
Applied Intelligence 23, 219–239, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

An Efficient Support Vector Machine Learning Method with Second-Order
Cone Programming for Large-Scale Problems

RAMESWAR DEBNATH
Department of Information and Communication Engineering, The University of Electro-Communications,

1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan
rdebnath@ice.uec.ac.jp

MASAKAZU MURAMATSU
Department of Computer Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi,

Tokyo, 182-8585, Japan

HARUHISA TAKAHASHI
Department of Information and Communication Engineering, The University of Electro-Communications,

1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan

Abstract. In this paper we propose a new fast learning algorithm for the support vector machine (SVM). The
proposed method is based on the technique of second-order cone programming. We reformulate the SVM’s quadratic
programming problem into the second-order cone programming problem. The proposed method needs to decompose
the kernel matrix of SVM’s optimization problem, and the decomposed matrix is used in the new optimization
problem. Since the kernel matrix is positive semidefinite, the dimension of the decomposed matrix can be reduced
by decomposition (factorization) methods. The performance of the proposed method depends on the dimension
of the decomposed matrix. Experimental results show that the proposed method is much faster than the quadratic
programming solver LOQO if the dimension of the decomposed matrix is small enough compared to that of the kernel
matrix. The proposed method is also faster than the method proposed in (S. Fine and K. Scheinberg, 2001) for both
low-rank and full-rank kernel matrices. The working set selection is an important issue in the SVM decomposition
(chunking) method. We also modify Hsu and Lin’s working set selection approach to deal with large working set.
The proposed approach leads to faster convergence.

Keywords: second-order cone programming, quadratic programming, Cholesky factorization, eigenvalue decom-
position, support vector machine

1. Introduction

Recently, the support vector machine (SVM) be-
comes an interesting research issue in the machine
learning fields for its excellent generalization per-
formance on a wide variety of real-world problems
such as hand written character recognition, face de-
tection, text categorization and object detection in ma-
chine vision, etc [2]. Although it has a good gen-

eralization ability, learning methods suffer a large
computational effort for large optimization problem.
Given training data xi ∈ �n, i = 1, . . . , l, de-
rived from two classes where the class labels are
yi ∈ {−1, 1}, the optimization problem can be written
as [3]:

min
1

2
w T w + C

l∑

i=1

ξi (1)



220 Debnath, Muramatsu and Takahashi

subject to yi (w Tφ(xi ) + b) ≥ 1 − ξi ,

i = 1, . . . , l, (2)

ξi ≥ 0, i = 1, . . . , l, (3)

where C is a penalty parameter, andφ(xi ) is a nonlinear
mapping of xi in a high-dimensional space. This prob-
lem is solved using its dual which is a convex quadratic
programming problem:

min
1

2
αT Qα − eTα

subject to yTα = 0, (4)

0 ≤ αi ≤ C, i = 1, . . . , l,

where αi ’s are Lagrange multipliers, e is a unit vector
of all ones, Q is a positive semidefinite matrix, Qi j =
yi y j K (xi , x j ), and K (xi , x j ) = 〈φ(xi ) · φ(x j )〉 is the
inner product kernel. By using kernel, we can implicitly
compute the inner product of the mapped data. The
input data xi corresponding to non-zero αi are called
support vectors.

The computational complexity of the optimization
problem (4), which is a quadratic programming (QP)
problem, depends on the dimension of the kernel ma-
trix. The kernel matrix has a number of elements equal
to the square of the number of training data. Usually,
interior point method (IPM) is applied to solve QP
problems. The most expensive step at every iteration
of an IPM is the factorization cost, which is O(l3) and
this operation requires O(l2) memory space. Although
the SVM problem is well understood, for large learn-
ing tasks with many training data the general quadratic
programs quickly become intractable in their memory
and time requirements. Several researchers have pro-
posed decomposition (chunking) methods to conquer
this difficulty. In the decomposition method, the in-
dices {1, 2, . . . , l} of the training set are separated into
two sets B and N , where B is the working set and
N = {1, 2, . . . , l}\B is the fixed set. The working set
has a constant size q much smaller than l. If we denote
αB and αN as vectors containing the elements from
working set B and fixed set N respectively, the objec-
tive function of the optimization problem (4) becomes
1
2α

T
B Q B BαB − (eB − Q B NαN )TαB + 1

2α
T
N QN NαN −

eT
NαN . Then the decomposition algorithm works as fol-

lows:

1. Select q variables for the working set B. The re-
maining l − q variables are fixed at their current
values.

2. Solve the following problem defined by the vari-
ables in set B

min
1

2
αT

B Q B BαB − (eB − Q B NαN )TαB

subject to yT
BαB = −yT

NαN , (5)

0 ≤ (αB)i ≤ C, i = 1, . . . , q,

where

Q =
[

QB B QB N

QN B QN N

]

and q is the size of B.
3. If α is the optimal solution of (4), stop. Otherwise,

goto Step 1.

The subproblem (5) is solved by using standard con-
vex quadratic programming solvers (e.g., LOQO [4]).
Note that B is updated in each iteration. As the decom-
position method finds an optimal solution of the sub-
problem (5), the strict decrease of the objective function
holds and under some conditions this method converges
to an optimal solution of (4) [5, 6]. Any large size data
set can be tackled by the decomposition method be-
cause the memory requirements is linear in the number
of training examples and linear in the number of sup-
port vectors.

In this paper we reformulate the SVM’s quadratic
programming (QP) problem into the second-order cone
programming (SOCP) problem. To transform the QP
problem into the SOCP problem, we have to decom-
pose the kernel matrix. We apply two well-known fac-
torization methods: (1) Cholesky factorization method,
and (2) eigenvalue factorization method. We formulate
two SOCP problems for each factorization method.
Note that all these proposed methods have the same
solution as the QP solution, and SOCPs also fol-
low SVM’s Karush-Kuhn-Tucker (KKT) conditions.
As the kernel matrix is positive semidefinite, some
columns of the decomposed matrix will diminish or
some eigenvalues will be zero. It reduces the dimen-
sion of the matrix which is used in the new optimization
method. Therefore, it requires less computational effort
for low-rank kernel matrix. All these proposed meth-
ods are much faster than the quadratic programming
solver LOQO1 when the dimension of decomposed ma-
trix (or the number of non-zero eigenvalues) is small
enough.



An Efficient Support Vector Machine Learning Method 221

We apply an interior-point method (IPM) to solve
SOCP problems. We compute search directions (in
each iteration of IPM) based on a reduced augmented
equation that is derived by applying the block ma-
trix splitting technique. Then, we apply a simple tech-
nique on factorization method which is applied to solve
reduced augmented equations. The factorization cost
of the proposed method is O(lr2) where r the rank
of the kernel matrix and l is the size of the training
set. This operation requires O(lr ) memory space. Ex-
ploiting the structure of SVM problem, we calculate
many matrix-computations analytically. The proposed
SOCP solvers for SVM problems are much faster than
general-purpose SOCP solvers.

The SVM decomposition (chunking) method is nec-
essary for solving large-scale problems. In this paper
we also apply the SOCP method to solve optimization
problems of the SVM decomposition method as de-
scribed above to check the numerical stability and per-
formance. Experimental results on various problems
show that the decomposition (chunking) method in-
cluding proposed SOCP solver is better or competitive
with that using LOQO. The weakest part of decom-
position method is that it can not consider all variables
together. If the working set selection is not appropriate,
though the strict decrease of the objective value holds,
the decomposition method may converge very slowly.
However, good sets of working data may lead the de-
composition method to converge fast. Thus, working
set selection is an important issue in the SVM decom-
position method. Several existing working set selection
approaches have been proposed in [2, 5–14]. Recently,
Hsu and Lin [8] have proposed a working set selec-
tion approach which leads to faster convergence than
the other existing approaches. In this paper we sim-
ply modify Hsu and Lin’s approach. The modified ap-
proach is better than Hsu and Lin’s approach for most
of the problems.

Platt’s sequential minimal optimization (SMO) al-
gorithm is one of the fastest methods. The SMO is a
decomposition method which restricts the size of work-
ing set to be two. The advantage of this method is that
subproblem (5) becomes so small problem that no opti-
mization software is required in practice. On the other
hand, this method has a disadvantage that it selects ac-
tive data randomly from the KKT violated variables;
speeds for some problems are fast while (very) slow for
other problems. Experimental results show that the de-
composition method including proposed SOCP solver
is better or competitive with Platt’s SMO.

In [1], Fine and Scheinberg have proposed a method
which uses a product form Cholesky factorization to
solve the system of equations of an IPM applied in the
QP problem. The factorization cost of their method is
O(lr2) where r the rank of the kernel matrix. Since the
product form Cholesky factorization method is applied
instead of the straight Cholesky factorization method to
solve the system of equations of an IPM, their method
is (very) slower than the general QP solver LOQO if the
kernel matrix has full rank or if the rank of the kernel
matrix is not below to a prescribed bound. Experimen-
tal results show that the proposed method is faster than
the method in [1] for both low-rank and full-rank ker-
nel matrices. The ‘incomplete’ Cholesky factorization
technique is applied in both our method and the method
in [1] for low-rank kernel representation. If, however,
the eigenvalues of the kernel matrix have a more com-
plicated structure (varying from very small to relatively
large), then it is crucial to find a best approximated ma-
trix of decomposed matrix while keeping the rank of
the approximating matrix below a prescribed bound.
Therefore, for a large-scale problem (e.g., training set
with 10,000 data or more), the SVM problem becomes
infeasible without decomposition (chunking) method
if the rank of the kernel matrix is not below to a pre-
scribed bound. As the method in [1] is not applied in the
chunking method, it is not clear about the numerical sta-
bility and performance especially for very large-scale
problems (we will discuss in this point more details in
Section 8).

After we submitted the first version of this paper, we
found that Lanckriet et al. [15] have proposed a learning
method that defines the kernel matrix as a combination
of multiple kernels. To find the coefficients in the com-
bination, a semidefinite programming (SDP) problem
is needed to be solved (software ‘SeDuMi’ is used [15]
to solve SDP problem). Then, they solve a quadrati-
cally constrained quadratic program (QCQP) problem
(QCQP is a special instance of SOCP) to find the classi-
fier. The commercial software ‘Mosek’ is used to solve
the QCQP problem. Both ‘SeDuMi’ and ‘Mosek’ are
general-purpose softwares. Their works focus on only
improving the performance of classifier by combining
several kernels over the classifier with the best individ-
ual kernel. However, our goal is to develop a fast SVM
learning software for large-scale problems. In this pa-
per, we reformulate SVM’s QP problem into SOCP
problem. More than that, we propose some techniques
to enhance the efficiency of the interior-point methods
by exploiting the structure of the problem appeared



222 Debnath, Muramatsu and Takahashi

in the SVM. In particular, the block matrix splitting
is the key technique (see Section 4 for details). We
also develop a SVM learning software for large-scale
problems applying the SOCP into the decomposition
method.

In the next section we briefly explain the SOCP prob-
lem. In Section 3, we reformulate the SVM’s QP prob-
lem into the SOCP problems. Two types of SOCP for-
mulation for each kernel matrix factorization method
are shown in this section. We also discuss the com-
putational complexity of each method. In Section 4,
we introduce the implementation technique for SOCP
problems applying the block matrix splitting technique.
In Section 5, we briefly discuss the kernel matrix char-
acteristics based on kernel parameter, input data di-
mension and size of the training data set. In Section 6,
we compare the performance of our developed SOCP
solver, the method in [1] and the QP solver LOQO. In
Section 7, we describe a modification of Hsu and Lin’s
working set selection approach. Computational exper-
iments are shown in Section 8. Section 9 concludes the
paper.

2. The Second-Order Cone Programming
(SOCP)

The second-order cone programming problem is to
minimize or maximize a linear function over the in-
tersection of an affine space with the Cartesian product
of a finite number of second-order cones [16]. Recently,
this problem has received considerable attention for its
wide range of applications and for being easily solv-
able via interior-point methods (IPMs). In this section,
we briefly introduce the SOCP. See [16, 17] for more
about SOCP.

In this paper we consider the following SOCP prob-
lem:

(P) min
n∑

i=1

cT
i xi

subject to
n∑

i=1

Ai xi = b, (6)

xi ∈ Ki , i = 1, . . . , n,

where xi ∈ �ki , i = 1, . . . n, are variables, b ∈ �m ,
Ai ∈ �m×ki and ci ∈ �ki , i = 1, . . . n, are data, and
the set Ki , i = 1, . . . n, is the second-order cone of

dimension ki defined by

Ki = {xi = [xi0; xi1] ∈ � × �ki −1 : xi0 − ‖xi1‖ ≥ 0},

where xi0 is the first component of xi and xi1 is the
vector consisting of the remaining components, and
‖xi1‖ is the standard Euclidean norm. In particular, if
the cone dimension ki is 1, then the constraint xi ∈ Ki

is simply the standard non-negativity constraint xi ≥ 0,
and such a variable is called a linear variable.

The dual of (P) is given by

(D) max bT t (7)

subject to si + AT
i t = ci , i = 1, . . . , n,

si ∈ Ki , i = 1, . . . , n, (8)

where t ∈ �m . Defining

K = k1 + · · · + kn,

K = K1 × · · · × Kn,

A = [A1 A2 . . . An] ∈ �m×K ,

c = [c1; c2; . . . ; cn] ∈ �K ,

x = [x1; x2; . . . ; xn] ∈ �K ,

s = [s1; s2; . . . ; sn] ∈ �K ,

problems (P) and (D) can be simply written as:

(P) min cT x

subject to Ax = b, (9)

x ∈ K,

(D) max bT t

subject to s + AT t = c, (10)

s ∈ K.

The perturbed KKT conditions of the primal-dual
systems (9) and (10) are:

Ax = b, (primal feasibility)

s + AT t = c, (dual feasibility)

xi ◦ si = µei , i = 1, . . . , n, (complementary)

x, s ∈ K0, (11)

where K0 denotes the interior of the cone K, ei =
[1; 0; · · · ; 0] is a vector of length ki with the first ele-
ment is one and the rest of the elements are zero, and



An Efficient Support Vector Machine Learning Method 223

µ is a positive parameter that is to be driven to zero
explicitly. Here

xi ◦ si = [
xT

i si ; xi0si1 + si0xi1
]

is the multiplication inducing second-order cone. In-
deed, with this multiplication, the space �n can be
regarded as a Jordan algebra, and the SOCP can be
considered as a special case of symmetric cone pro-
gramming. For more details about Jordan algebra and
IPM for symmetric cone programming, see [18]. Sup-
pose that the interior of the primal and dual feasible
region is nonempty. Then as µ varies, the solution to
the perturbed KKT conditions (11) form a path (known
as the central path) in the interior of the primal-dual
feasible region, and as µ gradually reduces to zero, the
path converges to an optimal solution of the primal and
dual SOCP problems. The IPM introduced in Section 4
follows the central path numerically to get an optimal
solution.

3. Reformulation of the SVM’s
Optimization Problem

In this section we reformulate the SVM’s QP prob-
lem into the SOCP problem (see also [19] for a first
approach). The SVM problem can be written as:

min
1

2
αT Qα − eTα

subject to yTα = 0,

α + β = Ce,

α,β ≥ 0, α,β ∈ �l ,

where β is a slack variable vector. The square matrix
Q is a symmetric positive semidefinite matrix. The Q
can be represented as Q = GGT . If the rank of Q is r ,
G is a matrix with r columns and l rows.

3.1. Formulation 1

Assume that Q is decomposed as Q = GGT where
G ∈ �l×r and r is the rank of Q. Then,

αT Qα = αT GGTα = ‖GTα‖2.

Minimizing αT Qα is equivalent to minimizing θ un-
der the constraint ‖GTα‖2 ≤ θ . This constraint is

rewritten as

(
θ − 1

2

)2

+ ‖GTα‖2 ≤
(

θ + 1

2

)2

.

Let

u = GTα

z1 = θ + 1

2

z2 = θ − 1

2
.

Then, the SVM problem can be written as:

min
1

2
(z1 + z2) − eTα

subject to yTα = 0

α + β = Ce,

GTα − u = 0, u ∈ �r , (12)

z1 − z2 = 1,

α,β ≥ 0,

z2
1 ≥ z2

2 + ‖u‖2,

which is an SOCP problem of the form (9) as follows.

min
[−eT 0 1

2
1
2 0

]





α

β

z1

z2

u





subject to





yT 0 0 0 0

I I 0 0 0

GT 0 0 0 −I

0 0 1 −1 0









α

β

z1

z2

u




=





0

Ce

0

1





α,β ≥ 0,

z2
1 ≥ z2

2 + ‖u‖2. (13)

The dual of (13) is

max
[
0 CeT 0 1

]





t0
t1

t2

t3



 (14)



224 Debnath, Muramatsu and Takahashi

subject to





s0

s1

s2

s3

s4




+





y I G 0

0 I 0 0

0 0 0 1

0 0 0 −1

0 0 −I 0









t0
t1

t2

t3





=





−e

0

1/2

1/2

0





s0, s1 ≥ 0,

s2
2 ≥ s2

3 + ‖s4‖2,

or in a similar form:

max CeT t1 + t3 (15)

subject to s0 + t0 y + t1 + Gt2 = −e (16)

s1 + t1 = 0, (17)

s2 + t3 = 1/2, (18)

s3 − t3 = 1/2, (19)

s4 − t2 = 0, (20)

s0, s1 ≥ 0, (21)

s2
2 ≥ s2

3 + ‖s4‖2. (22)

Lemma 1. The problem (15)–(22) and (1)–(3) are
equivalent, and b = −t0.

The proof is in Appendix 9. Thus, if the QP problem in
(4) has an optimal solution of (1)–(3) then the SOCP
in (12) has the same optimal solution of (1)–(3).

3.2. Formulation 2

We can write G = [g1, g2, . . . , gr ] where gi ∈ �l is
the i th column vector of matrix G ∈ �l×r . Then

Q = GGT =
r∑

i=1

gi g
T
i ,

and

αT Qα = αT
r∑

i=1

gi g
T
i α =

r∑

i=1

αT gi g
T
i α

=
r∑

i=1

∥∥gT
i α

∥∥2
.

Again, minimizing αT Qα is equivalent to minimiz-
ing

∑r
i=1 θi under the constraints ‖gT

i α‖2 ≤ θi , i =
1, . . . , r . These constraints are rewritten as

(
θi − 1

2

)2

+ ∥∥gT
i α

∥∥2 ≤
(

θi + 1

2

)2

, i = 1, . . . , r.

Let for i = 1, . . . , r ,

ui = gT
i α

z1i = θi + 1

2

z2i = θi − 1

2
.

Then, the SVM’s QP problem is transformed into the
following SOCP problem as follows:

min
1

2

r∑

i=1

(z1i + z2i ) − eTα

subject to yTα = 0

α + β = Ce, (23)

gT
i α − ui = 0, i = 1, . . . , r,

z1i − z2i = 1, i = 1, . . . , r,

α,β ≥ 0,

z2
1i ≥ z2

2i + u2
i , i = 1, . . . , r.

The dual of (23) is

max CeT t1 +
r∑

i=1

t3i

subject to s0 + t0 y + t1 +
r∑

i=1

t2i gi = −e

s1 + t1 = 0,

s2i + t3i = 1/2, i = 1, . . . , r,

s3i − t3i = 1/2, i = 1, . . . , r, (24)

s4i − t2i = 0, i = 1, . . . , r,

s0, s1 ≥ 0,

s2
2i ≥ s2

3i + s2
4i , i = 1, . . . , r.

The IPM for SOCP needs matrix computation in
each iteration, and the computational cost of the SOCP
solver depends on both the dimension of second-
order cones and the number of second-order cones.
In the SOCP-Formulation 1, there is only one (r +
2)-dimensional second-order cone, while there are



An Efficient Support Vector Machine Learning Method 225

r 3-dimensional second-order cones in the SOCP-
Formulation 2. As a result, SOCP-Formulation 1 needs
to compute matrix computation of (r + 2) × (r + 2)
matrices, while SOCP-Formulation 2 computes a block
diagonal matrix where the number of blocks is r and
each block is 3 × 3 matrix. The sparse structure of
SOCP-Formulation 2 is more desirable in IPMs. Fur-
thermore, as each matrix size is 3 × 3, we compute
some matrices calculations analytically as shown in
Section 4. Thus, the SOCP-Formulation 2 is faster than
the SOCP-Formulation 1.

3.3. Matrix Factorization Methods

In this paper we apply two approaches to decompose
the matrix Q. The first approach is Cholesky factoriza-
tion method. Applying Cholesky factorization method
to Q, it is decomposed into the product of two symmet-
ric matrix as Q = GGT where G is a lower triangular
matrix, and each element of G is given by

Gii =
(

Qii −
i−1∑

k=1

G2
ik

)1/2

and

G ji = 1

Gii

(
Qi j −

i−1∑

k=1

Gik G jk

)
,

j = i + 1, i + 2, . . . , n.

If Q is positive semidefinite and singular, then it is still
possible to compute an ‘incomplete’ Cholesky factor-
ization GGT , where some columns of G are zero. In
this case, if a zero Gii is encountered then G ji ’s for
j = i + 1, i + 2, . . . , n are zero. Even if Gii is not pre-
cisely zero, but very small, Cholesky factorization may
be unstable. We set Gii = 0 if Gii < η, where η > 0 is
a threshold value, and G ji ’s for j = i +1, i +2, . . . , n
at zero. This setting gives numerical stability, and re-
duces the columns of G as well. In this paper, we set
η at 10−3. Thus, if there are r positive Gii , G ∈ �n×n

is represented as G ∈ �n×r , and GGT ≈ Q. Accord-
ing to this representation of Q, we can derive SOCP-
Formulation 1 for SVM problem. When we represent
G as G = [g1, g2, . . . , gr ] where gi ∈ �l is the i th col-
umn vector of matrix G ∈ �l×r , SOCP-Formulation 2
is driven.

The second approach is the eigenvalue factoriza-
tion method. Let λ1, λ2, . . . , λl are the eigenvalues and

q1, q2, . . . , q l are the corresponding eigenvectors of
Q. As Q is a symmetric matrix, we can write,

Q =
l∑

i=1

λi q i q
T
i

where all eigenvalues are positive. As the kernel matrix
is positive semidefinite we may get some eigenvalues
are very small or zero. If λi < η′, where η′ > 0 is a
threshold value, we set λi = 0. In this paper we set η′ at
10−6. If the number of positive eigenvalues are r ′ < l,
then,

Q ≈
r ′∑

i=1

λi q i q
T
i (25)

When Q is decomposed according to (25), SOCP-
Formulation 2 is driven. The representation of Q by
using eigenvalues can also be written in the following
way:

Q ≈
r ′∑

i=1

λi q i q
T
i

=
r ′∑

i=1

(√
λi q i )(

√
λi qT

i

)

=
r ′∑

i=1

q̂ i q̂ i
T

= ĜĜ
T

According to this representation of Q, SOCP-
Formulation 1 is driven. We discussed earlier that
SOCP-Formulation 2 is faster than SOCP-Formulation
1. Furthermore, SOCP-Formulation 2 with Cholesky
factorization is faster than that with the eigenvalue
factorization. This is because: (1) Cholesky factoriza-
tion method is faster than the eigenvalue factorization
method, (2) Cholesky factorization produces lower tri-
angular matrix (on an average (r × r )/2 elements of
matrix G are zero) while the decomposed matrix from
the eigenvalue factorization method is a full dense
matrix.

4. Implementation Technique

In this section, we describe how to calculate the search
direction of an IPM for the SOCP in (23) efficiently.



226 Debnath, Muramatsu and Takahashi

We use the so-called Mehrotra predictor-corrector al-
gorithm with the HKM search direction which is con-
sidered to be one of the most efficient methods for
SOCP problems [16, 18, 20–25]. At every iteration
of interior-point method there are two basic steps: (1)
predictor step and (2) corrector step. In the predic-
tor step, the algorithm predict the best reduction in
the duality gap, by evaluating a step directly towards
optimality. The corrector step enforces the centrality
and also takes into account the approximate curvature
of the central path estimated by the predictor step.
For the predictor step we compute (�x, �s, �t) ∈
�K × �K × �m of the linear system of equations
satisfying,

A�x = b − Ax (26)

�s + AT �t = c − s − AT t (27)

(Px) ◦ P−1�s + P−1s ◦ P�x = −(Px) ◦ P−1s,

(28)

where P is a linear operator defined below. Consider
si is a 3-dimensional second-order cone as si = [ s0

s1
]

with s0 > ‖s1‖, then

s−1
i = 1

γ 2

[
s0

−s1

]
,

where γ =
√

s2
0 − ‖s1‖2 and

P i =





s0 s1 s2

s1
s2

1
s0+γ

+ γ s1s2
s0+γ

s2
s1s2

s0+γ

s2
2

s0+γ
+ γ



 ,

P−1
i = 1

γ 2





s0 −s1 −s2

−s1
s2

1
s0+γ

+ γ s1s2
s0+γ

−s2
s1s2

s0+γ

s2
2

s0+γ
+ γ



 .

Note that the SOCP formulation for SVM has 1-
dimensional cones also. The formulation of s−1

i and
P i for the 1-dimensional cones is the same as that of
3-dimensional cone. From the above definition of s−1

i
and P i , we get

s−1 ◦ s = s ◦ s−1 = e, e ◦ x = x ◦ e = x,

P−1e = s−1, P−1s = e,

where P = diag(P1, P2, . . . , Pn) is a block diagonal
matrix with P1, P2, . . . , Pn as its diagonal blocks, e =
[e1; e2; . . . ; en] and ei = [1; 0; 0] (for 3-dimensional
cones). Putting the value P−1s = e in (28), we get

(Px) ◦ P−1�s + P�x = −Px

P−1 (Px) ◦ P−1�s + �x = −x

(premultiplied by P−1)

AP−1 (Px) ◦ P−1�s + A�x = −Ax

(premultiplied by A)

AP−1 (Px) ◦ P−1�s = −b

Multiplied by AP−1 (Px) ◦ P−1 into (27), we obtain

AP−1 (Px) ◦ P−1�s + AP−1 (Px) ◦ P−1 AT �t

= AP−1 (Px) ◦ P−1(c − s − AT t) (29)

AP−1(Px) ◦ P−1 AT �t

= AP−1 (Px) ◦ P−1(c − s − AT t) + b (30)

Define linear operator L(u), u ∈ �n

L(u)x = u ◦ x where

L(u) =
[

u0 uT
1

u1 u0 I

]
.

Now (30) becomes

AP−1L (Px) P−1 AT �t

= AP−1L (Px) P−1(c − s − AT t) + b (31)

Note that AP−1L (Px) P−1 AT is positive definite. We
can apply Cholesky factorization method to solve the
set of equations. From the value of �t , we get

�s = c − s − AT y − AT �t (32)

and

�x = −x − P−1L (Px) P−T �s (33)

To compute the corrector step, we set �x p = �x and
�s p = �s and compute new (�x, �s, �t) satisfying,

A�x = b − Ax (34)

�s + AT �t = c − s − AT t (35)

(Px) ◦ P−1�s + P−1s ◦ P�x

= µe − (Px) ◦ P−1s − (P�x p) ◦ P−1�s p (36)



An Efficient Support Vector Machine Learning Method 227

where µ = µa(µa

µb
)2, and where µa = (x +�x p)T (s +

�s p) and µb = xT s. Solving these equations as previ-
ous, we get

AP−1L (Px) P−1 AT �t

= −µAs−1 + AP−1L (Px) P−1
(
c − s − AT t

)

+ b + AP−1L
(
P�x p

)
P−1�s p (37)

From the value of �t , we get

�s = c − s − AT t − AT �t (38)

and

�x = µs−1 − x − P−1L (Px) P−1�s

− P−1L
(
P�x p

)
P−1�s p (39)

Solving the search directions (�xk, �sk, �tk) are
computationally most expensive in each iteration of
an IPM. We compute the search directions based
on a reduced augmented equation that is derived
by applying the block matrix splitting technique.
The reduced augmented equation has generally much
smaller size compared to the original augmented
equation. Exploiting the structure of SVM prob-
lem, we compute many matrix calculations analyti-
cally. Numerical results show that reduced augmented
equation based IPM, together with analytic calcula-
tion of many matrices computation, computationally
very faster and more stable than the typical IPM.
The method is described below. According to the
SOCP-Formulation 2,

A =





I I 0

yT 0 0

GT 0 ε1

0 0 ε2



 , (40)

where identity matrix I is l × l matrix, y is a vector
of length l (target output), G ∈ �l×r is decomposed

Hi = P−1
i L (P i xi ) P−1

i = 1

γ 2




si

0xi
0 − si

1xi
1 − si

2xi
2 si

0xi
1 − si

1xi
0 si

0xi
2 − si

2xi
0

si
0xi

1 − si
1xi

0 si
0xi

0 − si
1xi

1 − si
2xi

2 si
1xi

2 − si
2xi

1

si
0xi

2 − si
2xi

0 si
1xi

2 − si
2xi

1 si
0xi

0 − si
1xi

1 − si
2xi

2



 (46)

lower triangular matrix of the matrix Q, and

ε1 =





0 0 −1 0 0 0 · · · 0 0 0

0 0 0 0 0 −1 · · · 0 0 0
...

0 0 0 0 0 0 · · · 0 0 −1




,

(41)

and

ε2 =





−1 −1 0 0 0 0 · · · 0 0 0

0 0 0 −1 −1 0 · · · 0 0 0
...

0 0 0 0 0 0 · · · −1 −1 0




,

(42)

are r × 3r matrix.

P−1L (Px) P−1 =




D1 0 0

0 D2 0

0 0 H



 (43)

where Di ’s are l × l diagonal matrix and

H =





H1 0 · · · 0

0 H2 · · · 0

. . .

0 0 · · · Hr




(44)

=





a1 a2 a3

a2 b2 b3 0 0
a3 b3 c3

d1 d2 d3

0 d2 e2 e3 0
d3 e3 f3

. . .
g1 g2 g3

0 0 g2 h2 h3

g3 h3 i3





,

(45)
where



228 Debnath, Muramatsu and Takahashi

are computed analytically for each 3-dimensional cone.
The diagonal elements for Di are calculated in a sim-
ilar way on one-dimension cones. In a typical IPM
iteration A ∈ �(l+1+2r )×(2l+3r ), P−1L (Px) P−T ∈
�(2l+2r )×(2l+3r ), and

AP−1L (Px) P−1 AT

=





I I 0
yT 0 0
GT 0 ε1

0 0 ε2








D1 0 0
0 D2 0
0 0 H








I y G 0
I 0 0 0
0 0 εT

1 εT
2





(47)

=





D1 + D2 D1 y D1G 0
yT D1 yT D1 y yT D1G 0
GT D1 GT D1 y GT D1G + ε1 HεT

1 ε1 HεT
2

0 0 ε2 HεT
1 ε2 HεT

2





(48)

Let,

C̃ = D1 + D2

ỹT = yT D1 ⇔ ỹ = D1 y

c̃ = yT D1 y

G̃
T = GT D1 ⇔ G̃ = D1G

r̃ T = yT D1G = yT G̃ ⇔ r̃ = G̃
T

y

R̃ = GT D1G + ε1 HεT
1 = G̃

T
G + P̃1

P̃1 = ε1 HεT
1

P̃12 = ε1 HεT
2 ⇔ P̃

T
12 = ε2 HεT

1

P̃2 = ε2 HεT
2

b̃ = [b̃1; b̃2; b̃3; b̃4] = AP−1L (Px) P−1

× (c − s − AT t) + b, or

[b̃1; b̃2; b̃3; b̃4] = −µAs−1 + AP−1L (Px) P−1

× (c − s − AT t) + b + AP−1L

× (P�x p)P−1�s p

b = [Ce; 0; 0; 1]

c = [−eT ; 0; k; . . . ; k],

k =
[

1

2
;

1

2
; 0

]
.

Again, we define x = [x1; x2; x3] ∈ �(l+l+3r ),
s = [s1; s2; s3] ∈ �(l+l+3r ) and t = [t1; t2; t3; t4] ∈

�(l+1+r+r ). Now, from (31) or (37), we get





C̃ ỹ G̃ 0

ỹT c̃ r̃ T 0

G̃
T

r̃ R̃ P̃12

0 0 P̃
T
12 P̃2









�t1

�t2
�t3

�t4



 =





b̃1

b̃2

b̃3

b̃4




(49)

C̃�t1 + ỹ�t2 + G̃�t3 = b̃1 (50)

ỹT �t1 + c̃�t2 + r̃ T �t3 = b̃2 (51)

G̃
T
�t1 + r̃�t2 + R̃�t3 + P̃12�t4 = b̃3 (52)

P̃
T
12�t3 + P̃2�t4 = b̃4 (53)

From (53)

�t4 = P̃
−1
2

(
b̃4 − P̃

T
12�t3

)
. (54)

From (52) and (54)

G̃
T
�t1 + r̃�t2 + (

R̃ − P̃12 P̃
−1
2 P̃

T
12

)
�t3

= b̃3 − P̃12 P̃
−1
2 b̃4. (55)

The coefficient matrix (R̃ − P̃12 P̃
−1
2 P̃

T
12) is known as

Schur complement matrix. It is symmetric and posi-
tive definite. We solve the following set of equations
applying Cholesky factorization:




C̃ ỹ G̃

ỹT c̃ r̃ T

G̃
T

r̃ R̃ − P̃12 P̃
−1
2 P̃

T
12








�t1

�t2
�t3





=




b̃1

b̃2

b̃3 − P̃12 P̃
−1
2 b̃4



 , (56)

where



C̃ ỹ G̃

ỹT c̃ r̃ T

G̃
T

r̃ R̃ − P̃12 P̃
−1
2 P̃

T
12





= V ∈ �(l+1+r )×(l+1+r ).

Note that C̃ ∈ �l×l is a diagonal matrix. We apply the
following technique in Cholesky factorization method
to decompose the matrix V .

G ′
i i = V 1/2

i i , i = 1, . . . , l, (57)

G ′
j i = 0, i = 1, . . . , l, j = i + 1, . . . , l, (58)



An Efficient Support Vector Machine Learning Method 229

G ′
j i = Vi j

G ′
i i

, i = 1, . . . , l,

j = l + 1, . . . , l + 1 + r, (59)

G ′
i i =

(
Vii −

i−1∑

k=idx(i,1)

G ′2
ik

)1/2

,

i = l + 1, . . . , l + 1 + r, (60)

G ′
j i = 1

G ′
i i

(
Vi j −

i−1∑

k=idx(i,1)

G ′
ik G ′

jk

)
,

i = l + 1, . . . , l + 1 + r, j = i + 1, . . . , l + 1 + r,

(61)

where idx(i, 1) is the first nonzero element of the i-th
row. This procedure requires O(lr2) computations to
compute Cholesky factorization for V , which is very
small compared to that in (49) (in a typical IPM it-
eration). From the above solution, we get �t4, and
consequently �s and �x. Here, we will show some
matrices calculations which are done analytically. For
example,

Ax =





I I 0

yT 0 0

GT 0 ε1

0 0 ε2








x1

x2

x3



 =





x1 + x2

yT x1

GT x1 + ε1x3

ε2x3





AT t =




I y G 0

I 0 0 0

0 0 εT
1 εT

2









t1

t2
t3

t4





=




t1 + t2 y + Gt3

t1

εT
1 t3 + εT

2 t4





ε1 HεT
1 = diag(c3, f3, . . . , i3)

ε2 HεT
1 = ε1 HεT

2 = diag((−a3 + b3),

(−d3 + e3), . . . , (−g3 + h3))

ε2 HεT
2 = diag((a1 − 2a2 + b2),

(d1 − 2d2 + e2), . . . ,

(g1 − 2g2 + h2))

ε1x3 = [ − x3(2); −x3(5); . . . ; −x3(3r−1)
]

ε2x3 = [
x3(0) − x3(1); x3(3) − x3(4); . . . ;

x3(3r−3) − x3(3r−2)
]

εT
1 t3 = [

0; 0; −t3(0); 0; 0; −t3(1); · · · ; 0; 0;

− t3(r−1)
]

εT
2 t4 = [

t4(0); −t4(0); 0; t4(1); −t4(1); 0; · · · ;

t4(r−1); −t4(r−1); 0
]

Here, we see that only O(lr ) computations need for
calculating Ax and AT t . All computations including
block matrix splitting technique and analytic matrix
multiplications make the proposed solver much faster
than general-purpose solvers.

5. Kernel Matrices Characteristics

In this section we discuss two kernel matrices: the radial
basis function (RBF) kernel

K (xi , x j ) = e−‖xi −x j ‖2/γ (62)

and the linear kernel, K (xi , x j ) = xT
i x j .

5.1. Radial Basis Function (RBF) Kernel Matrix

When γ → 0, the RBF kernel matrix tends to the
identity matrix. Then it becomes a full rank matrix.
When γ → ∞, the kernel matrix tends to a matrix
with all elements to be one. Then, it becomes a rank-
one matrix. From these simple statements we can say
that when the γ is large enough, many eigenvalues of
the kernel matrix become smaller than the predefined
threshold value, i.e., the dimension of the decomposed
matrix is reduced. In the existing methods (e.g., LOQO,
SMO), learning time is controlled by C because γ has
almost no effect to the learning time. The learning time
can be controlled by both parameters γ and C applying
the proposed methods.

5.2. Linear Kernel Matrix

We can write the kernel matrix, K , as follows:

K = XXT

where XT = [x1, x2, . . . , xl] and xi ∈ �n are input
data. Since the linear kernel matrix is positive semidef-
inite, for all non-zero v ∈ �l

vT K v = vT XXT v

=
l∑

i=1

vi xi

l∑

i=1

vi xi ≥ 0



230 Debnath, Muramatsu and Takahashi

Table 1. Features of benchmark data sets.

#training #testing
Problems data data #attributes (γ, C)

titanic 150 2051 3 (2.00, 10.0)

banana 400 4900 2 (1.00, 316.2)

diabetes 468 300 8 (20.00, 10.0)

iris 100 0 4 (−, 10.0)

wine 130 0 13 (−, 10.0)

Usually the number of training data is larger than the
dimension of the input vector. Without loss of general-
ity we assume that xi �= x j . As the training data size
is larger than the dimension of the input vector, even
though xi �= x j , many xi ’s will be linearly depended
on other x j ’s. Thus, the dimension of decomposed ma-
trix is greatly reduced when the linear kernel is applied
for the SVM learning.

6. Performance of SOCP, Method in [1] and QP
Solver LOQO for SVM Problems

In this section, we compare the performance of SOCP
methods against the QP solver LOQO and the method
in [1]. Data sets2 titanic, banana, diabetes, iris, wine,
adult5, and web4 are used for experiments. The first
three problems are tested using the RBF kernel (62),
and the other problems are tested using the linear ker-
nel. Features of data sets, and the kernel and optimal
parameters3 are given in Tables 1 and 5. All experi-
ments are done on a 750 MHz Pentium-III with 256 MB
RAM computer, using the gcc compiler for the pro-
posed method and LOQO, and g77 fortran compiler
for the method in [1].

Table 2. Comparison of SOCP-Formulation 2 with Cholesky factorization, QP solver LOQO and the method in [1].

SOCP-Formulation 2,
SOCP-Formulation 2 Method [1] LOQO Method [1] & LOQO

# cols. Learning time Learning time Learning time
Problems (% cols. reduction) (in seconds) (in seconds) (in seconds) Obj. SV (BSV) %err.

titanic 12 (92%) 0.01 0.02 0.09 −537.26 143 (28) 21.75

banana 140 (65%) 3.31 9.47 8.18 −19587.67 87 (52) 11.88

diabetes 468 (0%) 29.18 101.39 12.53 −1833.14 239 (174) 23.33

“# cols.” represents the number of columns of the decomposed matrix, “Obj.” represents the objective value, “SV” represents the
number of support vectors while “BSV” represents the bounded support vectors, and “%err.” represents the percentage of generalization
error respectively. The kernel and optimal parameters are given in Table 1.

Experimental results show that objective values,
numbers of support vectors, and generalization error
rates of all SOCP methods, the OP solver LOQO and
the method in [1] are same for all problems. The SOCP
methods also follow SVM’s KKT conditions. As the
SOCP-Formulation 2 with Cholesky factorization (for
matrix Q) is faster than the other three SOCP methods,
we show only the results of SOCP-Formulation 2 with
Cholesky factorization throughout the paper. Table 2
shows the experimental results of SOCP-Formulation 2
with Cholesky factorization, method in [1], and LOQO
for the first three problems. Learning methods use the
training sets without chunking. Our resulting times
include the kernel matrix factorization time with the
actual learning time of the SOCP solver. According
to the experimental results, the SOCP-Formulation 2
is 9 times faster than the LOQO for titanic problem
where the dimension of the decomposed matrix is
smaller than that of the kernel matrix, and LOQO is
about twice as fast as SOCP-Formulation 2 for dia-
betes problem where the kernel matrix is a full rank
matrix. The number of columns of the decomposed
matrix (the rank of the kernel matrix) is the same in
the proposed method and in the method in [1] for
each problem. Experimental results show that the pro-
posed method is faster than the method in [1] for both
low-rank and full-rank kernel matrices. The method
in [1] is better than LOQO only for titanic problem
which has very low-rank kernel matrix. The perfor-
mance of the method in [1] cannot be better than the
QP solver LOQO if the rank of the kernel matrix is
not very low. The method in [1] is very slower than
LOQO for diabetes problem which has full-rank kernel
matrix.

For banana problem, we see that the number of
columns of the decomposed matrix is 122 by using the



An Efficient Support Vector Machine Learning Method 231

Table 3. Comparison of the SOCP-Formulation 2 with Cholesky factorization, LOQO and the method in [1] using the new set of
kernel and optimal parameters.

SOCP-Formulation 2,
Method [1] & LOQO

SOCP-Formulation 2 Method [1] LOQO

# cols. Learning time Learning time Learning time
Problems (% cols. reduction) (in seconds) (in seconds) (in seconds) SV (BSV) % err. (C, γ )

banana 97 (75%) 1.24 4.28 8.41 89 (63) 11.31 (350, 2.0)

diabetes 205 (56%) 7.87 26.25 14.49 244 (226) 23.33 (100, 320)

eigenvalue factorization method while 140 by using
Cholesky factorization method. Although the number
of columns is a little larger by Cholesky factorization
method than that of eigenvalue factorization method,
the SOCP-Formulation 2 with Cholesky factorization
gives faster results than that with eigenvalue factoriza-
tion (results are not shown here).

Next, we apply cross-validation to get optimal val-
ues of γ and C for banana and diabetes problems
where the optimization problems are solved by the
SOCP-Formulation 2. Results are shown in Table 3.
The proposed method is faster than the LOQO for dia-
betes problem, and much faster than the previous result
for banana problem with the new parameters. Usually,
the proposed method is also faster than the method
in [1]. From the result, we see that kernel parameter can
also help to improve the learning time of the proposed
method. Since the kernel parameter has no effect in the
LOQO’s learning time, it’s time is almost the same as
the previous parameter setting gives (learning time is
a little bit larger for diabetes problem as the optimal
parameter C is larger than the previous value). Results
for linear kernel on iris, wine, adult5, and web4 prob-
lems are shown in Table 4. The optimal parameter C is
equal to 1 for adult5 problem, and 5 for web4 problem.
In general, the ranks of linear kernel matrices are very

Table 4. Comparison of SOCP-Formulation 2 with Cholesky factorization, LOQO and the
method in [1] for linear kernel.

SOCP-Formulation 2 Method [1] LOQO

# cols. Learning time Learning time Learning time
Problems (% cols. reduction) (in seconds) (in seconds) (in seconds)

iris 4 (96%) 0.00 0.01 0.03

wine 13 (90%) 0.01 0.04 0.07

adult5 107 (98%) 60.43 198.55 N/A

web4 256 (96.5%) 520.17 1515.01 N/A

Iris and wine are three-class problems. We use two-class out of three-class for these problems.
Here “N/A” represents that the corresponding method is infeasible or too slow.

small. Thus, the SOCP-Formulation 2 is much faster
than the LOQO for linear kernel. The proposed method
is also much faster than the method in [1]. In [1], Fine
and Scheinberg have shown (by experiment) that their
method (without chunking) performs better than either
Joachims’s SVMlight or Platt’s SMO if the kernel ma-
trix has a low rank compared to the size of the training
data or if it can be approximated by a low-rank posi-
tive semidefinite matrix. Since the proposed method is
faster than the method in [1], the proposed method will
be more efficient.

7. Selection of Good Working Set for
Decomposition (Chunking) Method

The optimization problem of the SVM is challenging
when the size of the training data set is large enough,
which is often the case of practical applications. To
tackle this problem, the SVM optimization problem
is decomposed into a series of smaller optimization
problems, and to solve the small optimization prob-
lems iteratively until the global solution is found, which
is briefly described in Section 1. The convergence of
decomposition method depends on the selection of
training data for smaller problems, which is so-called



232 Debnath, Muramatsu and Takahashi

‘working set’. Thus, working set selection has the same
importance as improving the performance of optimiz-
ing solver for the SVM problem. Recently, Hsu and
Lin [8] have proposed a working set selection approach
for SVM formulation which needs a smaller number of
iterations among the existing approaches, and the ap-
proach can be applied with a large working set. The
algorithm [8] is given below:

• Let r be the number of free variables at kth iteration.
• Let q = q1 + q2, where q1 ≤ r and q2 is an even

number.
• For those 0 < α

(k)
i < C , select q1 elements with the

smallest |∇ f (α(k)
i ) + byi |, i = 1 . . . l.

• Select q2 elements from the rest of the index set by
SVMlight’s working set selection approach.

In this paper we modify Hsu and Lin’s approach. A
simple modification to Hsu and Lin’s approach leads
to converge faster with a large working set than Hsu and
Lin’s approach. As SVMlight’s working set is included
in their approach, we first briefly describe SVMlight’s
working set selection strategy. Joachims [5] has pro-
posed a working set selection strategy used in his soft-
ware SVMlight based on Zoutendijk’s method. The fol-
lowing optimization problem [5] is solved to select the
working set:

min ∇ f (α(k))T d (63)

subject to yT d = 0, −1 ≤ d ≤ 1,

di ≥ 0, if α
(k)
i = 0,

di ≤ 0, if α
(k)
i = C,

|{di |di �= 0}| ≤ q, i = 1 . . . l,

where f (α) ≡ 1
2α

T Qα − eTα, α(k) is the solution at
the kth iteration, ∇ f (α(k)) is the gradient of f (α) at
α(k). The components of α(k) with non-zero di ’s are in-
cluded in the working set B. This optimization problem
is solved using a simple strategy: (1) sort all α(k)

i accord-
ing to yi∇ f (α(k)

i ) in descending order for i = 1 . . . l; 2)
successively pick the q/2 elements from the top of the
list for which 0 < α

(k)
i < C , or α

(k)
i = 0 if yi = −1 or

α
(k)
i = C if yi = 1, and set di = −yi ; and 3) similarly

pick the q/2 elements from the bottom of the list for
which 0 < α

(k)
i < C , or α

(k)
i = 0 if yi = 1 or α

(k)
i = C

if yi = −1, and set di = yi . Here d is used only for
selecting the working set. The value of q must be an
even number. This algorithm takes at most O(lq) op-
erations that is acceptable for practical application. If

we consider that ᾱ is the optimal solution of (4), then
the following KKT conditions hold:

∇ f (ᾱi ) + byi > 0, if ᾱi = 0, (64)

∇ f (ᾱi ) + byi < 0, if ᾱi = C, (65)

∇ f (ᾱi ) + byi = 0, if 0 < ᾱi < C . (66)

Now, we will show that Joachims’s approach selects
the most violated bounded variables from each class.
We first consider for the case of α

(k)
i = 0 which vi-

olates the KKT condition at the kth iteration. We can
write ∇ f (α(k)

i ) + byi ≤ 0 if α
(k)
i = 0 violates the KKT

condition. Thus, yi∇ f (α(k)
i ) + b ≥ 0 if yi = −1 or

yi∇ f (α(k)
i ) + b ≤ 0 if yi = 1. Joachims’s approach

selects α
(k)
i = 0 from the top of the sorted list of α(k)

if yi = −1 or bottom of the list if yi = 1 where α
(k)
i

is sorted according to yi∇ f (α(k)
i ) in descending order.

Note that the value of b is the same for all variables
at any iteration, however b is not a constant and must
be recalculated in each iteration. When α

(k)
i = 0 is se-

lected from the top of the list, α
(k)
i is the most violated

variable from the class label −1. When α
(k)
i = 0 is se-

lected from the bottom of the list, it is the most violated
variable from the class label 1. Similarly we can show
that if α

(k)
i = C are selected, they are also the most

violated variables from either class. The free variables
0 < α

(k)
i < C are selected without any constraint, i.e.,

the selection of free variables 0 < α
(k)
i < C depends

only on ordered yi∇ f (α(k)
i ) values in the list. Thus, all

selected 0 < α
(k)
i < C may not be the most KKT vio-

lated free variables from each class. This approach per-
forms well for small-sized working set selection [5, 8].

Hsu and Lin’s approach adds some free variables
whose corresponding |∇ f (α(k)

i ) + byi | are the small-
est with Joachims’s working set. It can be seen from
(64)–(66) that the free variables which slightly violated
KKT condition are added with Joachims’s working set.
For any free variable α

(k)
i if ∇ f (α(k)

i ) + byi < 0, the
free variable α

(k)
i shows the characteristics as upper

bounded variable, α(k)
i = C . Similarly, for free variable

α
(k)
i if ∇ f (α(k)

i ) + byi > 0, the free variable α
(k)
i shows

the characteristics as lower bounded variable, α(k)
i = 0.

Note that variables either upper or lower bounded cor-
responding to the smallest |∇ f (α(k)

i ) + byi | are near
to the hyperplane than the other (either upper or lower
bounded) variables. When the free variables with the
smallest |∇ f (α(k)

i ) + byi | are selected for the next it-
eration, some of them will be either upper bounded or
lower bounded variables, and it keeps the number of



An Efficient Support Vector Machine Learning Method 233

free variables to be small. This is because some vari-
ables near to the (current) hyperplane from both classes
have possibility to select for the next iteration (and more
possibility to be upper bounded variable than to be 0
in the next iteration because input vectors correspond-
ing those free variables are closer to each other). If a
component is correctly identified at C or 0, there is no
problem of numerical accuracy. Since the decomposi-
tion method cannot consider all variables together in
each iteration, it is difficult to decide the value of a
free variable. Thus, a larger number of free variables in
the working set causes more difficulty. Hsu and Lin’s
approach leads decomposition method to converge fast
as it always tries to keep the number of free variables
small. In addition, after the subproblem (5) is solved,
the free variables at the current working set satisfy
∇ f (α(k)

i ) + byi = 0. Thus some free variables in the
current working set may again include in the next set.
It reduces zigzagging of the series of working set ele-
ments, and hyperplanes may not oscillate (jump) more
through the whole training set. For these reasons, Hsu
and Lin’s approach may lead to converse faster than
Joachims’s approach. Again, an approach with a rela-
tively large sized working set might reduce the overall
computation cost. Thus, overall performance of Hsu
and Lin’s approach is better than Joachims’s approach.

From the above description it is clear to understand
that if the successive hyperplanes do not oscillate more,
some free variables which are far from the hyperplanes,
i.e., free variables corresponding (∇ f (α(k)

i )+byi ) � 0
may be correctly identified at α

(k+1)
i = 0. With the

working set proposed by Hsu and Lin, we add some
free variables with the largest ∇ f (α(k)

i ) + byi , and the
proposed algorithm is as follows:

• Let r be the number of free variables at kth iteration.
• Let q = q1 + q2 + q3, where (q1 + q2) ≤ r and q3 is

an even number.
• For those 0 < α

(k)
i < C , select q1 elements with the

smallest |∇ f (α(k)
i ) + byi |, i = 1 · · · l.

• Select q2 elements with the largest ∇ f (α(k)
i ) + byi ,

i = 1 · · · l from r − q1 variables.
• Select q3 elements from the rest of the index set by

the SVMlight’s working set selection approach.

To speed up the convergence, we should carefully
choose q1, q2 and q3. In the previous explanation, we
have seen that Joachims’s approach has a nice property
to select (q3) variables from both classes. However, the
other selection strategies (for q1 and q2) have no such

criteria. Hsu and Lin’s approach adds q1 elements with
q3 elements where q1 elements are selected with the
smallest |∇ f (α(k)

i ) + byi |. Although q1 variables can-
not decrease the objective function much, Hsu and Lin’s
approach tries to push free variables to be bounded
variables, and keeps the number of free variables to be
small. If many free variables in the iterative process
are still free in the final solution, the learning method
with the large value of q1 and small value of q3 con-
verses slowly because it may wrongly put many free
variables as bounded variables. There may arise an-
other problem when elements from one class are much
larger than those of the other class in the working set.
In this case, many variables may be wrongly put as
bounded variables, or subproblem (5) may be a prob-
lem with separable data. If subproblem (5) becomes a
problem with separable data, i.e., ξi = 0, i ∈ B, (αB)i ’s
are in general not equal to C . Then, it is difficult to
identify correct bounded variables and the convergence
becomes slow. However, SVMlight’s working set selec-
tion approach has very good criteria to increase much
progress towards the minimum of f (α) with all types
of variables (free and bounded variables). Considering
all above conditions, a good large working set should
follow a sufficiently large value of q3, and then a large
value of q1 (q1 < q3). The free variables corresponding
to (∇ f (α(k)

i )+byi ) � 0 are the most KKT violated free
variables on the right side of the current hyperplane.
Joachims’s approach selects q3 variables which are the
most violated KKT free (0 < αi < C) and bounded
(αi = 0 and αi = C) variables from the top and bot-
tom of the sorted list of yi∇ f (α(k)

i ), i = 1, . . . , l. If
yi∇ f (α(k)

i ) of free variables are smaller than those of
q3 bounded variables (αi = 0 and αi = C), then no
free variable will be selected in the next iteration. The
proposed method guarantees to select the most KKT
violated free variables. The value of q2 will be small
enough.

8. Experimental Results

In this section, we show the comparison among the
decomposition method including SOCP-Formulation
2 and LOQO, and Platt’s SMO. Cholesky factoriza-
tion method is applied to decompose kernel matrices
for the SOCP-Formulation 2. In the first experiment
we use Hsu and Lin’s working set selection approach
for the SOCP-Formulation 2 and LOQO. In Hsu and
Lin’s working set selection approach, we set q = 10
where q1 = 6 and q2 = 4. The size of working set of



234 Debnath, Muramatsu and Takahashi

Table 5. Features of new benchmark data sets.

#training #testing
Problems data data #attributes (γ, C)

thyroid 140 75 5 (3.00, 10.0)

heart 170 100 13 (120.00, 3.162)

splice 1000 2175 60 (70.00, 1000.0)

adult1 1605 29589 123 (200.00, 1.0)

adult2 2265

adult3 3185

adult4 4781

adult5 6414

web1 2477 38994 300 (200.00, 5.0)

web2 3470

web3 4912

web4 7366

the SMO is restricted to be two. The gcc compiler is
used for computing experimental results of the SOCP-
Formulation 2 and LOQO, and matlab with mex in-
terface is applied to implement the SMO algorithm.
For this experiment, we add two more problems, adult
and web, with titanic, banana and diabetes. The adult
and web problems have various sizes training sets. Fea-
tures of these problems are shown in Table 5. Table 6
presents the results for the RBF kernel (62). The (γ, C)

Table 6. Comparison of SOCP-Formulation 2, LOQO and Platt’s SMO. The SOCP-Formulation 2 and LOQO are applied in the SVM
decomposition method, and Hsu and Lin’s approach is used for working set selection where q1 = 6 and q2 = 4. Here ‘iter.’ represents the
number of iterations.

SOCP-Formulation 2 LOQO Platt’s SMO

Problem iter. Time (in sec.) SV (BSV) %err. iter. Time (in sec.) SV (BSV) %err. Time (in sec.) SV (BSV) %err.

titanic 36 0.05 71 (46) 21.75 46 0.07 72 (50) 21.75 0.02 79 (48) 21.75

banana 1126 5.19 88 (52) 11.88 2845 10.39 87 (52) 11.88 111.25 87 (52) 11.88

diabetes 515 2.81 239 (174) 23.33 554 2.81 239 (175) 23.33 3.28 239 (174) 23.33

adult1 231 24.71 786 (759) 17.61 232 25.04 785 (759) 17.64 32.03 786 (756) 17.61

adult2 324 48.50 1104 (1081) 16.9 325 49.14 1105 (1082) 16.93 70.92 1104 (1077) 16.93

adult3 450 100.85 1454 (1412) 16.72 450 101.45 1454 (1412) 16.74 222.71 1554 (2050) 16.72

adult4 638 210.13 2090 (2051) 16.54 645 216.14 2092 (2050) 16.52 231.95 2093 (2050) 16.52

adult5 841 370.93 2712 (2658) 16.27 843 375.07 2714 (2656) 16.27 2217.83 2715 (2658) 16.26

web1 300 236.83 232 (100) 2.56 305 242.02 234 (99) 2.56 304.03 250 (103) 2.56

web2 397 441.09 301 (157) 2.54 442 493.21 297 (158) 2.54 643.10 375 (226) 2.53

web3 506 783.14 363 (215) 2.41 557 867.68 366 (215) 2.41 611.14 375 (226) 2.41

web4 584 1361.4 511 (345) 2.13 650 1521.9 514 (347) 2.13 1946.4 513 (349) 2.13

for adult and web are shown in Table 5 (best parameter
sets for these problems given in [5]). The kernel and
optimal parameters for the other problems are given
in Table 1. From Table 6, we see that the learning
times of SOCP-Formulation 2 are less than or equal
to that of LOQO. This is because, for a very small
size problem (which is usually used in the chunking
method), although the rank of the kernel matrix is full
(or almost so), the SOCP-Formulation 2 is competitive
with the LOQO, and the decomposition method in-
cluding the proposed method needs smaller number of
iterations.

When perturbed KKT conditions are very tight, any
optimizer (either QP or SOCP solver) finds the opti-
mal solution with high accuracy. Using a higher accu-
racy leads to considerably longer training time, how-
ever, it does not show improved generalization perfor-
mance. Thus, loose perturbed KKT conditions are used
in practice. Note that QP solver (LOQO) and reformu-
lating SOCP give the same optimal solution when per-
turbed KKT conditions are almost tight for both meth-
ods. In the decomposition (chunking) process, per-
turbed KKT condition parameters are heuristics, and
are changed according to the complexity of working
data set in the iterative process (sometimes robust or
sometimes loose setting). When very loose parameters
are being set in some working sets, LOQO (also SOCP
solver) gives (feasible) solutions for those working data



An Efficient Support Vector Machine Learning Method 235

sets but resulting variables (αB)i ’s do not satisfy KKT
complementary conditions. In this case, iteration may
increase. Thus, a good heuristic may reduce the num-
ber of iterations as well as overall computational cost.
For implementing the LOQO in the decomposition
method, we use the same default options of SVMlight.
The perturbed KKT parameters of the proposed method
is different from the LOQO, that’s why the number
of iterations varies between the proposed method and
LOQO.

Platt’s SMO selects the active data randomly from
the KKT condition violations. Therefore, the conver-
gence is very slow for some problems and fast for other
problems, and training time varies in each simulator
run (sometimes support vectors and/or error rates also
vary). This is one of the disadvantages of the SMO
method. In this paper we show the results for SMO on
the average of 4 simulator runs. The proposed method
and LOQO are faster than the SMO for most of the
problems.

Next, we apply the modified Hsu and Lin’s approach
with the LOQO and SOCP-Formulation 2. We will
show the experimental results on previous problems
with some other problems such as heart, thyroid, and
splice. They are collected from [27]. Table 7 presents
results for the RBF kernel (62) using LOQO with def-
erent permutations of q1, q2, and q3 where q is fixed
for each problem. The kernel and optimal parameters
for these new problems are given in [27] as shown in
Table 5. We do not show the learning time in Table 7 be-
cause the learning time is proportional to the number of
iterations (as the same optimizer, LOQO, is used). Al-
though free variables with the largest ∇ f (α(k)

i )+byi are
most KKT violated free variables which can be selected
by Joachims’s approach, the working set elements are
different for q = q1 + q2 + q3 and q = q1 + 0 + q̂3

where q̂3 = q2 + q3, and numerical experiments show
different results. From Table 7, we see that a simple
modification to Hsu and Lin’s approach can improve
the performance of it.

Table 8 presents results of the modified Hsu and
Lin’s approach with SOCP-Formulation 2 and LOQO
for the RBF kernel (62). Learning times as well
as iterations in Table 8 are much less than that in
Table 6 for all problems. It shows the importance of ap-
plying a sufficient large working set. From the results
in Table 8 we see that the SOCP-Formulation 2 is bet-
ter or very competitive with the LOQO. The ranks
of kernel matrices are full (or almost so) in many
problems. Problems which have very low-rank kernel

Table 7. Results of the modified Hsu and Lin’s approach with
LOQO on different permutations of q1, q2 and q3 for fixed q. When
q2 = 0, it becomes Hsu and Lin’s approach.

Problems q1-q2-q3 iter. SV (BSV) % err.

titanic 10-4-14 9 85 (49) 21.75
14-0-14 25 99 (32) 21.75
16-0-12 11 80 (45) 21.75
10-0-18 21 94 (33) 21.75
20-0-8 15 81 (45) 21.75

banana 20-4-50 12 87 (52) 11.88
24-0-50 14 87 (52) 11.88
20-0-54 15 87 (52) 11.88
34-0-40 16 87 (52) 11.88

diabetes 21-3-40 28 239 (174) 23.33
24-0-40 30 239 (175) 23.33
20-0-44 29 239 (175) 23.33
14-0-50 30 239 (174) 23.33

thyroid 6-2-12 6 19 (0) 8.00
8-0-12 6 19 (0) 8.00
6-0-14 8 19 (0) 8.00
16-0-4 9 19 (0) 8.00

heart 4-2-12 12 80 (63) 19.00
6-0-12 13 80 (63) 19.00
4-0-14 15 80 (63) 19.00
14-0-4 28 80 (63) 19.00
10-0-8 16 80 (63) 19.00

splice 6-2-24 166 677 (0) 10.99
8-0-24 178 677 (0) 11.13
12-0-20 197 678 (0) 10.71
16-0-16 233 676 (0) 19.77

adult2 8-2-24 58 1105 (1081) 16.93
10-0-24 59 1105 (1081) 16.93
18-0-16 82 1105 (1082) 16.94

adult3 8-2-22 81 1455 (1412) 16.78
10-0-22 82 1454 (1412) 16.75
20-0-12 142 1454 (1412) 16.78

adult4 10-2-20 135 2092 (2049) 16.56
12-0-20 135 2092 (2049) 16.54
20-0-12 210 2093 (2050) 16.54

adult5 8-2-20 173 2716 (2656) 16.27
10-0-20 178 2717 (2654) 16.26
20-0-10 328 2717 (2656) 16.27

web1 8-2-12 110 234 (100) 2.56
10-0-12 124 240 (100) 2.56
8-0-14 114 243 (100) 2.56
16-0-6 176 230 (100) 2.56

web2 8-2-10 185 308 (156) 2.54
10-0-10 199 303 (156) 2.54
8-0-12 205 307 (155) 2.54
16-0-4 345 298 (160) 2.54

web3 9-1-12 168 369 (214) 2.41
10-0-12 177 368 (216) 2.41
16-0-6 289 366 (218) 2.41

web4 9-1-12 210 518 (342) 2.13
10-0-12 248 518 (345) 2.13
16-0-6 335 512 (346) 2.13



236 Debnath, Muramatsu and Takahashi

Table 8. Results of the modified Hsu and Lin’s approach with SOCP-Formulation 2 and LOQO.

SOCP-Formulation 2 LOQO

Problems q1-q2-q3 iter. time SV (BSV) % err. q1-q2-q3 iter. time SV (BSV) %err.

titanic 10-4-14 9 0.03 85 (49) 21.75 10-4-14 9 0.04 85 (49) 21.75

diabetes 20-4-40 28 1.62 239 (174) 23.33 21-3-40 28 1.02 239 (174) 23.33

thyroid 5-3-12 6 0.02 19 (0) 8.00 5-3-12 6 0.02 19 (0) 8.00

heart 4-2-12 13 0.06 80 (63) 19.00 4-2-12 12 0.04 80 (63) 19.00

splice 6-2-24 168 22.59 675 (0) 11.67 6-2-24 166 21.30 675 (0) 11.67

adult2 8-2-24 59 45.98 1105 (1081) 16.93 8-2-24 58 45.39 1105 (1081) 16.93

adult3 8-2-22 81 83.23 1455 (1413) 16.78 8-2-22 81 83.71 1455 (1412) 16.78

adult4 10-2-20 133 192.56 2093 (2049) 16.56 10-2-20 135 197.69 2092 (2049) 16.56

adult5 8-2-22 161 335.64 2717 (2656) 16.28 8-2-22 162 340.73 2717 (2654) 16.27

web1 8-2-10 118 182.47 236 (100) 2.56 8-2-10 124 193.74 236 (100) 2.56

web2 8-2-12 157 344.70 294 (155) 2.53 8-2-12 177 430.61 303 (156) 2.53

web3 9-1-12 160 540.94 370 (216) 2.41 9-1-12 168 574.14 369 (214) 2.41

web4 9-1-12 193 974.84 500 (338) 2.13 9-1-12 210 1064.9 518 (342) 2.13

matrices, the proposed SOCP method gives better
results than that of the LOQO in the decomposition
method.

We now discuss the method proposed in [1] for
large-scale problems whose ranks of the kernel ma-
trices are not small enough compared to the size of
the training set. In adult5 problem, the training set
size is 6414 and the rank is 5710 with RBF kernel
where σ = 200 (applying ‘incomplete’ Cholesky fac-
torization). This problem is infeasible on a 256 MB
RAM computer by the method proposed in [1] (with-
out chunking). The problem web4 is also infeasible
because the problem has 7366 training data, and the
rank of the kernel matrix is 6046 with the same kernel

Table 9. Comparison of the SOCP-Formulation 2 and LOQO in the decomposition method when the ranks of the
kernel matrices of smaller problems are full or almost so. Joachims’s approach is applied for the working set selection.
The working set sizes are equal to 2, 4, 8, 12 and 20.

adult1 problem adult2 problem

SOCP-Formulation 2 LOQO SOCP-Formulation 2 LOQO

Time Time Time Time
Working set size iter. (in sec.) iter. (in sec.) iter. (in sec.) iter. (in sec.)

2 505 26.65 505 26.74 694 51.61 693 51.76

4 252 24.28 252 24.36 350 47.53 350 47.72

8 139 25.53 139 25.66 192 49.77 194 50.68

12 106 28.61 106 28.79 127 48.27 131 50.04

20 60 25.87 61 26.54 79 48.51 79 48.81

parameter. Moreover, as the method in [1] is slower
than LOQO if the rank of the kernel matrix is not
small enough compared to the size of the training set,
the chunking method including the method in [1] may
not show better performance than that including the
LOQO for, e.g., the working set size is 5 and the rank
of the kernel matrix is 4. Now we show the experimen-
tal results of our proposed method in the decomposi-
tion method for some problems whose smaller QP sub-
problems have full rank (or almost so) kernel matrices.
Table 9 shows the comparison of the proposed method
and LOQO in the decomposition method for adult1 and
adult2 problems where the working set sizes are equal
to 2, 4, 8, 12 and 20. Joachims’s working set selection



An Efficient Support Vector Machine Learning Method 237

approach is applied for these experiments. The number
of iterations of the decomposition method is the same
(or almost so) for these problems in applying both the
proposed SOCP method and LOQO, thus the number
of iterations does not affect the overall learning time.
There is no dimension reduction at any iteration (i.e.,
ranks of kernel matrices are full) for the working set
size which is equal to 2. The ranks are almost full for
other sizes (i.e., the ranks are 3, 7 and 11 for the work-
ing set sizes which are equal to 4, 8 and 12 respectively
in a very few number of iterations, and the rank is 19
for the working set size which is equal to 20 in some it-
erations). However, the experimental results show that
the decomposition method with the proposed method is
faster or very competitive than that with LOQO. Thus,
the proposed method can be replaced to LOQO for
a small sized working set though the ranks of kernel
matrices are full but the method in [1] may not be com-
petitive with LOQO for the full rank kernel matrix in
the decomposition (chunking) method.

9. Conclusion

In this paper we propose a fast learning method for
support vector machines. The computational cost of
the proposed method depends on the rank of the kernel
matrix. The proposed method is much faster than the
QP solver LOQO when the rank of the kernel matrix
is small enough. The proposed method is also faster
than the method in [1] for both low-rank and full-rank
kernel matrices. To solve large-scale problems, we ap-
ply the proposed method into the SVM decomposition
(chunking) method. In the decomposition method, the
proposed method is also better or competitive with the
LOQO. The proposed method is faster than the SMO
for most of the problems where the SMO results are the
average of 4 simulator runs. We also modify Hsu and
Lin’s working set selection approach which leads to
converge fast. As we need to solve many difficult prob-
lems, more optimization knowledge and techniques
should be considered. Future work will be improving
the SOCP method using some advanced techniques,
and incorporating Joachims’s ‘shrinking’ technique in
the chunking method.

Appendix A: Proof of Lemma 3.1

Since s1 ≥ 0, thus t1 ≤ 0 from (17). As s2
2 ≥ s2

3 +‖s4‖2

and s4 = t2 from (20) and (22) respectively, we can

write,

(
1

2
− t3

)2

≥
(

1

2
+ t3

)2

+ ‖t2‖2,

−2t3 ≥ ‖t2‖2.

Since s0 ≥ 0, it follows from (16) that

−t0 y − Gt2 ≥ e + t1.

Let

−t0 = f0, −t1 = f 1, −t2 = f 2, and − 2t3 = f3.

Then, Eqs. (15)–(22) can be written as

min CeT f 1 + 1

2
f3

subject to f0 y + G f 2 ≥ e − f 1 (67)

f 1 ≥ 0,

f3 ≥ ‖ f 2‖2.

If we let

GT = [y1φ(x1), y2φ(x2), . . . , ylφ(xl)],

then GGT = Q holds, and

(Gw)T = [y1w Tφ(x1), y2w Tφ(x2), . . . , ylw Tφ(xl)].

Letting

f0 = b, f 1 = ξ, f 2 = w and f3 = θ,

problem (67) becomes

min
1

2
θ + C

l∑

i=1

ξi (68)

subject to yi (w Tφ(xi ) + b) ≥ 1 − ξi , i = 1, . . . , l,

(69)

ξi ≥ 0, i = 1, . . . , l, (70)

θ ≥ ‖w‖2. (71)

The problem (68–71) is the same as the problem (1–3)
and b = −t0.



238 Debnath, Muramatsu and Takahashi

Acknowledgments

The authors would like to thanks Katya Scheinberg,
IBM T. J. Watson Research Center, NY, for supplying
their source code and helpful comments.

Notes

1. LOQO solver is used in Joachims’s software SVMlight [5], imple-
mented by A. J. Smola.

2. The first three data sets are collected from [27]. The remaining two
data sets are collected from UCI Repository of machine learning
databases [26].

3. For the first three data sets, we use the same parameter sets (γ, C)
given in [27]. For diabetes problem the optimal value C is not
given in [27]. We have chosen this value by preliminary experi-
ments. For iris and wine problems, we have chosen optimal pa-
rameters by cross-validation.

References

1. S. Fine and K. Scheinberg, “Efficient SVM training using low-
rank kernel representations,” Journal of Machine Learning Re-
search, vol. 2, pp. 243–264, 2001.

2. C. Campbell and N. Cristianini, “Simple learning algorithms for
training support vector machine,” Technical report, University
of Bristol, 1998.

3. V.N. Vapnik, Stasistical Learning Theory, Wiley: New York,
1998.

4. R.J. Vanderbei, “Loqo: An interior point code for quadratic pro-
gramming,” Tecnical report SOR 94-15, Princeton University,
1994.

5. T. Joachims, “Making large-scale support vector machine learn-
ing practical,” in Advanvced in Kernel Methods: Support Vector
Machine, edited by B. Schölkopf, C. Burges, and A. Smola, MIT
Press: Cambridge, MA, 1998, pp. 169–184.

6. E. Osuna, R. Freund, and F. Girosi, “An improved training al-
gorithm for support vector machines,” in Proc. of IEEE’97, FL,
1997.

7. J. Platt, “Fast training of support vector machines using sequen-
tial minimal optimization,” in Advanced in Kernel Methods:
Support Vector Machine, edited by B. Schölkopf, C. Burges,
and A. Smola, MIT Press: Cambridge, MA, 1998, pp. 185–
208.

8. C.-W. Hsu and C.-J. Lin, “A simple decomposition method for
support vector machines,” Machine Learning, vol. 46, pp. 291–
314, 2002.

9. P. Laskov, “An improved decomposition algorithm for regression
support vector machines,” Machine Learning, vol. 46, pp. 315–
350, 2002.

10. S.S. Kertee, S. Shevade, C. Bhattacharyya, and K. Murthy, “Im-
provements to Platt’s SMO algorithm for SVM classifier design,”
Neural Computation, vol. 13, no. 3, pp. 637–649, 2001.

11. C.-C. Chang and C.-J. Lin, “Training ν-support vector cclassi-
fiers: Theory and algorithm,” Neural Computation, vol. 13, no. 9,
pp. 2119–2147, 2001.

12. R. Collobert and S. Bengio, “SVMTorch: A support vector ma-
chine for large-scale regression and classification problems,”
Journal of Machine Learning Research, vol. 1, pp. 143–160,
2001. Available at http://www.idiap.ch/learning/SVMTorch.
html

13. C.-C. Chang and C.-J. Lin, “LIMSVM: A library for support
vector machines,” 2001. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

14. C.-J. Lin, “On the convergence of the decomposition method for
support vector machines,” IEEE Trans. Neural Network, vol. 12,
pp. 1288–1298, 2001.

15. G.R.G. Lanckriet, N. Cristianini, P.L. Bartlett, L El Ghaoui,
and M.I. Jordan, “Learning the kernel matrix with semidefinite
programming,” Journal of Machine Learning Research, vol. 5,
pp. 27–72, 2004.

16. R.D.C. Monterio and T. Tsuchiya, “Polynomial convergence of
primal-dual algorithms for the second-order cone programming
based on the MZ-family of directions,” Math. Program., vol. 88,
pp. 61–83, 2000.

17. A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Op-
timization: Analysis, Algorithms, and Engineering Applications.
MPS-SIAM Series on Optimization: Philadelphia, 2001.

18. M. Muramatsu, “On a commutative class of search directions
for linear programming over symmetric cones,” Journal of Op-
timization Theory and Applications, vol. 112, no. 3, pp. 595–625,
2002.

19. R. Debnath, M. Muramatsu, and H. Takahashi, “The support vec-
tor machine learning using second order cone programming,” in
Proc. IEEE Int. Joint Conference on Neural Networks, Budapest,
Hungary, 25–29 July, 2004, pp. 2991–2996.

20. R.D.C. Monteiro, “Primal-dual path following algorithms for
semidefinite programming,” SIAM Journal on Optimization,
vol. 7, pp. 663–678, 1997.

21. C. Helmberg, F. Rendl, R.J. Vanderbei, and H. Wolkowicz,
“An interior-point method for semidefinite programming,” SIAM
Journal on Optimization, vol. 6, pp. 342–361, 1996.

22. M. Kojima, S. Shindoh, and S. Hara, “Interior-point methods
for the monotone linear complementary problem in symmetric
matrices,” SIAM Journal on Optimization, vol. 7, pp. 86–125,
1997.

23. E.D. Andersen, C. Roos, and T. Terlaky, “On implementing
a primal-dual interior-point method for conic quadratic opti-
mization,” Math. Programming Ser. B, vol. 95, pp. 249–277,
2003.

24. Z. Cai, K.-C. Toh, “Solving second order cone programming
via the augmented systems”. [online] Available: http://www.
optimization-online.org/DB HTML/2002/08/517.html

25. S. Mehrotra, “On implementation of a primal-dual interior point
method,” SIAM Journal on Optimization, vol. 2, no. 4, pp. 575–
601, 1992.

26. C.L. Blake and C.J. Merz, “UCI repository of machine learn-
ing databases,” Univ. California, Dept. Inform. Comp. Sc.,
Irvine, CA 1998. [online] Available: http://www.ics.uci.edu/
˜mlearn/MLRepository.html.

27. G. Rätsch, Benchmark data sets. Available at http://www.
first.gmd.de/˜raetsch/data/benchmarks.htm.

28. R. Debnath and H. Takahashi, “An improved working set selec-
tion method for SVM decomposition method,” in Proc. IEEE
Int. Conference Intelligence Systems, Varna, Bulgaria, 21–24,
2004, pp. 520–523.



An Efficient Support Vector Machine Learning Method 239

29. C. Saunders, M.O. Stitson, J. Weston, L. Bottou, B. Schölkopf,
and A. Smola, “Support vector machine reference manual,”
Technical Report CSD-TR-98-03, Royal Holloway, University
of London, Egham, UK, 1998.

30. T. Joachims, Department of Computer Science, Cornell Univer-
sity, personal communication, 2003.

31. W. Bress, W. Vetterling, S. Teukolsky, and B. Slannery, Numer-
ical Receipes in C (The Art of Scientific Computing), 2nd ed.
Cambridge University Press, 1992.

32. G.H. Golub, C.F.V. Loan, Matrix Computations, 2nd ed. Johns
Hopkins University Press, 1989.

33. M.S. Bazaraa, C.M. Shetty, Nonlinear Programming: Theory
and Algorithms, Wiley: New York, 1979.

34. J. Werner, Optimization-Theory and Applications, Vieweg,
1984.

Rameswar Debnath is a Ph.D candidate at the University of Electro-
Communications, Tokyo, Japan and also a lecturer of the Computer
Science & Engineering Discipline at Khulna University, Bangladesh.
He received the bachelor’s degree in computer science and engi-
neering from Khulna University in 1997 and masters of engineer-
ing degree in communication and systems from the University of
Electro-Communications in 2002. His research interests include sup-
port vector machines, artificial neural networks, pattern recognition,
and image processing.

Masakazu Muramatsu is an associate professor of the Department
of Computer Science at the University of Electro-Communications,

Japan. He received a bachelor’s degree from the University of Tokyo
in 1989, master’s degree in engineering from University of Tokyo in
1991, and Ph.D from the Graduate University for Advanced Studies
in 1994. He was an assistant professor of the Department of Me-
chanical Engineering at Sophia University from 1994 to 2000, when
he moved to the current university. His research interests include
mathematical programming, second-order cone programming and
its application to machine learning.

Haruhisa Takahashi was born in Shizuoka Prefecture Japan, on
March 31, 1952. He graduated from the University of Electro-
Communications. He received the Dr Eng. degree from Osaka Uni-
versity. He was a faculty member of the Department of Computer Sci-
ence and Engineering at Toyohashi University of Technology from
1980 to 1986. Since 1986, he has been with the University of Electro-
Communications where he is currently professor of the Department
of Information and Communication Engineering. He was previously
engaged in the fields of nonlinear network theory, queueing theory
and performance evaluation of communication systems. His current
research includes learning machines, artificial neural networks, and
cognitive science.


