
Applied Intelligence 23, 241–255, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Learning States and Rules for Detecting Anomalies in Time Series

STAN SALVADOR AND PHILIP CHAN
Department of Computer Sciences, Florida Institute of Technology, Melbourne, FL 32901

ssalvado@cs.fit.edu

pkc@cs.fit.edu

Abstract. The normal operation of a device can be characterized in different temporal states. To identify these
states, we introduce a segmentation algorithm called Gecko that can determine a reasonable number of segments
using our proposed L method. We then use the RIPPER classification algorithm to describe these states in logical
rules. Finally, transitional logic between the states is added to create a finite state automaton. Our empirical results,
on data obtained from the NASA shuttle program, indicate that the Gecko segmentation algorithm is comparable to
a human expert in identifying states, and our L method performs better than the existing permutation tests method
when determining the number of segments to return in segmentation algorithms. Empirical results have also shown
that our overall system can track normal behavior and detect anomalies.

Keywords: anomaly detection, time series, segmentation, cluster validation, clustering

1. Introduction

Expert (knowledge-based) systems are often used to
help humans monitor and control critical systems in
real-time. For example, NASA uses expert systems to
monitor various devices on the space shuttle. How-
ever, populating an expert system’s knowledge base
by hand is a time-consuming process. In this paper, we
investigate machine learning techniques for generating
knowledge that can monitor the operation of devices
or systems. Specifically, we study methods for gener-
ating models that can detect anomalies in time series
data.

The normal operation of a device can be character-
ized in different temporal states. Segmentation or clus-
tering techniques can help identify the various states.
However, most methods directly or indirectly require a
parameter to specify the number of segments/clusters
in the time series data. The output of these algorithms
is also not in a logical rule format, which is com-
monly used in expert systems for its ease of compre-
hension and modification. Furthermore, the relation-
ship between these states needs to be determined to
allow tracking from one state to another and to detect
anomalies.

Given a time series depicting a system’s normal oper-
ation, we desire to learn a model that can detect anoma-
lies and can be easily read and modified by human
users. We investigate a few issues in this paper. First,
we want a segmentation algorithm that can dynami-
cally determine a reasonable number of segments, and
hence the number of states for our purposes. These
states, collected from a device, should be compara-
ble to those identified by human experts. Second, we
would like to characterize these states in logical rules
so that they can be read and modified with relative ease
by humans. Third, given the knowledge of the different
states, we wish to describe the relationship among them
for tracking normal behavior and detecting anomalies.

To identify states, we introduce Gecko, which is able
to segment time series data and determine a reasonable
number of segments (states). Gecko consists of a top-
down partitioning phase to find initial sub-clusters and
a bottom-up phase which merges them back together.
The appropriate number of segments is determined by
what we call the L method. To characterize the states
as logical rules, we use the RIPPER classification rule
learning algorithm [1]. Since different states often over-
lap in the one-dimensional input space, additional at-
tributes are derived to help characterize the states. To



242 Salvador and Chan

track normal behavior and detect anomalies, we con-
struct a finite state automaton (FSA) with the identified
states.

Our main contributions are: (1) we demonstrate a
way to perform time series anomaly detection via gen-
erated states and rules that can easily be understood
and modified by humans; (2) we introduce an algo-
rithm named Gecko for segmenting time series data
into important phases or states; (3) we propose the L
method for dynamically finding a reasonable number
of clusters–the L method is general enough to be used
with either hierarchical clustering or segmentation al-
gorithms [2]; (4) we integrate RIPPER and state tran-
sition logic to generate a complete anomaly detection
system; (5) our empirical evaluations, with data from
NASA, indicate that Gecko performs comparably with
a NASA expert and the overall system can track normal
behavior and detect anomalies.

The next section gives an overview of related work.
Section 3 provides a detailed explanation of our system,
which includes the components: Gecko (clustering),
RIPPER (rule generation), and state transition logic.
Section 4 contains experimental evaluations of the
component algorithms as well as the overall anomaly
detection system, and Section 5 summarizes our
study.

2. Related Work

2.1. Clustering Algorithms

Clustering algorithms take spatial data (2 or more di-
mensions) as input and return a set of clusters such
that all points in a cluster are similar to each other and
dissimilar to points in other clusters. There are four
main categories of clustering algorithms: partitioning,
hierarchical, density-based, and grid-based. Partition-
ing algorithms, for example K -means, and PAM [3],
iteratively refine a set of k clusters and do not scale
well for larger data sets. Density-based algorithms,
e.g., DBSCAN [4] and DENCLUE [5], are able to ef-
ficiently produce clusters of arbitrary shape and are
also able to handle noise. If the density of a region is
above a specified threshold, it is assigned to a clus-
ter; otherwise it is considered to be noise. However,
sharp spikes in time series data are sometimes impor-
tant features and could be incorrectly determined to
be noise by a density-based clustering algorithm. Hier-
archical algorithms can be agglomerative and/or divi-
sive. The agglomerative (bottom-up) approach repeat-

edly merges two clusters, while the divisive (top-down)
approach repeatedly splits a cluster into two. ROCK
[6] and Chameleon [7] are hierarchical algorithms that
differ mostly in their similarity functions, which fa-
vor spherical and non-spherical clusters (respectively).
Grid-based algorithms, such as WaveCluster [8], re-
duce the clustering space into a grid of cells which
enables efficient clustering of very large datasets. This
is useful for clustering a large amount of very con-
centrated data, but not for one-dimensional time series
data. Existing clustering algorithms are not designed to
cluster time series data. Our Gecko algorithm is sim-
ilar to a hierarchical clustering algorithm that is able
to cluster time series data by adding constraints to the
merging and splitting of clusters. The main constraint
added to our Gecko algorithm is that clusters must be
divided cleanly along the time dimension, which makes
the Gecko behave like a segmentation algorithm.

2.2. Segmentation Algorithms

Segmentation algorithms usually take time series data
as input and produce a Piecewise Linear Representa-
tion (PLR) as output. PLR is a set of consecutive line
segments that tightly fit the original data points. Seg-
mentation algorithms are somewhat related to cluster-
ing algorithms in that each segment can be thought of
as a cluster. However, due to their linear representation
bias, segmentation algorithms are more effective at pro-
ducing fine grain partitioning, rather than a smaller set
of segments that represent natural clusters.

There are three common approaches to time series
segmentation [9]. First, in the Sliding Window ap-
proach, a segment is grown until the error of the line
is above a specified threshold, then a new segment is
started. Second, in the Top-down approach, the entire
time series is recursively split until the desired number
of segments is reached, or an error threshold is reached.
Third, the Bottom-up approach starts off with n/2 seg-
ments, the 2 most similar adjacent segments are repeat-
edly joined until either the desired number of segments,
or an error threshold is reached. The sliding window ap-
proach creates poorest linear approximations but runs
the quickest. Top-Down segmentation creates the best
PLR but runs much slower than the other two methods.
Bottom-up segmentation creates PLRs that are nearly
as good as those of the top-down method, but has a
much smaller time complexity than top-down segmen-
tation.



Learning States and Rules for Detecting Anomalies in Time Series 243

2.3. Determining the Number of Segments/Clusters

Five common approaches to estimating the dimension
of a model (such as the number of clusters or segments)
are: cross-validation, penalized likelihood estimation,
permutation tests, resampling, and finding the knee of
an error curve.

Cross-validation techniques create models that at-
tempt to fit the data as accurately as possible. Monte
Carlo cross-validation [10] has been successfully used
to prevent over-fitting (too many clusters/segments).
Penalized likelihood estimation also attempts to find
a model that fits the data as accurately as possible,
but also attempts to minimize the complexity of the
model. Specific methods to penalize models based on
their complexity are: MML [11], MDL [12], BIC [13],
AIC, and SIC [14]. Permutation tests [15] are able to
prevent segmentation algorithms from creating a PLR
that over-fits the data. Resampling [16] and Consensus
Clustering [17] attempt to find the correct number of
clusters by repeatedly clustering samples of the data
set, and determining at what number of clusters the
clusterings of the various samples are the most “sta-
ble.”

Locating the “knee” of an error curve, in order to de-
termine an appropriate number of clusters or segments,
is well known, but it is not a particularly well-studied
method. There are methods that statistically evaluate
each point in the error curve, and use the point that
either minimizes or maximizes some function as the
number of clusters/segments to return. Such methods
include the Gap statistic [18] and prediction strength
[18]. The knee of a curve is loosely defined as the point
of maximum curvature. The knee in a “# of clusters vs.
classification error” graph can be used to determine the
number of clusters to return. Various methods to find
the knee of a curve are:

1. The largest magnitude difference between two
points.

2. The largest ratio difference between two points [20].
3. The first data point with a second derivative above

some threshold value [21].
4. The data point with the largest second derivative

[22].
5. The point on the curve that is furthest from a line

fitted to the entire curve.
6. Our L-method, which finds the boundary between

the pair of straight lines that most closely fit the
curve.

This list is ordered from the methods that locate the
knee locally, to the methods that locate the knee glob-
ally by considering more points of the curve. The first
two methods use only single pairs of adjacent points
to determine where the knee is. The third and fourth
methods uses more than one pair of points, but still
only consider local trends in the graph. The last two
methods consider all data points at the same time. Lo-
cal methods may work well for smooth, monotonically
increasing/decreasing curves. However, they are very
sensitive to outliers and local trends, which may not be
globally significant. The fifth method takes every point
into account, but only works well for smooth, continu-
ous functions, and not curves where the knee is a sharp
jump. Our L Method considers all points to keep local
trends or outliers from preventing the true knee to be
located, and is able to find knees that exist as sharp
jumps in the curve.

2.4. Anomaly Detection

Nearly all of the work in time series anomaly detec-
tion relies on models that are not easily readable and
hence cannot be modified by a human for tuning pur-
poses. Examples include a set of normal sequences [23]
and adaptive resonance theory [24]. However, Langley
et al. [25] propose a method that uses process models to
model a time series and predict future data. These pro-
cess models are concise and are easily read and modi-
fied by humans, but their generation requires parame-
ters to be set by a human that must have knowledge of
the underlying processes that produce the time series.

3. Approach

The input to our overall anomaly detection system is
“normal” time series data (like the graph at the top left
corner of Fig. 1).

The output of the overall system is a set of rules that
implement state transition logic on an expert system,
and are able to determine if other time series signatures
deviate significantly from the learned signature. Any
deviation from the learned “normal” model is consid-
ered to be an anomaly. The overall architecture of the
anomaly detection system, depicted in Fig. 1, consists
of three components: segmentation, rule generation
(characterization), and state-transition logic. The seg-
mentation phase is performed by our newly-developed
segmentation algorithm “Gecko,” which is designed to



244 Salvador and Chan

Figure 1. Main steps in time series anomaly detection.

identify distinct states (or clusters) in a time series.
Next, rules are created for each state by the RIPPER
algorithm [1]. Finally, rules are added for the transi-
tions between states to create a finite state automaton.
The three steps in our approach are detailed in the next
three subsections.

3.1. Gecko—Identifying States

While segmentation algorithms typically create only
a fine linear approximation of time series data, Gecko
divides a time series into a smaller number of segments
that are analogous to clusters or states in the time series.
This number of clusters is determined automatically by
the algorithm.

The Gecko algorithm consists of three phases, as
depicted in Fig. 2. The first phase creates many small
sub-clusters. The second phase repeatedly merges the
two most similar clusters. Phase 3 determines the num-
ber of clusters to return.

3.1.1. Phase 1: Create Sub-Clusters. In the first
phase, many small sub-clusters are created by a method
that is very similar to the one used by Chameleon [7],
with the exception that Gecko forces cluster bound-
aries to be non-overlapping in the time dimension.
The sub-clusters are created by initially placing all of
the data points in a cluster, and repeatedly splitting the
largest cluster until all of the clusters are too small to
be split again without violating the minimum possible
cluster size s.

To determine how to split the largest cluster, a k-
nearest neighbor graph is built in which each node in
the graph is a time series data point (measurements
taken at a time-interval), and each edge is the simi-
larity between two data points. Only the slopes of the
original values (original sensor readings) are used to
determine similarity, and not the original values them-
selves. Using only the slope will tend to produce sub-
clusters that have constant slope, which produces sub-
clusters that are as close to straight lines as possible.
The k-nearest neighbor graph is constructed by creat-
ing an edge from every vertex to each of its k nearest
(most similar) neighbors. The parameter k is not an
input parameter. It is derived from s (smallest possi-
ble cluster size), and is defined to be 2*s. Due to the
importance of time, the k nearest points in the graph
are the k/2 points on each size of a point according to
the time axis. By using this graph the similarity be-
tween groups of points (clusters) can be determined by
computing the edge cut (sum of the edges) between
the two groups. Similarity between two points is de-
fined to be ln(1.0/distance+1), where distance is the
Euclidean distance (or any other distance method) be-
tween the two points. However any reasonable inverse
mapping between distance and similarity can be used.
If the graph is split where the edge-cut is the smallest,
then the two newly separated clusters will be dissimilar
to each other and have high internal similarity.

Since all boundaries between clusters are cut cleanly
by the time axis with no overlap, the typically NP-
hard problem of graph bisection is trivialized, and the



Learning States and Rules for Detecting Anomalies in Time Series 245

Figure 2. Overview of the Gecko Algorithm.

optimal min-cut partitioning of a cluster can be quickly
determined in fewer than clusterSize-1 edge-cut checks
(where clusterSize is the number of data points con-
tained in the cluster). There is no need for heuristics, be-
cause all possible edge-cut possibilities can be quickly
computed with efficient data structures.

3.1.2. Phase 2: Repeatedly Merge Clusters. In phase
2, the most similar pair of adjacent (in time) clusters
is repeatedly merged until only one cluster remains.
To determine which adjacent pair of clusters are the
most similar, representative points are generated for
each cluster and the two adjacent clusters with the
closest representative points are merged. A single rep-
resentative point is able to accurately represent every
point in a cluster because each cluster is internally ho-
mogeneous. The representative point of a cluster con-
tains a slope value for every dimension in the time
series data other than time. Clustering by the slope val-
ues causes the time series to be divided into flat re-
gions. Segmentation also relies exclusively on slope: if
a minimum-error line (segment) is well fitted to a set
of points, it means that the segment has a consistent
slope.

If raw slope values are used in the representative
points that summarize a cluster, then the
Euclidean distance between a pair of representative
points with single slope values 100 and 101 (distance =

101 − 100 = 1) would be the same as the distance be-
tween a pair of representative points with slope values
0 and 1 (distance = 1 − 0 = 1). Differences in slopes
that are near zero need to be emphasized, because the
same absolute change in slope can triple a small value,
but be an insignificant increase for a large value. Rel-
ative differences between slopes cannot be measured
by the percentage increase because in the preceding
example, the percentage increase from 0 to 1 is un-
defined. Gecko uses representative values of slopes to
determine the “distance” between two slopes by using
the equation:

Representative Slope

=
{

In(slope + 1) if slope ≤ 0

−In(−slope + 1) if slope < 0

This equation emphasizes changes of slopes near
zero and decreases the effect of changes in slope when
the slope values are large. Whenever a slope value is
squared, its representative slope value (approximately)
doubles. In the preceding example of comparing 2 pairs
of clusters with slopes {100, 101} and {0, 1} the repre-
sentative values of their slopes are {4.615, 4.625} and
{0, 0.693}. This accurately reflects the relative differ-
ence between raw slopes and not the absolute differ-
ence.



246 Salvador and Chan

3.1.3. Phase 3: Determine the Best Clustering Level.

Evaluation Graphs. The information required to de-
termine an appropriate number of clusters/segments to
return is contained in an evaluation graph that is created
by the clustering/segmentation algorithm. The evalua-
tion graph is a two-dimensional plot where the x-axis
is the number of clusters, and the y-axis is a measure of
the quality or error of a clustering consisting of x clus-
ters. Some approaches use similar graphs, but they are
often generated by re-running the entire clustering or
segmentation algorithm for every value on the x-axis.
Since hierarchical algorithms repeatedly split or merge
a pair of clusters, many sets of clusters containing ‘1’
to ‘the number of clusters in the finest-grain cluster-
ing’ clusters can be produced in only a single run of
the algorithm.

The y-axis values in the evaluation graph can be any
evaluation metric, such as: distance, similarity, error,
or quality. These metrics can be computed globally or
greedily. Global measurements compute the evaluation
metric based on the entire set of clusters. A common
example is the average of all the pairwise distances be-
tween points in each cluster. Most global evaluation
metrics are computed in O(N 2) time. Thus, in many
cases, it takes longer to evaluate a single set of clus-
ters than it takes to create them. The alternative is to
use greedy measurements. The greedy method works
in hierarchical algorithms by evaluating only the two
clusters that are involved in the current merge or split,
rather than the entire data set.

Many “external” evaluation methods attempt to de-
termine a reasonable number of clusters by evaluat-
ing the output of an arbitrary clustering algorithm.
Each evaluation method has its own notion of clus-
ter similarity. Most external methods use distance
functions that are heavily biased towards spherical
clusters. Such methods would be unsuitable for a clus-
tering algorithm that has a different notion of clus-
ter distance/similarity. For example, Chameleon uses
a complex similarity function that can produce inter-
esting non-spherical clusters, and even clusters within
clusters. Therefore, the L Method is integrated into the
clustering algorithm and the metric used in the evalu-
ation graph is the same metric used in the clustering
algorithm.

An example of an evaluation graph produced by
Gecko is shown in Fig. 3. The y-axis values are the
distances between the two clusters that are most simi-
lar at x clusters. The curve in Fig. 3 has three distinctive

Figure 3. A sample evaluation graph.

areas: a rather flat region to the right, a sharply-sloping
region to the left, and a curved transition area in the
middle.

In Fig. 3, starting from the right, where the merg-
ing process begins at the initial fine grain clustering,
there are many similar clusters to be merged and the
trend continues to the left in a rather straight line for
some time. In this region, many clusters are similar
to each other and should be merged. Another distinc-
tive area of the graph is on the far left side where the
merge distances grow very rapidly (moving right to
left). This rapid increase in merge distances indicates
that very dissimilar clusters are being merged together,
and that the quality of the clustering is becoming poor
because clusters are no longer internally homogeneous.
If the best available remaining merges start becoming
increasingly poor, it means that too many merges have
already been performed. A reasonable number of clus-
ters is therefore in the curved area, or the “knee” of the
graph. This knee region is between the low distance
merges that form a nearly straight line on the right side
of the graph and the quickly increasing region on the
left side. Clusterings in this knee region contain a bal-
ance of clusters that are both internally homogeneous,
and also dissimilar to each other.

Locating the exact location of the knee, and along
with it the number of clusters, seems problematic when
the knee is a smooth curve. In such an instance, the
knee could be anywhere on this smooth curve, and thus
the number of clusters to be returned seems imprecise.
Such an evaluation graph is often created for time se-
ries data because a time series is a continuous function
and a set of well-separated clusters usually does not
exist in the time series. In such instances, there is no
single correct answer and all of the values along the
knee region are likely to be reasonable estimates of the
number of clusters. Thus, an ambiguous knee indicates
that there is most likely a range of acceptable answers.



Learning States and Rules for Detecting Anomalies in Time Series 247

Figure 4. Finding the number of clusters using the L Method.

Finding the Knee via the L Method. In order to de-
termine the location of the transition area or knee of
the evaluation graph, we take advantage of a property
that exists in these evaluation graphs. The regions to
both the right and the left of the knee (see Fig. 4) are
often approximately linear. If a line is fitted to the right
side and another line is fitted to the left side, then the
intersection of the two lines will be in the same region
as the knee. The value of the x-axis at the knee can then
be used as the number of clusters to return. Figure 4
depicts an example.

To create these two lines that intersect at the knee, we
will find the pair of lines that most closely fits the curve.
Figure 5 shows all possible pairs of best-fit lines for
a graph that contains seven data points (eight clusters
were repeatedly merged into a single cluster). Each line
must contain at least two points, and must start at either
end of the data. Both lines together cover all of the data
points, so if one line is small, the other is large to cover
the rest of the remaining data points. The lines cover
sequential sets of points, so the total number of line
pairs is numOfInitialClusters– 4. Of the four possible
line pairs in Fig. 5, the third pair fits the data points
with the smallest amount of error.

Consider a ‘# of clusters vs. evaluation metric’ graph
with values on the x-axis up to x = b. The x-axis varies
from 2 to b, hence there are b − 1 data points in the
graph. Let Lc and Rc be the left and right sequences of
data points partitioned at x = c; that is,Lchas points

Figure 5. All four possible pairs of best-fit lines for a small evaluation graph.

with x = 2 . . . c, and Rc has points with x = c+1. . . b,
where c = 3 . . . b −2. Equation 1 defines the total root
mean squared error RMSEc, when the partition of Lc

and Rc is at x = c,

RMSEc = c − 1

b − 1
× RMSE(Lc)

+ b − c

b − 1
× RMSE(Rc) (1)

where RMSE(Lc) is the root mean squared error of
the best-fit line for the sequence of points in Lc (and
similarly for Rc). The weights are proportional to the
lengths of Lc (c − 1) and Rc (b − c). We seek the value
of c, c∧, such that RMSEc is minimized, that is

c∧ = arg min
c

RMSEc (2)

where location of the knee at x = c∧ is used as the
number of clusters to return. The L method can be
implemented with a linear time complexity [26] and
runs in less than 0.01 seconds for evaluation graphs
containing fewer than 10,000 points.

The L method is general and has no parameters. The
number of points along the x-axis of the evaluation
graph is not a parameter. It is a result of the clustering
algorithm used to generate those points. The maximum
x value in the evaluation graph is either the number of
clusters at the initial fine grain clustering in a bottom-
up algorithm, or the number of clusters in the final
clustering in a top-down algorithm.

Refinements for Segmentation Algorithms. Evalua-
tion graphs for segmentation algorithms can often be
very jumpy and contain a number of points that do
not smoothly fit the curve. This is common for non-
greedy algorithms that look several merges ahead and
may make a seemingly poor merge to be able to make
a very good merge at the next step. These stray points
can prevent the L Method from accurately locating the
knee. However, because they do not usually occur con-
secutively, the curve can be smoothed by only using



248 Salvador and Chan

the highest valued point of every consecutive pair when
computing the best-fit lines of the curve.

Another potential problem is that sometimes the
evaluation graph will reach a maximum (moving from
right to left) and then start to decrease. This can be
seen in Fig. 4, where the distance between the clos-
est segments reaches a maximum at x = 4. This can
prevent an “L” shaped curve from existing in the evalu-
ation graph. The data points to the left of the maximum
value (the ‘worst’ merge) can be ignored. This occurs
in some algorithms that have distance functions that
become undefined when the remaining clusters are ex-
tremely dissimilar to each other.

3.2. RIPPER – Rule Generation

We have adapted RIPPER [1] to generate human read-
able rules that characterize the states identified by the
Gecko algorithm. The RIPPER algorithm is based on
the Incremental Reduced Error Pruning (IREP) [27]
over-fit-and-prune strategy. The IREP algorithm is a 2-
class approach, where the data set must first be divided
into two subsets. The first subset contains examples of
the class whose characteristics are desired (the positive
example set) and the other subset contains all other data
samples (the negative example set). Our implementa-
tion of RIPPER acts as an outer loop for the IREP rule
construction.

The input to RIPPER is the data produced by Gecko
which contains time series data classified into c* states.
RIPPER will execute the IREP algorithm c* times,
once for each state. At each execution of IREP, a dif-
ferent state is considered to be the positive example set
and the rest of the states form the negative example set.
This creates a set of rules for each state. To describe the
relationship among these states, state transition logic is
identified as discussed in the following section.

3.3. State Transition Logic

The upper right-hand quadrant of Fig. 1 depicts a sim-
plified state transition diagram for a time series con-
taining just three states. The state transition logic is
described by three rules for each state corresponding
to each of the three possible state transition conditions
on each input data point:

• IF input matches current state THEN remain in cur-
rent state.

• IF input matches the next state THEN transition to
the next state.

• IF input matches neither the current state nor the next
state THEN transition to an anomaly state.

The antecedent condition for each state is obtained
from the RIPPER rule generation process. The state
transition logic simply needs to glue together the proper
antecedents to formulate the above three transition
rules for each state.

Before an anomaly state is entered, one of two addi-
tional criteria must be satisfied: either (1) the number of
consecutively observed anomalous values must exceed
a specified threshold; or (2) the total number of anoma-
lous values observed has exceeded another threshold.
Thus, an anomalous condition is not annunciated un-
less the observed values have been improper for some
length of time. Similar logic is provided for the tran-
sition from a normal state to its normal successor to
prevent premature state transitions.

This simple sequential model will get “stuck” in a
state if it misses a state transition due to an anomaly.
The first anomaly is correctly identified, but no future
data can be tracked because the state machine is stuck
in an old state. A solution we have found that performs
well is to use a non-deterministic state machine model
rather than a deterministic model. When an anomaly is
detected, we create several state machines, each start-
ing in a different state. All of the state machines run
in parallel until they converge to a single state. This
method allows the system to recover from a short se-
quence of anomalous data and to determine the current
state of the input data. If a state machine contains many
states and running individual state machines for each
state is impractical, states can be searched starting with
ones near where the anomaly was detected and increas-
ing the number of states to search if the state machines
continue to get “stuck”. In our tests, the correct state is
determined very quickly.

4. Empirical Evaluation

The goal of this evaluation is to demonstrate the ability
of the Gecko algorithm to identify states (or clusters) in
real time series data, and also to show that our overall
system is able to detect anomalies. The data used to
evaluate Gecko and the overall anomaly detection
system is 10 time series data sets obtained from NASA.
The data sets are signatures of a valve from the space
shuttle. One of the valve signatures is shown in Fig. 6.



Learning States and Rules for Detecting Anomalies in Time Series 249

Figure 6. A data set after being clustered by Gecko (16 clusters).

Each data set contains between 1,000 and 20,000
equally spaced measurements of current. These 10 data
sets contain signatures of valves that are operating nor-
mally, and also signatures of valves that have been dam-
aged. The current method used to test these valves re-
quires a human expert to compare a valve’s signature
to a known normal signature, and determine if there is
any significant variation. We would like to demonstrate
that Gecko is able to identify important phases/states
in a time series, and that our anomaly detection system
is able to determine if a valve is operating normally.

4.1. Determining the Number of Segments
with the L Method

4.1.1. Procedures and Criteria. The experimental
procedure for evaluating the L method in segmenta-
tion algorithms consists of running two different seg-
mentation algorithms on seven different data sets and
determining if a ‘reasonable’ number of segments is
suggested by the L method. This number of segments
suggested will then be compared to the ‘correct’ num-

Figure 7. Data sets 1, 3, 4, 5, 6, and 7 for evaluating the L method in segmentation algorithms.

ber of segments, and also the number suggested by the
existing permutation tests method [15]. The permuta-
tion tests algorithm attempts to prevent segmentation
algorithms from creating a PLR that over-fits the data
by comparing the relative change in approximation er-
ror to the relative change of a ‘random’ time series.
If the relative change in error begins to be similar be-
tween the time series and a random time series as more
segments are added, it means that extra segments are
fitting noise and not any underlying structure in the
time series.

The time series data sets used to evaluate the L
method for hierarchical segmentation algorithms are a
combination of both real and synthetic data. The seven
time series data sets used for this evaluation (shown in
Fig. 7) are:

1. A synthetic data set consisting of 20 straight line
segments (2,000 pts).

2. The same as #1, but with a moderate amount of
random noise added (2,000 pts, not in Fig. 7).

3. The same as #1, but with a substantial amount of
random noise added (2,000 pts).

4. An ECG of a pregnant woman from the Time Series
Data Mining Archive [28]. It contains a recurring
pattern (a heart beat) that is repeated 13 times (2,500
pts).

5. Measurements from a sensor in an industrial dryer
(from the Time Series Data Mining Archive [28].
The time series appears similar to random walk data
(876 pts).

6. A data set depicting sunspot activity over time (from
the Time Series Data Mining Archive [28]. This time
series contains 22 roughly evenly spaced sunspot
cycles, however the intensity of each cycle can vary
significantly (2,900 pts).



250 Salvador and Chan

7. A time series of a space shuttle valve energizing and
de-energizing (1,000 pts).

The synthetic data sets have a single correct value
for k. The real sets have no single correct answer, but
rather a range of reasonable values. A PLA is consid-
ered “reasonable” if no adjacent segments are nearly
identical to each other and all segments are internally
homogeneous (segments have small error). The “rea-
sonable range” for the number of segments for a data
set and a segmentation algorithm is obtained by run-
ning the algorithm with various values of k (controls
the number of segments returned), and determining the
range of values that produce a ’reasonable’ PLA. A
single ’reasonable range’ cannot be used for all of the
segmentation algorithms because one value for k that
produces a reasonable set of segments for one algo-
rithm may produce a poor set of segments for another
on the same data set.

The segmentation algorithms used in this evaluation
were Gecko and bottom-up segmentation (BUS). BUS
(bottom-up segmentation) is a hierarchical algorithm
that initially creates many small segments and repeat-
edly joins adjacent segments together. More specifi-
cally, BUS evaluates every pair of adjacent segments
and merges the pair that causes the smallest increase in
error when they are merged together. BUS was tested
with the L method using two different values on the
y-axis of the evaluation graph. The two variants are
named BUS-greedy and BUS-global. BUS-greedy’s
y-axis in the evaluation graph is the increase in error of
the two most similar segments when they are merged,
and BUS-global’s y-axis is the error of the entire linear
approximation when there are x segments (absolute er-
ror). The existing ‘permutation tests’ method was also
evaluated using BUS.

Both Gecko and BUS made use of an initial top-down
pass to create the initial fine-grain segments. The min-
imum size of each initial segment generated in the top
down pass was 10. For the permutation test algorithm,
p was set to 0.05, and 1,000 permutations were created.
To determine when to stop creating more segments, the
parameter p sets the percentage of permutated time se-
ries that must have a relative reduction (between k-1
and k segments) in linear approximation quality larger
than the original time series to return k segments [15].

4.1.2. Results and Analysis. A summary of the re-
sults of the L method’s and permutation tests’ ability
to automatically determine the number of segments to

return from segmentation algorithms is contained in
Table 1. For both Gecko and BUS, the ‘reasonable’
range of correct answers is listed. These ranges may
vary between the two algorithms because BUS and
Gecko do not merge segments in exactly the same se-
quence. However, BUS-greedy, BUS-global, and per-
mutation tests all produce identical PLRs for k seg-
ments, and therefore have identical ‘reasonable’ an-
swers. The first three data sets are synthetic and have
a single correct answer, but the other data sets have a
range of “reasonable” answers. Data set #5 is similar to
random walk data, and any number of segments seemed
reasonable because there was no underlying structure
in the time series.

The L method worked very well for both BUS-
greedy and Gecko. It correctly identified a number of
segments for BUS-greedy that was within the reason-
able range in 5 out of the 6 applicable data sets. Gecko,
which also uses a greedy evaluation metric (but uses
slope rather than segment error), had the L method
suggest a number of segments within the reasonable
range for all 5 applicable data sets. Gecko was unable
to correctly segment data set #3 (indicated by “N/A”
in Table 1) because it contained too much noise. In
all but one test case (10 of 11), the L method was
able to correctly determine that the three synthetic data
sets contained exactly twenty segments. BUS-global
did not perform quite as well. The L method was only
able to return a reasonable number of segments for
BUS-global in half of its test cases, however all of its
incorrect answers were close to being correct.

Permutation tests did not perform well and never de-
termined a reasonable number of segments. The reason
that permutation tests did poorly varied depending on
the data set. Data set #1 is synthetic and contains no
noise, which allows a PLR to approximate it with virtu-
ally zero error. However, measuring a relative increase
in error when the error is near zero causes unexpected
results because relative increases are either very large or
undefined when the error is at or near zero. For data set
#4 and #6, the relative change in approximation error is
rather constant regardless of the number of segments.
On data set #4, the PLR between 2 and 3 segments has
nearly zero relative change in error, which causes per-
mutation tests to incorrectly assume that the data has
been over-fitted and stop producing segments prema-
turely. An example of far too many segments being re-
turned occurs on data set #7, where the relative error of
the time series never falls below the relative error of the
permutations until far too many segments are produced.



Learning States and Rules for Detecting Anomalies in Time Series 251

Table 1. Results of using the L method with three hierarchical segmentation algorithms.

Gecko Bottom-up Segmentation

Gecko w/L method BUS- greedy w/L method BUS-global w/L method BUS w/permutation tests

Data Reasonable # Number of Reasonable # Number of Number of Number of
set of segments segments found of segments segments found segments found segments found

1 20 20 20 20 20 25

2 20 20 20 20 20 34

3 20 N/A 20 20 19 25

4 42–123 92 42–123 46 106 2

5 ? 32 ? 14 39 15

6 44–57 45 45–53 48 39 6

7 9–20 17 14–21 9 13 65

Reasonable- 5 of 5 5 of 6 3 of 6 0 of 6
Range
Matches

Figure 8. The reasonable range for the number of segments and the number returned by the L method. (axes: x = # of segments, y = evaluation
metric—short dashed line = # of segments determined by the L method, long solid lines = the boundaries of the reasonable range for the # of
segments.

Some of the evaluation graphs used by the L method
for Gecko, BUS-greedy, and BUS-global are shown in
Fig. 8. The lower left portion of Fig. 8 contains the
L method’s evaluation graph for Gecko on data set #1,
the noise-free synthetic data set. The x-axis is the num-
ber of segments, and the y-axis is Gecko’s evaluation
metric at x segments (distance between two closest
adjacent segments when there are x segments). The
evaluation graph is created right to left as segments
are merged together. In this case, the correct number
of segments is easily determined by the L method be-
cause there is a very large jump at x = 20. In the lower
right corner of Fig. 8, the range of correct answers lies

between the two long lines. The range is larger than for
data set #1 because the segments have less ‘separation’
and there is no sharp knee. Instead, there is a range
of good answers. However, the L method suggests a
number of segments that just misses the reasonable
range.

In the evaluation graph at the upper-left of Fig. 8
(data set #4 BUS-greedy), the L method returned a
number of segments that was at the low end of the
reasonable range. Remember, that for segmentation al-
gorithms, all data ponits to the left of the data point
with the maximum value are ignored (discussed in the
last Section of 3.1). The best number of segments is 42.



252 Salvador and Chan

At 42 segments each heart beat contains approximately
3 segments. If there are fewer than 42 segments, they
are no longer homogeneous. However, PLAs with sig-
nificantly more segments (up to 123) are still reason-
able because each new segment still significantly re-
duces the error. However, if there are more than ap-
proximately 123 segments, adjacent segments start to
become too similar to each other.

The evaluation graph shown in the upper-right por-
tion of Fig. 8 also has ‘better’ PLRs when the number
of segments is near the low end of the reasonable range
(fewer segments). This is common because the best set
of segments is often the minimal set of segments that
adequately represents the data. Even though there is
apparently no significant knee in this evaluation graph,
a good number of segments can still be found by the
L method. This is because the knee found by the L
method does not necessarily have to be the point of
maxium curvature. It may also be the location between
the two regions that have relatively steady trends. Thus,
the L method is able to determine the location where
there is a significant change in the evaluation graph
and it becomes erratic (x < 44). In this case it indi-
cates that too many segments have been merged to-
gether and the distance function is no longer as well-
defined.

The poorer performance of BUS-global (compared
to Gecko and BUS-greedy) is due to a lack of promi-
nence in the knee of the curve compared to greedy
methods (see lower-right graph in Fig. 8). Greedy eval-
uation metrics increase more sharply at the knee, while
global metrics have larger more ambiguous knees in
their evaluation graph. A potential problem occurs
when more than one knee exists in the evaluation graph.
This is typically not a problem if one knee is signifi-
cantly more prominent than the others. If there are two
equally prominent knees, the L method is likely to re-
turn a number of segments that falls somewhere be-
tween those two knees. This is acceptable if all of the
values between the two knees are reasonable. If not, a
poor number of segments will most likely be returned
by the L method.

The L method took less than 0.01 seconds to deter-
mine the number of segments in every test case, while
the segmentation algorithms took 9–30 seconds to ex-
ecute. The L method never required more than 0.1%
of the total execution time to determine the number of
segments. In stark contrast, permutation tests required
up to 5 hours because each permutation of the original
time series had to be segmented.

4.2. Identifying States with Gecko

4.2.1. Procedures and Criteria. The quality of the
segments produced by Gecko and an existing algorithm
will be evaluated by having a domain expert blindly
evaluate the output of each algorithm. A high qual-
ity set of segments has each segment corresponding
to an important phase or state in the time series. The
experimental procedure is as follows: Gecko and an ex-
isting algorithm, bottom-up segmentation (BUS), seg-
ment the 10 data sets. Without knowing which output is
from which algorithm, a NASA valve expert will then
rate the quality of each set of segments from 1 to 10.
The number of segments returned by BUS is set to be
the same number that Gecko returns. Finally, the valve
expert is asked to go over all of the Gecko data sets that
he rated in the second step, and explain his evaluation.
Gecko was run with the default parameter for each data
set: minimum cluster size clusterSize=10.

4.2.2. Results and Analysis. Table 2 contains the
scores for Gecko and BUS given by the domain ex-
pert. Gecko’s average score was 9.5, while the bottom-
up segmentation algorithm’s average score was only
4.3. Gecko often receives a perfect score (which signi-
fies a set of segments as good as the human expert’s)
even though it returns more segments than what the
human expert previously considered to be the ‘ideal’
number. For example, Gecko produced nearly twice as
many segments as the human expert for data set 5 (13
vs. 7), and Gecko still got a perfect rating. This sug-
gests that there is often a range of “very good” num-
bers of segments to return, rather than a single correct
number.

The final part of Gecko’s evaluation was a discussion
with the NASA engineer about why he gave each score.
According to the engineer, BUS divides regions of high
slope into too many segments. BUS merges segments
together by keeping the root-mean squared error of the
best-fit lines to a minimum. This method measures error
vertically, and as a consequence, lines that are nearly
vertical may seem visually to be a nearly perfect fit, but

Table 2. Quality of segments produced by Gecko and BUS.

Data set 1 2 3 4 5 6 7 8 9 10 Avg

Gecko 10 10 9 10 10 10 8 9 9 10 9.5

BUS 2 3 3 3 3 3 8 5 7 6 4.3



Learning States and Rules for Detecting Anomalies in Time Series 253

the vertical distances from the points to the line can be
very large.

4.3. Overall System (FSA)

4.3.1. Procedures and Criteria. In order to test
whether the anomaly detection system works correctly
we performed three kinds of tests: (1) Self-tracking:
Use 90% of the data points to create rules, and then use
100% of the data fed into the expert system to see if the
state transitions occur correctly, without detecting any
anomalies. (2) Normal operation: Use all of a normal
valve’s data to learn its signature, and then monitor an-
other valve that is also operating normally. This case
should also not trigger any anomalies. (3) Detecting
anomalies: Use all of a properly functioning valve’s
data to learn its normal signature, and then take signa-
tures of valves that are damaged slightly and run them
through the anomaly detection system. The damaged
valves should trigger anomalies.

4.3.2. Self-tracking Results. The baseline test of the
anomaly detection system is to train the model with
90% of the data, and seeing if 100% of the data can be
tracked without triggering an anomaly. The results of
this test are shown in Table 3. An error point in Table
3 is any point that is unexpected in the state transition
logic. This means that the point is neither in the cur-
rent state or the following state. Time series data often
contains noise and minor variations. For this reason,
anomalies must not be triggered by only a single data
point that does not agree with the model contained in
the FSA. By using a threshold counter, an anomaly will
only be reported after a certain number of consecutive
error points. The last column in Table 3 shows what the
minimum consecutive error threshold (CE) must be set
to for the anomaly detection system to not report an
anomaly. A value of 1 in this last column means that
the anomaly detection system will correctly not report
an anomaly as long as CE ≥ 1.

Table 3. Self-tracking of a time series.

Data set 1 2 3 4 5 6 7 8 9 10 Avg

Error pts 1.1 0.8 0.7 0.5 0.0 0.4 0.3 0.2 0.4 1.1 0.6
(%)

Min. 2 2 1 1 0 1 1 1 1 21 4.0
error
threshold

In this experiment, both the “consecutive transition”
(CT) and the “consecutive error” (CE) thresholds were
set to zero. This causes every possible state transition
to be made and every error point to trigger an anomaly.
This enabled easy computation of the number of error
points. Data set number 10 performs poorly in this test
because the FSA transitions prematurely near the end
of its signature and starts reporting many anomalies, the
results for this data set can be improved by increasing
CT to prevent it from transitioning too early on a single
spurious data point.

4.3.3. Normal Operation Results. This test is to show
that the anomaly detection system’s model of the nor-
mal signature is general enough to recognize that an
untrained normal time series contains no anomalies. In
this test, the anomaly detection system trained on data
set 1, and then tested on data set 2. Both of these data
sets are of normally operating valves that contain minor
(but visible) differences. The “consecutive transition”
threshold (CT) parameter was set to 2, and the “con-
secutive error” threshold (CE) was set to 10 (minimum
possible cluster size cluster Size = 10). This means
that two consecutive points believed to be in the next
state are needed to perform a state transition and ten
consecutive points believed to be errors are needed to
declare that the time series contains anomalies.

The system was able to successfully transition
through the states, without detecting any anomalies.
Of 979 data points, 61 (2.6%) were error points–they
were not believed to belong to the current state, nor to
be transition points belonging to the following state.
However, since a consecutive number of errors greater
than CE was never encountered, an anomaly was never
triggered.

4.3.4. Detecting Anomalies Results. This final test is
to show that our system is capable of detecting when a
time series differs significantly from the learned model.
In this test, two data sets containing time series signa-
tures of valves operating normally (data sets 1 and 2)
were used to develop the normal models. Each normal
model was then run against the remaining anomalous
data sets (data sets 3. . . 10).

For each of the 16 tests, the anomaly detection sys-
tem correctly determined that the signatures contained
anomalies. Additionally, the system was able to inform
the user of the state number where the signature differs
from the model. Thus, the system does not only give a



254 Salvador and Chan

yes/no answer to whether a time series contains anoma-
lies, but it is also able to explain to the user where the
anomaly occurred. Also, because the rules generated by
RIPPER are in a human-readable format, the user can
look at the rule for the state where the error occurred
and understand exactly why the system reported the
anomaly.

5. Concluding Remarks

We have detailed our approach to time series anomaly
detection by discovering and characterizing the states
of a time series, and performing transition logic be-
tween these states to construct a finite state automaton.
This finite state automaton can be run on an expert
system and used to track normal behavior and detect
anomalies. The proposed Gecko segmentation algo-
rithm is designed to cluster time series data (finds a
small number of segments mapping to unique phases
rather than a fine approximation of many segments),
and uses our proposed L method to determine a rea-
sonable number of segments efficiently. The rules gen-
erated for each state by the RIPPER algorithm can be
easily understood and modified by humans. (Moreover,
the generated rules can be in a format used by the SCL
expert system shell at ICS, which is our collaborator
on this NASA project.)

Our empirical evaluations have shown that the L
method used by the Gecko algorithm returns a number
of segments that is similar to the number that is gener-
ated by a human expert. When the human expert was
asked to rate Gecko’s output with a score from 1–10,
Gecko was given perfect ratings on 6 of 10 data sets.
A perfect rating signifies that the set of segments, or
clusters, produced by Gecko is equally as good as that
of the human expert. For comparison, the bottom-up
segmentation algorithm was also tested, and was only
given an average rating of 4.3. The overall anomaly
detection system was able to detect anomalies in every
signature that was from a ‘damaged’ valve, and was
also able to monitor a second normal valve without
detecting any anomalies.

Future work will evaluate our approach with more
datasets from NASA. Work is currently being done to
learn a normal model from multiple data sets by using
Dynamic Time Warping (DTW). Multiple time series
will be warped together into a single time series which
will them be clustered by Gecko. After the merged
time series is clustered by Gecko, the cluster member-
ship of the points in every normal time series can be

determined and fed into the RIPPER algorithm to gen-
erate rules. We have also continued to study how the L
method performs with other hierarchical clustering al-
gorithms and different data sets [2]. To dynamically set
the thresholds used in the state transition logic, we can
investigate holding out part of the training data and find
thresholds that prevent errors on the unseen portion of
the data.

Acknowledgments

We thank Bobby Ferrell and Steven Santuro at NASA
for providing the data sets, helpful comments, and clus-
tering evaluations. We also thank Brian Buckley, Steve
Creighton, and Walter Schiefele at ICS for help in-
tegrating our algorithms into their SCL expert system.
Matt Mahoney also collaborated with us on this project
and provided many helpful suggestions. This research
is partially supported by NASA (NAS10-02044).

References

1. W. Cohen, “Fast effective rule induction,” in Proc. of the 12 Intl.
Conference on Machine Learning, Tahoe City, CA, 1995, pp.
115–123.

2. S. Salvador and P. Chan, “Determining the number of clus-
ters/segments in hierarchical clustering/segmentation algo-
rithms,” Laboratory for Learning Research, Florida Institute
of Technology, Melbourne, FL, Technical Report TR-2003-18,
2003.

3. R. Ng and J. Hah, “Efficient and effective clustering methods
for spatial data mining,” in The 20th Intl. Conf. On Very Large
Data Bases, Santiago, Chile, 1994, pp. 12–15.

4. M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proc. 3rd Intl. Conf. on Knowledge Discovery and
Data Mining, Portland OR, 1996, pp. 226–231.

5. A. Hinneburg and D. Keim, “An efficient approach to clustering
in large multimedia databases with noise,” in Proc 4th Intl. Conf.
on Knowledge Discovery and Data Mining. New York City, NY,
1998, pp. 58–65.

6. S. Guha, R. Rastogi, and K. Shim, “ROCK: A robust clustering
algorithm for categorical attributes,” in The 15th Intl. Conf. on
Data Engineering, Sydney, Australia, 1999, pp. 512–523.

7. G. Karypis, E. Han, and V. Kumar, “Chameleon: A hierarchical
clustering algorithm using dynamic modeling,” IEEE Computer,
vol. 32, no 8, pp. 68–75, 1999.

8. G. Seikholeslami, S. Chatterjee and A. Zhang, :WaveCluster:
A multi-resolution clustering approach for very large spatial
databases,” in Proc. of the 24th VLDB, New York City, New
York, 1998, pp. 428–439.

9. E. Keogh, S. Chu, D. Hart and M. Pazanni, “An online algorithm
for segmenting time series,” in Proc. IEEE Intl. Conf. on Data
Mining, San Jose, CA, 2001, pp. 289–296.



Learning States and Rules for Detecting Anomalies in Time Series 255

10. P. Smyth, “Clustering using Monte-Carlo cross-validation,” in
Proc. 2nd KDD, Portland, OR, 1996, pp.126–133.

11. R. Baxter and J. Oliver, “The kindest cut: minimum message
length segmentation,” in Algorithmic Learning Theory, 7th Intl.
Workshop, Sydney, Australia, 1996, pp. 83–90.

12. M. Hansen and B. Yu, “Model selection and the principle of
minimum description length,” JASA, vol. 96, pp.746–774, 2001.

13. C. Fraley and E. Raftery, “How many clusters? Which clustering
method? Answers via model-based Cluster Analysis,” Computer
Journal, vol. 41, pp. 578–588, 1998.

14. M. Sugiyama and H. Ogawa, Subspace Information criterion for
model selection, Neural Computation, vol. 13, no.8, pp. 1863–
1889, 2001.

15. K. Vasko and T. Toivonen. “Estimating the number of segments
in time series data using permutation tests,” in Proc. IEEE Intl.
Conf. on Data Mining, Maebashi City, Japan, 2002, pp. 466–47.

16. V. Roth, T. Lange, M. Braun, and J. Buhmann, “A resam-
pling approach to cluster validation,” in Proc. in Computa-
tional Statistics: 15th Symposium (COMPSTAT2002), Berlin,
Germany, 2002, pp. 123–128.

17. S. Monti, P. Tamayo, J. Mesirov, and T Golub, “Consensus clus-
tering: A resampling-based method for class discovery and visu-
alization of gene expression microarray data,” Machine Learn-
ing, vol. 52, nos. 1–2, pp. 91–118, 2003.

18. R. Tibshirani, G. Walther, and T. Hastie, “ Estimating the number
of clusters in a dataset via the Gap statistic,” Dept. of Biostatis-
tics, Stanford Univ., Stanford, CA, Technical Report 208, 2001.

19. R. Tibshirani, G. Walther B. Botstein, and P. Brown, “Cluster
validation by prediction strength,” Dept. of Biostatistics, Stan-
ford Univ., Stanford, CA, Technical Report 2001–21, 2001.

20. T. Chiu, D. Fang, J. Chen, Y. Wang, and C. Jeris, “A robust and
scalable clustering algorithm for mixed type attributes in large

database environment,” in Proc. of the 7th ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining, San Francisco,
CA, 2001, pp. 263–268.

21. A. Foss and A. Zaı̈ane, “A parameterless method for efficiently
discovering clusters of arbitrary shape in large datasets.” in Proc.
of the 2002 IEEE Intl. Conf. on Data Mining (ICDM’02), Mae-
bashi City, Japan, 2002, pp. 179–186.

22. S. Harris, D. Hess, and J. Venegas, “An objective analysis of
the pressure-volume curve in the acute respiratory distress syn-
drome,“ American Journal of Respiratory and Critical Care
Medicine, vol. 161, no. 2, pp. 432–439, 2000.

23. D. Dasgupta and S. Forrest, “novelty detection in time series
data using ideas from immunology,” In Proc. Fifth Intl. Conf. on
Intelligent Systems, Reno, NV, 1996, pp. 82–87.

24. T. Caudell and D. Newman, “An adaptive resonance architec-
ture to define normality and detect novelties in time series and
databases,” in Proc. IEEE World Congress on Neural Networks,
Portland, OR, pp. IV166–176. 1993.

25. P. Langley, D. George, S. Bay, and K. Saito, “Robust induction
of process models from time-series data,” in Proc. of the 20th
Intl. Conf. on Machine Learning, Washington, DC, 2003, pp.
32–439.

26. E. Weisstein, “Least squares fitting,” From MathWorld-A Wol-
fram Web Resource. [http://mathworld.wolfram.com/ Least-
SquaresFitting.html].

27. J. Furnkranz and G. Wildmer, “Incremental reduced error prun-
ing,” in Proc. Intl. Conf. on Machine Learning, New Brunswick,
NJ, 1994, pp. 70–77.

28. E. Keogh and T. Folias, The UCR Time Series Data Min-
ing Archive [http://www.cs.ucr.edu/∼eamonn/TSDMA/index.
html]. Riverside, CA. University of California—Computer Sci-
ence and Engineering Department, 2004.


