 Allocation efficiency under B = 500, T = 400

budget and time limits constraint by B = 500 and T = 400

(Fig.10), DBC based scheme takes more time to allocate

appropriate resources, the completion time is as much as 18%

longer than that using price based method. This is because

DBC scheme wants to minimize the cost of the usage of

grid resources within the budget limit, so they take longer

times to complete tasks. Considering the resource allocation

efficiency, In Fig. 9, for large budget and low time limit (B =
1000, T = 100), under small size grid (S = 50), the resource

allocation efficiency of price based scheme as much as 10%

more than that using DBC scheme. In Fig. 11, the resource

allocation efficiency of price based scheme is nearly close to

DBC scheme.

7. Conclusions

This paper targets the problem of optimal resource allocation

in computational grid. The grid market adopts two economic

agent types: the grid resource agents that represent the eco-

nomic interests of the underlying resources of the computa-

tional grid, the grid task agents that represent the interests

of grid user using the grid to achieve goals. The grid system

optimization is decomposed to two subproblems: joint opti-

mization of resource user and resource provider in grid mar-

ket. Grid optimization problem can be formulated into utility

optimization problem based on dynamic programming. This

paper proposes a new optimization-based grid resource pric-

ing algorithm for allocating resources to grid users while

maximizing the revenue of grid providers. Simulation re-

sults show that our proposed algorithm is more efficient than

compared allocation scheme.
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