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Abstract. Strategical planning is one of many research fields in the design of electrical distribution systems.
The problem of strategical planning is a multiobjective combinatorial problem and the search space may often
be quite large concerning to the options. The aim is to identify a strategy of expansion of a given distribution
system in a given timeframe. For this problem, the search space is created beforehand by running a multiobjective
optimisation algorithm for the optimal design of distribution networks for different load levels related to different
years. The sets of Pareto-optimal solutions obtained for each load level at each year are equivalent in terms of the
considered objectives, these being minimum losses, installation costs, and minimum unavailability. The problem of
the identification of the optimal expansion strategy through these chronologically intermediate solutions leading to
the final target configuration at the last year has been solved herein using an ACS (Ant Colony Search) algorithm.
In order to verify the efficiency of the ACS algorithm, a small size application has been carried out and results have
been compared to those obtained with enumeration. Then, a Simulated Annealing (SA) approach was used for a
larger size test problem and results were compared to those obtained using the ACS. For this problem, the ACS
demonstrated to be more robust than SA with higher quality results.
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1. Introduction

Electrical systems distributing energy from power
plants to customers are composed of different parts. As
the energy is generated by the plants, it is transformed
in terms of voltage and current levels and then it is
carried through High Voltage, HV, transmission lines,
primary substations, and again transmission lines, up
to the secondary substations, where the voltage level is
decreased to the Medium Voltage, MV, level. At this
section, the distribution system starts. The distribution
system reaches the customers at MV or at Low Volt-
age, LV, through MV/LV substations. The most com-
mon way to deliver energy is at alternating current, a.c.,
medium or low voltage.

In order to improve the quality of supply and to re-
duce installation and operation costs, at the distribution
level, many different configurations of the network at
LV and MV can be adopted, each of which has topolog-

ical and operational features that are well-suited to the
geographical collocation and to the customers-related
continuity of supply requirements. Given that the load
grows over the years, it is necessary that electrical sys-
tems must be adapted to increasing loading require-
ments by customers, in order to guarantee a secure and
rational management of available resources.

The problem of designing the medium and long term
of these systems is quite complex since its formulation
depends on a large number of geographical, electrical
and economic parameters. On the other hand, as with
any other engineering design problem, it is necessary to
make some simplifying hypotheses in order to manage
the problem and to get results that can be generalized.

The aim of electrical distribution systems planning
is that of defining the plants expansion in a defined
timeframe, in order to optimally face (costs, security,
service quality, etc.) the growth of the loads and the
renewal of obsolete plants.
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With reference to distribution systems, design can
be strategical or operational. The first is oriented to the
identification, in a long term optimisation, of the gen-
eral choices characterising the plants development. The
latter is aimed at the definition of the operational plans,
in the medium term, in agreement with the guidelines
already defined in the strategical design.

In the field of strategical planning, new electrical en-
ergy distribution systems are being studied taking into
account different assumptions concerning the number
of voltage levels between the HV/MV station and the
users (number of stages), values and voltage types (di-
rect or alternating), new types of network structures,
etc. These options are considered due to some specific
problems concerning the MV and LV networks which
have risen over the years depending on particular situa-
tions, such as the fast expansion of networks, especially
in urban areas.

The main characteristics of the electrical systems in
service in these days (alternating current at each voltage
level, voltage levels values, rated size of the substation
transformers, . . .) are the result of strategical planning
studies carried out some decades ago, at the beginning
of a phase of development and economical growth, that
brought the western countries to the present asset.

Once the general development guidelines have been
identified, during the last decades, planning and de-
sign activities have more and more concerned specific
intervention plans on limited areas, aimed at the opti-
mization of the installation and management costs of
the system in the medium term.

In agreement with the results of these activities, the
electrical systems have developed in its different parts
evolving through modifications and improvements. In
this traditional context during the last decade some new
elements assumed a growing importance giving rise
to new research activities aimed at the evaluation and
comparison of different development plans in the long
term (30 years) containing strong innovations.

The new elements to be accounted for are the
following:

(1) the full exploitation of the strategical guidelines
and choices executed many years ago; new devel-
opment perspectives also require the adoption of
methodologies aiming at innovation instead than
at modification or refinement;

(2) the growing electrical demand together with new
electro-technologies that are radically modifying
the features of the electrical components in distri-
bution and utilization systems;

(3) the perspective of a growing penetration of small
production plants (wind, photovoltaic, biomass,
. . . ) connected to distribution systems;

(4) the liberalization of the energy market and the im-
portance of quality in the supply of energy;

(5) the environmental constraints and requirements
for a sustainable development plan for electrical
systems.

In literature other authors have dealt with the problem
of designing electrical systems. Most of them have for-
mulated the problem as a combinatorial optimisation
problem, since its realistic size and complexity is such
that the application of heuristic techniques has proved
to be convenient [1–4]. In [2] and [4], the authors deal
with long-term planning problems in electrical distri-
bution systems. The multi-year optimal planning prob-
lem is first divided into several static single-year opti-
mization problems. The overall solution algorithm is a
forward/backward path procedure, which proceeds by
iteratively improving a single expansion plan, created
in order to meet minimum cost and maximum reliabil-
ity. In this case the domain knowledge is integrated into
the operators that allow the generation or modification
of a new expansion plan. In [5], the authors propose
a planning model to solve the sizing, siting of distri-
bution substations and the timing of their construction.
A pseudo-dynamic procedure is adopted, which again
splits the problem into two stages. First it is solved
statically, with fixed loads, so at each loading level,
the system is optimized. In the second phase, the ad-
vancement through the solutions found in the first phase
details the timing of the installation of all the compo-
nents. Heuristic methods do not prove the optimality,
but those that are population-based allow the attainment
of a set of good sub-optimal solutions among which the
planner can choose the most suitable for the particular
problem at hand. Often the requirement is not simply
that to minimize costs, but also to ensure good quality
and security. For this reason, design has also been for-
mulated as a multiobjective optimisation problem, for
which some authors have adopted weighting factors for
the objective function creation [6]. The weak point of
this approach is that the use of weights can greatly af-
fect the solution, since it changes the objective function
shape.

In all cases, there was no explicit reference to a gen-
eral model for handling the planning problem. The
authors have already studied the problem of elec-
trical distribution networks planning and they have
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introduced and implemented a number of elementary
models which can be combined in many different ways
giving rise to a global model of the entire network.

To this purpose, this paper proposes a methodology
which enables the development of strategical planning
in a general form by means of a modular approach.
In particular, in [7, 8] the concept of modularity has
been introduced starting from the definition and imple-
mentation of particular ‘functional modules’, each of
these, as it is shown in Section 2, is representative of
the structure and of the operational trend of each stage
composing the electrical system [9].

As shown in Section 2, this approach allows the iden-
tification of a mathematical model, for distribution sys-
tems, that is suitable for automation in order to solve
optimal design problems in terms of topology and man-
agement policy.

From a methodological point of view, the strategical
planning problem can be stated in two ways. If the
entire expansion plan for the final year load level is built
up at the starting year, then the optimisation approach
is ‘static’ and the relevant model is ‘non-evolutive’. If
the optimisation of the entire electrical system aims at
the identification of a network development plan, both
in terms of its organisation along time and in terms of
distribution and localization of the plants in the area,
then the optimisation approach is ‘dynamic’ and the
relevant model is ‘evolutive’.

The first formulation, especially if the time-frame
to which it refers is too long, may lead to an analysis
not considering the time dimension for investments.
Adapting the system to the future customers require-
ments at one time may be less efficient than executing
many small interventions along the years so as to adjust
the load growth as needed.

The second formulation aims at the identification
of the less expensive sequence of configurations of
the system in a predefined time interval (typically 20–
30 years). This sequence must be coupled with an opti-
mised expansion plan, articulated in a discrete number
of years, which implements the network changes on the
basis of the changing customer needs.

The results of a dynamic optimisation process gen-
erally do not match those related to a given number
of static optimisations carried out in the sub-intervals
in which the entire timeframe can be divided, due to
non-linearities in the problem formulation. Therefore a
dynamic strategical planning problem, for distribution
systems reinforcement, can be divided into two parts.
The first can be carried out by solving many static

strategical planning problems at different times, the
second is an optimal scheduling of investments prob-
lem. The latter is the object of this paper. In both cases,
the optimisation can be carried out using different types
of algorithms.

Dividing the problem in two steps not only analyti-
cally simplifies the problem. This measure indeed im-
plies a reduction of the search space size and it is the
approach commonly adopted in the literature for this
kind of scheduling problems, [2, 4].

From the application point of view, it also allows
an increased flexibility in the use of the proposed tool
as a decision support system for those who plan and
manage a system. Indeed:

(a) starting from the first transaction and then at each
step, the planner can choose in a set of development
plans, he can also integrate the set of solutions de-
rived by the static optimization with other solutions
derived by the human experience in the field;

(b) at any time of the evolution of the electrical sys-
tem (i.e. after five or ten years), the planner can
search (more easily and rapidly as compared to the
case in which one uses a global optimization tool)
other classes of solutions varying and differently
weighting the objectives and evaluating different
development perspectives, else than those initially
identified.

Deterministic strategies are not generally suitable for
planning studies mainly because the required simplifi-
cations and approximations intrinsic to the problem for-
mulation would not justify the search for the absolute
optimum. Moreover, they usually require huge compu-
tation times and since they identify a single solution,
the designer has no alternative choices. Heuristic strate-
gies are more suitable since the solution is searched by
making a comparison among the costs of many dif-
ferent solutions (different plant expansion strategies);
there is then the possibility to record a number of sub-
optimal solutions.

With reference to a static optimisation, Genetic Al-
gorithms (GAs) allow, with a limited computational
effort, the attainment of good sub-optimal solutions by
means of a process of evolution. As far as static strategi-
cal planning is concerned, in [10, 11], some GA-based
optimisation procedures for a two or more level distri-
bution system design have been implemented. In [10], a
single objective optimisation strategy (minimum cost)
has been implemented for a system organised on two
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voltage levels. In [11], a multiobjective strategy for a
three levels system, two of which work in a.c. and one
in direct current was implemented.

In this paper, a dynamic design strategy is devel-
oped. It is aimed at the optimisation of the expansion
of a distribution system through a discrete number of
interventions within a time frame of some years and
related to a load increase in the served area. The so-
lution of this problem requires the identification of an
efficient expansion strategy of the system.

The problem is combinatorial and non-linear. It has
been dealt with through the multiobjective solution of
static planning sub-problems related to different val-
ues of the load density and then identifying the mini-
mum cost path through the different design solutions.
The multiobjective solutions of static planning are op-
timised on the basis of minimum cost attainment, min-
imum losses and maximum quality of supply (in terms
of unavailability, medium average expected frequency
of voltage sags and voltage unbalance rate).

The search for the minimum cost system’s expan-
sion strategy from the starting to the final year is a
complex problem, due to the amplitude of the search
space and to the inherent non-linearities. For this rea-
son, the authors have preferred to use non-traditional
optimisation algorithms based on heuristic criteria. The
solution technique for the posed problem of dynamic
strategical planning is based on the Ant Colony Search
(ACS) algorithm adapted in order to make it suitable
for the treatment of the specific problem, of which an
application has been here carried out.

The same application has then been dealt with by
means of a Simulated Annealing (SA) algorithm. SA
has a comparable efficiency to ACS in similar test prob-
lems and in other engineering applications [12].

On the other hand, techniques typically adopted for
scheduling problems, such as dynamic programming,
for a successful and efficient appplication, require a
limited search space. In the present application, the
search space of the scheduling problem is large and
any significant limitation would result in a strong per-
tubation of the problem formulation.

The ACS algorithm [13] is an algorithm simulating
the behaviour of natural ant colonies. The algorithm
uses a set of agents which cooperate for the research
of new solutions acting simultaneously. This algorithm
has been applied to different problems in engineering,
in particular for those applications where a length mea-
sure must be optimised such as in the Travelling Sales-
man Problem, (TSP). This algorithm has rarely been

applied for optimisation strategy problems. However,
there are some papers regarding this aspect for different
engineering fields [14, 15].

2. The Problem of Optimal Planning
of Distribution Systems

In many engineering fields and, in general, in the pro-
duction and management of resources, planning is one
of the fundamental steps for a secure and economically
convenient operation of a production process.

Planning interventions on any productive process
also means planning the related investments. There-
fore, identifying times and modes of the investments
is essential for the characterisation of the actions to be
taken in terms of profitability and efficiency.

Given the complexity of the problem of distribu-
tion systems strategical planning, the issue is currently
solved using a two-stages approach:

1. a multiobjective optimization to solve static plan-
ning problems (using a Non-dominated Sorting Ge-
netic Algorithm, NSGA, [11]) in which the solu-
tions show minimum losses and installation costs
and minimum unavailability;

2. a single objective optimization to find the minimum
cost expansion strategies (using an ACS algorithm).

The largest inconvenience in adopting a two stages ap-
proach is that the reduction of the search space could
be misleading. It could be argued that the adoption of a
one-stage approach is necessary for which the solution
string is the entire set of configurations composing the
expansion plan, but this would increase the problem
size proportionally to the presumed number of inter-
ventions. On the other hand, there are a few consider-
ations supporting the two-stages approach. The prob-
lem is strongly constrained, both on a static basis and
on a dynamic basis. The static problem is electrically
constrained by voltage drops, currents in branches and
topological constraints, the dynamic search adds to the
up-cited terms even constraints concerning the correct
expansion of the system. Another item of concern is
the choice of the ‘intermediate’ stages. While in the
one stage approach these intermediate stages are ‘free’
and are subjected only to the minimum overall cost
requirement, in the two stages approach these inter-
mediate stages are fixed in advance using Pareto opti-
mal solutions in terms of costs and quality of service.



Ant Colony Search Algorithm for Optimal Strategical Planning 143

Figure 1. Some examples of vectoring modules.

This ensures that all these stages are certainly ‘good’
in terms of both objectives and enables the designer
to add other ‘heuristically’ derived configurations. Be-
sides, the set of configurations at each time interval
is quite rich because obtained with minimum cost and
minimum unavailability. Quality and cost are normally
competing objectives and give rise to solutions that
range from over-dimensioned (high quality) to strictly
dimensioned for the required load (low cost).

The NSGA has been applied to a generic electrical
distribution system, described in terms of functional
modules, and a static planning problem has been solved
for a considered year and relevant load level. This ap-
proach starts with the definition and implementation of
particular functional modules, each of which is made
up of a vectoring module and its management policy.
The vectoring module is a part of the electrical system
devoted to the vectoring of the electrical energy. In the
present application, the term vectoring module (Fig. 1)
indicates a stage of the distribution system made up of:

(1) a feed node;
(2) a network share which is homogeneous in relation

to the used electrical vector (cable/overhead line)
which plays the role of transmission and/or of dis-
tribution;

(3) eventual power compensation devices.

The management policy consists of the set of control
actions exerted on the vectoring module in order to se-
cure the preservation of the electrical vector quality, of

the service continuity and the best efficiency. The pa-
rameters which contribute to the service quality are for
example those defining the voltage level and waveform.
It varies depending on the plant structural features. The
service continuity level assured by a functional mod-
ule depends on the effects produced at the customers
level by a fault occurring in the vectoring module. For
example, on the basis of the particular management
policy adopted, the set of control actions taken by the
grid operator, for the faults identification and location
and the opening of the involved line section, strongly
influences the service continuity levels. Therefore, a
functional model indicates the set of parameters and
relations which constitute the functional module an-
alytical description, from the structural and electrical
point of view and in terms of service quality, continuity
and costs (Fig. 2).

Figure 2. Functional module and functional model.
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Figure 3. Schematic representation of a two voltage levels system.

The set of parameters and relations expressing the
functional model are analytically organized in order
to make easy module combinations. In this way, an
optimisation algorithm is able to create any module
combination by means of operations of replacement,
insertion or removal of modules. The combination of a
certain number of vectoring modules defines a possible
configuration of the whole distribution system.

The energy distribution system is composed of el-
ements having different voltage levels; each of these
employs different types of vectoring modules. In Fig. 3,
the electrical topology of the system supplying an area
is illustrated. The two parts having different voltage
are shown and the relevant electrical connections, for
a module at one voltage level, Module 1, with another
module at the other voltage level, Module 2, are also
shown.

Each combination of modules is characterised by a
set of functions expressing the installation cost and the
operational cost per year and per unit area (km2) [8],
a set of quality indices [9, 16] and a set of constraint
relations. The values of the definition parameters of
each electrical vector cannot be chosen arbitrarily but,
in general, they vary in the sphere of commercial avail-
abilities. Some parameters belonging to the vectoring
modules are subject to limitations derived from the de-
sign criteria (for example, supply node power, thermal
limits and limits of voltage drop in the lines, etc.).

For each load level, sets of solutions can be obtained.
These are classified into classes of dominance [17]. The
solutions belonging to the first class of dominant solu-
tions (Pareto-optimal), at the last iteration of the NSGA,
constitute some possible optimal configurations of the
distribution system for that year. These configurations
are in terms of minimum installation cost and power

Figure 4. Expansion strategy for a distribution system, T = 5.

losses and of minimum unavailability of supply and
meeting some important technical constraints such as
supply node power, thermal limits and limits of voltage
drop in the lines.

Iteratively applying this algorithm, for each of the
time intervals in which the entire time frame of the
planning problem can be divided, sets of optimal so-
lutions for each year can be obtained. These constitute
the possible states through which the development of a
distribution system can evolve in the considered time
frame. In Fig. 4, three possible expansion strategies of
the distribution system considering a division of the
time horizon in T Time Intervals, (TI), are represented.

A state identifies a particular configuration of the
system’s parameters. Therefore, going from one opti-
mal configuration for a given year to another optimal
configuration for one of the following years, means to
modify one or more design parameters, keeping the
same topology for the adopted vectoring module.

Executing a modification of the system’s state may
imply new installations or removals of components.
In this study, the authors do not allow removals—a
realistic hypothesis.

From a general point of view, there is no doubt
that this choice puts constraints on the systems evolu-
tion. Analogous effects may one attain introducing the
opportunity to remove components (following a more
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correct but even more complex formulation), and giv-
ing this operation high costs. In reality these costs are
high, due to the following factors:

1. low residual value of the removed components;
2. impact of the removal works in the area.

It is therefore quite strong the requirement to limit this
kind of interventions as much as possible. On the other
hand, considering this issue in the planning procedure
in a rational way requires the exact detemination of
these costs.

The proposed formulation of the problem also al-
lows to meet the requirement of executing the invest-
ment at the right time. Moreover, the ability to plan
in advance the investments allows the utilities to suit-
ably find the necessary economic resources only when
they are needed. In this way, these resources can be
rationally used along the years for other investments.

The procedure used to find the best expansion strate-
gies is the ACS algorithm. Inspired by the behaviour of
real ants, ACS finds the ‘minimum length’ path going
from a starting point to the arrival point. In this paper,
the best sequence of structural changes to be performed
on a given system along the years for a given increase
in the load level is searched.

3. The ACS Algorithm for Optimal Expansion
Planning of Distribution Systems

Real ants find the shortest path from a food source
to their nest, without using visual cues, by exploiting
pheromone information [18, 19]. While the ants go to-
wards the food, each ant deposits on the ground a cer-
tain quantity of pheromone, that can be recognised by
the other ants, and continues its tour. At the beginning
all the ants move randomly. When the pheromone evap-
orates, the traces that can still be recognised are those
that have been left on the shortest paths since they can
be followed more rapidly. In this way, the number of
ants that choose to go through the shortest paths grows
and the pheromone trace gets stronger as more ants
follow it [13].

The ACS algorithm has been presented and first im-
plemented for the TSP, since there is an explicit simi-
larity between the ‘tour length’ in the problem and the
ants path length. The TSP is the problem of finding,
given a finite number of “cities” along with the cost of
travel between each pair of them, the cheapest way of
visiting all the cities and returning to the starting point.

The key to the application of the ACS to a new prob-
lem is to identify an appropriate representation for the
problem, namely an appropriate spatialization. The lat-
ter can be attained by means of a graph representation
(when possible) of the considered engineering prob-
lem. Any solution must also be represented by means
of a tour through the edges of a graph.

A suitable expression of the distance between any
two nodes of a graph must be determined. Then, the
probabilistic interaction among the artificial ants me-
diated by the pheromone trial deposited on the graph
edges will generate good, and often optimal, solutions.
However, some problems may arise when the ‘spatial-
ization’ is not straightforward, namely, when physical
measures have to be turned into ‘distances’.

In our application, distances between different con-
figurations of the electrical system at different years
(with the relevant load factor) are transition costs, suit-
ably actualised in order to make them comparable at
year zero. The transition costs are the installation and
operation costs to expand the system from the current
configuration to another to be reached in the following
time.

3.1. ACS Adapted Algorithm

The problem of identifying the best expansion strat-
egy of distribution systems has been accomplished by
identifying a graph representation of the considered en-
gineering problem. The Pareto-optimal configurations
identified are the edges of the graph grouped in sets
(one per year available for an intervention). A solution
strategy is therefore a path in the graph comprising at
least two years (year zero and the final year) and the
cost of a strategy is the summation of the transition
costs in the considered time horizon. These costs have
all been actualised in order to make different strategies
comparable, with a different number of interventions
at different years. The distance between two solutions,
namely between configuration r , related to year i , and
configuration s related to year j and executed at year
i , with (i < j), is given by δ(r, s) defined as follows:

δ(r, s) = Cinst( j)
s − Cinst(i)

r

(1 + a)i
+ Clossi, j

s (1)

where Cinst(i)r and Cinst( j)
s respectively are the in-

stallation costs for configuration r at year i and the
installation costs for configuration s at year j , and
a is the actualization rate. The term Clossi, j

s can be
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expressed as:

j∑

k=i

Clossk
s

1

(1 + a)k

where Clossk
s is the yearly cost of power losses at year

k with configuration s.
The following quantities are used in the algorithm:

• τ (r, s) is the pheromone amount between configura-
tions r and s;

• Mk is the set of optimal configurations that have been
identified for the year configuration r belongs to;

• β is the parameter weighting the importance of the
transition cost from configuration r to configuration
s;

• α is the pheromone updating parameter, ruling its
decay and its reinforcement;

• τ0 is the pheromone initialization value which is
given to any possible tuple such as (r, s);

• n is the number of ants constituting the artificial
colony.

Configuration s that has to substitute the starting con-
figuration r is identified by means of the following law:

s =
{arg max

s �∈Mk

(τ (r, s) · δ(r, s)−β) if q ≤ q0

S otherwise
(2)

where q ∈ [0, 1] is a random number and q0 ∈ [0, 1]
is a parameter allowing to regulate the elitism of the
algorithm, namely to establish a compromise between
exploration and exploitation of the search space.

Indeed, if q0 is very close to the unity, then it is highly
possible that the random parameter q is lower than q0

and therefore that configuration s is the maximum of
the function (τ (r, s) · δ(r, s)−β).

If q > q0 (condition S) then configuration s is chosen
following the probabilistic law:

pk(r, s) =





τ (r, s) · δ(r, s)−β

∑
u /∈Mk

τ (r, u) · δ(r, u)−β
if s /∈ Mk

0 otherwise

(3)

The probability that the k-th ant moves towards a con-
figuration of the same year must be zero, whereas a
Monte Carlo simulation has been used to select the
configuration towards which the ant shall move.

As it can be noticed, low values of q0 encourage a
search guided by a probabilistic law, for which the tran-
sitions having a larger value of the product pheromone
by a suitably weighted fitness have more chances to
be selected. Higher values of q0, instead, prize the
search guided by elitism, since the transition having
the highest value of the product pheromone by a suit-
ably weighted fitness will be selected.

The local updating of the pheromone is performed to
prevent premature convergence and simulate the natu-
ral phenomenon of evaporation (of the pheromone). It
is executed by means of the function:

τ (r, s) = (1 − α)τ (r, s) + ατ0 (4)

the local updating of the pheromone maintains diversity
in the population keeping low the elitism. In this expres-
sion, the reduction of the intensity of the pheromone
trace occurs when the current value of the pheromone is
greater than its initial value, otherwise this expression
causes an increase of the pheromone.

Global updating is executed when all ants have com-
pleted an entire tour for exploration and it is aimed at
the reinforcement of the pheromone of those transitions
(r, s) belonging to the best tour, namely to the minimum
cost strategy. The other transitions are instead penal-
ized and the pheromone of their trail is reduced.

It is performed using the function:

τ (r, s) =






(1 − α)τ (r, s) + αL−1
gb if (r, s) ∈ global

best tour

(1 − α)τ (r, s) otherwise

(5)

where Lgb is the length namely the cost of the best
strategy which has been identified up to that moment
from the beginning of all iterations.

Lgb= min
k=1..n

{
n edges∑

l=1

(
Cinst(l)

k − Cinst(l−1)
k

(1 + a)αl−1

+ Clossl−1,l
αl−1,αl

(k)

)}
(6)

where:

• n edges is the total number of edges of the k-th path
(ant);

• αl−1 is the year in which new installations related to
the configuration l have been executed;
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• n is the number of ants constituting the artificial
colony.

Note that, when l equals the total number of edges
of the considered path, the ant has reached the target
configuration and the strategy is complete.

Therefore expression (6) gives the cost of the en-
tire strategy actualised at the starting year as well as
the objective function of the problem here dealt with.
The global problem is combinatorial and also non lin-
ear mainly because the losses term refers to the Joule
effect and therefore is a non-linear function of the op-
timization parameters.

In this way, the pheromone of the transitions belong-
ing to the best tour is increased whereas the pheromone
of other transitions is decreased. The local updating en-
courages the exploration of the search space because
it prevents premature convergence, whereas global up-
dating encourages the exploitation of the most promis-
ing solutions, namely the overall least costy solutions.

The algorithm works as follows:

(1) a set of ants starts all from the same state repre-
senting the initial configuration of the system;

(2) each of them chooses at each stage, or time interval,
the following state to visit using equations (2) and
(3),

(3) the local updating of the pheromone (4) is carried
out for each of them;

(4) when all ants arrive at the final year one itera-
tion is completed and the global updating of the
pheromone is also executed, using Eq. (5).

When the maximum number of iterations is completed
the algorithm ends and the strategy with the lowest
cost in all iterations is chosen. Of course, as it happens
in GAs, at the last iteration the average quality of the
ants involved in the search is higher as compared to
the first iteration, thanks to the’selection’ mechanisms
implemented by Eqs. (2) and (3).

3.2. Search Space

Hypothesizing a given variation of the load density re-
lated to a given load area, it is possible to determine
what is the load density at each year in the consid-
ered time frame in which the strategical planning must
be carried out. It may happen that the load density
increase in one year is not relevant and the electri-
cal system reinforcement becomes necessary in two

or more years. In this way, it is possible to divide the
time frame into a finite number of intervals each lasting
two, three or more years depending on the load den-
sity course. Consider T of such intervals, all having the
same duration, D years. The sets of multiobjective opti-
mal solutions for each load level, nsi (i = 0, 1, . . . , T )
have been previously determined and the total number
of possible configurations for the system therefore is
S = ns0 + ns1 + · · · + nsT . In Fig. 5, a general search
space is shown.

Configuration 1 represents the layout of the electrical
system at the starting year, configurations 2, 3 and 4 (in
this case, ns1 = 3), are the first class of Pareto-optimal
solutions of the static multiobjective optimization prob-
lem, attained for the load density forecasted after the
first time interval. In the same way, configurations S−1
and S, for which nsT = 2, have been obtained for the
load density forecasted after T time intervals.

If a system update is required at each time interval,
then the search space size (number of possible strate-
gies) is:

dim = ns0 · ns1 . . . nsT (7)

Considering the possibility to delay or anticipate some
interventions in the electrical system, the search space
size increases with the following law:

dim =
T∏

i=0

nSi





1 + T ·





T −1∑

k=1

1
nSk

+
T −1∑

j,k=1
j�=k

1
nSjnSk










(8)

The allowable strategies also include those obtained
keeping the same configuration for more than one time
interval.

In Fig. 6 the search space of a small scale design
problem is represented. The dotted lines represent the
new installations required to attain the new configura-
tions. For this application, an exhaustive search algo-
rithm to identify the minimum cost solution has been
carried out.

Consider a time horizon divided into three intervals
(T = 3), all having the same duration (D = 3) , and
ns0 = 1, ns1 = 5, ns2 = 1, ns3 = 2, are the num-
ber of Pareto-optimal solutions for each time interval.
The search space dimension using Eq. (8) is: dim =
52.
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Figure 5. A general search space.

Figure 6. All allowable strategies for a small scale design problem.
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Figure 7. Vectoring module used to obtain the MV stage of electrical distribution system.

For this small scale design problem, an exhaustive
search method has produced the same optimal solution
of the ACS adapted algorithm.

4. Application

Consider the single medium voltage stage of a distri-
bution system obtained by the interconnection of sev-
eral vectoring modules (see Fig. 7). The electric load
is uniformly distributed on each feeder according to a
rectangular law. The planning study that has been con-
sidered for this system is related to a time horizon of
20 years in which the forecasted load density growth
[MVA/ km2] has this course:

σ (t) = σo(1 + r )t (9)

where:

σo = 10 [MVA/km2] starting load density;
r = 0.05 yearly growth rate of load density;
t = 0–20 years.

Seven time intervals, each of three years, have been
chosen. For each of these intervals the Pareto optimal
configurations of the system have been obtained, these
being optimal in terms of installation and operational
costs, quality while meeting a set of technical, logical
and economical constraints. The objective is to identify
an efficient expansion strategy for the electrical system
(in the considered time horizon), namely the minimum

cost sequence of changes of configuration required to
follow the load density growth.

The installation costs of the lines and of the trans-
formation and/or compensation node of the functional
module, are expressed by the following relations [8]:

CL=(Error! + Error!) (C1 + c2V2 + c3so) [ /km2]

(10)

Cnt=C4 + c5 Ad
n (V1 + V2)b [ ] (11)

where expression (10) is the overhead lines cost per
km2. This expression is made up of a fixed part, C1

(fixed installations and accessories) which in this ap-
plication is 40025.65 /km, and a variable part made up
of two terms, one depending on the voltage level, where
c2 is 774.49 /km kV, and the other depending on the
line section, where c3 is 129.11 /km·mm2. Expression
(11) is the installation cost of the HV/MV transform-
ers. In this expression, C4 is a constant 1549380 , c5,
d and b are heuristically derived coefficients (respec-
tively 0.205, 0.8 and 1).

The configurations are considered optimal in terms
of the system’s yearly and per area unity cost (Ctot) and
the maximum yearly unavailability (Unav), namely to
the maximum stationary probability that one node of
the system is not supplied due to a fault above it.

The systems update do not consider the elimination
of the existing elements, instead new elements having
the same capacity are added in parallel to the exist-
ing ones (i.e.: transformers, lines,..) The rated power
of the transformation node must be adapted to the
power increase required, connecting in parallel more
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Table 1. Installation cost (Cinst), losses cost (Closs), unavailability (Unav), parameters of functional module (see Fig. 7) and constraints:
maximum voltage drop (�V ), maximum current density in all the lines (�I ), power balance at supply node (PSN ), for optimal strategy.

σ Cinsr Closs Unav V1 V2 An X Y Sa �I Psv

Yr (MVA/km2) ( /km2) ( /km2) (h/yr) (kV) (kV) (MVA) na (km) (km) (mm2) gr �V (A/mm2) (MVA)

0 11.57 327299 84524 1.10E-04 150 20 200 6 2.05 1.94 600 0 0.0169 1.476 193.36

3 13.3 375604 155604 1.00E-04 150 20 200 6 1.95 1.72 600 0 0.0159 1.441 188.7

6 15.5 454916 216518 8.54E-05 150 20 200 6 1.65 1.58 600 0.1 0.0192 1.427 186.84

9 17.69 461755 267270 8.84E-05 150 20 200 6 1.75 1.48 600 0 0.0137 1.492 195.35

12 20.69 516154 310269 8.24E-05 150 20 200 6 1.55 1.44 600 0.1 0.0127 1.488 194.88

15 24.01 601373 346862 7.50E-05 150 20 200 6 1.45 1.28 600 0 0.0188 1.432 187.60

18 27.08 680488 378426 7.04E-05 150 20 200 6 1.75 1.36 600 0 0.0102 1.397 183.00

transformers; the main feeders sections increase must
be realised putting other cables of the same size in par-
allel with the existing ones. For these reasons, only the
expansion strategies, including new installations that
follow the above cited rules, are feasible.

If the starting solution is fixed, then ns0 = 1. The fist
time interval contains ns1 = 61 solutions; the second,
ns2 = 63, the third, ns3 = 53; the fourth, ns4 = 41; the
fifth, ns5 = 34; the sixth, ns6 = 13. The search space
amplitude, using Eq. (8) is: 6, 112, 187, 250.

Applying the ACS algorithm with the following con-
trol parameters: τ0 = 0.001, β = 2, α = 0.1, n = 10,
a = 10%, q0 = 0.5, iterations = 100, the minimum
cost strategy identified most frequently by the algo-
rithm is the following: [1, 49, 71, 177, 206, 235, 265],

Figure 8. Frequency distribution of results vs. fitness value Lgb (cost of the best strategy) for 1000 runs.

namely the system will have to be updated at each time
interval and will be modified at each time interval (ev-
ery three years) going through some of the configu-
rations identified by the NSGA in the first phase. In
Table 1, the most frequent optimal solution strategy
(with a very low variance), obtained using the ACS, is
reported.

Cinst and Closs respectively are the installation and
losses costs for the considered year (not reported to the
starting year), for this solution, the value of Lgb (global
cost of the best strategy) is: 680.488 /km2 and the cor-
responding operation cost is: 476,817 /km2, both ac-
tualized at the starting year; the maximum voltage drop
is 1.00% and the current in all the lines never exceeds
the rated values. As it can be noted, the strategy tries to
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minimize the overall cost by simply changing the size
of the elementary module and never changing the other
parameters. One of the main implications of the size re-
duction of each module concerns the reduction of the
unavailability parameter (see fifth column of Table 1),
thus producing an improvement of the service qual-
ity. A traditional planning approach would have simply
minimized the overall installation and losses costs per
square km2, producing solutions with large modules,
long lines and higher size substations. In this way, the
system’s reinforcement would be carried out keeping
the costs at a low level, but not meeting the requirement
of service quality which is nowadays a basic issue.

The results have been compared with results from a
SA algorithm. Since neither the ACS nor the SA are
deterministic, they do not result in the same final solu-
tion. For this reason, in order to prove their robustness,
1000 runs of both algorithms have been performed and
the distribution of results are compared, as shown in
Fig. 8. The ACS is more robust having a lower stan-
dard deviation, and the most frequent solution is more
economical than the most frequent solution identified
by SA.

5. Conclusions

A dynamic strategical planning problem for electric
distribution systems has been solved with an Ant
Colony Search (ACS) algorithm. This solution method
has been compared to the Simulated Annealing tech-
nique and, for a very large sample test problem, the
ACS was shown to be more efficient and robust. The en-
tire solution approach proposed by the authors is made
of two phases, the first identifies the sets of Pareto-
optimal solutions (in terms of possible configurations)
for each of the considered load densities; the second
phase, finds a minimum cost path through these solu-
tions. The proposed methodology allows the planner to
include some other heuristically determined solution to
those obtained in the first phase, or to modify some of
these.

After the presentation of the general problem of
strategical planning in dynamic terms, the optimiza-
tion procedure used to solve it, the ACS algorithm, has
been described in detail together with the necessary
modifications for this kind of application. Then test re-
sults obtained for a medium voltage system, for which
an expansion strategy in a time horizon of 20 years has
to be planned, are reported and commented. Future de-
velopments of this work aim at the application of the

ACS algorithm or other modified cooperative search
methods to more complex systems with more than one
voltage level and with dispersed generation nodes.
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