@ Applied Intelligence 23, 219-239, 2005
— (©) 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

An Efficient Support Vector Machine Learning Method with Second-Order
Cone Programming for Large-Scale Problems

RAMESWAR DEBNATH
Department of Information and Communication Engineering, The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan

rdebnath@ice.uec.ac.jp

MASAKAZU MURAMATSU
Department of Computer Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi,
Tokyo, 182-8585, Japan

HARUHISA TAKAHASHI
Department of Information and Communication Engineering, The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan

Abstract. In this paper we propose a new fast learning algorithm for the support vector machine (SVM). The
proposed method is based on the technique of second-order cone programming. We reformulate the SVM’s quadratic
programming problem into the second-order cone programming problem. The proposed method needs to decompose
the kernel matrix of SVM’s optimization problem, and the decomposed matrix is used in the new optimization
problem. Since the kernel matrix is positive semidefinite, the dimension of the decomposed matrix can be reduced
by decomposition (factorization) methods. The performance of the proposed method depends on the dimension
of the decomposed matrix. Experimental results show that the proposed method is much faster than the quadratic
programming solver LOQO if the dimension of the decomposed matrix is small enough compared to that of the kernel
matrix. The proposed method is also faster than the method proposed in (S. Fine and K. Scheinberg, 2001) for both
low-rank and full-rank kernel matrices. The working set selection is an important issue in the SVM decomposition
(chunking) method. We also modify Hsu and Lin’s working set selection approach to deal with large working set.
The proposed approach leads to faster convergence.

Keywords: second-order cone programming, quadratic programming, Cholesky factorization, eigenvalue decom-
position, support vector machine

1. Introduction eralization ability, learning methods suffer a large

computational effort for large optimization problem.
Recently, the support vector machine (SVM) be- Given training data x; € N',i = 1,...,1, de-
comes an interesting research issue in the machine rived from two classes where the class labels are
learning fields for its excellent generalization per- yi € {—1, 1}, the optimization problem can be written
formance on a wide variety of real-world problems as [3]:

such as hand written character recognition, face de-
tection, text categorization and object detection in ma- 1 !
s - min —w'w+CY (1)
chine vision, etc [2]. Although it has a good gen-) i
i=1

220 Debnath, Muramatsu and Takahashi

subjectto yi(w' ¢(x;) +b) > 1 — &,
i=1,...,1, (2
£>0 i=1,...1, 3)

where C is a penalty parameter, and ¢(x;) is anonlinear
mapping of x; in a high-dimensional space. This prob-
lem is solved using its dual which is a convex quadratic
programming problem:

1
min EaTQa—eTa
subjectto yTa =0, 4)
O<og; <C, i=1,...,1,

where «;’s are Lagrange multipliers, e is a unit vector
of all ones, @ is a positive semidefinite matrix, Q;; =
yiyiK(xi, x;), and K(x;, x;) = (@(x;) - P(x))) is the
inner product kernel. By using kernel, we can implicitly
compute the inner product of the mapped data. The
input data x; corresponding to non-zero «; are called
support vectors.

The computational complexity of the optimization
problem (4), which is a quadratic programming (QP)
problem, depends on the dimension of the kernel ma-
trix. The kernel matrix has a number of elements equal
to the square of the number of training data. Usually,
interior point method (IPM) is applied to solve QP
problems. The most expensive step at every iteration
of an IPM is the factorization cost, which is O(/?) and
this operation requires O(/%) memory space. Although
the SVM problem is well understood, for large learn-
ing tasks with many training data the general quadratic
programs quickly become intractable in their memory
and time requirements. Several researchers have pro-
posed decomposition (chunking) methods to conquer
this difficulty. In the decomposition method, the in-
dices {1, 2, ..., [} of the training set are separated into
two sets B and N, where B is the working set and
N = {1,2,...,I}\B is the fixed set. The working set
has a constant size ¢ much smaller than /. If we denote
ap and oy as vectors containing the elements from
working set B and fixed set N respectively, the objec-
tive function of the optimization problem (4) becomes
sap0Qppap—(eg—Qpyay) ag+z0l Qyyay —
elf, ay . Then the decomposition algorithm works as fol-
lows:

1. Select g variables for the working set B. The re-
maining ! — ¢ variables are fixed at their current
values.

2. Solve the following problem defined by the vari-
ables in set B

1
. T T
min EaBQBBaB—(eB—QBNaN) ap

subjectto yhop = —yhay, (5)
0<(apy=<C, i=1,...,q,

where

_ [Qss QBN]
Q_[QNB Qny

and q is the size of B.
3. If « is the optimal solution of (4), stop. Otherwise,
goto Step 1.

The subproblem (5) is solved by using standard con-
vex quadratic programming solvers (e.g., LOQO [4]).
Note that B is updated in each iteration. As the decom-
position method finds an optimal solution of the sub-
problem (5), the strict decrease of the objective function
holds and under some conditions this method converges
to an optimal solution of (4) [5, 6]. Any large size data
set can be tackled by the decomposition method be-
cause the memory requirements is linear in the number
of training examples and linear in the number of sup-
port vectors.

In this paper we reformulate the SVM’s quadratic
programming (QP) problem into the second-order cone
programming (SOCP) problem. To transform the QP
problem into the SOCP problem, we have to decom-
pose the kernel matrix. We apply two well-known fac-
torization methods: (1) Cholesky factorization method,
and (2) eigenvalue factorization method. We formulate
two SOCP problems for each factorization method.
Note that all these proposed methods have the same
solution as the QP solution, and SOCPs also fol-
low SVM’s Karush-Kuhn-Tucker (KKT) conditions.
As the kernel matrix is positive semidefinite, some
columns of the decomposed matrix will diminish or
some eigenvalues will be zero. It reduces the dimen-
sion of the matrix which is used in the new optimization
method. Therefore, it requires less computational effort
for low-rank kernel matrix. All these proposed meth-
ods are much faster than the quadratic programming
solver LOQO! when the dimension of decomposed ma-
trix (or the number of non-zero eigenvalues) is small
enough.

An Efficient Support Vector Machine Learning Method 221

We apply an interior-point method (IPM) to solve
SOCP problems. We compute search directions (in
each iteration of IPM) based on a reduced augmented
equation that is derived by applying the block ma-
trix splitting technique. Then, we apply a simple tech-
nique on factorization method which is applied to solve
reduced augmented equations. The factorization cost
of the proposed method is O(Ir*) where r the rank
of the kernel matrix and [is the size of the training
set. This operation requires O(/r) memory space. Ex-
ploiting the structure of SVM problem, we calculate
many matrix-computations analytically. The proposed
SOCP solvers for SVM problems are much faster than
general-purpose SOCP solvers.

The SVM decomposition (chunking) method is nec-
essary for solving large-scale problems. In this paper
we also apply the SOCP method to solve optimization
problems of the SVM decomposition method as de-
scribed above to check the numerical stability and per-
formance. Experimental results on various problems
show that the decomposition (chunking) method in-
cluding proposed SOCP solver is better or competitive
with that using LOQO. The weakest part of decom-
position method is that it can not consider all variables
together. If the working set selection is not appropriate,
though the strict decrease of the objective value holds,
the decomposition method may converge very slowly.
However, good sets of working data may lead the de-
composition method to converge fast. Thus, working
set selection is an important issue in the SVM decom-
position method. Several existing working set selection
approaches have been proposed in [2, 5-14]. Recently,
Hsu and Lin [8] have proposed a working set selec-
tion approach which leads to faster convergence than
the other existing approaches. In this paper we sim-
ply modify Hsu and Lin’s approach. The modified ap-
proach is better than Hsu and Lin’s approach for most
of the problems.

Platt’s sequential minimal optimization (SMO) al-
gorithm is one of the fastest methods. The SMO is a
decomposition method which restricts the size of work-
ing set to be two. The advantage of this method is that
subproblem (5) becomes so small problem that no opti-
mization software is required in practice. On the other
hand, this method has a disadvantage that it selects ac-
tive data randomly from the KKT violated variables;
speeds for some problems are fast while (very) slow for
other problems. Experimental results show that the de-
composition method including proposed SOCP solver
is better or competitive with Platt’s SMO.

In [1], Fine and Scheinberg have proposed a method
which uses a product form Cholesky factorization to
solve the system of equations of an IPM applied in the
QP problem. The factorization cost of their method is
O(Ir?) where r the rank of the kernel matrix. Since the
product form Cholesky factorization method is applied
instead of the straight Cholesky factorization method to
solve the system of equations of an IPM, their method
is (very) slower than the general QP solver LOQO if the
kernel matrix has full rank or if the rank of the kernel
matrix is not below to a prescribed bound. Experimen-
tal results show that the proposed method is faster than
the method in [1] for both low-rank and full-rank ker-
nel matrices. The ‘incomplete’ Cholesky factorization
technique is applied in both our method and the method
in [1] for low-rank kernel representation. If, however,
the eigenvalues of the kernel matrix have a more com-
plicated structure (varying from very small to relatively
large), then it is crucial to find a best approximated ma-
trix of decomposed matrix while keeping the rank of
the approximating matrix below a prescribed bound.
Therefore, for a large-scale problem (e.g., training set
with 10,000 data or more), the SVM problem becomes
infeasible without decomposition (chunking) method
if the rank of the kernel matrix is not below to a pre-
scribed bound. As the method in [1] is not applied in the
chunking method, it is not clear about the numerical sta-
bility and performance especially for very large-scale
problems (we will discuss in this point more details in
Section 8).

After we submitted the first version of this paper, we
found that Lanckrietet al. [15] have proposed a learning
method that defines the kernel matrix as a combination
of multiple kernels. To find the coefficients in the com-
bination, a semidefinite programming (SDP) problem
is needed to be solved (software ‘SeDuMi’ is used [15]
to solve SDP problem). Then, they solve a quadrati-
cally constrained quadratic program (QCQP) problem
(QCQPis a special instance of SOCP) to find the classi-
fier. The commercial software ‘Mosek’ is used to solve
the QCQP problem. Both ‘SeDuMi’ and ‘Mosek’ are
general-purpose softwares. Their works focus on only
improving the performance of classifier by combining
several kernels over the classifier with the best individ-
ual kernel. However, our goal is to develop a fast SVM
learning software for large-scale problems. In this pa-
per, we reformulate SVM’s QP problem into SOCP
problem. More than that, we propose some techniques
to enhance the efficiency of the interior-point methods
by exploiting the structure of the problem appeared

222 Debnath, Muramatsu and Takahashi

in the SVM. In particular, the block matrix splitting
is the key technique (see Section 4 for details). We
also develop a SVM learning software for large-scale
problems applying the SOCP into the decomposition
method.

In the next section we briefly explain the SOCP prob-
lem. In Section 3, we reformulate the SVM’s QP prob-
lem into the SOCP problems. Two types of SOCP for-
mulation for each kernel matrix factorization method
are shown in this section. We also discuss the com-
putational complexity of each method. In Section 4,
we introduce the implementation technique for SOCP
problems applying the block matrix splitting technique.
In Section 5, we briefly discuss the kernel matrix char-
acteristics based on kernel parameter, input data di-
mension and size of the training data set. In Section 6,
we compare the performance of our developed SOCP
solver, the method in [1] and the QP solver LOQO. In
Section 7, we describe a modification of Hsu and Lin’s
working set selection approach. Computational exper-
iments are shown in Section 8. Section 9 concludes the

paper.

2. The Second-Order Cone Programming
(SOCP)

The second-order cone programming problem is to
minimize or maximize a linear function over the in-
tersection of an affine space with the Cartesian product
of a finite number of second-order cones [16]. Recently,
this problem has received considerable attention for its
wide range of applications and for being easily solv-
able via interior-point methods (IPMs). In this section,
we briefly introduce the SOCP. See [16, 17] for more
about SOCP.

In this paper we consider the following SOCP prob-
lem:

n
(P) min Y ¢l x;
i=1

subject to ZAixi = b, (6)
i=1
X GIC,',i = 1,...,7’1,
where x; € W5 i = 1,...n, are variables, b € R",

A; € Wk and ¢; € WK, i = 1,...n, are data, and
the set K;,i = 1,...n, is the second-order cone of

dimension k; defined by
Ki = {x; = [xio; xi1] € % x R 2 x50 — [l || > 0},

where x;¢ is the first component of x; and x;; is the
vector consisting of the remaining components, and
lx;1] is the standard Euclidean norm. In particular, if
the cone dimension k; is 1, then the constraint x; € KC;
is simply the standard non-negativity constraint x; > 0,
and such a variable is called a linear variable.

The dual of (P) is given by

(D) max bt @)
subject to s,-+Al-Tt:cl-, i=1,...,n,
s, ek, i=1,...,n, ®)

where ¢t € 0W". Defining

K=kt +hn
K=K x- - x Ky,

A=[A1 Ay ... A,] e R™K,
c=|c1;¢2;...5¢,] € ERK,
X =[x15x2...5x,] € %K,
s =[s1:82;...:8,] € RE,

problems (P) and (D) can be simply written as:

(P) min ¢’x
subjectto Ax = b,)
x ek,
(D) max bt
subjectto s + ATt = ¢, (10)
sek.

The perturbed KKT conditions of the primal-dual
systems (9) and (10) are:

Ax = b, (primal feasibility)
s+ ATt =c, (dual feasibility)
x;os8; =ue;, i =1,...,n, (complementary)
x,s € K, (1D

where K0 denotes the interior of the cone K, ¢; =
[1;0;---;0] is a vector of length k; with the first ele-
ment is one and the rest of the elements are zero, and

An Efficient Support Vector Machine Learning Method 223

[is a positive parameter that is to be driven to zero
explicitly. Here

T, .
X;o08; = [xi 8i3Xi08i1 +Si0xi1]

is the multiplication inducing second-order cone. In-
deed, with this multiplication, the space 9" can be
regarded as a Jordan algebra, and the SOCP can be
considered as a special case of symmetric cone pro-
gramming. For more details about Jordan algebra and
IPM for symmetric cone programming, see [18]. Sup-
pose that the interior of the primal and dual feasible
region is nonempty. Then as p varies, the solution to
the perturbed KKT conditions (11) form a path (known
as the central path) in the interior of the primal-dual
feasible region, and as u gradually reduces to zero, the
path converges to an optimal solution of the primal and
dual SOCP problems. The IPM introduced in Section 4
follows the central path numerically to get an optimal
solution.

3. Reformulation of the SVM’s
Optimization Problem

In this section we reformulate the SVM’s QP prob-
lem into the SOCP problem (see also [19] for a first
approach). The SVM problem can be written as:

1
min EaTQa —ela
subject to yTa =0,
a+ B =_Ce,
a,B8>0, aBew,

where (3 is a slack variable vector. The square matrix
0 is a symmetric positive semidefinite matrix. The Q
can be represented as @ = GG . If the rank of Q is r,
G is a matrix with r columns and / rows.

3.1. Formulation 1

Assume that Q is decomposed as @ = GG! where
G € R and r is the rank of Q. Then,

a’Qa=a’GGTa = ||GTa|>.

Minimizing o Q «v is equivalent to minimizing 6 un-
der the constraint ||GT ||*> < 6. This constraint is

rewritten as

0 —1\2 0+1)\>
- GT 2< - r-)
(2>+|| a||_<2>

Let
u=G"«
_0+1
71 = >
60—1
ZQZT-

Then, the SVM problem can be written as:

o1 T
min E(Zl +z22)—e' «
subjectto yTa =0
a+ B =Ce,
G'a—u=0,
71—22=1,
o, B =0,

2. 2 2
zy = 25 + [ull”,

ue®, (12

which is an SOCP problem of the form (9) as follows.

«
B
min [—e” 0 1 1 0]|z
22
u
(8
yT 00 0 0 P 0
biectt 10 0 0 Ce
MEE G 00 0 —x || T o
001 —1 o]
u
o, B3>0,
2> 22+ |ul’ (13)
The dual of (13) is
fo
t
max [0 Ce’ 0 1] ; (14)
2

13

224 Debnath, Muramatsu and Takahashi

S0 y I G 0 "
51 0 1 0 o ‘
subject to s +10 0 0 1 f
53 00 0 -1
54 00 -1 of""
—e
0
=(1/2
1/2
0
s0,81 > 0,
53 > 53 + llsall%,
or in a similar form:
max Ce't) +1 (15)
subjectto so + foy +t1 + Gt, = —e (16)
s1+6 =0, (17)
sy +1=1/2, (18)
s3—t3=1/2, (19)
§4—1t, =0, (20)
50,51 > 0, 21
53 = 53 + lIsall®. (22)

Lemma 1. The problem (15)—(22) and (1)—(3) are
equivalent, and b = —t,.

The proof is in Appendix 9. Thus, if the QP problem in

(4) has an optimal solution of (1)—(3) then the SOCP
in (12) has the same optimal solution of (1)-(3).

3.2. Formulation 2

We can write G = [g,, &5, ...,g,] where g; € %' is
the ith column vector of matrix G € R!*". Then

Q=GG" = Xr:gigf,
i=1

and

r r
T T T T T
a Qa=« E gigia=§ a' g8 o
i=1 i=1

- Z lelal’

Again, minimizing o” Qo is equivalent to minimiz-
ing >";_, 6; under the constraints ||gl.Toz||2 < 0;,i =

1, ..., r. These constraints are rewritten as
6 —1)’ 6+ 1\
("5) +leral = (U1 i=r
Letfori=1,...,r,
Ui =g,-Ta
0+
21 =)
60—
20 =)

Then, the SVM’s QP problem is transformed into the
following SOCP problem as follows:

.
min EZ(ZH +) —e
i1

subjectto y o =0
a+ 3 =_~Ce, (23)
gla—u=0, i=1,...,r
zi—z2a=1, i=1,...,r,
o, 3=0,

2 2 2
0 = 2y +u,‘7

The dual of (23) is
max CeTt, + Zty
i=1

subjectto so + foy + 1 + hig = —e

r
i=1
51+t =0,

o+t =1/2, i=1,...,r,
sy —ty=1/2, i=1,...,r, (24)
s4i — i =0, i=1,...,r,

50,81 >0,

2 2 2 .
Sy =83 +sy, i=1,...,r

The IPM for SOCP needs matrix computation in
each iteration, and the computational cost of the SOCP
solver depends on both the dimension of second-
order cones and the number of second-order cones.
In the SOCP-Formulation 1, there is only one (r +
2)-dimensional second-order cone, while there are

An Efficient Support Vector Machine Learning Method 225

r 3-dimensional second-order cones in the SOCP-
Formulation 2. As a result, SOCP-Formulation 1 needs
to compute matrix computation of (r 4+ 2) x (r + 2)
matrices, while SOCP-Formulation 2 computes a block
diagonal matrix where the number of blocks is r and
each block is 3 x 3 matrix. The sparse structure of
SOCP-Formulation 2 is more desirable in IPMs. Fur-
thermore, as each matrix size is 3 x 3, we compute
some matrices calculations analytically as shown in
Section 4. Thus, the SOCP-Formulation 2 is faster than
the SOCP-Formulation 1.

3.3. Matrix Factorization Methods

In this paper we apply two approaches to decompose
the matrix Q. The first approach is Cholesky factoriza-
tion method. Applying Cholesky factorization method
to @, itis decomposed into the product of two symmet-
ric matrix as @ = GG' where G is a lower triangular
matrix, and each element of G is given by

i—1 1/2
Gii = <Qii - ZG,-Zk>
k=1

and

G _1
TGy

i—1

<Qij - ZGiijk>,
=1
j=i+1,i+2,...,n.

If Q is positive semidefinite and singular, then it is still
possible to compute an ‘incomplete’ Cholesky factor-
ization GGT, where some columns of G are zero. In
this case, if a zero G;; is encountered then G;’s for
j=i+1,i42,...,narezero. Evenif G;; is not pre-
cisely zero, but very small, Cholesky factorization may
be unstable. We set G;; = 0if G;; < n, wheren > Ois
athreshold value,and G;’sfor j =i+1,i4+2,...,n
at zero. This setting gives numerical stability, and re-
duces the columns of G as well. In this paper, we set
n at 1073, Thus, if there are r positive G;;, G € R
is represented as G € R"*", and GG” ~ Q. Accord-
ing to this representation of Q, we can derive SOCP-
Formulation 1 for SVM problem. When we represent
GasG =g, g,....,8] whereg, € R istheithcol-
umn vector of matrix G € R'*", SOCP-Formulation 2
is driven.

The second approach is the eigenvalue factoriza-
tion method. Let Aj, Az, . .., A; are the eigenvalues and

q,.9,,-..,q, are the corresponding eigenvectors of
0. As Q is a symmetric matrix, we can write,

l
Q=Y rgq]
i=1

where all eigenvalues are positive. As the kernel matrix
is positive semidefinite we may get some eigenvalues
are very small or zero. If A; < n/, where ' > Qis a
threshold value, we set A; = 0. In this paper we set n’ at
107°. If the number of positive eigenvalues are ' < [,
then,

0~ rqq] (25)
i=1

When @ is decomposed according to (25), SOCP-
Formulation 2 is driven. The representation of Q by
using eigenvalues can also be written in the following
way:

o~ Z/\iqiqf
i=1

=Y (VaanW/riglh)
1

i

\\

0.4

i=1

GT

Il
(&}

According to this representation of @, SOCP-
Formulation 1 is driven. We discussed earlier that
SOCP-Formulation 2 is faster than SOCP-Formulation
1. Furthermore, SOCP-Formulation 2 with Cholesky
factorization is faster than that with the eigenvalue
factorization. This is because: (1) Cholesky factoriza-
tion method is faster than the eigenvalue factorization
method, (2) Cholesky factorization produces lower tri-
angular matrix (on an average (r x r)/2 elements of
matrix G are zero) while the decomposed matrix from
the eigenvalue factorization method is a full dense
matrix.

4. Implementation Technique

In this section, we describe how to calculate the search
direction of an IPM for the SOCP in (23) efficiently.

226 Debnath, Muramatsu and Takahashi

We use the so-called Mehrotra predictor-corrector al-
gorithm with the HKM search direction which is con-
sidered to be one of the most efficient methods for
SOCP problems [16, 18, 20-25]. At every iteration
of interior-point method there are two basic steps: (1)
predictor step and (2) corrector step. In the predic-
tor step, the algorithm predict the best reduction in
the duality gap, by evaluating a step directly towards
optimality. The corrector step enforces the centrality
and also takes into account the approximate curvature
of the central path estimated by the predictor step.
For the predictor step we compute (Ax, As, At) €
RE x RNE x R™ of the linear system of equations
satisfying,

AAx = b — Ax (26)
As+ATAt=c—s— ATt (27)

(Px)o P"'As + P 'so PAx = —(Px)o P 's,
(28)

where P is a linear operator defined below. Consider
s; is a 3-dimensional second-order cone as s; = [R]
with 5o > ||s1], then

—1 1 S0
T ? -8 '
where y = ,/s3 — ||s1]|> and

So S 52
P' _ s slz + S152
PSS S Y sy |
2
S152 $
2 ety w7V
S0 —S1 —35?
1 2
-1 Si 5152
= =5 =2
Pz)/2 1 so+y + 4 so+y
_g S1852 Szz +
2 sty sy TV

Note that the SOCP formulation for SVM has 1-
dimensional cones also. The formulation of slfl and
P; for the 1-dimensional cones is the same as that of
3-dimensional cone. From the above definition of s
and P;, we get

s'os=sos'=e, eox=x0e=ux,

where P = diag(P,, P, ...
matrix with Py, P, ..., P, asits diagonal blocks, e =
[eiser;...;e,] and e; = [1;0;0] (for 3-dimensional
cones). Putting the value P~ 's = e in (28), we get

, P,) is a block diagonal

(Px)o P7'As + PAx = —Px
P'(Px)o P 'As + Ax = —x
(premultiplied by P~!)
AP " (Px)o P7'As + AAx = —Ax
(premultiplied by A)
AP " (Px)o P 'As = —b

Multiplied by AP~! (Px) o P~! into (27), we obtain

AP ' (Px)o P 'As + AP~ (Px)o P7'AT At
= AP ' (Px)o P Y (c—s— ATp) (29)
AP '(Px)o PT'AT At
=AP ' (Px)oP ' c—s—ATHH)+Db (30)

Define linear operator L(u), u € f"

Luwx =uox where

ul
Law) = [uo 1 }
u M()I
Now (30) becomes

AP'L(Px)P'AT At
=AP'L(Px)P ' c—s—ATHH+b (31)
Note that AP~'L (Px) P~' AT is positive definite. We

can apply Cholesky factorization method to solve the
set of equations. From the value of A¢, we get

As=c—s— ATy — AT At (32)
and
Ax = —x— P 'L(Px)P T As (33)

To compute the corrector step, we set Ax, = Ax and
As, = As and compute new (Ax, As, At) satisfying,
AAx = b — Ax (34)
As+ATAt=c—5s— ATt (35)
(Px)o P 'As+ P 'so PAx

=pe —(Px)o P7's — (PAx,)o P"'As, (36)

An Efficient Support Vector Machine Learning Method

where 1 = ,ua(ﬁ—:)z, and where u, = (x + Ax,) (s +
As) and p;, = xT's. Solving these equations as previ-
ous, we get

AP'L(Px) P 'AT At
= —pAs™' + APT'L(Px) P~ (c — s — AT¥)

+b+ AP7'L(PAx,) P 'As, (37)
From the value of At, we get
As=c—s— ATt — AT At (38)
and
Ax = ,us’1 —x— P’IL(Px)PflAs
—P7'L(PAx,) P As, (39)

Solving the search directions (AxF, Ask, AtX) are
computationally most expensive in each iteration of
an IPM. We compute the search directions based
on a reduced augmented equation that is derived
by applying the block matrix splitting technique.
The reduced augmented equation has generally much

lower triangular matrix of the matrix @, and

00 -1 0 0 O

00 0 0 0 -1
€1 =

o0 0 0 O0 O
and

-1 -1 0 0 0 O

0O 0 0 -1 -1 0
€ =

are r X 3r matrix.
D,

P'LPx)P'=| 0
0

0

D,

0

0

H

where D;’s are [x [diagonal matrix and

smaller size compared to the original augmented (H, 0 - 0
equation. Exploiting the structure of SVM prob- 0 H, --- 0
lem, we compute many matrix calculations analyti- H =
cally. Numerical results show that reduced augmented
equation based IPM, together with analytic calcula- | 0 0 H,
tion of many matrices computation, computationally a1 ar as
very faster and more stable than the typical IPM. a by b 0 0
The method is described below. According to the as b C‘3
SOCP-Formulation 2, dy d ds
0 d2 e e3 0
I 10 = ds es f3
yl 0 0
A= T , (40)
G 0 e 81 &
0 0 € 0 0 82]’lz
L g hs
where identity matrix I is / x [matrix, y is a vector
of length [(target output), G € R*" is decomposed where
[t =i —siad shed — sl sixh — sixd
H, = P;IL(P,-xi) P;l =— s(i)x‘i — sixé séxé — sixi — séxé sixé — séxi
g $0%2 — 5% S TS SpXg — S16 — 5%

227

(43)

(44)

(46)

228 Debnath, Muramatsu and Takahashi

are computed analytically for each 3-dimensional cone. RUF1++7) Now, from (31) or (37), we get
The diagonal elements for D; are calculated in a sim-

ilar way on one-dimension cones. In a typical IPM cC 35y G 0 At b,
iteration A € NUTI+2Ix2+3N - p=lp (px)P~T ¢ 9 R 7
RQH2)XQI430) 404 y «¢ r 0 At | by
: ,an T . s)
G r R P Ats bs
I I AT 0 0 P1T2 P, Aty by
AP IL (I;x);) A CAL + §AL + GAL = by (50)
YT 00 D, 0 0TIy G 0 FIAt + At + 7T At; = by (51)
“|GT 0 € 0 D> 0110 OT OT G At| +7AL + RAt; + P oAty = by (52)
0 0 0 0 H|[[0 0 ¢ ¢ o . ~
€ P, Atz + PyAty = by (53)
47)
D, +D, Dy D\G From (53)
T T T
_ Yy D, Yy Dly Yy D\G 0 ~ 1, ~T
= GTDI GTDly GTD1G+€1H€’{ €1H€; At4 =P2 (b4—P12At3). (54)
0 0 eHel eHel E) and (54
(48) rom (52) and (54)
GTAH +7FAL + (R — Plzi);li){z)Ah
Let, = 53 — ?12132_154. (55)
. The coefficient matrix (R — P, P, ' P,) is known as
C=D+D ! 1282 F) :
=l 2 Schur complement matrix. It is symmetric and posi-
y' =y"'D); & y =Dy tive definite. We solve the following set of equations
¢=y"Dy applying Cholesky factorization:
~T T ~ ~ ~
G =G'D, & G=DG » C y G At
fT_y DIG_yTG<:>f=Gy yT) iT At
~ ~ T ~
R=G"D\G +eHe =G'G + P, G' F R-P,P,'P,| | AL
P, = ElHe{ l;l
IN’IZ = €1H€2T = PIZ = 62H€1 = 52 s (56)
P2=€2H€2T I~)3—P12P2 by
b =1b1;b2;b3;b4] = AP™'L(Px) P~
T where
xX(c—s—A"t)+b, or
[b1;by;b3;b4] = —uAs™' + AP7'L(Px) P! c 'y G
x(c—s—ATt)+b+ AP7'L yroe '
o U Y
x (PAx,)P'As, G F R—-PpP, P,

b = [Ce;0:0:1] = V e g,

c = [—eT;O;k;...;k],

Note that C € %/*! is a diagonal matrix. We apply the

k= |:l l; 0:|. following technique in Cholesky factorization method
22 to decompose the matrix V.

: (4143 G,=V"? i=1 ! (57)
Again, we define x = [x;;xy;x3] € R, it = Vi =Heeh

s = [s1:82:83] € R and ¢ = [t:00;t3:84] € G;i=0, i=1,...,1, j=i+1,...,1, (58)

An Efficient Support Vector Machine Learning Method 229

‘/i'
G/ji:G/], i=1,...,l,

12

j=1+1,...0+14+r, (59

i 12
2
G;i:<Vii_ Z G/ik>)
k=idx(i,1)

i=141,...,0+1+r (60)
| i1
Gii =& <Vi.f - > GQkG}k>’
ii k=idx(i,1)
i=l+1,...0+1+rj=i+1,....0+ 1+,
(61)

where idx(i, 1) is the first nonzero element of the i-th
row. This procedure requires O(I/r*) computations to
compute Cholesky factorization for V, which is very
small compared to that in (49) (in a typical IPM it-
eration). From the above solution, we get At4, and
consequently As and Ax. Here, we will show some
matrices calculations which are done analytically. For
example,

r 1 X1+ X2
Ax = y 00 zl = v
G" 0 €] : GTx1 + €1x3
0 0 e B €2X3
Ty 6 ol |”
ATt=|1 0 o of|”
0 0 ¢ € b3
L 1
¢+ rhy + Gt;
= t
| et et

61H61T = diag(cs, f3,...,103)
ezHelT = elHezT = diag((—az + b3),
(=ds +e3),...,(—g3+ h3))
62H62T =diag((a; — 2a; + by),
(di —2dr +e3), ...,
(81 — 282+ h2))

€1X3 = [— X3(2)s —X3(5)s -5 —X3(3r—1)]

€2X3 = [X3<0) — X3(1)5 X3(3) — X3(4)5- -5

X3(3r-3) — X3(3r72)]

€ty = [0; 0; —130)3 0; 05 —13(1y; - - 5 0; 05
—135-1))

€5ty = [ta0): —ta)s 03 facr)s —1a1); 05+ -
tar—1)s —lar—1)5 0]

Here, we see that only O(I/r) computations need for
calculating Ax and A”¢. All computations including
block matrix splitting technique and analytic matrix
multiplications make the proposed solver much faster
than general-purpose solvers.

5. Kernel Matrices Characteristics

In this section we discuss two kernel matrices: the radial
basis function (RBF) kernel

K(x;, x;) = e 5y (62)
and the linear kernel, K (x;, x;) = x! x;.
5.1. Radial Basis Function (RBF) Kernel Matrix

When y — 0, the RBF kernel matrix tends to the
identity matrix. Then it becomes a full rank matrix.
When y — oo, the kernel matrix tends to a matrix
with all elements to be one. Then, it becomes a rank-
one matrix. From these simple statements we can say
that when the y is large enough, many eigenvalues of
the kernel matrix become smaller than the predefined
threshold value, i.e., the dimension of the decomposed
matrix is reduced. In the existing methods (e.g., LOQO,
SMO), learning time is controlled by C because y has
almost no effect to the learning time. The learning time
can be controlled by both parameters y and C applying
the proposed methods.

5.2. Linear Kernel Matrix
‘We can write the kernel matrix, K, as follows:

K =XxXx"
where X7 = [x1,x2,...,x/] and x; € R" are input
data. Since the linear kernel matrix is positive semidef-
inite, for all non-zero v € R

vIKy =vTXXTy

i !
= E Vi X; E vix; >0
i1 i=1

230 Debnath, Muramatsu and Takahashi

Table 1. Features of benchmark data sets.

#training #testing
Problems data data #attributes (y,C)
titanic 150 2051 3 (2.00, 10.0)
banana 400 4900 2 (1.00, 316.2)
diabetes 468 300 8 (20.00, 10.0)
iris 100 0 4 (—, 10.0)
wine 130 0 13 (—, 10.0)

Usually the number of training data is larger than the
dimension of the input vector. Without loss of general-
ity we assume that x; # x;. As the training data size
is larger than the dimension of the input vector, even
though x; # x;, many x;’s will be linearly depended
on other x;’s. Thus, the dimension of decomposed ma-
trix is greatly reduced when the linear kernel is applied
for the SVM learning.

6. Performance of SOCP, Method in [1] and QP
Solver LOQO for SVM Problems

In this section, we compare the performance of SOCP
methods against the QP solver LOQO and the method
in [1]. Data sets? titanic, banana, diabetes, iris, wine,
adult5, and web4 are used for experiments. The first
three problems are tested using the RBF kernel (62),
and the other problems are tested using the linear ker-
nel. Features of data sets, and the kernel and optimal
parameters® are given in Tables 1 and 5. All experi-
ments are done on a 750 MHz Pentium-III with 256 MB
RAM computer, using the gcc compiler for the pro-
posed method and LOQO, and g77 fortran compiler
for the method in [1].

Experimental results show that objective values,
numbers of support vectors, and generalization error
rates of all SOCP methods, the OP solver LOQO and
the method in [1] are same for all problems. The SOCP
methods also follow SVM’s KKT conditions. As the
SOCP-Formulation 2 with Cholesky factorization (for
matrix Q) is faster than the other three SOCP methods,
we show only the results of SOCP-Formulation 2 with
Cholesky factorization throughout the paper. Table 2
shows the experimental results of SOCP-Formulation 2
with Cholesky factorization, method in [1], and LOQO
for the first three problems. Learning methods use the
training sets without chunking. Our resulting times
include the kernel matrix factorization time with the
actual learning time of the SOCP solver. According
to the experimental results, the SOCP-Formulation 2
is 9 times faster than the LOQO for titanic problem
where the dimension of the decomposed matrix is
smaller than that of the kernel matrix, and LOQO is
about twice as fast as SOCP-Formulation 2 for dia-
betes problem where the kernel matrix is a full rank
matrix. The number of columns of the decomposed
matrix (the rank of the kernel matrix) is the same in
the proposed method and in the method in [1] for
each problem. Experimental results show that the pro-
posed method is faster than the method in [1] for both
low-rank and full-rank kernel matrices. The method
in [1] is better than LOQO only for titanic problem
which has very low-rank kernel matrix. The perfor-
mance of the method in [1] cannot be better than the
QP solver LOQO if the rank of the kernel matrix is
not very low. The method in [1] is very slower than
LOQO for diabetes problem which has full-rank kernel
matrix.

For banana problem, we see that the number of
columns of the decomposed matrix is 122 by using the

Table 2. Comparison of SOCP-Formulation 2 with Cholesky factorization, QP solver LOQO and the method in [1].

SOCP-Formulation 2

Method [1] LOQO

SOCP-Formulation 2,
Method [1] & LOQO

cols. Learning time Learning time Learning time
Problems (% cols. reduction) (in seconds) (in seconds) (in seconds) Ob;. SV (BSV) %err.
titanic 12 (92%) 0.01 0.02 0.09 —537.26 143 (28) 21.75
banana 140 (65%) 3.31 9.47 8.18 —19587.67 87 (52) 11.88
diabetes 468 (0%) 29.18 101.39 12.53 —1833.14 239 (174) 23.33

“# cols.” represents the number of columns of the decomposed matrix, “Obj.” represents the objective value, “SV” represents the
number of support vectors while “BSV” represents the bounded support vectors, and “%err.” represents the percentage of generalization
error respectively. The kernel and optimal parameters are given in Table 1.

An Efficient Support Vector Machine Learning Method 231

Table 3. Comparison of the SOCP-Formulation 2 with Cholesky factorization, LOQO and the method in [1] using the new set of

kernel and optimal parameters.

cols.

SOCP-Formulation 2

Method [1]

LOQO

Learning time

Learning time

Learning time

SOCP-Formulation 2,
Method [1] & LOQO

Problems (% cols. reduction) (in seconds) (in seconds) (in seconds) SV (BSV) %err. (C,y)
banana 97 (75%) 1.24 4.28 8.41 89 (63) 11.31 (350, 2.0)
diabetes 205 (56%) 7.87 26.25 14.49 244 (226) 23.33 (100, 320)

eigenvalue factorization method while 140 by using
Cholesky factorization method. Although the number
of columns is a little larger by Cholesky factorization
method than that of eigenvalue factorization method,
the SOCP-Formulation 2 with Cholesky factorization
gives faster results than that with eigenvalue factoriza-
tion (results are not shown here).

Next, we apply cross-validation to get optimal val-
ues of y and C for banana and diabetes problems
where the optimization problems are solved by the
SOCP-Formulation 2. Results are shown in Table 3.
The proposed method is faster than the LOQO for dia-
betes problem, and much faster than the previous result
for banana problem with the new parameters. Usually,
the proposed method is also faster than the method
in [1]. From the result, we see that kernel parameter can
also help to improve the learning time of the proposed
method. Since the kernel parameter has no effect in the
LOQO’s learning time, it’s time is almost the same as
the previous parameter setting gives (learning time is
a little bit larger for diabetes problem as the optimal
parameter C is larger than the previous value). Results
for linear kernel on iris, wine, adult5, and web4 prob-
lems are shown in Table 4. The optimal parameter C is
equal to 1 for adult5 problem, and 5 for web4 problem.
In general, the ranks of linear kernel matrices are very

small. Thus, the SOCP-Formulation 2 is much faster
than the LOQO for linear kernel. The proposed method
is also much faster than the method in [1]. In [1], Fine
and Scheinberg have shown (by experiment) that their
method (without chunking) performs better than either
Joachims’s SVM'g" or Platt’s SMO if the kernel ma-
trix has a low rank compared to the size of the training
data or if it can be approximated by a low-rank posi-
tive semidefinite matrix. Since the proposed method is
faster than the method in [1], the proposed method will
be more efficient.

7. Selection of Good Working Set for
Decomposition (Chunking) Method

The optimization problem of the SVM is challenging
when the size of the training data set is large enough,
which is often the case of practical applications. To
tackle this problem, the SVM optimization problem
is decomposed into a series of smaller optimization
problems, and to solve the small optimization prob-
lems iteratively until the global solution is found, which
is briefly described in Section 1. The convergence of
decomposition method depends on the selection of
training data for smaller problems, which is so-called

Table 4. Comparison of SOCP-Formulation 2 with Cholesky factorization, LOQO and the

method in [1] for linear kernel.

SOCP-Formulation 2

Method [1] LOQO

cols.

Learning time

Learning time Learning time

Problems (% cols. reduction) (in seconds) (in seconds) (in seconds)
iris 4 (96%) 0.01 0.03
wine 13 (90%) 0.04 0.07
adult5 107 (98%) 198.55 N/A
web4 256 (96.5%) 1515.01 N/A

Iris and wine are three-class problems. We use two-class out of three-class for these problems.
Here “N/A” represents that the corresponding method is infeasible or too slow.

232 Debnath, Muramatsu and Takahashi

‘working set’. Thus, working set selection has the same
importance as improving the performance of optimiz-
ing solver for the SVM problem. Recently, Hsu and
Lin [8] have proposed a working set selection approach
for SVM formulation which needs a smaller number of
iterations among the existing approaches, and the ap-
proach can be applied with a large working set. The
algorithm [8] is given below:

e Letr be the number of free variables at kth iteration.

e Let g = g1 + q», where ¢ < r and ¢, is an even
number.

e Forthose 0 < a® < C , select g; elements with the
smallest |V f(a!") + byi|,i = 1...1.

e Select g, elements from the rest of the index set by
SVM'iehs working set selection approach.

In this paper we modify Hsu and Lin’s approach. A
simple modification to Hsu and Lin’s approach leads
to converge faster with a large working set than Hsu and
Lin’s approach. As SVM""#""’s working set is included
in their approach, we first briefly describe SVM'i#ht’s
working set selection strategy. Joachims [5] has pro-
posed a working set selection strategy used in his soft-
ware SVM'€" based on Zoutendijk’s method. The fol-
lowing optimization problem [5] is solved to select the
working set:

min V f(a®)'d (63)
subject to de =0,-1<d<1,
di >0, if «® =0,
d <o, if ¥ =c,
Hdild; #0}| <¢q, i=1...1,

where f(a) = 1a” Qo — e’ a, ¥ is the solution at
the kth iteration, V f(a®) is the gradient of f(c) at
a'®. The components of a® with non-zero d;’s are in-
cluded in the working set B. This optimization problem
is solved using a simple strategy: (1) sort all afk) accord-
ing to yin(cxfk)) in descending order fori = 1...7;2)
successively pick the g /2 elements from the top of the
list for which 0 < & < C,ora®™ = 0ify; = —1 or
afk) = C if y; = 1, and set d; = —y;; and 3) similarly
pick the g /2 elements from the bottom of the list for
which0 < «® < C,ora® = 0ifyy =10ra =C
if y; = —1, and set d; = y;. Here d is used only for
selecting the working set. The value of ¢ must be an
even number. This algorithm takes at most O(lg) op-

erations that is acceptable for practical application. If

we consider that & is the optimal solution of (4), then
the following KKT conditions hold:

Vf(a;)+ by >0,
V f(a)+ by <0,
Vf@)+by =0,

if @ =0, (64)
if @ = C, (65)
if0<a <C. (66)

Now, we will show that Joachims’s approach selects
the most violated bounded variables from each class.
We first consider for the case of afk) = 0 which vi-
olates the KKT condition at the kth iteration. We can
write V f (al.(k)) +by; < 0if afk) = 0 violates the KKT
condition. Thus, y;V f(@”) + b > 0if y; = —1 or
yin(osz)) + b < 0if y; = 1. Joachims’s approach
selects ™ = 0 from the top of the sorted list of c®®)
if y; = —1 or bottom of the list if y; = 1 where afk)
is sorted according to y;V f (o;fk)) in descending order.
Note that the value of b is the same for all variables
at any iteration, however b is not a constant and must
be recalculated in each iteration. When afk) = 0is se-
lected from the top of the list, ozl@ is the most violated
variable from the class label —1. When Ol;k) = 0is se-
lected from the bottom of the list, it is the most violated
variable from the class label 1. Similarly we can show
that if oci(k) = C are selected, they are also the most
violated variables from either class. The free variables
0< afk) < C are selected without any constraint, i.e.,
the selection of free variables 0 < osz) < C depends
only on ordered y; V f (afk)) values in the list. Thus, all
selected 0 < a?k) < C may not be the most KKT vio-
lated free variables from each class. This approach per-
forms well for small-sized working set selection [5, 8].

Hsu and Lin’s approach adds some free variables
whose corresponding |V f (ozl.(k)) + by;| are the small-
est with Joachims’s working set. It can be seen from
(64)—(66) that the free variables which slightly violated
KKT condition are added with Joachims’s working set.
For any free variable ozi(k) if Vf (oc[(k)) + by; < 0, the
free variable ozl.(k) shows the characteristics as upper
bounded variable, ai(k) = C. Similarly, for free variable
afk) if Vf(afk)) + by; > 0, the free variable ot;k) shows
the characteristics as lower bounded variable, al(k) =0.
Note that variables either upper or lower bounded cor-
responding to the smallest |V f (oz;k)) + by;| are near
to the hyperplane than the other (either upper or lower
bounded) variables. When the free variables with the
smallest |V f (ocfk)) + by;| are selected for the next it-
eration, some of them will be either upper bounded or
lower bounded variables, and it keeps the number of

An Efficient Support Vector Machine Learning Method 233

free variables to be small. This is because some vari-
ables near to the (current) hyperplane from both classes
have possibility to select for the nextiteration (and more
possibility to be upper bounded variable than to be 0
in the next iteration because input vectors correspond-
ing those free variables are closer to each other). If a
component is correctly identified at C or 0, there is no
problem of numerical accuracy. Since the decomposi-
tion method cannot consider all variables together in
each iteration, it is difficult to decide the value of a
free variable. Thus, a larger number of free variables in
the working set causes more difficulty. Hsu and Lin’s
approach leads decomposition method to converge fast
as it always tries to keep the number of free variables
small. In addition, after the subproblem (5) is solved,
the free variables at the current working set satisfy
\i (ozi(k)) + by; = 0. Thus some free variables in the
current working set may again include in the next set.
It reduces zigzagging of the series of working set ele-
ments, and hyperplanes may not oscillate (jump) more
through the whole training set. For these reasons, Hsu
and Lin’s approach may lead to converse faster than
Joachims’s approach. Again, an approach with a rela-
tively large sized working set might reduce the overall
computation cost. Thus, overall performance of Hsu
and Lin’s approach is better than Joachims’s approach.

From the above description it is clear to understand
that if the successive hyperplanes do not oscillate more,
some free variables which are far from the hyperplanes,
i.e., free variables corresponding (V f (afk))—i—by,») >0
may be correctly identified at afkﬂ) = 0. With the
working set proposed by Hsu and Lin, we add some
free variables with the largest V f (ocl.(k)) + by;, and the
proposed algorithm is as follows:

e Letr be the number of free variables at kth iteration.

e Letg = q1 +q2+ g3, where (g +¢2) < rand gz is
an even number.

e Forthose 0 < a® < C , select g; elements with the
smallest |V f (o) + by;|,i =1---1.

e Select g, el