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Abstract. In this paper we present a general formalism for representing and reasoning with temporal information,
event and change. The temporal framework is a theory of time that takes both points and interval as temporal
primitives and where the base logic is that of Kleene’s three-valued logic. Thus, we can avoid the Divided Instant
Problem (DIP). We present a three-valued based Temporal First-Order Nonmonotonic Logic (TFONL) that em-
ploys an explicit representation of time and events. We may embody default logic into TFONL, which takes into
consideration the frame, qualification and ramification problems.
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1. Introduction

Modelling the dynamic aspects of the world is one
of the most challenging problems in Artificial Intelli-
gence(AI). Many AI areas such as medical diagnosis
and explanation, planning, condition monitoring
and fault diagnosis, and dynamic system modeling
require an explicit representation of time and causal
relationships. The term modeling itself suggests
incompleteness. We can identify three research areas:
temporal reasoning, reasoning about events and change
and dealing with incompleteness and uncertainty of
information.

Many general theories of event and/or time have been
proposed such as the situation calculus [10], the event
calculus [9], McDermott’s temporal logic [11], Allen’s
theory of action and time [2]. These proposals played an
important role (1) in establishing two main competitors
as temporal primitives, namely point and interval; (2)
in pointing out the general problems such as reasoning
by default, the interaction of actions, the frame, quali-
fication and ramification problems, and (3) in showing
that some ontological decisions need to be made before
defining a general theory of time, change and event (cf.
[22]).

There are two different types of approaches to tem-
poral reasoning. The first type is concerned with rea-
soning about change, events, actions and causality. The
goal is to determine the consequent state given that
some events have occurred starting from some initial
state. The second type deals with reasoning about tem-
poral constraints on time-dependent entities. It aims
to determine whether a set of temporal constraints is
consistent or what consequences follow from a set of
temporal constraints with no assumptions about prop-
erties of temporal facts. In this paper, we deal with the
first of these approaches.

Most of the influential formalisms for reasoning
about actions/events (e.g., [10] and [9]) seem to pay
little attention to the temporal ontology as they fo-
cus on other problems such as the frame, qualification
and quantification problems. One important issue in
these approaches is that only points are taken as prim-
itive temporal elements while intervals have to be con-
structed from points. This may lead to the so-called Di-
viding Instant Problem (DIP) [22], the problem of spec-
ifying whether time intervals are closed or open at their
starting/ending points (cf. [2] and [7]). If two adjacent
intervals include their ending-points, then they would
have, at least, one ending-point in common. Hence, if a
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proposition A has a different truth-value in every inter-
val, then at the common end-point, A will be both true
and false. Similarly, if two intervals do not include their
ending-points, there will be points at which the truth
or falsity of some assertion is undefined. One solution
would be to take point-based intervals as semi-open
(e.g., all intervals include their left ending-points and
exclude their right ones). However, This seems to be
arbitrary.

Interval based-approaches have been shown to over-
come the DIP(cf. [2] and [21]). However, this is at the
expense of expressiveness because those approaches
cannot deal with instantaneous events and fluents.

In this paper we present a formalism that employs an
explicit temporal representation with a theory of time
that takes both points and interval as temporal primi-
tives and where the base logic is that of Kleene’s three-
valued logic. Thus, we can avoid the DIP Problem.
We present a three-valued based Temporal First-Order
Nonmonotonic Logic (TFONL) that employs an ex-
plicit representation of time and events. TFONL is an
extension of the quantified version of the non-temporal
system T3, which is a three-valued based nonmono-
tonic logic system (cf. [12]). We may embody default
logic into TFONL, which takes into consideration the
frame, qualification and ramification problems. Fur-
thermore, it incorporates to a domain description the
set of rules governing change.

In Section 2 we present a theory of time, PI, that
takes both points and interval as primitives and where
the base logic is Kleene three-valued logic. In Section 3
we present a three-valued based Temporal First-Order
Nonmonotonic Logic (TFONL) that employs an ex-
plicit representation of time and events. In Section 4,
we show how the frame, qualification and ramification
problems are dealt with. In Section 5, we show how
default logic can be embodied in TFONL. In Section
6, we incorporate a domain description and the rules
governing change to ensure that change to a state re-
sulting from the successful occurrence of an event is
minimal. A comparison with other temporal theories
is made in Section 7 and a presentation of the point-
based and interval-based temporal theories is given in
the Appendix.

2. A Time Theory Based on Points
and Intervals (PI)

Classical logic does not seem to be well equipped to
cope with statements containing explicit temporal ref-

erence. There are a number of issues that must be ad-
dressed when formalizing time. Among these are the
ability to represent and reason with instantaneous and
non-instantaneous fluents and events while avoiding
the DIP problem.

In this section we provide a system PI where both
points (P) and intervals (I) are primitives and where
the base logic is a three-valued one. Let i, j, k, r, m, n
denote intervals and p, p1 denote points.

A time structure is a tuple:

MT = 〈P, I, < p, Meets, Within,〉
where

(1) P and I are non-empty sets of points and intervals
respectively,

(2) <P is a precedence relation on points of time. <P
has the following properties:

(P1) (p1 <P p2) & (p2 <P p3) → p1 <P p3
(Transitivity)

(P2) ¬(p1 <P p1) (Irreflexivity)
(P3) (p1 <P p2)V(p1 = p2)V(p2 <P p1)

(linearity)
(P4) (∀p)(∃p1)(p <P p1)
(P5) (∀p)(∃p1)(p1 <P p)
(P6) (∀p1)(∀p2)(p1 <P p2)(∃p3)(p1 <P p3 &

p3 <P p2) (Density)
(P4) (resp. P5) states that for any time point p, there

exist a point p1 that comes after it (resp. before
it).

(3) Meets is axiomatized following Allen and Hayes
in [3] as follows:

(I1) (∀i, j)(∃k) (Meets(i, k) & Meets( j, k) ⊃ (∀r )
(Meets(i, r ) ≡ Meets( j, r ))

(I2) (∀i, j)(∃k) (Meets(k, i) & Meets(k, j) ⊃
(∀r ) (Meets(r, i) ≡ Meets(r, j))

(I3) (∀i, j, k, r ) (Meets(i, j) & Meets(k, r ) ⊃
Meets(i, r ), XOR
(∃m) (Meets(i, m) & Meets(m, r ) XOR
(∃n)(Meets(k, n) & Meets(n, j)

(I4) (∀i)( (∃ j, k) (Meets( j, i) & Meets(i, k))
(I5) (∀i, j) (Meets(i, j) ⊃

(∃k = i + j, )(∃m, n) (Meets(m, i) &
Meets(i, j) & Meets( j, n) &
Meets(m, k) & Meets(k, n))

where XOR denotes exclusive OR. (I1) and (I2) state
that every interval has a unique start point and a unique
end point. (I3) define all the possible relations between
any two meeting places. (I4) states that every interval
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has one interval the precedes and an interval that suc-
ceeds it. k = i + j is only definable if Meets(i, j) holds
and k contains exactly i, j and their meeting points p,
i.e., k = i ∪ {p} ∪ j . (I5) states that for any two adja-
cent interval i and j , there exist an interval k such that
k = i + j .

(4) Within is a point-interval relation that is gov-
erned by the following axiom:

(PI1) ∀i∃p Within(p, i)

We may add the following definition:

Definition 2.1. Duration (t) = 0 if t ∈ P and Duration
(t) > 0 if t ∈ I.

Given the above set of axioms we may define other
interval-interval, point-interval relations. For instance:
L B(p, i) which states that p is the lower limit (begin-
ning) of i can be defined as:

L B(p, i) iff (∀p1)[(Within(p1, i) ⊃ p < p1) and (∀p2)

if (p2 <> p and Within(p1, i) ⊃ p2 < p1)

then p2 < p].

Similarly, we may define, L E (p, i), that p is the upper
limit (end) of i .

From these definitions, we may derive the following
axioms:

(PI2) (∀i)(∀p)(∀p1)(L B(p, i) & L E (p1, i) ⊃ p <P

p1)
(PI3) (∀i)(∃p)(∃p1)(L B(p, i) & L E (p1, i))
(PI4) (∀i)(L B(p, i) & L B(p1, i)) ⊃ p = p1
(PI5) (∀i)(L E (p, i) & L E (p1, i)) ⊃ p = p1
(PI6) (∀i)(∀ j)(L B(p, i) & L E (p1, i) & L B(p, j) &

L E (p1, j)) ⊃ i = j

3. Temporal FONL (TFONL)

Our knowledge about real world is usually incomplete
and uncertain. The notion of modeling itself suggests
incompleteness and uncertainty. Temporal uncertainty
could result in many contexts: If two events e1 and e2
occurs at some points p1 and p2 somewhere between
pk and pr , then the relation between e1 and e2 is not
determined. Event e occurs during interval I, but it is not
known exactly when or for how long if it is a durative
event. Event e occurs during interval i for a duration of
10. A fluent such as “the patient temperature is high”
that was observed at a time point p within an interval

during which it holds. An uncertain temporal relation
is a disjunction of two or more exact relations.

Default reasoning [15] is appropriate in those situ-
ations where we have only partial knowledge of the
actual state of affair. In such states, some things are
known (to be true or false) but others are in doubt.
Obeid in [12] proposes that partial states of knowledge
are to be represented by partial models or information.

In this paper, we employ a Temporal First Order
Nonmonotonic Logic (TFONL). The system is based
on the quantified version of the non-temporal system
T3, which is a three-valued based nonmonotonic logic
system (cf. [12]). The language has a third value un-
defined which was used by Kleene to describe com-
putations that may not terminate. We have incomplete
knowledge and thus we cannot, as classical logic sug-
gests, determine the truth or falsity of every sentence.
One of the advantages of T3 is that defaults can be
represented as sentences in the object language in the
system. Obeid in [14] shows that there is a one-to-one
correspondence between extensions of a default the-
ory and appropriate minimal information states (Partial
Models), which provide the semantic account (models)
of the system T3.

The language, LT3, of T 3 is that of Kleene’s three-
valued logic extended with the modal operators “M”
(Epistemic Possibility) and “P” (Plausibility). In T3,
“L” is the dual of “M” and “N” be the dual of “P”, i.e.,
LA≡∼M∼A and NA≡∼P∼A. Obeid in [12] defines
a truth functional implication “⊃” , i.e., an implication
that behaves exactly like the material implication of
classical logic, as follows: (A ⊃ B = M(∼A & B) V
∼A V B.

Nonmonotonic reasoning is represented via the epis-
temic possibility operator M and the plausibility oper-
ator P. Informally, MA states that A is not established
as false. Using M, we may define the operators U (un-
defined), D (defined) and ¬ (classical negation) where
UA is true if the truth value of A is undefined and DA
is true if the truth value of A is not undefined.

Notational Definition 3.1.

UA ≡ MA & M ∼ A
DA ≡∼UA
¬A ≡ DA & ∼ A

3.1. Syntax of LFONL

We extend the language LT3 to allow for the expres-
sion of quantified temporal expressions and relations,



112 Obeid

and for the occurrence of events. We need four sorts P
(for points), I (for intervals), E for events and L3 (for
the three-valued base logic literals).

Definition 3.2. The vocabulary of LFONL consists of
the following symbols:

¬, V, &, →, ∀, ∃, <, Meets, Within (, ),

and the following mutually disjoint countable sets of
symbols:

CONSTPI, CONSTE (constants of the sorts P ∪ I
and E),

VARPI, VARE , VAR3 (variable of sorts P ∪ I, E and
the three-valued base logic),

FUNCPI , FUNCE (function symbols of arity n > 0 of
sorts P ∪ I and E)

PRED (first order relation symbols of arity n ≥ 0)
HOPRED (higher-order relation symbols of arity

n ≥ 1)

If S ∈ {D, I, P} then TERMS is the minimal set such
that:

(1) CONSTS ∪ VS ⊆ TERMS

(2) if f is an n-ary function symbol in FUNCP

and u1, . . . , un are TERMS then f (u1, . . . , un)
TERMS.

Let TERMPI = TERMP ∪ TERMI

TERME is the minimal set such that

(1) CONSTE ∪ VARE ⊆ TERME

(2) if f is an n-ary function symbol in FUNCE

and u1, . . . , un are TERMD then f (u1, . . . , un)
TERME.

Let � = r (u1, . . . , un) : r ∈ PRED and u1, . . . ,

unTERMD be the set of atom in the base logic and
let � = � ∪ ¬l : l ∈ �. Then TERM3 = � ∪ VAR3

Definition 3.3. The language, LTFONL, is the minimal
set that satisfies the following conditions:

If t, t ′ ∈ TERMP then t = t ′ ∈ LTFONL and t < t ′ ∈
LTFONL

If i, i ′ ∈ TERMi then i = i ′ ∈ LTFONL and Meets(i, i ′)
∈ LTFONL

If u1, · · · , un ∈ TERMD, r ∈ PRED and t ∈ TERMPI

then A[t] ∈ LTFONL

If l ∈ VAR3 and t ∈ TERMPI then l[t] ∈ LTFONL

If e1, e2, · · · , en ∈ TERME, l1,
∗ m ∈ TERM3,

hr ∈ HOPRED and t ∈ TERMPI then
hr(e1, e2, · · · , en, l1, · · · , lm)[t] ∈ LTFONL

If S is a sort and u, u′ ∈ S the u = u′ ∈ LTFONL

If A, B ∈ LTFONL, then A & B, AVB, ¬ A, A → B ∈
LTFONL

If S is of sort D, P, I or E, x ∈ VS and A ∈ LTFONL then
∀ x A and ∃xA ∈ LTFONL

3.2. Model Theory of LFONL

Definition 3.4. A Model for LTFONL is a stucture

M = 〈D, E, P, I, RI, RP, F, PRED, HOPRED,

�, �, R, R′, 〉

where

(1) D, E, I, P are mutually disjoint non-empty sets
(2) RI is a binary relation on I that satisfies the condi-

tions (I1)–(I5) satisfied by Meets.
(3) RP is a binary relation on P that is irreflexive, tran-

sitive, linear and unbounded.
(4) F = 〈FD, FI , FP , FE 〉 such that for S ∈

D, I, P, E, FS is a set of n-pace functions of type
Sn → S where n ≥ 1.

(5) PRED is a set of partial n-place functions of type
Dn → true, false for n ≥ 0

(6) HOPRED is a set of partial function of type En×
TERM3 {true, false} for n + m ≥ 1

(7) � =< �D, �P, �I, �E, �3, �FD, �FP, �FI, �FE,

�PRED, �HOPRED > is an interpretation function
such that:
for S ∈ {D, I, P, E}, �S : S → S and �FS : FS →
FS

�3: TERM3 → TERM3 is the identity function.
�PRED: PRED × PI → PRED
�HOPRED: HOPRED × PI → HOPRED

(8) � is a non-empty set of information states
(9) R and R′ are binary relation on �.

Intuitively, D is a set of objects, E is a set of event
types, I is a set of interval and P is a set of points.
<P, I , <P, Meets, Within, > constitutes the temporal
framework. For each n-place relation symbol r and
a t ∈ P ∪ I, �PRED(r, t) is the partial characteris-
tic function of the relation denoted by r at/during t .
Similarly, for each higher-order relation symbol hr and
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t ∈ P ∪ I, �HOPRED (hr, t) is the partial characteristic
function of the relation denoted by hr at/during t .

Terms are interpreted in the standard way with the
exception of T 3 literals which are interpreted as them-
selves.

The interpretation of R may be thought of as epis-
temic possible extension between states, and that of R′

as plausibility between states. Given s, s1 are members
of �, we shall write s R s1 to mean that the information
state s1 is an epistemic possible extension of the infor-
mation state s and s R′ s1 to mean that s1 is a plausible
alternative to s.

In fact, we employ three notions of extension defined
on partial states: Refinement (≤REF), epistemic possi-
bility (R) and plausibility (R′). Epistemic possibility
and plausibility are formally defined above. Refine-
ment, however, simply reflects an informational order
of states (partial models) based on that of the truth val-
ues of sentences belonging to these states where an in-
formational order of truth values is as follows: U ≤REF

F, U ≤REF T, U ≤REF U, F ≤REF F, T ≤REF T .

Definition 3.5. A variable assignment for a TFONL
model is a function g = 〈gD, gP, gI, gE, g3〉 where gS :
VS :→ S for any of the sorts.

Let g ≈ g′ indicates that variable assignments g and
g′ differ at most on the assignment to variable x .

Definition 3.6. Let M be a TFONL model with inter-
pretation function �, and let g be a variable assignment
for M, then the term evaluation function �g is defined
as follows:

For any of the sorts S ∈ D, I, P, E

If c ∈ CS then �g(c) = �S(c)
If x ∈ VS then �g(x) = gS(c)
If u = f (u1, . . . , un) ∈ TERMS then �g(u) =

�FS( f )(�g(u1), . . . , �g(un))
If A ∈ TERM3 then �g(c) = �3(A)

Definition 3.7. Let M be a TFONL model with inter-
pretation function �, and let g be a variable assignment
for M . Let p, p′ ∈ P, I, I ′ ∈ I, A, B be wffs then, the
truth “|=g” and the falsity “ =| g” notions are recur-
sively defined as follows:

(i) M, s |=g true
(ii) M, s |=g p〈p′ iff 〈�I (s, p), �I (s, p′)〉 ∈ RP

(iii) M, s |=g Meets(i, i ′) iff 〈�I (s, i), �I(s, i ′)〉
∈ RI

(iv) M, s |=g u = u′ iff �g(u) is �g(u′)
(v) M, s |=g r (u1, . . . , un)[t] iff �PRED

(r, �g(t))(�g(u1), . . . , �g(un)) = true
(vi) M, s |=g l[t] iff l ∈ VAR3 and

M, s |=g�g(l)[t]
(vii) M, s |=g hr(e1, . . . , en, l1, . . . , lm)[t] iff

�HHOPRED (hr, �g(t))(�g(e1), . . . , �g(en)�g(l1),
. . . , �g(1m)) = true

(viii) M, s |=g A & B iff M, s |=g A and
M, s |=g B

(ix) M, s |=g ∼ A iff M, s |=g A
(x) M, s |=g ∀x A iff M, s ′ |=g′ A for all g′ such that

g ≈ g′

where g ≈ g′ indicates that variable assignments g
and g′ differ at most on the assignment to variable x .

(xi) M, s |=g MA iff (∃ s1S)(s Rs1 and M, s1 �|=
g ∼ A)

(xii) M, s |=g PA iff (∃s1S)(s R′s1 and M, s1 |=g
A)

(i′) M, s =| g false
(ii′) M, s =| gp〈p′ iff 〈�I(s, p), �I (s, p′)〉

/∈ RP

(iii′) M, s =| g Meets(i, i ′) iff 〈�I(s, i), �I (s, i ′)〉
/∈ RI

(iv′) M, s =| gu = u′ iff �g(u) is not �g(u′)
(v′) M, s =| g r (u1, . . . , un)[t] iff

�Pr(r, �g(t))(�g(u1), . . . , �g(un)) = false
(vi′) M, s =| gl[t] iff l ∈ VAR3 and

M, s =| g�g(l)[t]
(vii′) M, s =| ghr(e1, · · · , en, l1 · · · , lm)[t] iff

�HHOPRED (hr, �g(t))(�g(e1), . . . , �g(en)�g(l1),
. . . , �g(lm)) = false

(viii′) M, s =| g A & B iff M, s =| g A or M, s =| gB
(ix′) M, s =| g ∼ A iff M, s |=g A
(x′) M, s =| g∀x A iff M, s =| g′ A for all g′ such

that g ≈ g′

where g ≈ g′ indicates that variable assignments g and
g′ differ at most on the assignment to variable x .

(xi′) M, s =| gMA iff (∀ ∈ s1S) (if s R s1 then
M, s1 |=g ∼ A)
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(xii′) M, s =| g PA iff (∀ ∈ s1S) (if s R′ s1 then
M, s1 �|=g ∼ A)

Definition 3.8. A WFF A is true in a TFONL-model
M (written M) |= A) if M, s |=g A for all information
states s and variable assignments g. A formula A is false
in M (written M =| A) if M, s =| g A for all information
states s and all variable assignments g.

4. Inertia, Qualification and Ramification

A theory of time, change and event has to address the
problem of representing the outcome of a sequence of
events given some state s. Some of events which may
fail because their preconditions are not satisfied. Thus,
in order to represent events, it is necessary to represent
changes in state. Using TFONL, a state can be taken
as the set of facts (together with rules default that form
a default theory) which are true at a particular point
or during a particular interval. Changes in the state
are then represented by changes in the truth-values of
fluents. The effect of an event may be represented by
an axiom of change:

PRECOND(e)[t1] & OCC(e)[t2] & C(t1, t2, t3)
(1)

IMPLIESPOSTCOND(e)[t3]

where t1, t2, t3 ∈ P ∪ I and IMPLIES ∈ {⊃, ⇒} as
needed and C

Propositions of form (1) describe the direct effects of
events on the state. They can be read as the occurrence
of e at t2 causes POSTCOND(e) at t3 if PRECOND(e)
holds at t1 where C(t1, t2, t3) reflects the constraints on
t1, t2 and t3.

It is important to note that our view of events is
causal. That is, if the preconditions of an event are
satisfied and the event occurs, then its postcondi-
tions/consequents must be true. However, this is not
always the case as there may be an infinite number of
reasons why an event can fail despite the fact that its
preconditions are true when it occurs. This in fact ex-
plains why we have employed two types of implication:
⊃ (material) and ⇒ (defeasible). The material impli-
cation is only used if we are absolutely certain that the
effect will take place if the preconditions hold and the
event occurs.

Example 4.1. A fire alarm starts ringing immediately
after some smoke has been detected and keeps ringing

as long as smoke remains. The alarm is electrical, so
may be subject to a power cut. This situation can be
described as follows:

Power-on[tpo] & Occ(Smoke)[ts] & During(tpo, ts) &
Start(ts, ta) ⇒ alarm[ta]

Occ(Power-cut)[tpc] & Finishes(tpo, tpc) & Starts(tpc,
tna) & Meets(ta, tna) ⇒ alarm[tno]

tpc starts when tpo (power-on) finishes and tna (¬
alarm) begins. Notice that we have not stated that ts
finishes as smoke could still be present after the alarm
has stopped due to power cut.

It is important to note (1) the distinction between
power-on as a fluent and power-cut as an event occur-
rence, and (2) the use of ⇒ as we may not know all the
preconditions required for a successful event.

It is also necessary to represent what persists, i.e.,
does not change from a time point to another or when
it is realized that an event has occurred. This can be
achieved by a common sense law of inertia which sim-
ply state that a fluent remains in their truth value status
unless there is reason fo it not to do so. This can be
stated as follows:

A[t] ⇒ A[t ′] where t < t ′ (Inertia)

Relations between fluents in a particular world (infor-
mation state) are expressed as:

A1(X1)(t1), . . . Am(Xm)(tm) & C(t1, . . . tm, t ′1, . . . .t ′
n)

IMPLIESB1(Y1)(t′1), · · · .Bn(Yn)(t′n) (2)

where IMPLIES ∈ {⊃, ⇒} as needed;
We shall refer to propositions of form (2) as static

formulae (for examples cf. [13]).

5. Default Reasoning within TFONL

One of the advantages of T3 is that defaults can be
represented as sentences in the object language in the
system. Obeid in [14] shows that there is a one-to-one
correspondence between extensions of a default the-
ory and appropriate minimal information states (Partial
Models), which provide the semantic account (models)
of the system T3. This is very useful because it has been
shown that causal reasoning can be embedded in de-
fault logic and normal defaults (defaults of the form A :
B/B) provide a solution to the frame problem (Cf. [19])
provided the rest of the default theory is set up properly.
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First, we define a mapping from the First Order Pred-
icate Calculus (FOPC) into TFONL as follows:

Definition 5.1. The mapping is defined by

µ (p) = p′ (for atomic p)
µ(A ∧ B) = µ(A) & µ(B)
µ(A ∨ B) = µ(A)V µ(B)
µ(A ⊃ B) = µ(A) → µ(B)
µ(¬A) =∼ µ(A)
µ(∀x A) = ∀xµ(A)

The connectives ¬, ∧, ∨, ⊃ are those of FOPC and the
connectives ∼, &, V and → belong to TFONL. We
shall omit reference to when the context is clear. Time
units are simply indexes.

Definition 5.2. Let � = 〈DEF, W 〉 be a default the-
ory where DEF is a set of defaults and W is a set of
FOPC formulae. A translation of � into TFONL is
performed using τ which is defined as follows:

τ (A) = L(µ(A)) If A ∈ W

τ (A : B/C) = L(µ(A) & N (µ(B)) ⊃ L(µ(C))

If A : B/C ∈ DEF.

We write τ (W ) = τ (A) : A ∈ W and τ (DEF) = τ (d) :
d ∈ DEF to denote the translations of W and DEF
respectively. Let A ⇒ B denote (A : B/B). Reference
to τ and µ will be omitted, throughout the paper, when
the context is clear.

6. Domain Description and Minimal Change

A domain description � is a set of propositions of the
form (1)–(2). The main difference between the lan-
guage of domain description employed here and the
one that was developed by Baral, Gelfond and Provetti
in [5, 6] in that we allow events to fail to have their ef-
fects when IMPLIES is the defeasible implication ⇒.

A domain description defines a transition function
from events and a time unit (point) (defining an infor-
mation state) to a set of information states. Intuitively,
given an event e and a time unit t , the transition func-
tion κ (e, t) defines the set of states that may be reached
after the occurrence of the event e is successful at t . If
the occurrence of e is not successful, then κ (e, t) is an
empty set.

An information state of � is an interpretation that is
closed under the set of static formulae of �. The effect

of an event e at time unit t is the set of formulae

effe(t) = {Conc(e) : � contains a formula of the form

Pre(e)[t1] & Occ(e)[t] & C(t1, t, t3)

IMPLIES Conc(e)[t3] and Pre(e) holds at t1}

Given the domain description � containing a set of
static formulae STAT, we formally define κ (e, t), the
set of states that may be reached after the event e has
occurred successfully at a time t as follows:

(S1) κ(e, t ′) = {s ′ : Conseq(s ′) = Conseq((s ∩ s ′)

∪ effe(t)∪ STAT)} where t < t ′

The intuition behind the above formulation is as fol-
lows: the direct effects of the occurrence of an event
e, if successful, at time unit t are given by effe(t), and
all formulae in effe(s) must hold at any time unit af-
ter t. In addition, the static formulae, STAT, determine
additional formulae that must hold (cf. [18]).

When IMPLIES is the material implication ⊃ , the
case is straightforward. For the other case, let d be the
formula representing the occurrence and effect of e.
(S1) can be semantically expressed as

(S′1) κ(e, t ′) = {s ′ : s ′ = EXTEND(s, d) where

EXTEND is defined below}

Definition 6.1. Let � = 〈DEF,W〉 be a default theory,
M = 〈D, E, P, I, RI , RP , F , PRED, HOPRED, �, �,
R, R′〉 be a model of LTFONL, s ∈ � is a minimal
partial model of W, s1 ∈ � is a partial model of W
and let δ = d1, · · · , dn ⊆ DEF be a set of defaults. We
define, EXTEND(s, δ) = s1, that d extends s to yield
an information state s1 ∈ S as follows:

EXTEND(s, δ) = s1 iff

(i) (for every i) (1 ≤ i ≤ n) (APP(s, di )) and
(ii) s1 is a minimal partial model of W that satisfies

(a), (b) and (c):

(a) s Rs1

(b) s R′s1

(c) (for every i) (1 ≤ i ≤ n) (SATISFY(s1, di )

where if d = A : B/C then
APP(s, d) iff s |= τ (A) and s |= Nµ(B) and
SATISFY(s, d) iff APP(s, d) and s |= τ (C)
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The intuition is that s ′ is a minimal information state
that is both epistemically possible and plausible from
the perspective of s and it holds the (direct and indirect)
effects of the event e if its occurrence is successful.

We assume the existence of two time points t0 and
tc which identify two information states s0 and sc rep-
resenting the initial information state and the current
information state. While sc at tc denotes the current
information state (the truth value of fluents at tc), we
shall employ the term situation sc to denote a history
of successful events from the information state s0 at t0.
to sc at tc.

Example 6.2. To illustrate the idea and the potential of
the formalism, we present an example which is a variant
of the Yale Shooting problem taken from [18]. There is
a pilgrim and a turkey. The pilgrim has two guns. If the
pilgrim fires a loaded gun, the turkey will not be alive in
the resulting situation. Furthermore, one can make the
turkey be not trotting by making it not alive, because
any causal explanation for the turkey being not alive
is also a causal explanation for the turkey not trotting.
Initially the turkey is trotting and at least one of the two
guns is loaded.

Based on this informal description, we can conclude,
for instance, that the turkey is not trotting at any point
after the pilgrim shoots his two guns, one after the other.

This is an example of a “temporal projection” action
domain, in which we are told only about the values
of fluents at the initial time point t0. Furthermore, this
is an “incomplete” temporal projection domain, since
the information we are given about the initial situation
does not completely describe it.

This action domain includes a “static causal law”:
whenever not alive is caused to be true, not trotting is
also caused to be true. It follows from this static causal
law that one can make the turkey be not trotting by
making it be not alive. Therefore, shooting a loaded
gun when the turkey is trotting has not only the “di-
rect effect” of killing the turkey, but also the “indirect
effect,” or “ramification,” of making it stop trotting.

(1) L ¬ Trotting[t0] ⊃ L(false)
(2) L ¬ (Loaded(Gun1)[t0] V Loaded(Gun2) [t0]) ⊃

L(false)
(3) L ¬ Alive[t] ⊃ L ¬ Trotting[t]
(4) t < t ′ & L(Loaded(x))[t] & OCC(Shoot(x))[t]

⊃ L¬ Alive[t ′]
(5) True ⇒ A[t0]
(6) True ⇒ ¬A[t0]

(7) t < t ′ & A[t] ⇒ A[t ′]
(8) t < t ′ & A[t] ⇒ ¬A[t ′]

In the action language AC [5, 6], this action domain
can be formalized as follows.

initially Trotting
initially Loaded(Gun1) V Loaded(Gun2)
¬ Alive suffices for ¬ Trotting
Shoot(x) causes ¬ Alive if Loaded(x)

This AC domain description entails, for instance, the
AC proposition

¬ Trotting after Shoot(Gun1), Shoot(Gun2)

which says that ¬Trotting holds at any time point
after performing the action sequence Shoot(Gun1);
Shoot(Gun2) in the initial situation.

The domain description includes the proposition

¬ Alive suffices for ¬ Trotting

which describes the static causal law: it says that, in the
action domain we are describing, whenever ¬ Alive is
caused, ¬ Trotting is also caused. Because of this static
causal law, it is impossible in this action domain for
trotting to be true when alive is false. It is important to
note here that contraposition fails.

The action domain in this example is correctly for-
malized in TFONL. (1) reflects the assertion that the
turkey is initially trotting, by ensuring that there can be
no consistent extension of the default theory in which
the turkey is initially not trotting. Similarly, (2) states
that at least one of the pilgrim’s guns is initially loaded.
(3) states that the turkey can be made to stop trotting by
making it not alive. Notice that this default rule does
not allow one to derive Alive at t0 from Trotting at t0,
for instance. This reflects the fact that It is important to
note here that contraposition fails for static causal laws.
Nonetheless, in the context of the default theory as a
whole, this default rule guarantees, for instance, that no
consistent extension can include both Trotting at t0 and
¬ Alive at t0. (4) states that the turkey is not alive after
the pilgrim fires a gun, if that gun is loaded. (5) and
(6) reflect the obvious fact that each fluent is either true
or false in the initial situation, by forcing each consis-
tent extension of the default theory to include, for each
fluent F , either the literal F[t0] or the literal ¬F[t0]
is true. It is important to note that this need not be a
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requirement in TFONL. Furthermore, these two rules
guarantee that the default theory takes into account ev-
ery possible initial situation. (7) and (8) the inertia law,
i.e., the principle that remain in the same truth-value
status change unless they are made to change. For in-
stance, since we have the literal Trotting[t0], one of the
persistence/inertia rules allows us to derive the literal
Trotting[t ′] where t < t ′, as long as it is consistent to
do so.

7. A Comparison with Previous Approaches

Van Benthem in [20] gives an insightful and thorough
survey of theories of time. One of the choices which he
explores is that of considering both points and intervals
as a basis of a theory of time. However, he does not offer
a final proposal for a logic.

The interval-based logic by Allen in [2] is one of the
most influential approach in temporal AI. However,
some details about the temporal structure itself are not
very clear. There is no specification whether time is
discrete, dense or continuous. For instance, once den-
sity is allowed something must be said about DIP. One
of the weaknesses of the system is that it cannot deal
with instantaneous events and fluents.

Galton in [7] provides a system G where both
points and interval are primitive. Time is defined as
the structure

〈I, P, Within, Limits, Allen’s relations〉
where I and P are non-empty sets of points and inter-
vals respectively, Within and Limits are point-interval
relations. Let p denotes a point, and i, j, r denote in-
tervals, then G is axiomatized as follows:

(G1) ∀i∃p Within(p, i)
(G2) Within(p, i) & In(i, j) ⊃ Within(p, j)
(G3) Within(p, i) & Within(p, j) ⊃ ∃ r (In(r, i) &

In(r, j))
(G4) Within(p, i) & Limits(p, j) ⊃ ∃ r (In(r, i) &

In(r, j))

where In is defined as the disjunction of the temporal
relations (cf. [1]) During, Starts and Finishes.

G avoids the DIP problem. Some of the weaknesses
in the system G are:

(1) Limits (p, i) leaves vague whether the point p is a
start or an end of the interval i .

(2) No explicit ordering over points.

Vila’s system [22] is one of the latest approaches that
employs points and intervals as a part of the temporal
ontology. The proposal is based on a dense conception
of time. Event/actions and causality are not considered.

IP has a clear ordering < of points and it is stronger
than G. < is irreflexive, asymmetric, transitive, un-
bounded and linear. IP imposes an order on the limits of
an interval which rules out interval with zero duration.
However, it is too strong as both points and interval are
interdefinable which defies the main objective of both
being primitives. Axioms IP7.1, IP7.2 and IP9) state that
any two points define an interval and any interval is lim-
ited by two points. One major concern of IP is the Di-
viding Instant Problem which results from a dense tem-
poral structure. Vila claims that his theory solves the
DIP problem as one does not get an answer for a query
whether a fluent A is true or false at a meeting point
between two adjacent interval. This is not a solution
to DIP as not getting an answer could be equated with
undefined which is problematic in a classical setting.

8. Concluding Remarks

Many applications need to handle the notion of time
and change to some extent. Typically we need to con-
sider instantaneous or durative events and fluents and
both quantitative or qualitative temporal information.
It is important to emphasize that temporal reasoning is
not an isolated issue. and many other kinds of reasoning
need to be considered in relation with it. Some of the
important topics that need to be considered in relation
with it are: deeper considerations of qualitative reason-
ing, the frame, qualification and ramification problems
and non-monotonic reasoning.

In this paper a general formalism for representing
and reasoning with temporal information, event and
change is provided. The temporal framework is based
on a theory of time that takes both points and inter-
val as temporal primitives and where the base logic
is that of Kleene’s three-valued logic. The temporal
framework takes into consideration the need to deal
with instantaneous or durative events and fluents and
both quantitative or qualitative temporal information
and avoids the DIP problem. We have also presented
a three-valued based Temporal First-Order Nonmono-
tonic Logic (TFONL) that employs an explicit repre-
sentation of time and events. We have shown that de-
fault logic can be embodied into TFONL, which takes
into consideration the frame, qualification and ramifi-
cation problems.
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Appendix

Several theories of time have been proposed which can
be classified as point-, interval- or event-based theories
according to whether the primitive time units are points,
intervals or events.

Event-based theories ([8, 17]) take it that “time is
no more than the totality of temporal relations between
the events and processes which constitute the history
of our world. Then defining time is a question about the
actual relations between these events and processes.”
It is important to note that in these theories, an event
denotes any temporal proposition, thus it includes both
events and fluents.

Since interval-based theories are based on the intu-
ition that intervals are the chunk of time occupied by
events, the properties of intervals and events are very
similar. (cf. [17]).

A1. Point-Based Time Structures

Point is the temporal primitive used in many AI systems
(cf., [10, 11] and [16]). These theories are defined over
a set of points and an ordering relation. A point-based
structure is

π =< T, <T>

where T is a non-empty set and <T is a precedence
relation on points of time. Varying the properties of
<T results in different systems. Van Benthem in [20]
suggests that in a minimal point structure, <T should
have the following properties:

(T1) (p1 <T p2) & (p2 <T p3) → p1 <T p3
(Transitivity)

(T2) ¬(p1 <T p1) (Irreflexivity)
(T3) (p1 <T p2) V (p1 = p2)V (p2 <T p1)

(linearity)
(T4) (∀p)(∃p1)(p <T p1)
(T5) (∀p)(∃p1)(p1 <T p)

(T4) (resp. T5) states that for any time point p, there
exist a point p1 that comes after it (resp. before it).

In the structure given above, points are ordered and
mapped on to a time line. We may choose to have the
time line discrete or dense. In a dense model, points
can be seen as rational or real numbers on a number
line. The density axiom is:

(T6) (∀p1)(∀p2)(p1 <T p2)(∃p3)(p1 <T p3 & p3
<T p2)

which simply states that, given any two points, there
exists at least one point between them.

In a discrete structure, points can be seen as integer
numbers on a number line. The corresponding axioms
are:

(T7) (∀p)(∃q)(p <T q) → (∃r )(p <T r &
¬(∃s)(p <T s & s <T r ))

(T8) (∀p)(∃q)(q <T p) → (∃r )(r <T p &
¬(∃s)(r <T s & s <T p))

The axiom (T7) (resp. T8) states that, given any point
which is not the last (resp. first), there exist a point
which is just after (resp. before) it.

A2 Interval-Based Theories

Interval-based theories in AI (cf. [2, 4, 17]) are based
on the intuition that intervals are the chunk of time
occupied by events. Allen in [1] presents a logic of
time in which there were 13 possible primitive relations
between intervals. Allen and Hayes in [3] show that all
the other 12 relations can be define in terms of Meets
which can be axiomatized as follows:

(I1) (∀i, j)(∃k)(Meets(i, k) & Meets( j, k) ⊃ (∀l)
(Meets(i, l) ≡ Meets( j, l))

(I2) (∀i, j) (∃k)(Meets(k, i) & Meets(k, j) ⊃ (∀l)
(Meets(l, i) ≡ Meets(l, j))

(I3) (∀i, j, k, l)(Meets(i, j) & Meets(k, l)
⊃ Meets (i, l), XOR

(∃m)(Meets(i, m) & Meets(m, l) XOR
(∃n)(Meets(k, n) & Meets(n, j)

(I4) (∀i)( (∃ j, k)(Meets( j, i) & Meets(i, k))
(I5) (∀i, j)(Meets(i, j) ⊃ (∃k = i + j ,)(∃m, n)

(Meets(m, i) & Meets(i, j) & Meets(j, n) &
Meets(m, k) & Meets(k, n))

where XOR denotes exclusive OR. (I1) and (I2) state
that every interval has a unique start point and a unique
end point.(I3) define all the possible relations between
any two meeting places. (I4) states that every interval
has one interval the precedes and an interval that suc-
ceeds it. k = i + j is only definable if Meets(i, j) holds
and k contains exactly i and j . (I5) states that for any
two adjacent interval i and j , there exist an interval k
such that k = i + j .
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A3. Event-Based Structures

Event-based theories ([8, 17]) take it that “time is no
more than the totality of temporal relations between
the events and processes which constitute the history
of our world. Then defining time is a question about the
actual relations between these events and processes.”
It is important to note that in these theories, an event
denotes any temporal proposition, thus it includes both
events and fluents.

Since interval-based theories are based on the intu-
ition that intervals are the chunk of time occupied by
events, the properties of intervals and events are very
similar. (cf. [17]).

An event-based structure is:

ε = 〈E, <E , O〉

where E is a non-empty of events, and <E and O are
binary operators on events. <E is the precedence oper-
ator and O is the overlapping operator. The axioms of
ε are as follows:

(E1) (e1 <E e2) → ¬(e2 <E e1)
(Irreflexivity <E )

(E2) (e1 <E e2) & (e2 <E e3) → (e1 <E e)
(Transitivity <E )

(E3) (e1Oe2) → (e2Oe1) (Symmetry O)
(E4) (eOe) (Reflexivity O)
(E5) (e1 <E e2) → ¬(e1Oe2) (Separation)
(E6) (e1 <E e2) & (e2Oe3) & (e3 <E e4) → (e1 <E

e4)
(E7) (e1 <E e2)V (e1Oe2)V (e2 <E e1)

(Linearity)

To capture the fact that there is no first event or
no last event, we need to add one of the following
axioms:

(E8) (∀e)(∃e1)(e1 <E e)
(∀e)(∃e1)(e <E e1)

For further analysis, readers are referred to [8, 19]
and [20].

Since interval-based theories are based on the intu-
ition that intervals are the chunk of time occupied by
events, the properties of intervals and events are very
similar. (cf[17]).
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