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Abstract A significant class of decision making problems
consists of choosing actions, to be carried out simultane-
ously, in order to achieve a trade-off between different ob-
jectives. When such decisions concern complex systems,
decision support tools including formal methods of reason-
ing and probabilistic models are of noteworthy helpfulness.
These models are often built through learning procedures,
based on an available knowledge base. Nevertheless, in many
fields of application (e.g. when dealing with complex polit-
ical, economic and social systems), it is frequently not pos-
sible to determine the model automatically, and this must
then largely be derived from the opinions and value judge-
ments expressed by domain experts. The BayMODE decision
support tool (Bayesian Multi Objective Decision Environ-
ment), which we describe in this paper, operates precisely
in such contexts. The principal component of the program is
a multi-objective Decision Network, where actions are exe-
cuted simultaneously. If the noisy-OR assumptions are ap-
plicable, such a the model has a reasonably small number of
parameters, even when actions are represented as non-binary
variables. This makes the model building procedure acces-
sible and easy. Moreover, BayMODE operates with a multi-
objective approach, which provides the decision maker with
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1 Introduction

Making decisions about complex systems can involve an
analysis of interactions between actions and future events,
which often proves to be a hard task for the human mind.
Help in coping with such complexity can be supplied by
normative Decision Support Systems (DSSs), implementing
formal probabilistic methods of reasoning [1]. This kind of
DSS allows the user to build a model, that is, an abstraction of
the real world, in terms of interacting variables. These include
at least decision variables (i.e. actions), which are under the
decision maker’s control, as well as objective variables. The
latter are used to express the decision maker’s preferences,
often using utility functions [2]. Once the model is built, the
DSS assists the decision maker in the identification of ac-
tions, by an appropriate formal method based on a decision
theory and according to the specified preferences.

Since DSSs of this kind are increasingly requested in vari-
ous domains of application, including medicine, economics,
military, engineering and urban planning, they have been the
subject of significant research efforts over the last decades.
In particular, a vast amount of work has been carried out
concerning the graphical probabilistic models related to the
Bayesian Networks (BNs) [3], which are often adopted as
a modeling technique and a reasoning engine for normative
DSSs. These research efforts have been accompanied by the
development of a number of BN software tools. At present,
about fifty different programs and libraries are reported in
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[4,5], and among these there are some popular tools such as
Analytica [6], BayesiaLab, GeNIe and SMILE [7], Hugin [8],
MSBNx, Netica. Mostly, the DSSs developed are for general
purposes (e.g. [6–8]), while others have been conceived and
optimized for specific fields of application (e.g. [9,10]). The
BayMODE program (Bayesian Multi Objective Decision En-
vironment) described in this paper belongs to this latter cate-
gory. It was developed in fact to operate in particular contexts
where:

– the decision maker needs to simultaneously undertake dif-
ferent actions represented by numeric variables. An inter-
esting specific case of this kind is when the decision maker
has to allocate a quantity of resources for different actions.
In this case, the variable associated with an action mea-
sures the ‘investment’ (in a wide sense e.g. economic, so-
cial, electoral, normative, consensus) the decision maker
is willing to put into that specific action. For example, a
town municipality should allocate the available budget for
different simultaneous actions, which might be: the im-
provement of collective transport systems, the restoration
of the historical center or the provision of facilities and
services for citizens; at a certain point in a military con-
flict, the military planner might be in the position to have
to decide how much effort to spend on an air raid and on a
simultaneous ground attack; an entrepreneur might be in
the situation of deciding how much of his profits to invest
in the research and development of a new product and in
exploring new markets for his current products.

– the decision maker needs to achieve a trade-off between
different, often conflicting, objectives, which are proba-
bilistically dependent on simultaneous actions. For exam-
ple, the town municipality might wish for an increase in
visiting tourists and the revitalization of the urban econ-
omy, as well as a decrease in traffic congestion and a re-
duction in the level of air pollution; the military planner
might wish to win the conflict, but minimize the losses of
his own military troops and in terms of civil population
and civil infrastructures.

– the model must be built out of the knowledge provided
by human experts. Indeed, in many fields of application,
the cases collected are often insufficient or not suitable to
determine the model with automatic learning procedures.
In these situations the input information must largely
be derived from experts’ opinions and value judgements
grounded on expert knowledge. For example, in the field
of urban policy making, while it could be accepted that an
increase in number of some particular categories of tourists
can determine an increase in real-estate values, there are
rarely data suitable to procedurally define the impact of
the first event on the probability of the second. Likewise,
it is difficult to obtain from data to what extent spending
resources on the improvement of the collective transport

system can impact the probability of a reduction in traffic
congestion for a specific city. Other cases of models which
cannot be automatically derived from the observation data
are those involving events such as ‘the development of
a particular new product’, ‘the occurrence of a particular
scientific discovery’, ‘the enactment of a specific piece of
legislation’ or ‘the outbreak of a particular war’. For these
kinds of event there is really no statistically significant his-
tory of occurrence, and the use of experts’ knowledge in
the phase of model construction appears mandatory.

BayMODE is based on the particular type of Decision
Network (DN) [11] introduced in [12], coupled with a meta
heuristic search algorithm. Such a special class of DN will
be called a Simultaneous Decision Network (SDN), since
there is no assumption of sequentiality of nodes representing
actions.

Both the SDN used in the program and the coupled so-
lution procedure are multi-objective. As argued in [13] and
later in this paper, this has a number of advantages, especially
when dealing with conflicting objectives, as often happens
in the specific context of application outlined above. Thus,
BayMODE’s main outcome is a set of non-dominated solu-
tions [14], each representing a strategy (i.e. a vector contain-
ing a numeric value for each action).

In real applications, incorporating expert knowledge into
a standard DN can be arduous, since the number of condi-
tional probabilities to be estimated for a single node grows
exponentially with the number of its direct parents. When
actions are not binary, the problem becomes even more rel-
evant. For these reasons, BayMODE makes use of the well
known noisy-OR canonical model of interaction [3, 15, 16],
which provides various advantages deriving from the causal
interpretation of the interaction between the model entities
and the logarithmic reduction of the number of parameters.
As will be shown later in the paper, in the field of appli-
cation of BayMODE, such a model of interaction is often
well justified. In the context of the noisy-OR assumption, the
program offers a simple and convenient way to incorporate
the effects of the simultaneous non-binary actions into the
model. This is provided through the use of functional rela-
tionships, which link the decision variables to the probability
of their effects. Such interaction patterns are then estimated
in a semi-qualitative form by the experts with the aid of a
specifically conceived user interface.

With respect to existing general purpose Bayesian DSSs,
BayMODE operates more effectively in the context for which
it was specifically designed. The reasons for this lie in differ-
ent concurrent characteristics, namely: (i) it allows modeling
of the probabilistic effect of many numeric actions applied in
parallel; (ii) the approximate effects of such non-binary ac-
tions can be estimated by domain experts and then included
in the model in a simple and effective way; (iii) it offers an
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intrinsic multi-objective perspective, which results in provid-
ing the decision maker with a set of non-dominated solutions
with a single run of the search algorithm.

The outline of the paper is as follows. In Section 2 we
present BayMODE’s underlying model. In Section 3 we
discuss the problem of searching for a trade-off strategy
with the use of a multi-objective genetic algorithm. The
section assumes some general knowledge of genetic algo-
rithms. Subsequently, we present an example application of
a policy-making case study in Section 4. The paper ends with
Section 5, presenting some conclusive considerations.

2 The causal model

BayMODE allows the construction of a causal model whose
entities are represented by variables which we will indicate
by uppercase letters (e.g. Y ) or indexed uppercase letters
(e.g. Xi ). A specific value of a variable will be denoted by
lowercase letters (i.e. x). The set of all possible values of a
variable Y will be indicated as D(Y ). A set of variables will
be indicated by calligraphic style letters (e.g.Y). The general
scheme of this model is shown in Fig. 1 and it includes:

– a set A of m actions which are modeled as real number
variables. The value a of an action A ∈ A represents some
physical or abstract quantity relevant to the modeled con-
text (e.g. the effort spent in terms of energy, money, etc.). In
general, the domain of definition of an action A is the dis-
crete set D(A) ⊆ [0, +∞[ that is typically a result of the
discretization of a continuous interval. As will be shown
later (see Section 2.2), under some conditions the model
can easily and effectively be built even in the case of high
cardinality of D(A) for each action A;

– a set V of events which are modeled as binary variables.
The two values of an event Y ∈ V will be denoted by the
corresponding lower case letter y, with the meaning of
‘occurrence’, and negate lowercase letter ¬y. Hence, the
domain of definition of an event Y is D(Y ) = {y, ¬y}. In
order to facilitate the process of elicitation of the model

by the domain experts, the event set V is partitioned in
the set U containing exogenous events, which cannot be
influenced by any of the entities in the model, and the set
E containing endogenous events, which can be influenced
by all other events in V and by actions in A;

– a set C of k objectives. Each C ∈ C is a variable defined
in the set of real numbers �, reflecting the value of an
objective function gC .

An element of the set
∏

Y∈Y D(Y ) will be defined as a config-
uration of a set of variables Y . In particular, a configuration
α of the set of actions A will be called strategy.

The model of interaction used is a BN, integrated with
decision nodes and objective nodes, that is, a Decision Net-
work (DN). It is worth noting that, in contrast with the more
frequent utilization of DNs, in this case the multiple deci-
sions must be made in parallel and not sequentially. In other
words, in the DNs used in this paper there is no precedence
among decision nodes, and they are not dependent on any
other model entity, so the model can be called Simultaneous
Decision Network (SDN) (or Simultaneous Influence Dia-
gram as in [17]).

As in every BN, the causal model can be represented by
a directed acyclic graph consisting of a set of nodes and the
links between these nodes (see Fig. 1). Each node is associ-
ated with a variable Y representing a model entity. For sim-
plicity, we will refer interchangeably to nodes and their asso-
ciated variables. Each variable Y has a parent set π (Y ) in the
network. Actions and exogenous events have no ingoing arcs,
i.e., their parent sets are always empty. Endogenous events
can have ingoing arcs representing probabilistic dependence,
whereas objectives can have ingoing arcs representing func-
tional dependence. In the DN, nodes representing objectives
do not have children.

In particular, for each E ∈ E , the distribution P(E |
π (E)), where π (E) ⊆ V ∪ A \ {E}, specifies the probability
of each value of E , given every possible assigned value of
π (E). If the domains of definition of E and π (E) are finite,
such a distribution is called a Conditional Probability Table
(CPT).

Fig. 1 A multi-objective SDN
scheme and the entities involved
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Each objective C assumes a value given by an ob-
jective function gC : D(π (C)) → �, where D(π (C)) =
�X∈π (C) D(X ). By definition, as shown in Fig. 1, the parent
set of the objective C1 is the set of actions, i.e., π (C1) = A,
while for each objective Ci , i = 2, . . . , k, a specific parent
set π (Ci ) ⊆ E is defined as part of the model.

In order to simplify formalization, an action variable Ai

can be viewed, with respect to a strategy α, as a random
variable whose probability Pα(Ai ) is defined as:

Pα(Ai ) =
{

1, if Ai = ai

0, otherwise
(1)

Thus, temporarily neglecting the objective variables, the
SDN can be seen as a BN representing the following joint
probability:

Pα(V,A) =
∏
Y∈V

P(Y | π (Y ))
m∏

i=1

Pα(Ai ) (2)

The expected value of the objective variable C ∈ C, in the
case strategy α gets activated, is:

Eα(C) =
∑
π (C)

Pα(π (C)) gC (π (C)) (3)

where Pα(π (C)) denotes the marginal probability of the vari-
ables π (C) in the BN, that is:

Pα(π (C)) =
∑

A∪V\π (C)

Pα(V,A) (4)

with summation extended to all possible values in A ∪ V \
π (C).

The BayMODE program also allows the definition of sce-
narios, where a scenario s is defined as a configuration of a
subset S of V . The scenarios thus defined are of particular
use in the evaluation of the performance of a specific strategy
α, assuming that evidence is given in terms of occurrence or
non-occurrence of a subset of events inV . One of the possible
situations would be that of a decision maker seeking to know
what the best actions to undertake are, under the assumption
of occurrence of a specific subset of exogenous events. Here,
for each scenario s, if the strategy α has been applied, the
expected value of the objective variable C ∈ C is:

Eα, s(C) =
∑
π (C)

Pα(π (C) | s) gC (π (C)) (5)

where Pα(π (C) | s) is the conditional probability of π (C)
given s.

2.1 Multi-attribute utility versus multi-objective approach

In contrast with more frequent DNs with a single terminal
objective node, in the model adopted in BayMODE the mul-
tiple objective nodes are retained. This is in accordance with
what has been suggested in [13], where it is argued that act-
ing in a multi-objective perspective with DNs can provide
great advantages for the whole decision process.

When multiple objectives Ci are combined in a single ter-
minal value node, this is normally accomplished through a
multi-attribute utility function [2, 18]. In practice, a multi-
objective problem is transformed into a single-objective
problem of expected utility maximization. Frequently, un-
der certain conditions that have been axiomatized [18],
the multi-attribute utility function is constructed as a
product or sum of the objective variables, with some
parameters (i.e. weights) grounded on the decision maker’s
preferences.

The critical point in this approach is the definition of a
suitable multi-attribute utility function [19, 20], which may
incorporate many conflicting objectives, possibly with dif-
ferent physical meanings. In particular, there is usually high
subjectivity in the choice of both the form and parameters
of the multi-attribute utility function. Moreover, assessing
the utility function requires an explicit statement of pref-
erences by the decision maker prior to the solution pro-
cess: if the preferences change, the entire solution process
must be repeated. Another issue is related to possible in-
accuracy in the expected value of an objective: using a
multi-attribute utility function, the entire output of the de-
cision making process will be affected by that inaccuracy.
Finally, while the solution process can potentially give valu-
able information about the system represented by the DN,
this is precluded by combining all objectives in a single
value.

The different approach adopted in the DN represented
in Fig. 1, consists of maintaining the objectives multiple
and emphasizing the generation of a range of solutions to
be presented to the decision maker for consideration. The
main purpose of this approach is to produce a set of non-
dominated (or efficient) solutions [14] in the way explained
later in Section 3. Then, the solution eventually chosen by
the decision maker is obtained by examining and exploring
the various trade-offs between objectives for the set of non-
dominated solutions. This latter phase can be carried out
in a systematized way as in the Surrogate Worth Tradeoff
method [21].

In practice, the decision maker’s preference is used only
after the most computationally expensive phase of the entire
decision support process, and avoiding the usual assump-
tions of utility theory or the specification of a multi-attribute
utility function [21]. On the other hand, however, it must be
observed that the choice of the final solution becomes indeed
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more difficult as the number of objectives and the number of
non-dominated solutions grow.

2.2 Probabilistic dependence of events

BayMODE was specifically designed to be used by a panel
of domain experts able to build a model from scratch, since
the knowledge-base for automated or semi-automated model
construction is unavailable. This suggested the adoption of
a scheme of interactions between entities, which, in most
cases, provides reliable and efficient incorporation of experts’
knowledge.

Although the program allows the user to specify the com-
plete CPT for each node in the model graph, this might be
a hard task in some cases, since the number of CPT entries
for a node X is exponential to the number of configurations
of its parent set π (X ). The problem is particularly evident
when one or more non-binary actions are in π (X ). In fact,
the set D(A) may contain few values (e.g. labeled values
as in D(A) = {very low, low, medium, high, very high}) and
may also be defined by a very fine subdivision of a given
continuous interval.

For the above reasons, BayMODE implements the most
frequently accepted and widely applied solution to this prob-
lem, that is the noisy-OR gate [3,15,16], which has the main
advantages of providing a logarithmic reduction in the num-
ber of model parameters, as well as a causal interpretation
of the interactions. Moreover, in this context the program
allows a simple and effective way to estimate and take into
account the effects of non-binary actions.

The use of the noisy-OR model in BayMODE is justified,
as in its field of application the hypothesis of independence
of causes is often quite well verified. Coming back to the
example of a town municipality formulated in Section 1,
a domain expert may suggest that both investing resources
in the renovation of the historical center and the currency
exchange rate, can have an impact on the probability of the
event ‘increase in visiting tourists’. But it is likely that the
two causal mechanisms act quite independently.

Moreover, in the case of models built completely by do-
main experts, using the noisy-OR gate can lead to appre-
ciable outcomes even when the causes do not act perfectly
independently. Indeed, as recently argued in [12], some em-
pirical studies concerning models built by human experts
show that even when distribution does not rigorously respect
the noisy-OR hypothesis, the elicitation error affecting the
parameters might be smaller than the elicitation error of the
complete CPTs. This decrement of estimation errors could
possibly be due to the significant reduction in the number
of parameters combined with the causal interpretation of the
interactions, which make the estimation task more suited for
a human mind. As a conclusion, it seems reasonable to as-
sume that in this field of application it is better to use a model

X1 X2 X3

Y1 Y2

X4

Fig. 2 Causes (Xi ’s) and effects (Yi ’s)

that is to some extent imperfect (i.e. neglecting some small
interactions), but with small elicitation errors, rather than a
more complete but far too complex model, the parameters of
which are in all probability affected by larger uncertainties.

It is also worth observing that the causal interpretation
of the interactions provided by the noisy-OR gate, helps the
domain experts to better identify the building blocks of the
model [22]. This, in our experience, results in great advan-
tages in terms of the overall quality of the decision process.

2.2.1 Interactions between events

With the purpose of briefly recalling the noisy-OR assump-
tions used in BayMODE as a favorite way to model the prob-
abilistic dependence of events, let us say that the event rep-
resented by the variable Xi may be a cause of Y when it is
active with respect to Y or, in other words, when it assumes a
particular value x↑Y

i . For example, with reference to Fig. 2, if
the binary variable X3 represents an event, it may be that its
occurrence is a cause of the effect Y1 whereas non-occurrence
is a cause of Y2. It is worth noting that since in a large BN
an event Xi may represent a cause for more than one effect,
the activation value of Xi may be different for each effect.
In general, given a configuration of π (Y ), we can define the
set:

π∗(Y ) = {X ∈ π (Y ) : X = x↑Y } (6)

to which all the Xi belong which are in the active state for
Y . Formally, the basic noisy-OR assumptions are:

– each of the causes Xi is characterized by a parameter pi ∈
[0, 1] called causal strength with respect to its potential
effect Y ;

– the ability of each cause to be sufficient is independent from
the presence of other causes (i.e. when effect Y has not been
produced, each cause Xi has failed independently).

The parameter pi is defined as the probability the effect Y
is true, cause Xi being active and all other causes X j , with
j �= i , inactive:

pi = P
(
y

∣∣ x↑Y
i ∧ ¬x↑Y

j ∀ j ∈ [1, n], j �= i
)

(7)
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Y

X1

X0

X2 Xn
...

p1

p0

p2 pn

Fig. 3 The leaky noisy-OR
model

The above hypothesis allows us to specify the entire CPT,
given the non-empty activation set π∗(Y ), and only n
parameters, in other words, to specify only a parameter pi

for every Xi . In particular, the probability of y is given by
the following formula:

P(y | π∗(Y )) = 1 −
∏

i :Xi ∈π∗(Y )

(1 − pi ) (8)

which is sufficient to derive the CPT of Y on its predecessors
X1, X2, . . . , Xn .

Since in practice it is almost impossible to enlist all possi-
ble causes which can produce effect Y , BayMODE uses the
well-known extension of the binary Noisy-OR gate, called
leaky Noisy-OR gate [15], which is suitable for situations
where the effect can be produced even if all its explicit causes
are inactive. This can be conceptualized by introducing an
additional cause X0 which is assumed to always be active (see
Fig. 3). This cause is associated with an additional parame-
ter p0 ∈ [0, 1], called the leak probability. It represents the
probability that the effect Y is produced by the non-modeled
causes, when all the modeled causes are inactive. Hence:

p0 = P
(
y | ¬x↑Y

j ∀ j ∈ [1, n]
)

(9)

Since X0 is always active, the CPT is expressed by the equa-
tion:

P(y | π∗(Y )) = 1 − (1 − p0)
∏

i :Xi ∈π∗(Y )

(1 − pi ) (10)

where, in this case, pi is the probability that effect Y is pro-
duced by Xi , being inactive all the other modeled and non-
modeled causes, while π∗(Y ) has the same meaning as in
Eq. (8).

2.2.2 Impact of actions on events

Equation (10) refers to the situation where an event Y has only
other events Xi as its explicit causes in the model. According
to what was illustrated before, concerning the advantages of
facilitating the elicitation phase, this can be extended to the
situation represented in Fig. 4, where among the causes of
Y there is also the action A. To this end, let us introduce an

Fig. 4 Action causal strength

additional factor 1 − p(A) in Eq. (10), which becomes:

P(y | π∗(Y ), A)= 1 − (1 − p0) (1 − p(A))
∏

i :Xi ∈π∗(Y )

(1 − pi )

(11)

where p(A) is the causal strength of the action A, with an
obvious meaning in the context of the noisy-OR assumptions.
During the elicitation process p(A) can be given in a tabular
form, that is, a strength value for each of the discrete values
of A. A different way to provide p(A) is through a function
ψ representing an interaction pattern:

p(A) = ψ(A; q1, . . . , qn) (12)

where both ψ and the parameters q1, . . . , qn must be cho-
sen during the modeling phase. In Fig. 5, few examples of
strength functions included in BayMODE are represented.
For instance, the function I allows the causal strength to be
expressed in terms of the three parameters pinf , aα and aβ ,
that is, the asymptotic value of ψ , and values of the action
corresponding to the strengths α pinf and β pinf , respectively.
Returning to the example of the town municipality, a domain
expert may estimate that spending resources on the renova-
tion of the historical center acts on the event ‘increase in
visiting tourists’ with a causal strength which follows the

Fig. 5 Examples of causal strength functions depending on two (I I
and I I I ) or three (I and I V ) parameters
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Fig. 6 The presented example graph from BayMODE

logistic curve I . Then, the expert should estimate the maxi-
mum causal strength pinf inducted by that action, as well as
the amount of resources corresponding, for example, to the
10% and the 90% of the causal strength pinf .

Like many other Bayesian DSSs [4, 5], BayMODE was
designed in a way to help experts be involved in a collab-
orative interactive phase of modeling, considerably assisted
by the visual definition of the model in the form of a di-
rected graph (see Fig. 6). In particular, for arcs linking ac-
tions and events the user can provide the causal strength both
in tabular form and in terms of choice of the shape of the
function with the associated parameters. During this phase,
BayMODE interactively visualizes the chosen shape of the
function, given its actual parameters.

3 Searching for best strategies

Once the model has been built, the subsequent step in the
BayMODE-supported decision process is the computation
of a set of strategies to be presented to the decision maker
for consideration. In the line of principle, an optimal strategy
α = (a1, . . . , am) ∈ � = ∏m

i=1 D(Ai ), could be found with
an exhaustive search, consisting of the computation of the
expected values of the k objectives Ci in correspondence
with all possible strategies.

With the aim of avoiding an inefficient exhaustive search,
a number of methods have been conceived to find the op-
timal policy for DNs. Most algorithms concern standard

DNs [11], which satisfy the regularity constraint (there must
be a directed path containing all decision nodes), and the
no-forgetting constraint (a decision node and its parents are
parents to all subsequent decision nodes, that is, information
available now should also be available later).

Roughly speaking, the existing methods can be classified
as those operating directly on the given network, and those
that perform the evaluation after transforming the network
into a different representation. The well-known method de-
scribed by Shachter [23] belongs to the first class, which con-
sists of transforming the DN by successively removing nodes
from the graph, like in stochastic dynamic programming [24],
until the final objective node holds the value corresponding
to the optimal policy. To the second class belong the meth-
ods which transform the diagram into a BN. This approach
was first proposed by Cooper [25] and later by Shachter and
Peot [26] and Zhang [27]. A related method transforms the
DN into a junction tree that is suitable for probabilistic in-
ference using the clique-tree propagation algorithm [28,29].

Since all the algorithms for standard DNs adopt the regu-
larity and no-forgetting constraints, they cannot be used for
the SDN implemented in BayMODE. Similar considerations
are valid for methods concerning non-standard DNs, the cor-
rectness of which relies on some specific properties of those
DNs [30–32], which do not hold for SDNs.

On the other hand, in our case the exhaustive approach
might turn out to be computationally infeasible. In fact, ac-
tions are represented by non-binary variables, and this poten-
tially leads to a very large dimension of the decision space �.

Springer



132 Appl Intell (2007) 26:125–137

For example, supposing that the m actions Ai belong to finite
sets of definition D(Ai ) the cardinality of which is q, then the
number of different strategies is |�| = qm (e.g. almost ten
million strategies in the case of q = 5 values and m = 10 ac-
tions), while in the case of binary actions it equals |�| = 2m

(e.g. about one thousand strategies for m = 10 actions).
To cope with such a high dimension of the search space,

the approach followed in BayMODE consists of viewing
the problem as a combinatorial optimization, for which
an approximate solution is provided by a multi-objective
meta heuristics. The use of heuristics is not new for BN-
related problems [33–38], although, to our knowledge, multi-
objective heuristics has never been used before. The problem
can be conveniently formulated as a multi-objective search
as follows:

max
α∈�

Eα, s(Ci ), i = 1 . . . k (13)

where Eα, s(Ci ) is defined by Eq. (5) in correspondence with
a given scenario s.

A more complete formulation may include some con-
straints. For example, if actions represent homogeneous
quantities, it may prove convenient to impose constraints on
the total amount such as:

m∑
i=1

Ai ≤ amax (14)

where amax is the maximum total value allowed to be allo-
cated for different available actions.

In the current version of BayMODE, the meta heuristics
adopted for solving the (13) is a multi-objective Genetic Al-
gorithm (GA) [39,40]. The GA is used to evolve a randomly
initialized population, whose generic chromosome is an m-
dimensional vector s representing an element α ∈ �. The
i-th element—or gene—of the chromosome is obtained as
the binary encoding of Ai , using a suitable number of bits
(optionally different for each action) and its interval of defini-
tion D(Ai ). Each chromosome can be decoded in a strategy
α and, performing a BN inference, the objective functions
can be computed.

In the multi-objective GA, to avoid the aggregation of mul-
tiple objectives in accordance with what was illustrated in
Section 2.1, the comparison of two candidate solutions, with
respect to different objectives, is achieved through Pareto’s
optimality and dominance concepts. In particular, consider-
ing the optimization problem (13), we say that a solution α

(strongly) dominates the solution β if:

∀ i Eα(Ci ) ≥ Eβ(Ci ) ∧ ∃ j : Eα(C j ) > Eβ(C j ) (15)

In other words, α dominates β if α is better or equivalent
to β with respect to all objectives, and better in at least one
objective. A non-dominated solution is optimal in the Pareto
sense (i.e. no criterion can be improved without worsening
at least one other criterion). Rather than a single solution, a
search based on such a definition of optimum produces a set
of non-dominated solutions, from which the decision maker
should pick one.

The multi-objective GA adopted is the well-known
NSGA-II [41], which has been extensively investigated and
successfully tested [41–44]. The NSGA-II algorithm is based
on the idea of transforming the objectives into a single fit-
ness measure by the creation of a number of fronts, sorted
according to non-domination. The fronts are created using
Goldberg’s ‘non-dominated sorting’ procedure [45], which
works as follows:

1. all non-dominated individuals in the current population
are inserted in the first front, which corresponds to the
highest fitness;

2. these individuals are virtually removed from the popu-
lation and the next set of non-dominated individuals are
inserted in a second front, corresponding to the second-
highest fitness;

3. phases 1–2 are reiterated until all of the individuals have
been assigned a fitness rank.

When each front has been created, the so-called crowding
distances (i.e., normalized distance to closest neighbors in
the front in objective space) are assigned to its members, to
be used in the next phase with the purpose of promoting a
uniform sampling of the Pareto set.

Selection is performed by binary tournaments [41]: be-
tween two individuals the one with the lowest front number
wins. If the individuals come from the same front, the one
with the highest crowding distance wins, since a high dis-
tance to the closest neighbors indicates that the individual is
located in a sparsely populated part of the front. If N is the
size of the population, in each generation N new individuals
are generated by a standard crossover with a predefined prob-
ability pc. Then, a mutation with a probability pm is applied
to each offspring at each position in the chromosome. The
algorithm is elitist, in the sense that out of the 2N individuals,
the best N individuals are kept for the next generation. The
constraints, like that in Eq. (14), are handled with the concept
of constrained dominance proposed in [41]. It consists of a
redefinition of the criterion (15), in such a way that any fea-
sible solution belongs to a better non-domination front than
any infeasible solution.

Execution of the NSGA-II algorithm requires the evalu-
ation of the objectives corresponding to every individual in
the population. This involves the use of a suitable inference
procedure for the BN representing joint probability (2), in
order to carry out the computation of Pα(π (C) | s).
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BayMODE performs the evaluation of the objectives
using the so-called likelihood weighting method [46, 47],
which belongs to the class of approximate inference algo-
rithms based on stochastic simulation. The method is a varia-
tion of the so-called probabilistic logic sampling [48], where:
(i) repeated simulations of the world described by the BN
are performed following the causal links, (ii) samples that
are inconsistent with the evidence values are thrown away,
and (iii) the probabilities of query nodes are estimated by
counting the frequency with which relevant events occur in
the sample. Unfortunately, if there is unlikely evidence, most
generated samples will be inconsistent with that evidence and
therefore wasted. In the likelihood weighting method, this
problem of logic sampling is mitigated: instead of sampling
evidence nodes, the observed value of the evidence variables
is weighted by the likelihood of evidence.

The likelihood weighting algorithm was implemented in
BayMODE for various reasons. First, the problem of unlikely
evidence is not severe since the evidence (i.e. the values of
random variables representing actions and the current sce-
nario) is mainly concentrated in the roots of the BN graph
(scenarios are mostly composed of variables in the set U of
exogenous variables). Second, the method permits the con-
trol of accuracy, which increases with the number of samples
generated and which is not affected by network topology and
size. Indeed, with certain limitations, the GA does not require
the exact evaluation of objectives in order to converge. This
allows fast execution of the GA, even with large networks,
because of the relatively small number of samples required
for the evaluation of each individual.

4 An example application

The example application shown in this section refers to a
policy-making exercise. The model graph is represented in
Fig. 6, including actions (i.e. rectangles) and events (i.e.
ovals). Table 1 reports all events included in the model and
their estimated leak probabilities, as well as the estimated
probabilities p̄ assuming that no actions were undertaken.
Table 2 reports the actions that in this model represent the
efforts associated with their execution, defined in the inter-
val [0, 10] and expressed in a homogeneous virtual unit. In
Table 3 the characteristics of the causal strengths correspond-
ing to the arcs in Fig. 6 are presented.

Interactions between events were modeled by the noisy-
OR assumption as explained in Section 2.2. In the graph, a
minus symbol labeling an arc from an event X to an event
Y means x↑Y = ¬x , whereas a plus symbol means x↑Y = x
(see Section 2.2). A minus symbol labeling an arc from an ac-
tion A to an event Y means that a decreasing causal strength
function was used, whereas a plus symbol means that an in-
creasing one was used (see also Fig. 5). The thickness of

Table 1 The set of events in the example presented (Ux denotes exoge-
nous events, Ex denotes endogenous events, p0 is the leak probability
while p̄ is the estimated probability corresponding to the null strategy)

Id Description p0 p̄

U1 Increase in demand for agro-biological products 0.1
U2 Exceptional flooding 0.02
U3 High competition from emerging countries 0.25
U4 Oil crisis 0.15
U5 Euro:Dollar = 1:2 0.01
E1 Increase in visiting tourists 0.08 0.10
E2 Increase in demand for services 0.05 0.11
E3 Increase in traffic congestion 0.11 0.66
E4 Agricultural development 0.06 0.19
E5 Increase in real-estate values 0.09 0.23
E6 High added-value economic activities 0.06 0.41
E7 Population decrease, especially young people 0.1 0.75
E8 Increase in unskilled immigration 0.1 0.30
E9 Increase in unemployment 0.07 0.34
E10 Industrial development 0.07 0.51

Table 2 The set of actions in the example presented. All actions
are defined in the interval [0, 10]

Id Description

A1 Financial support for agricultural development
A2 Better services for citizens
A3 Improvement in collective transport systems
A4 Renovation of the historical center
A5 Extension and foundation of new universities
A6 Investment in new technologies
A7 Support for entrepreneurial start-ups
A8 Measures for environmental protection and

territorial preservation
A9 Better quality high-school education

Table 3 The set of arcs in the example presented. All shape functions
are sigmoidal with α = 0.1 and β = 0.9 (see Fig. 5)

Causal Activation Causal Causal
influence value strength influence aα aβ p0 or pinf

U1 → E4 u1 0.40 A1 → E4 5.00 10.00 0.60
U4 → E10 ¬u4 0.30 A2 → E5 2.00 7.00 0.45
E1 → E5 e1 0.40 A2 → E7 8.00 3.00 0.40
E3 → E5 ¬e3 0.25 A2 → E1 2.00 8.00 0.50
U2 → E4 ¬u2 0.14 A3 → E3 10.00 4.00 0.60
U3 → E10 ¬u3 0.25 A3 → E5 2.00 8.00 0.30
E10 → E9 ¬e10 0.40 A4 → E5 3.00 8.00 0.40
E10 → E6 e10 0.14 A4 → E1 5.00 10.00 0.40
E7 → E5 ¬e7 0.25 A5 → E7 10.00 5.00 0.40
E4 → E8 e4 0.30 A6 → E10 2.00 6.00 0.70
E4 → E9 ¬e4 0.15 A7 → E10 2.00 7.00 0.60
E1 → E2 e1 0.20 A7 → E6 5.00 10.00 0.40
E7 → E8 e7 0.15 A8 → E10 10.00 5.00 0.20
E9 → E7 ¬e9 0.20 A8 → E5 2.00 10.00 0.40
E5 → E6 ¬e5 0.35 A8 → E4 5.00 10.00 0.40
U5 → E1 u5 0.70 A9 → E6 5.00 10.00 0.30
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the arcs represents the intensity of the causal strength (i.e.
the maximum or the asymptotic value in the case of arcs
from actions to events). The model required the estimation
of 15 leak probabilities, 16 constant causal strength and 16
shapes of functions, the latter selected via the program graph-
ical interface. Three different objectives were specified, with
parents defined as:

– the set of actions A as π (C1);
– the setG ⊆ V , as π (C2), containing events reputed positive

facts by the panel of domain experts;
– the set B ⊆ V , as π (C3) of events reputed negative facts;

In particular, the objective functions were defined as:

gC1 =
m∑

Ai ∈A
Ai , gC2 = 1

�G
∑
Xi ∈G

xi , gC3 = 1

�B
∑
Xi ∈G

(1 − xi )

(16)

where it is assumed that x = 1 and ¬x = 0. Thus, Eα(C1)
is simply the total effort spent on the strategy α, Eα(C2) is
the expected share of occurring events in G, while Eα(C3) is
the expected share of non-occurring events in B. It is worth-
while mentioning that once the model has been defined, the
program allows the user to define a different set of objectives
which corresponds to a different point of view in the analysis.

4.1 Case I: A three-objective problem

The first analysis was carried out with the aim to maximize
the expected values of gC2 and gC3 and to minimize gC1 .
The parent sets of the objective functions gC2 and gC3 were
defined as G = {E1, E4, E6, E10} and B = {E3, E7, E9}, re-

spectively. The NSGA-II algorithm was executed using the
settings experimented in [41] for a wide range of tests, that
is, a crossover probability pc = 0.9 and mutation probability
pm = 1/	, where 	 = 12 is the number of bits in the chromo-
some. In order to obtain a Pareto set of good quality, exper-
iments have suggested the use of a population of N = 500
individuals, each encoding a strategy (i.e. the 9 effort values
relative to the available actions).

The objective functions were evaluated performing the
BN stochastic sampling procedure for each individual in the
population. Given that the adopted GA was of an elitist kind,
the values of the objective functions relative to the current
Pareto set were conveniently stored from one generation into
its successors (i.e. the BN inferences are not re-performed).
Computation was simply terminated after 200 generations
(the software allows real-time monitoring of the Pareto-set
evolution). Using a standard PC, about thirty minutes were
required for the total computation.

Figure 7, representing the final non-dominated set com-
posed of about 400 individuals, shows how the proposed
multi-objective approach allows the user to pick a solution
from a variety of possibilities. Clearly, the final selection
must be performed on the basis of some additional subjec-
tive decision. The selected strategies in our case are labeled
as a and b in the figure. In particular, Fig. 8 reports the ef-
fort allocation suggested by the BayMODE analysis for both
strategies, while Fig. 9 represents the corresponding proba-
bility variations.

For example, according to strategy a, the decision maker
should invest high efforts in “Support for entrepreneurial
start-ups”, “Support for agricultural development” and
“Better services for citizens”, medium effort in “Investments

Fig. 7 Case I: the set of
computed non-dominated
solutions in the space of the
objective functions. The
selected solutions are labeled
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Fig. 8 Case I: effort allocation corresponding to the selected solutions

Fig. 9 Case I: Variations of the estimated event probabilities, corre-
sponding to the selected solutions

in new technologies” and low effort in other actions. Un-
dertaking strategy a leads to an expected number of oc-
curred events in G of 65%, and to an expected number of
not-occurred events in B of 54%. As visible in Fig. 7, if the
decision maker is willing to spend more effort, he/she may
substantially maintain the value of objective C2, while in-
creasing the probabilities of C3: this is the case of strategy
b. According to the latter, the decision maker should spend
more effort, especially on the actions “Improvement of col-
lective transport systems” and “Extension and foundation of
new universities”, obtaining as a result an expected number
of occurred events in G of 63%, and an expected number of
non-occurred events in B of 79%.

4.2 Case II: A two-objective problem

In the second analysis, a two-objective problem of maximiz-
ing the expected value of gC2 and minimizing gC1 was solved.
The parent sets of gC2 were defined as G = {E5}, that is, the
problem consisted of maximizing the probability of increas-
ing the real-estate values, while minimizing the total effort.
In this case the GA population was composed of N = 100
individuals as in [41], while all the other GA parameters were

Fig. 10 Case II: the set of computed non-dominated solutions. The
selected solutions are labeled

Fig. 11 Case II: effort allocation corresponding to the selected solu-
tions

identical to those in Case I. Computation was terminated after
50 generations when the quality of the Pareto-set was judged
to be sufficient. Figure 10 represents the final non-dominated
set where three selected strategies are labeled with the letters
a, b and c. Figure 11 reports the effort allocations suggested
by the BayMODE analysis in correspondence to the selected
strategies.

Strategy a corresponds to a moderate value of the to-
tal effort: it suggests that, according to the knowledge pro-
vided by the panel of experts who built the model, a decision
maker can obtain an increment in the probability of increas-
ing the real-estate values, from P(e5) = 0.23 (see Table 1) to
P(e5) = 0.63, simply with high investments in “Better ser-
vices for citizens” and very low investments in other actions.
According to the strategy b, which leads to P(e5) = 0.83, the
most important actions are “Better services for citizens” and
“Renovation of the historical center”, while a moderate in-
vestment in “Improvement of collective transport systems” is
suggested. Increasing the latter allows a further increment in
the value of P(e5), that in the strategy c is estimated as 0.94.

5 Conclusions and future work

In this paper, we have presented the main features of the
decision support system BayMODE, which is based on a si-
multaneous decision network coupled with a meta heuristic
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search procedure. The proposed tool includes some charac-
teristics which, put together, make it particularly effective
to assist a decision maker who has to achieve a probabilistic
trade-off between different objectives, simultaneously under-
taking different actions.

The kind of decision network adopted in BayMODE is es-
pecially suitable when the noisy-OR gate is chosen to model
the interactions between the entities. In fact, in this case,
even if actions are represented by non-binary variables, the
model requires few parameters, thanks to the use of causal
strength functions representing interaction patterns. The lat-
ter can easily be defined via the interactive graphical inter-
face. This makes BayMODE particularly useful when the
model cannot be automatically obtained from data and must
be built by a panel of domain experts. Another significant
characteristic of the program is the multi-objective approach,
which results in providing the decision maker with a set of
non-dominated solutions in a single run of the search algo-
rithm. In applications which include interaction with human
decision makers, such an approach can provide a consid-
erable amount of insight that helps in choosing the superior
decision strategy or even in assisting in improving the model.
Nevertheless, although some systematic method exists [21],
it is well-known that in the multi-objective approach, the fi-
nal choice of the preferred solution might be not easy. This
is particularly true when dealing with many objectives and
when the number of non-dominated solutions is high. On the
contrary, the multi-attribute utility approach is not affected
by dimensionality problems.

Further work could be addressed to experimenting differ-
ent, and possibly more specific, search heuristics, in order to
provide non-dominated sets of better quality and with greater
computational efficiency. Moreover, in the future we should
explore how the definition of the strength functions can be
done, integrating experts’ opinions with other sources of in-
formation.
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