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Abstract
Right triangulated categories can be thought of as triangulated categories whose shift func-
tor is not an equivalence. We give intrinsic characterisations of when such categories are
appearing as the (co-)aisle of a (co-)t-structure in an associated triangulated category. Along
the way, we also give an interpretation of these structures in the language of extriangulated
categories.
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1 Introduction

The notion of a t-structure in a triangulated category was introduced by [9] in the study
of perverse sheaves. They are central to the study of stability conditions, in the sense of
Bridgeland [16] and tilting theory [27] and are an area of interest in their own right [4, 25,
54]. Co-t-structures, introduced by Paukzstello [56] and Bondarko [15] (under the name
of ‘weight structures’) are a more recent development and arise from dualising one of the
axioms of a t-structure. They are, however, not quite a dual notion, for example, the heart
of a t-structure is an abelian subcategory, whereas the co-heart of a co-t-structure is rarely
so. Co-t-structures have been studied in the context of Auslander-Buchweitz approximation
theory [30] and in (co-)silting theory [37, 42, 50], where t-structures also play a key role.

In more detail, a (co-)t-structure on a triangulated category T consists of a pair of additive
subcategories (U,V) called the ‘aisle’ and ‘co-aisle’ respectively satisfying three axioms.
The first two of these axioms ask for (U,V) to be a torsion pair on T and the third axiom
requires that U be closed under the (inverse) shift functor of T (see Definition 4.1).We remark
that there is not a consistent terminology in the literature here, for instance in some works,
the term ‘torsion pair’ refers to a t-structure. There are some pleasant articles concerning
the general torsion pairs on triangulated categories [19, 35, 69] though they have seemed
attracted somewhat less interest than (co-)t-structures.

The corresponding notion for abelian categories is that of torsion pairs, which are
extremely important objects [2, 17, 18]. Rump [59] and Bondal & Van den Bergh [3] discov-
ered that every torsion and torsionfree class (the aisles and co-aisles of the abelian world)
is a quasi-abelian category. Moreover, each quasi-abelian category appears as a tilting tor-
sion(free) class in an associated abelian category. In this article, we give the triangulated
analogues of these results for (co-)t-structures. Namely, we answer the question: What are
precisely the categorical structures that appear as aisles and co-aisles of (co-)t-structures in
triangulated categories?

We answer this question in detail for aisles of t-structures and co-aisles of co-t-structures,
whence other co-aisles and aisles have a dual structure. Aswementioned above, the structures
that we are interested in are closed under the shift of the ambient triangulated category, it is
not hard to see that these subcategories have the structure of a right triangulated category
(with right semi-equivalence) which we discuss next.

The data of a right triangulated category (or suspended category), first introduced in [41]
consists of an additive category R, an endofunctor � : R → R called ‘the shift of R’
and a class of right triangles of the form A → B → C → �A subject to essentially the
same axioms as the triangles of a triangulated category (see Definition 2.16). Informally, a
right triangulated category is a triangulated category whose shift functor is not necessarily an
equivalence. Such categories (or their left-handed analogues) have been the subject of study
in many articles [7, 10, 40, 43, 45, 47]. In [6], the class of ‘right triangulated categories with
right semi-equivalence’ were introduced, these are the right triangulated categories whose
shift functor is fully faithful and with image that is closed under extensions.

To every right triangulated category R there is an associated triangulated category: the
stabilisationS(R) (see Sect. 2.3.1 for details and construction). In the casewhereRhas a right
semi-equivalence, S(R) can be thought of as the smallest triangulated category containing
R as a subcategory. Furthermore, we show in Lemma 4.4 that if R is a (co-)aisle in a
triangulated category then it is also a (co-)aisle in S(R). Thus we look to characterise when
R is a (co-)aisle in S(R).
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We give an intrinsic characterisations of when a right triangulated category with right
semi-equivalence,R, appears as the aisle of a t-structure in terms of internal torsion pairs of
R and homological properties.

Theorem A (Theorem 4.11.) Let R be a right triangulated category with right semi-
equivalence. Then the following are equivalent

(a) R is the aisle of a t-structure (R,V) in S(R);
(b) There is a torsion pair (�R,F) in R;
(c) S(R) is equivalent to the co-stabilisation ofR. That is, S(R) has the following universal

property: Every right triangle functor G : T → R with T being a triangulated category
factors uniquely through S(R) (see Sect. 2.3.1).

We note that there are related works [39, 44, 64] that give various characterisations of
aisles and that our approach differs in the sense that we look to give characterisations intrinsic
to the right triangulated category, that is, the aisle, rather than properties of the aisle related
to the ambient triangulated category. We also present our characterisations of co-aisles of
co-t-structures.

Theorem B (Theorem 4.6.) Let R be a right triangulated category with right semi-
equivalence. Then the following are equivalent

(a) R is the co-aisle of a co-t-structure (U,R) in S(R);
(b) R has enough projectives;
(c) There is a torsion pair (ProjR, �R) in R.

Moreover, suppose that for all A, B ∈ R we have that R(A, �i B) = 0 for i >> 0, that is,
R is bounded. Then the above conditions are also equivalent to

(d) ProjR is a silting subcategory of S(R).

Part (d) of the above result adds to the interpretations of silting subcategories in a trian-
gulated category, which are surveyed in [46]. We also note that this result can be thought of
as a generalisation of [7, Theorem 4.2] and that the work of [30] is useful in the proof. We
also obtain the following as a direct consequence.

Corollary A (Corollary 4.7.) There is a correspondence between silting subcategories of tri-
angulated categories and bounded right triangulated categories with right semi-equivalence
that have enough projectives.

An immediate application is that the torsion pairs in TheoremsA andB allowus to describe
intermediate (co-)t-structures (Proposition 4.12).

In order to formally discuss the projective objects, like in Theorem B, and other homo-
logical properties of a right triangulated category, we use the language of extriangulated
categories. These categories were introduced by Nakaoka and Palu in [52] as a simultaneous
generalisation of exact categories and triangulated categories. The framework of extrian-
gulated categories allows one to axiomatise properties of categories that have structural
similarities to exact and/or triangulated categories but fall into neither class, for example
extension closed subcategories of triangulated categories. The formalism of extriangulated
categories then allows homological algebra to be applied to such categories which has been
done successfully by many authors, for example [21, 53, 68]. For us, we are interested in the
fact that right triangulated categories with right semi-equivalence enjoy homological prop-
erties close to those of triangulated categories. We formalise this similarity by showing the
following.
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5 Page 4 of 32 A. Tattar

Theorem C (Corollary 3.13.) A right triangulated category has the natural structure of an
extriangulated category if and only if the shift functor is a right semi-equivalence.

Moreover, we are able to characterise which extriangulated categories have a natural right
triangulated structure.

Theorem D (Theorem 3.12.) The extriangles of an extriangulated category (C,E, s) induce
a right triangulated structure with right semi-equivalence on C if and only if the morphism
X → 0 is an E-inflation for all objects X ∈ C. In other words, the zero object of C is the only
E-injective object and there are enough E-injectives.

To prove this, we use an extriangulated generalisation of the constructions of a right trian-
gulated quotient category from a contravariantly finite subcategory (of an additive category)
due to [14] and [6] (see Proposition 3.6). We also use ideas from relative homological alge-
bra to characterise which extriangulated structures give rise to right triangulated quotient
categories (with right semi-equivalence) (see Proposition 3.7).

The construction of these right triangulated structures can be thought of as a ‘one-sided’
analogue of the triangulated structure of the stable category of a Frobenius exact (or even
extriangulated) category [26, 28]. See [13, 36] for similar constructions.Unsurprisingly, given
the terminology, this one-sidedness also appears in Theorem D as triangulated categories
are precisely the extriangulated categories satisfying both this condition and its dual [52,
Proposition 3.22].

We also show that in the case of Frobenius extriangulated categories, aisles of t-structures
in the triangulated stable category may be constructed as (shifts of) right triangulated quo-
tients.

Theorem E (Theorem 5.1.) Let C = (C,E, s) be a Frobenius extriangulated category and
(U,V) be a t-structure in the triangulated stable category C and set D := �−1V. Then there
is an equivalence of right triangulated categories U ∼= �DCD, where CD denotes the stable
category of C by the ideal of morphisms factoring through objects of D and �D is its shift
functor.

In [61, Proposition 3.9], it was shown that t-structures in an algebraic triangulated cate-
gory correspond bijectively to certain complete cotorsion pairs in the associated Frobenius
exact category. Additionally, it was observed in [51, Proposition 2.6] that t-structures in a
triangulated category are precisely cotorsion pairs satisfying a shift closure property. Thus
these results and Theorem E complement each other since, via these bijections, a t-structure
(U,V) corresponds to a cotorsion pair (U, �−1V) (Remark 5.2).

The article is organised as follows. In Sect. 2 we recall the necessary background material
on relative homological algebra, extriangulated categories and right triangulated categories.
In Sect. 3 we show how one may use relative homological algebra to construct new extrian-
gulated structures and characterise the projectives and injectives of these new structures. We
then investigate how such extriangulated structures induce a right triangulated structure on a
quotient category and use this to prove Theorems C andD.We begin Sect. 4 with a discussion
of torsion pairs in a right triangulated category with right semi-equivalence. We then go on to
prove the characterisations of right triangulated categories as (co-)aisles of (co-)t-structures
of Theorems A and B and use these to describe related classes of (co-)t-structures. We end in
Sect. 5 by proving Theorem E using the right triangulated quotient categories from Sect. 3.

Although the theory of extriangulated categories and relative homological algebra is not
necessary for Theorem A and Theorem B(a,c), we have chosen this order as it allows us to
discuss the role of extriangulated categories throughout.
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We note that dual results for left triangulated categories (with left semi-equivalence) hold
but remain unstated. Categories are assumed to be additive and idempotent complete. When
we say an additive subcategory, we mean a subcategory that is closed under isomorphisms,
direct sums and direct summands.

2 Background

2.1 Relative Homological Algebra

We briefly recall some basic definitions from relative homological algebra introduced in
[32] and state some useful properties. Let C be an additive category and let MorC denote the
category of morphisms in C.

Definition 2.1 LetD ⊂ Ob(C) be a class of objects. Amorphism f : A → B in C isD-monic
if all morphisms A → D with D ∈ D factor through f

A B

D

f

∀ ∃
D �

or, equivalently, C( f ,−)|D : C(B,−)|D → C(A,−)|D is an epimorphism. By Mon(D) we
denote the class of allD-monic morphisms in C. We define the notion of aD-epic morphism
and the class Epi(D) dually.

Similarly, for a class of morphisms ω ⊂ Ob(MorC), an object J ∈ C is ω-injective if for
every morphism f : A → B in ω, all morphisms A → J factor through f

A B

J

∀ f ∈ω

∀ ∃

or, equivalently, C( f , J ) is an epimorphism for all f ∈ ω. By Inj(ω) we denote the class
of all ω-injective objects in C. We define the notion of an ω-projective object and the class
Proj(ω) dually.

Example 2.2 (a) C-monics are precisely sections.
(b) The injective objects of C, InjC, are defined to be those objects that are injective relative

to the class of monomorphisms of C,M. That is InjC = Inj(M). C is said to have enough
injective objects if every object A in C admits a monomorphism g : A ↪→ I where
I ∈ InjC called the injective hull of A. Suppose that C has enough injective objects, then
the class of InjC-monic morphisms coincides withM, the class of monomorphisms in C.
Indeed, clearly M ⊆ Mon(InjC). For the converse, let f : A → B be InjC-monic. Then
the injective hull g : A ↪→ I of A factors as g′ f for some g′ : B → I . It follows that f
is also a monomorphism.

(c) A left D-approximation [8] of an object A is just a D-monic morphism A → B such
that B ∈ D.

(d) In an extriangulated category (defined in the next section) (C,E, s) the E-injectives are
precisely Inj({E-inflations}).
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5 Page 6 of 32 A. Tattar

Definition 2.3 A commutative square

A B

A′ B ′

x

f f ′

x ′

in C is a weak pushout if for all pairs of morphisms g : A′ → C , y : B → C such that
g f = yx , there exists a (not necessarily unique) morphism h : B ′ → C such that h f ′ = y
and hx ′ = g:

A B

A′ B ′

C .

x

f f ′
y

x ′

g

∃h

We collect some useful properties.

Lemma 2.4 Let D be a class of objects in C. Then the following hold.

(a) Mon(D) is closed under composition and retracts;
(b) Mon(D) is left divisive, that is, g f ∈ Mon(D) implies that f ∈ Mon(D);
(c) Mon(D) is closed under weak pushouts.

Proof (a) and (b) are easily verified. Let us show (c). Let

A B

A′ B ′

x

f f ′

x ′

be a weak pushout square in Cwith x ∈ MonD. We must show that x ′ ∈ MonD. To this end,
let g : A′ → D be a morphism with D ∈ D. Then, as x isD-monic, there exists a morphism
y : B → D such that yx = g f . Now, by the weak pushout property there exists a morphism
h : B ′ → D such that hx ′ = g as required. ��

The interested reader may look at [49] and [60] for more properties of D-monics and
ω-injectives. For other applications of these notions, look, for instance in [11, 20, 33].

2.2 Extriangulated Categories

In this section we put the background on extriangulated categories following [52, Section 2]
where such categories were introduced. Let C be an additive category and E : Cop ×C → Ab
be an additive bifunctor.

Definition 2.5 For any A,C ∈ C, two pairs of composable morphisms in C

A
x−→ B

y−→ C and A
x ′−→ B ′ y′

−→ C
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The Structure of Aisles and Co-aisles… Page 7 of 32 5

are equivalent if there exists an isomorphism b : B → B ′ such that

A B C

A B ′ C

x

b∼=

y

x ′ y′

commutes. We denote the equivalence class of A
x−→ B

y−→ C by [A x−→ B
y−→ C], and

by S(C, A) we denote the class of all such equivalence classes.

Notation 2.6 For a : A → A′ write a∗ = E(−, a) : E(−, A) → E(−, A′). Similarly, we
write c∗ = E(c,−) : E(C ′,−) → E(C,−) for c : C → C ′.

Definition 2.7 [52, Definitions 2.9, 2.10] An assignment sC,A : E(C, A) → S(C, A) for all
C, A ∈ C is an additive realisation of E if it satisfies the following axioms.

(S1) s(0) = [A → A ⊕ C → C].
(S2) s(δ) ⊕ s(δ′) = s(δ ⊕ δ′) ∈ S(C ⊕ C ′, A ⊕ A′) for δ ∈ E(C, A), δ′ ∈ E(C ′, A′).
(S3) For all s(δ) = [A x−→ B

y−→ C] and s(δ) = [A′ x ′−→ B ′ y′
−→ C ′] such that a∗δ = c∗δ′

for a : A → A′ and c : C → C ′ (that is, (a, c) : δ → δ′ is a morphism of E-extensions),
there is a commutative diagram in C

A B C

A′ B ′ C ′

x

a ∃b

y

c

x ′ y′

and in this case we say that the triple (a, b, c) realises the morphism of E-extensions
(a, c) : δ → δ′.

Notation 2.8 If s(δ) = [A x−→ B
y−→ C] we may also write

A B Cx y δ

and call this an extriangle. In this situation we also call x anE-inflation and y anE-deflation.
We may also say that y : B → C is the cone of x and x : A → B is the co-cone of y.

Definition 2.9 [52, Definition 2.12] A triple (C,E, s) is an extriangulated category if it sat-
isfies the following conditions. In this case we call the pair (E, s) an external triangulation
of C and s an E-triangulation of C.

(ET1) E : Cop × C → Ab is an additive bifunctor.
(ET2) s is an additive realisation of E.
(ET3) For all commutative diagrams with extriangles as rows

A B C

A′ B ′ C ′
a b

δ

∃c
δ′

there exists c : C → C ′ making the diagram commute and such that (a, c) : δ → δ′ is
a morphism of extriangles.
(ET3)op Dual to (ET3).
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5 Page 8 of 32 A. Tattar

(ET4) For any pair of extriangles of the form

A B D
f f ′

δ
, B C F

g g′
δ′

there exists a commutative diagram

A B D

A C E

F F

f f ′

g h

δ

g f

g′

e δ′′

h′

δ′ ( f ′)∗δ′

with columns and rows being extriangles such that h∗δ′′ = δ and f∗δ′′ = (h′)∗δ′ (that
is, ( f , h′) : δ′′ → δ′ is a morphism of extriangles).
(ET4)op Dual to (ET4).

For the rest of this section, let (C,E, s) be an extriangulated category.

Remark 2.10 [52, Remark 2.18] Let X ⊆ C be a subcategory of C that is closed under E-
extensions, that is, for all extriangles

A B C

the implication A,C ∈ X ⇒ B ∈ X holds. Then (X,E|X, s|X) is an extriangulated category.

Lemma 2.11 [52, Corollary 3.12] Let A B Cx y δ

be an extriangle. Then there are long exact sequences

C(−, A) C(−, B) C(−,C) E(−, A) E(−, B) E(−,C)

C(C,−) C(B,−) C(A,−) E(C,−) E(B,−) E(A,−)

C(−,x) C(−,y) δ# E(−,x) E(−,y)

C(y,−) C(x,−) δ# E(y,−) E(x,−)

of functors and natural transformation in the functor categories [Cop,Ab] and [C,Ab] respec-
tively. The maps δ# and δ# are given at X ∈ C by

(δ#)X : C(X ,C) → E(X , A), (δ#)X : C(A, X) → E(C, X)

f �→ f ∗δ g �→ g∗δ.

Lemma 2.12 [48, Proposition 1.20] Let δ ∈ E(C, A) be an extriangle and a ∈ C(A, A′)
a morphism. Then there exists a morphism b such that (a, b, 1) realises the morphism of
extriangles (a, 1) : δ → a∗δ

A B C

A′ B ′ C .

x

a

y

b

δ

x ′ y′ a∗δ
(1)

and such that the sequence A A′ ⊕ B C

[ −a
x

]
[ y b ] y′∗δ

is an extriangle.

Corollary 2.13 The left hand square in Diagram 1 is a weak pushout and weak pullback.
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The Structure of Aisles and Co-aisles… Page 9 of 32 5

Proof ByLemma2.11, everyE-deflation of an extriangle is aweak cokernel of theE-inflation
and dually everyE-inflation is a weak kernel. The claim now follows fromLemma 2.12, since
the weak pushout property is equivalent to

[
y b

] : A′ ⊕ B → C being a weak cokernel of[−a
x

]
: A → A′ ⊕ B. ��

Lemma 2.14 [52, Corollary 3.5] Let

A B C

A′ B ′ C ′

x

a

y

b

δ

c

x ′ y′
δ′

be a morphism of extriangles. Then the following are equivalent

(a) a factors through x;
(b) a∗δ = c∗δ′ = 0;
(c) c factors through y′.

Definition 2.15 Let C = (C,E, s) be an extriangulated category. An object P ∈ C is E-
projective ifE(P,C) = 0 for allC ∈ C . ByProjECwedenote the subcategory ofE-projective
objects. We say that C has enough E-projectives if for all C ∈ C there exists an extriangle

A P C

with P ∈ ProjEC. The notions of E-injectives and having enough E-injectives are defined
dually. The subcategory of E-injective objects is denoted by InjEC.

2.3 Right Triangulated Categories

We begin by recalling in full the definition of a right triangulated (or suspended) category
first introduced in [41].

Definition 2.16 Let R be an additive category and � : R → R an endofunctor. A right
triangulation of the pair (R, �) is a collection � of sequences of the form

A B C �A

in R that satisfy the following axioms.

(R1) (i) � is closed under isomorphisms. That is, for every commutative diagram

A B C �A

A′ B ′ C ′ �(A′)
f � f

inR whose vertical arrows are isomorphisms, one row belongs to � if and only if
the other row also belongs to �.

(ii) For every A ∈ R, the sequence

0 A A 0
1A

belongs to �.

123



5 Page 10 of 32 A. Tattar

(iii) Every morphism x : A → B in R can be embedded into a sequence

A B Cx �Ax

in �.
(R2) If the sequence

A B C �Ax y z

is in � then so is the sequence

B C �A �B.
y z −�z

(R3) Every commutative diagram

A B C �A

A′ B ′ C ′ �(A′)
f � f

in R whose rows belong to � can be extended to a commutative diagram

A B C �A

A′ B ′ C ′ �(A′).
f � f

(R4) Let

A B X �A, B C Y �B,
x x ′ x ′′ y y′ y′′

and

A C Z �A
yx z′ z′′

be sequences in �. Then there is a commutative diagram

A B X �A

A C Z �A

B C Y �B

�X

x x ′

y

x ′′

α

yx

x

z′ z′′

β �x
y y′ y′′

γ
�(x ′)

in R such that the dotted column belongs to �.

If� is a right triangulation of (R, �), then the triple (R, �,�) is called a right triangulated
category and the sequences in � are called right triangles. Following [6], if the functor � is
fully faithful and its image,�R, is closed under extensionswe call� a right semi-equivalence
and R a right triangulated category with right semi-equivalence.

Definition 2.17 Let (R, �,�) and (R′, �′,�′) be right triangulated categories. An additive
functor F : R → R′ is a right triangle functor if

123



The Structure of Aisles and Co-aisles… Page 11 of 32 5

(a) There is a natural isomorphism ζ : F� �′F
∼= ;

(b) For all right triangles A B C �Ax y z
in �, the sequence

FA FB FC �′FAFx Fy ζA◦Fz

is in �′.

Remark 2.18 Let R = (R, �,�) be a right triangulated category such that �R is closed
under extensions. Then the subcategory�R naturally inherits the structure of a right triangu-
lated category. Clearly, if � is a right semi-equivalence then �R is also a right triangulated
category with right semi-equivalence. We will see in Sect. 5 examples where �R is a right
triangulated category with right semi-equivalence butR is not.

For homological properties of right triangulated categories we point the reader to [6].
We finish this subsection by noting that there are no finite right triangulated categories

with right semi-equivalence that are not triangulated. This is one of the many ways to see that
any additively finite (that is, the set of isomorphism classes of indecomposables inR is finite)
idempotent complete hom finite triangulated category admits no non-trivial (co-)t-structures.
We refer to [5] for a discussion of such categories in the k-linear setting.

Lemma 2.19 LetR = (R, �,�) be a hom finite right triangulated category with right semi-
equivalence. Suppose thatR is additively finite, then � is an autoequivalence. In particular,
R = (R, �,�) is a triangulated category.

Proof Let S = {X1, . . . , Xn} be a set of isomorphism classes of indecomposable objects in
R. Since � is additive, fully faithful andR is idempotent complete, � acts as a permutation
on the set S and we deduce that �m = 1R for some m ∈ N. ��

2.3.1 (Co-)stabilisation of a Right Triangulated Category

We recall the definitions of two triangulated categories associated to a right triangulated
category: the stabilisation and costabilisation.

The stabilisation of a right triangulated category, R = (R, �,�), consists of a pair
(S(R), s) where S(R) is a triangulated category and s : R → S(R) is a right triangle
functor satisfying a universal property: For all right triangle functors F : R → T with T
being a triangulated category, there exists a unique triangle functor F ′ : S(R) → T such that
F ′s = F

R S(R)

T.

s

∀F
∃!F ′

Dually, the co-stabilisation of R consists of a pair (C(R), c) where C(R) is a triangulated
category and c : C(R) → R is a right triangle functor satisfying a universal property: For
all right triangle functors G : T → R with T being a triangulated category, there exists a
unique triangle functor G ′ : T → C(R) such that G = cG ′.

The stabilisation and co-stablisation of a right triangulated category always exist. Sincewe
will use it explicitly, we recall the construction of the stablisation from [12, Section 3.1] and
[29]; see also [22]. For more information on the co-stabilisation, which may be constructed
as the category of spectra, we refer to [24, Section 4.5-4.7]; see also [12, 38].

LetR = (R, �,�) be a right triangulated category.
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Definition 2.20 We define the additive category S(R) as follows. The objects of S(R) are
pairs (A, n) with A ∈ R and n ∈ Z. The spaces of morphisms are given by

S(R) [(A, n), (B,m)] = colim−→k∈J

(
R(�n−k A, �m−k B)

)
, J = {k ∈ Z | k ≤ min{n,m}}.

There is an autoequivalence of S(R) which is given on objects by �(A, n) = (A, n+1) and
induced on morphisms by the natural map

R(�n−k A, �m−k B) → R(�n+1−k A, �m+1−k B)

for all k ≤ min{m, n}. By abuse of notation, we denote this autoequivalence also by �.
The functor s : R → S(R) is given on objects by s(A) = (A, 0) and for a morphism

f : A → B, s( f : A → B) is the zero-representative of S(R)((A, 0), (B, 0)).
Triangles in S(R) are given by sequences isomorphic to sequences of the form

(A, n) (B,m) (C, l) (A, n + 1)x y z

such that there exists k ≤ min{n,m, l} such that

�n−k A �m−k B �l−kC �n+1−k A
(−1)k�−k x (−1)k�−k y (−1)k�−k z

(2)

is a right triangle in R.

One may verify that s� ∼= �s and that s is a right triangle functor.

Remark 2.21 We make some observations.

(a) If the endofunctor � : R → R is fully faithful, then the morphism spaces in S(R) are
neater

S(R) [(A, n), (B,m)] ∼= R(�n−k A, �m−k B), ∀k ≤ min{n,m}.
Further, in this case, s : R → S(R) is fully faithful and S(R) is the smallest triangulated
category that containsR as a full right triangulated subcategory.

(b) If � : R → R is a right semi-equivalence then the ‘there exists’ preceding Equation (2)
can be replaced by ‘for all’.

(c) If � is not dense, then every non-zero indecomposable object in S(R)\R is isomorphic
to an object of the form (A, n) with A ∈ (R \ �R) and n < 0. Indeed, let X ∈ S(R)

be indecomposable, then by definition, X ∼= (B,m) for some indecomposable B ∈ R
and m ∈ Z. If m ≥ 0 then (B,m) ∼= (�m B, 0) and X ∈ R, thus we may assume that
m ≤ 0. Now, if B ∈ R \ �R then we are done. Else, B = �B ′ for some B ′ ∈ R and
X ∼= (B ′,m+1). The statement now follows by an inductive argument since this process
must terminate in fewer than m steps by the above. We note that given a presentation
X ∼= (A, n) with A ∈ (R \ �R) indecomposable and n < 0, then n is maximal, that is,
there exists no B ∈ R and m > n such that X ∼= (B,m). Indeed, if this were the case,
then we would have that A ∼= �m−n B, which is a contradiction.

Many categorical properties of S(R) are inherited from R, for instance if R has (co-
)products then so does S(R). The following properties will be useful for our work.

Lemma 2.22 Suppose that the endofunctor � : R → R is fully faithful and that for all
A, B ∈ R we have that R(A, �i B) = 0 for i >> 0. Then, for all X , Y ∈ S(R) we have
that S(R)(X , �i Y ) = 0 for all i >> 0.
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Proof Let X , Y ∈ S(R) then there exists A, B ∈ R and k > 0 such that �k X ∼= A and
�kY ∼= B. Therefore, for i >> 0, we have that

S(R)(X , �i Y ) ∼= S(R)(A, �i B) ∼= R(A, �i B) = 0.

��
We call a right triangulated category satisfying the condition of the above Lemma 2.22

bounded.

Lemma 2.23 Let R = (R, �,�) be a right triangulated category with right semi-
equivalence. ThenR is extension closed as a subcategory of S(R).

Proof Let

(A, n) (B,m) (C, l) (A, n + 1)x y z

be a triangle in S(R) with (A, n), (C, l) in R. We must show that (B,m) ∈ R. We may
assume that n = l = 0 and it suffices to show that (B,m) ∼= (B ′,m′) for some B ′ ∈ R and
m′ ≥ 0.

For that purpose, suppose m < 0, then min{m, n, l} = m and, by definition, there is a
right triangle inR

�−m A B �−mC �1−m A.
(−1)m�−mx (−1)m�−m y (−1)m�−mz

As � : R → R is a right semi-equivalence, we deduce that B ∈ �R so that B = �B1

for some B1 ∈ R. Then (B,m) = (�B1,m) ∼= (B1,m + 1). By repeating this argument m
times, we find a B ′ so that (B,m) ∼= (B ′, 0) ∈ R as required. ��
Example 2.24 Let T be a triangulated category and R ⊂ T a subcategory that is closed
under positive shifts and extensions. ThenR is a right triangulated category with right semi-
equivalence and S(R) ∼= cosuspT(R), the smallest subcategory of T containing R that is
closed under negative shifts and extensions.

For more examples of the stabilisation of right triangulated categories, see [12, Section
3.1] and [41].

3 Right Triangulated Categories as Extriangulated Categories

The aim of this section is show that right triangulated categories have a natural extriangulated
structure precisely when the shift functor is a right semi-equivalence.We also describe which
extriangulated categories have a right triangulated structure. To do this, we begin by using
relative homological algebra to define new extriangulated structures from existing ones (Sect.
3.1). We then show when these new extriangulations induce right triangulated structures on
a quotient category (Sect. 3.2). With these tools in hand we complete the above aims in Sect.
3.3.

3.1 Extriangulated Structures Using Relative Homological Algebra

In this section we show how one can use relative homological algebra to construct new extri-
angulated structures and characterise when these exact structures have enough injectives/
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projectives. The existence of these extriangulated structures also follows from [31, Proposi-
tion 3.17] for n = 1 but we give an alternative proof using relative notions. We begin with
an easy lemma.

Lemma 3.1 Let (C,E, s) be an extriangulated category,D be a class of objects in C and δ be
an extriangle. Then the following are equivalent

(a) There exists representative of s(δ), A
x−→ B

y−→ C, such that x is D-monic;
(b) The E-inflation of every representative of s(δ) is D-monic.

Proof (a)⇒(b) follows from Lemma 2.4(c). (b)⇒(a) is obvious. ��
Proposition 3.2 Let (C,E, s) be an extriangulated category and D a class of objects in C.
Consider the classes of extriangles for A,C ∈ C

ID(C, A) = { A B Cx y δ ∈ E(C, A) | x ∈ Mon(D)},
PD(C, A) = { A B Cx y δ ∈ E(C, A) | y ∈ Epi(D)}, and

DD(C, A) = { A B Cx y δ ∈ E(C, A) | x ∈ Mon(D), y ∈ Epi(D)} = ID ∩ PD.

Then (ID, s|ID), (PD, s|PD) and (DD, s|DD) all define external triangulations of C. Moreover,

D ⊆ InjIDC ⊆ InjDDC and

D ⊆ ProjPDC ⊆ ProjDDC.

Additionally, suppose that D = Add(D) then the following hold.

(a) IfD is covariantly finite and leftD-approximations areE-inflations thenD = InjIDC and
C has enough ID-injectives.

(b) If D is contravariantly finite and right D-approximations are E-deflations then D =
ProjPDC and C has enough PD-projectives.

(c) If D is functorially finite, left (resp. right) D-approximations are E-inflations (resp. E-
deflations) and cones (resp. co-cones) of left (resp. right) D-approximations are D-epic
(resp. D-monic) then D = InjDDC = ProjDDC and C has enough DD-injectives and
DD-projectives.

Proof We prove the statements for ID whence the remaining claims follow from dual and
combined arguments. Let δ ∈ ID(C ′, A), a ∈ C(A, A′) and c ∈ C(C,C ′). By [31, Proposition
3.14] it is enough to show that a∗δ ∈ ID(C ′, A′), c∗δ ∈ ID(C, A) and ID-inflations are
closed under composition. The first follows from Corollary 2.13 and Lemma 2.4(c) and the
third from Lemma 2.4(a). To show the second claim consider the morphism of extriangles
(1, c) : c∗δ → δ

A B C

A B ′ C ′ .

x y

b

c∗δ

c

x ′ y′
δ

We see that x ′ = bx ∈ Mon(D) and hence x is D-monic by Lemma 2.4(b).
We verify the additional claims. By construction we have that the class of ID-inflations,

ω, is contained in the class of D-monic morphisms. Thus

D ⊆ Inj(Mon(D)) ⊆ Inj(ω) = InjIDC.
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Now additionally suppose that D = Add(D), D is covariantly finite and left D-
approximations are E-inflations. Then for every object I ∈ InjIDC there is an ID-inflation
i : I → D with D ∈ D. We deduce that I is a direct summand of D and we are done. ��
Notation 3.3 Let (C,E, s) be an extriangulated category. For brevity, in the sequel we will
say a subcategoryD of C has property (∗) ifD = Add(D),D is covariantly finite and all left
D-approximations are E-inflations.

We note that one may view the Frobenius property [26, 28] of external triangulations of
an idempotent complete category through the lens of relative homological algebra.

Corollary 3.4 An extriangulated category (C,E, s) is Frobenius if and only if there exists a
functorially finite additive subcategory P such that

(a) All left P-approximations are E-inflations and all E-inflations are P-monic;
(b) All right P-approximations are E-deflations and all E-deflations are P-epic.

In other words, P = ProjDPC = InjDPC and DP = E.

3.2 Right Triangulated Stable Categories

We show how extriangulations can induce right triangulated structures on a quotient category.
The construction is reminiscent of the triangulated structure of the stable category of a
Frobenius exact category [26, 28].

Set-up: For the rest of this section, let (C,E, s) be an extriangulated category and D ⊆ C
be a subcategory satisfying property (∗). For each A ∈ C we make a choice of extriangle

A D(A) �DA
iA pA δA (3)

where i A is a leftD-approximation of A. We also define�D on morphisms: Let f : A → B.
Then, as i A is D-monic, there exists D( f ) : D(A) → D(B) such that D( f )i A = iB f and
thus, by (ET3) there exists amorphism�D f : �DA → �DB such that ( f , �D f ) : δA → δB
is a morphism of extriangles

A D(A) �DA

B D(B) �DB .

i A

f ∃ D( f )

pA

∃ �D f

δA

iB pB

δB

(4)

By CD we denote the stable category of C by the ideal of morphisms factoring through objects
of D.

The following lemma is similar to [52, Claim6.1].

Lemma 3.5 The construction above of �D defines an additive endofunctor CD → CD. Fur-
ther, any other choice of extriangles δA yields a naturally isomorphic endofunctor.

Proof We keep the notation of the above paragraph. First we show that�D is well-defined on
morphisms in CD, that is, the construction of�D f is independent of the choicesmade ofD( f )
and in (ET3). Indeed, let g : �DA → �DB be anymorphism such that ( f , g) : δA → δB is a
morphismof extriangles. Then g∗δB = f∗δA = (�D f )∗δB and therefore (g−�D f )∗δB = 0.
By Lemma 2.14, g − �D f factors through pB and hence g − �D f = 0 in CD.
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Now suppose for all A ∈ C we have another choice of extriangle

A D′(A) �′
DA

i ′A p′
A δ′

A

which then results in another endofunctor �′
D : CD → CD. Then, since i A is D-monic,

there exists s : D(A) → D′(A) such that siA = i ′A. Then, by (ET3) there exists tA =
t : �DA → �′

DA such that (1, t) : δA → δ′
A is a morphism of extriangles. Similarly, we

obtain a morphism t ′A = t ′ : �′
DA → �DA such that (1, t ′) : δ′

A → δA is a morphism of
extriangles

A D(A) �DA

A D′(A) �′
DA

A D(A) �DA .

i A

∃ s

pA

∃ t

δA

i ′A p′
A

∃

δ′
A

∃ t ′
i A pA δA

We claim that {tA}A∈CD is an isomorphism of functors �D → �′
D with inverse given by

{t ′A}A∈CD . The fact that the tA are isomorphisms in CD follows from the observation that
(1, t ′t) : δA → δA is a morphism of extriangles and hence, by using a similar argument to
the above, we see that t ′t = 1�DA in CD. Dually, t t ′ = 1�′

DA.

It remains to verify that {tA}A∈CD is a natural transformation. Let f : A → B we must
show that tB�D f = �′

D f tA. This follows from the observation that the pairs ( f , (tB�D f ))

and ( f , (�′
D f tA)) both define morphisms of extriangles δA → δ′

B . ��
Proposition 3.6 The stable category CD with the endofunctor�D admits a right triangulation
given by the collection of all sequences isomorphic to sequences of the form

A B C �x
f g h

that fit into a commutative diagram in C

A D(A) �DA

B C �DA .

i A

f

pA δA

g h f∗δA

Furthermore, �DCD is always closed under extensions and �D is fully faithful if and only
if D ⊂ ProjIDC.

Proof The arguments of [6, Theorem 3.3] and [14, Theorem 3.1] may be recycled to the
extriangulated setting. ��

We can precisely describe when �D is a right semi-equivalence.

Proposition 3.7 Suppose additionally that cones of left D-approximations are D-epic. Then
the following hold.

(a) ID = DD.
(b) CD is a right triangulated category with right semi-equivalence.
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(c) For all A,C ∈ C there is a functorial isomorphism of abelian groups

F = FC,A : CD(C, �DA)
∼=−→ DD(C, A)

f �−→ f ∗δA.

Proof Claims (a) and (b) follow directly from Propositions 3.2 and 3.6. It remains to show
(c):

F is well-defined: We must check that if f = g ∈ CD(C, �DA) then f ∗δA = g∗δA.
Indeed, in this case, f − g = 0 and, since pA is D-epic by part (a), f − g factors through
pA. Now, by Lemma 2.14, ( f − g)∗δA = 0 and we are done. Note that this also shows the
injectivity of F , since f ∗δA = 0 implies that f factors through pA and thus f = 0.

F is bijective: It remains to show that F is surjective. Let γ ∈ DD(C, A) be realised

by A B Cx y
. Then, since x is D-monic there exists g : B → D(A) such that

gx = i A. By (ET3), there then exists f : C → �DA such that (1, f ) : γ → δA is a
morphism of extriangles. In other words, γ = f ∗δA =: F( f ).

A B C

A D(A) �DA .

x

∃g

y

∃ f

f ∗δA

iA pA

δA

F is a homomorphism of abelian groups: This is straightforward:

F( f + f ′) = ( f + f ′)∗δA = f ∗δA + f ′∗δA = F( f ) + F( f ′).

Functorality in the first argument: Let c ∈ C(C,C ′). Then for all f ∈ CD(C ′, �A)

FC,ACD(c, �DA) : f �−→ f c �−→ ( f c)∗δA
DD(c, A)FC ′,A : f �−→ f ∗δA �−→ c∗ f ∗δA = ( f c)∗δA

which proves the claim.
Functorality in the second argument: Let α ∈ CD(A, A′) and set �Dα = a ∈

CD(�DA, �DA′). Then for all f ∈ CD(C, �DA)

FC,A′CD(C, a) : f �−→ a f �−→ (a f )∗δA
DD(C, α)FC,A : f �−→ f ∗δA �−→ α∗ f ∗δA = ( f )∗α∗δA = ( f )∗a∗δA

where the last equality in the second line follows from the definition of �D. ��
In light of Corollary 3.4, extriangulated categories (C,E, s) such that the injective stable

category C InjE is a right triangulated category with right semi-equivalence have a ‘one-sided
Frobenius’ property: There are enough injectives and each injective object is projective. This
imbalance of projectives and injectives and also Lemma 2.19 indicate that we must look in
extriangulated categories with infinitely many objects for examples of quotients that are right
triangulated with right semi-equivalence.

Example 3.8 (a) Let Q be the infinite quiver

1 ← 2 ← 3 ← . . .

and consider the categoryA = modK Q/radm for somem > 1.A is an abelian category
and with its maximal exact structure it is an extriangulated category. Observe that A
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has enough injectives and that each injective object is projective. Indeed, Ir = Pr+m−1.
But not every projective object is injective, for instance P1 = S1 is not injective. Thus,
by Theorem 3.6, the quotient category AInjA is a right triangulated category with semi-
equivalence with the shift given by the co-syzygy functor.

(b) Let C = (C,E, s) be an extriangulated category and let (U,V) be a cotorsion pair in
C [52, Definition4.1]. It is easily verified that V satisfies property (∗). Thus CV is a
right triangulated category. We will investigate examples of this flavour for the case
of Frobenius extriangulated categories further in Sect. 5. Let us note that the class of
subcategories satisfying property (∗) is more general than the class of cotorsion pairs,
since the subcategories giving cotorsion pairs must be closed under extensions.

(c) Let T be a compactly generated triangulated category. Recall that a subcategory X of T
is definable if there is a class of morphisms ω between compact objects in T such that
X = Inj(ω) [34, Section 4.1]; where it was also shown that every definable category
admits left approximations. Thus, since in a triangulated category every morphism is an
E-inflation, it follows that TX is a right triangulated category.
The author would be interested to know if is possible to classify when the examples in (b)

and (c) that result in right triangulated categories with right semi-equivalence.

3.3 Right Triangulated Extriangulated Categories

We characterise right triangulated categories as extriangulated categories. We begin with
some terminology and a useful lemma.

Definition 3.9 Let (R, �,�) be a right triangulated category. We say that the right triangu-
lation � induces an extriangulated structure on R if there exists an external triangluation

(E, s) ofR such that for all right triangles A
x−→ B

y−→ C
z−→ �A, there is an extriangle

A
x−→ B

y−→ C
δ���.

Lemma 3.10 [52, Proposition 3.30] Let (C,E, s) be an extriangulated category and D ⊆
ProjE(C) ∩ InjE(C) be a full, additive, replete subcategory. Then the stable category CD
inherits an external triangulation, (E, s), given by

(a) E(C, A) = E(C, A) for all A,C ∈ C;
(b) E(c, a) = E(c, a) for all a ∈ C(A, A′), c ∈ C(C ′,C);

(c) s(δ) = [A B C
x y ] where s(δ) = [A B Cx y ] for all extriangles δ.

Example 3.11 We give two important classes of examples.

(a) Let T be a triangulated category. Then the triangulation of T is a right triangulation which
induces an extriangulated structure on T. See [52, Section 3.3]. This was a motivating
example for the introduction of extriangulated categories.

(b) Let (C,E, s) be an extriangulated category and D ⊂ C be a subcategory satisfying
property (∗) and such that all cones of leftD-approximations areD-epic. By Proposition
3.2 we have that D ⊆ ProjDD(C) ∩ InjDD(C) and it follows from Proposition 3.7(c) that
the right triangulated structure on CD of Proposition 3.6 coincides with the extriangulated
structure ofLemma3.10 inducedby the external triangulation (DD, s|DD). In otherwords,
the right triangulation of CD (with right semi-equivalence) induces an extriangulation on
CD. Let us note that this could also be deduced from a combination of Lemma 2.23,
Remark 2.10 and the above Example.
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We may now state and prove the main result of this section.

Theorem 3.12 Let (C,E, s) be an extriangulated category. Then the following are equivalent

(a) There exists a fully faithful additive endofunctor � : C → C such that E(−, ?) ∼=
C(−, �?) and that the image �C is closed under E-extensions;

(b) InjE(C) = {0} and there are enough E-injectives;
(c) There is a right triangulation of C that induces the extriangulated structure (E, s).

Proof (a)⇒(b): We claim that, for each A ∈ C, the morphism 1�A ∈ C(�A, �A) ∼=
E(A, �A) is realised by the sequence [A → 0 → �A]. Indeed, we may use a similar

argument to that of [52, Lemma3.21]: Let s(1�A) = [A E �Ax y ], then by Lemma 2.11
there is a long exact sequence in [Cop,Ab]

C(−, A) C(−, E) C(−, �A) C(−, �A) C(−, �E).
C(−,x) C(−,y) (1�A)#=id C(−,�x)

It follows that y = 0 and �x = 0. Thus x = 0 since � is faithful. Now the exactness of
0 → C(−, E) → 0 implies that E ∼= 0. Thus, if I is an E-injective object then it is a direct
summand of 0 and so I = 0.

(b)⇒(a),(c): In this case, the subcategory {0} satisfies E = I{0} = D{0}. Thus the stable
category C{0} ∼= C has a right triangulated structure with right semi-equivalence by Proposi-
tions 3.6 and 3.7 with shift functor given by �X = �{0}X := cone(X → 0). The claims
follow from Example 3.11(b). In particular, by Proposition 3.7(c) there is a functorial iso-
morphism

E(−, ?) = D{0}(−, ?) ∼= C{0}(−, �{0}?) = C(−, �?).

(c)⇒(b):By the axiom (R3)(iii), for all A ∈ C, the morphism A → 0 is the first morphism
in a right triangle. Thus, by assumption, A → 0 is an E-inflation and the claim follows. ��

As a direct consequence, we see that, in general, right triangulated categories do not have
a natural extriangulated structure.

Corollary 3.13 Let (R, �,�) be a right triangulated category. Then � induces an extrian-
gulated structure onR if and only if � is a right semi-equivalence.

Remark 3.14 The concept of negative (first) extensions of an extriangulated category has
been recently introduced and studied [1, 23]. For a triangulated category T one may take
E

−1(−, ?) = T(−, �−1?) as a negative first extension. Since by Lemma 2.23 a right trian-
gulated category with right semi-equivalence R is an extension closed subcategory of the
triangulated category S(R) there is a natural first negative extension structure onR given by
E

−1(C, A) := S(R)(C, �−1A) ∼= R(�C, A) for all A,C ∈ R.

4 Aisles and Co-aisles

In this section, we show that the language of extriangulated categories allows us, under
some assumptions, to give an intrinsic characterisation of which right triangulated categories
with right semi-equivalence occur as (co)-aisles of (co-)t-structures in its stabilisation. Let
R = (R, �,�) be a right triangulated category with right semi-equivalence that is not
triangulated (i.e. � is not dense). We add this final assumption as many statements are trivial
when R is triangulated and this allows us to freely use Remark 2.21(c).
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4.1 Torsion Pairs

We begin by recalling some important definitions.

Definition 4.1 Let C = (C,E, s) be an extriangulated category. A pair of additive subcate-
gories, (U,V), of C is a torsion pair in C if

(a) C(U,V) = 0;
(b) For all C ∈ C there exists an extriangle

U C Vu v (5)

with U ∈ U and V ∈ V.

If C is a triangulated category (viewed naturally as an extriangulated category) with shift
functor �, a torsion pair in C, (U,V), is a t-structure [9] (resp. co-t-structure [15, 56]) if
�U ⊆ U (resp. �−1U ⊆ U) with heart H = U ∩ �V (resp. co-heart M = U ∩ �−1V). We
call the subcategory U the aisle of the (co-)t-structure and V the co-aisle. A (co-)t-structure
is bounded if the equalities C = ⋃

n∈Z �nU = ⋃
m∈Z �mV hold.

The reader should be aware that the terminology and notation of torsion pairs and (co-)t-
structures in a triangulated category varies, often by a shift, throughout the literature and that
co-t-structures were introduced under the name ‘weight structures’ in [15].

Remark 4.2 Let (U,V) be a torsion pair in C = (C,E, s). Then it follows quickly from the
definition that the following properties hold.

(a) U, V are closed under extensions.
(b) U = {A ∈ C | C(A,V) = 0} and V = {A ∈ C | C(U, A) = 0}.
(c) The morphism u (resp. v) in the extriangle (5) is a right U (resp. left V) approximation

of C .

Before we proceed, let us compare the above definition of a torsion pair in R with other
notions appearing in the literature:

(a) A torsion pair (U,V) in R is a right torsion pair [47] if � preserves V-monics.
(b) When R is equipped with a negative first extension structure, E−1, (see Remark 3.14)

a torsion pair (U,V) in R is an s-torsion pair [1] if E−1(U,V) = 0. In this case the
extriangle (5) is essentially unique and assigments C �→ U and C �→ V are functorial
[1, Proposition 3.7].

The next lemma shows that right torsion pairs and s-torsion pairs in R coincide (when we
equip R with the natural first negative extension structure E

−1(−, ?) = S(R)(−, �−1?))
and that such torsion pairs remind us of t-structures; which are precisely the s-torsion pairs
in a triangulated category. For a class of objects X in R, by �−1X we denote the class of
objects {X ∈ R | �X ∈ X}.
Lemma 4.3 Let (U,V) be a torsion pair inR. Then the following are equivalent

(a) �U ⊆ U;
(b) �−1V ⊆ V;
(c) R(�U,V) = 0;
(d) � preserves V-monics.
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Proof (a)⇒(b): Suppose that �U ⊆ U and let Y ∈ �−1V. Then there is a right triangle

U Y V �Uu

withU ∈ U and V ∈ V. Consider the morphism �u : �U → �Y . By assumption, �U ∈ U
and �Y ∈ V; thus, �u = 0. Since � is faithful, u = 0 and we deduce that Y is a direct
summand of V ∈ V.

(b)⇒(a): Let X ∈ U, then there is a right triangle

U �X V �Uv

with U ∈ U and V ∈ V. Then, as �R is closed under extensions, we have that V ∈ �R.
Thus there exists V ′ ∈ �−1V ⊆ V such that �V ′ = V . Moreover, there is a right triangle of
the form

X V ′ U �Xv′

where �v′ = −v. Since U is closed under extensions, we deduce that V ′ ∈ U. Together, we
have that V ′ ∈ U ∩ V = {0}. Thus, V = 0, v = 0 and �X is a direct summand of U ∈ U.

(a)⇒(c): Follows from the fact that R(U,V) = 0.
(c)⇒(d): Let f : A → B be a V-monic morphism. There are right triangles

U A V �Uu v

and

U ′ �A V ′ �U ′u′ v′

withU ,U ′ ∈ U and V , V ′ ∈ V . Then, as f is V-monic, there exists g : B → V such that
g f = v. Since R(�U,V) = 0 there exists a : �U → U ′ such that �u = u′a. Thus, by the
axiom (R3) = (ET3) there exists c : �V → V ′ such that c(�v) = v′

�U �A �V �2U

U ′ �A V ′ �U ′.

�u

∃a

�v

∃c
u′ v′

Thus

v′ = c(�v) = c�(g f ) = c(�g)(� f ).

This finishes the proof since v′ is a left V-approximation of �A and so all morphisms from
�A to V factor through v′.

(d)⇒(a). Let U ∈ U. Then, since R(U ,V) = 0 we have that U → 0 is V-monic. Thus,
by assumption �U → 0 is also V-monic from which we deduce that �U ∈ U.

��

4.2 Co-asiles of Co-t-Structures

The next lemma justifies why we will look to describeR as a (co-)aisle in S(R).

Lemma 4.4 Let T be a triangulated category, (V,W) (resp. (U,V)) be a t-structure (resp.
co-t-structure) in T and S := cosuspTV ∼= S(V). Then (V,W ∩ S) (resp. (U ∩ S,V)) is a
t-structure (resp. co-t-structure) in S.
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Proof We prove the t-structure case, whence statement for co-t-structures will follow dually.
Let (V,W) be a t-structure in T and set S := cosuspTV ∼= S(V). Clearly, S(V,W ∩ S) = 0
and �V ⊂ V. Thus it remains to show that S = V ∗ (W∩S). Since V, (W∩S) ⊂ S and S is
closed under extensions, V ∗ (W∩S) ⊂ S. To show the converse, let A ∈ S then there exists
a triangle in T

V A W �V

with V ∈ V and W ∈ W. Thus W ∈ S ∗ �V ⊂ S ∗ S ⊂ S. ��
We also note that the boundedness of right triangulated categories (Lemma 2.22) relates

to the boundedness of (co-)t-structures.

Lemma 4.5 Suppose thatR is the co-aisle of a co-t-structure, (U,R) inS(R). IfR is bounded
then the co-t-structure (U,R) is bounded. A dual statement holds for a t-structure (R,V) in
S(R).

Proof Let (U,R) be a co-t-structure in S(R). By construction of S(R), the equality S(R) =⋃
n∈Z �nR holds. It remains to verify that S(R) = ⋃

m∈Z �mU. Observe that since R is
bounded, in light of Lemma 2.22, for all X ∈ S(R) we have that S(R)(R, �i X) = 0 for
i >> 0. Thus, by Remark 4.2, �i X ∈ V for i >> 0; whence the claim follows. ��

Before we give our characterisations of R as the co-aisle of a co-t-structure, we make
some comments. Note, by Proposition 3.7, the E-projectives of R are precisely the objects
P ∈ R satisfying R(P, �−) = 0. Recall from [63] that a subcategory X = addX of a tri-
angulated category T is silting if T(X, �>0X) = 0 and T = thickX, the smallest triangulated
subcategory of T containing X that is closed under direct summands. We are now ready to
give characterisations of R as the co-aisle of a co-t-structure in S(R) in terms of torsion
pairs, E-projectives ofR and silting subcategories.

Theorem 4.6 The following are equivalent

(a) R is the co-aisle of a co-t-structure (U,R) in S(R);
(b) R has enough E-projectives;
(c) There is a torsion pair (ProjER, �R) in R.

Moreover, if R is bounded then the above conditions are also equivalent to

(d) ProjER is a silting subcategory of S(R).

Proof (a)⇒(b): Suppose there is a co-t-structure (U,R) in S(R). We must show that for all
X ∈ R there is a right triangle

R → P → X → �R

in R with P ∈ ProjR. Since (U,R) is a co-t-structure in S(R) there is a triangle in S(R)

U → �−1X → R → �U

with U ∈ U, R ∈ R. By rotating we obtain the triangle

R → �U → X → �R.

We claim that �U ∈ ProjER. The fact that �U ∈ R follows from this triangle since R is
closed under extensions in S(R) by Lemma 2.23. It remains to verify that�U isE-projective
in R, that isR(�U , �R) = 0:

0 = S(R)(U ,R) ∼= S(R)(�U , �R) ∼= R(�U , �R)
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where we have the first equality from the properties of co-t-structures.
(b)⇒(c): Let X ∈ R. By assumption there is a right triangle R → P → X → �R in R

with P ∈ ProjER. We rotate this to the right triangle

P → X → �R → �P

whence the claim follows as R(P, �R) = 0.
(c)⇒(a):We use a similar argument to [30, Theorem 3.11]. Suppose that there is a torsion

pair (ProjER, �R) in R and set P := ProjER and U := {Y ∈ S(R) | S(R)(Y ,R) = 0}.
Let 0 �= X ∈ S(R), we must show that there is a triangle

U → X → R → �U

in S(R) with U ∈ U and R ∈ R. It is enough to verify this for X being indecomposable. If
X ∈ R then we may simply take the triangle 0 → X → X → 0. If X ∈ S(R) \ R then by
Remark 2.21(c), there exists A ∈ R \ �R and n < 0 such that X ∼= (A, n) ∼= �n A.

We proceed by an inductive argument on n. By assumption, there is a right triangle inR

P → A → �R → �P

with P ∈ P and R ∈ R. This rotates to a triangle

�n P → �n A → �n+1R → �n+1P (6)

in S(R). Let us show that �n P ∈ U:

S(R)(�n P,R) ∼= S(R)(P, �−nR) ∼= R(P, �−nR) = 0

sinceR(P, �R) = 0 and n < 0. For n = −1, the base case, we have that �n+1R = R ∈ R
the triangle (6) suffices as �−1P ∈ U. For n < −1, by the induction hypothesis, there is a
triangle in S(R)

U → �n+1R → V → �U

with U ∈ U and V ∈ R. We apply (ET4)op to this triangle and triangle (6) to obtain

�n P E U �n+1P

�n P �n A �n+1R �n+1P

V V

�E �U

(7)

and claim that the triangle E → �n A → V → �E satisfies the required conditions. Since
V ∈ R by construction, we only have to show that E ∈ U. We have already seen above that
�n P ∈ U, thus the top row of the Diagram (7) shows that E ∈ U since U is closed under
extensions.

(d)⇔(a): Since R is bounded, by Lemma 2.22 the co-t-structure (U,R) is bounded in
S(R). Observe that ProjER is the co-heart of this co-t-structure. The claim then follows from
[30, Corollary 5.9] where it was shown that a subcategory of a triangulated category is silting
precisely when it is the co-heart of a bounded co-t-structure. ��

As a consequence, we obtain the following.

123



5 Page 24 of 32 A. Tattar

Corollary 4.7 There is a correspondence between silting subcategories of triangulated cat-
egories and bounded right triangulated categories with right semi-equivalence that have
enough projectives.

The above result is a triangulated analogue of a result due to Bondal & van den Bergh
([3, Proposition B.3]) and Rump ([59, Theorem 2] and [58, Theorem 1]), which states that
there is a correspondence between tiltings in abelian categories and quasi-abelian categories.
For more information on quasi-abelian categories and the construction of the right associated
category, see the above references and [62, 65, 66]. When working with derived categories/
module categories of nice finite dimensional algebras these correspondences have a natural
connection which we explain in the next paragraph.

4.3 Tilting and Silting Connection

Let us first describe the tilting–quasi-abelian correspondence in the abelian setting in more
detail: Let Q be a quasi-abelian category, then Q appears as a tilting torsion class in the
right associated abelian category A. In particular, ProjQ is a tilting subcategory of A, that
is, every object is a subobject of an object in ProjQ.

There is a natural way to associate a right triangulated category (with right semi-
equivalence) to a quasi-abelian category. For a quasi-abelian categoryQ as above, we define
the right triangulated categoryRQ := suspDb(A)Q, that is, the smallest subcategory ofDb(A)

that is closed under positive shifts and extensions that contains Q.

Lemma 4.8 In the notation as above, the following hold.

(a) RQ = {X• ∈ Db(A) | H0(X•) ∈ Q, Hi (X•) = 0 ∀ i < 0};
(b) S(RQ) = Db(A);
(c) If A has finite global dimension, RQ is bounded;
(d) If Q has a projective generator then ProjRQ = ProjQ andRQ has enough projectives.

Proof The left-to-right inclusion of part (a) is obvious. For the converse, note that it is enough
to show that �A = {�X | X ∈ A} ⊆ RQ. To this end, let X ∈ A, then, as ProjQ is a tilting
subcategory of A, there is a short exact sequence

0 → X → Q → Q′ → 0

in A with Q ∈ Q. Since Q is a torsion class in A, it is closed under quotients in A and thus
Q′ ∈ Q. This short exact sequence gives rise to a triangle in Db(A)

X → Q → Q′ → �X , (8)

which we rotate to obtain the triangle

Q′ → �X → �Q → �Q′.

The claim now follows since Q′, �Q ∈ RQ andRQ is closed under extensions. (b) and (c)
follow from (a). For (d), let P be a projective generator ofQ. We will show that every object
A in RQ admits a right triangle

B → P J → A → �B

in RQ for a set J . Note that it suffices to show this for indecomposable objects. Since for
X ∈ �RQ we may make take the triangle

�−1X → 0 → X → X
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we only have to show the claim for objects inRQ\�RQ ⊂ Q��A. For every object Q′ ∈ Q
there is a short exact sequence inQ (and hence also inA) 0 → K → P J → Q′ → 0 which
induces a triangle in Db(A)

K → P J → Q′ → �K

which is a right triangle inRQ since all terms are inRQ. For X ∈ Awe apply (ET4)op to the
above triangle and a rotation of the triangle (8) to obtain the following commutative diagram
of triangles in Db(A)

K E Q �K

K P J Q′ �K

�X �X

�E �Q.

Since K , Q ∈ RQ we have that E ∈ RQ. Thus, the middle column of the above diagram,
E → P J → �X → �E , gives us the desired right triangle inRQ. ��

Corollary 4.9 Let Q be a quasi-abelian category with an injective cogenerator I and a pro-
jective generator P and let A be the right associated abelian category of Q. Suppose that,
Q is artinian with respect to subobjects and EndQ(I ) is an artin algebra of finite global
dimension. Then P is a tilting module in A and addP is a silting subcategory of Db(A).

Proof The first claim is a combination of (the duals of) [65, Theorem III.4.9 and Corol-
lary III.4.11]. The second claim follows from Theorem 4.6 and Lemma 4.8. ��

Remark 4.10 Let � be a finite dimensional algebra over a field k and setA = mod�. By [2,
Theorems 2.7 & 3.2] and [37, Theorem 2.2] (see also [42]) there are bijections between the
following

(a) Functorially finite torsion classes in A;
(b) Isomorphism classes of τ -tilting modules in A;
(c) Two-term silting complexes in Kb(projA);
(d) Intermediate co-t-structures of Kb(projA).

and that the first bijection restricts to a bijection between tilting torsion classes in A and
isomorphism classes of tilting modules in A. Along these bijections, a functorially finite
torsion class T corresponds to the τ -tilting module M , where M is a projective generator
of T. M , in turn, corresponds to the 2-term silting complex (P1 → P0) ∈ Kb(projA),
where P1 → P0 → M → 0 is a projective presentation of M in A. The co-t-structure
corresponding to (P1 → P0) has co-aisle suspKb(projA)(P

1 → P0).
When � is of finite global dimension we have that Kb(projA) ∼= Db(A). Thus, by

Lemma 4.8, following the correspondences above from (a) to (d), a tilting torsion class
T is associated to (the co-t-structure with co-aisle) RT as we defined at the start of this sub-
section. Of course, without the finite global dimension assumption on �, one could define
RT as suspKb(projA)(P

1 → P0) but this is somewhat less natural.
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4.4 Aisles of t-Structures

We now present our characterisations of aisles of t-structures.

Theorem 4.11 The following are equivalent

(a) R is the aisle of a t-structure (R,V) in S(R);
(b) There is a torsion pair (�R,F) in R;
(c) There is an equivalence of triangulated categories φ : S(R) → C(R)

R

S(R) C(R)

s

φ

∼=

c

such that cφs = 1R.

Proof The equivalence of (a) and (b) follows from dualising the arguments used in the proof
of Theorem 4.6.

(a)⇒(c): We show that in this case, S(R) satisfies the universal property of the co-
stabilisation of R. Let r : S(R) → R denote the functor induced by the t-structure (R,V).
Let T be a triangulated category and F : T → R be a right triangle functor. Define the functor
F ′ : T → S(R) by F ′X = (FX , 0). Clearly r F ′ = F and F ′ is a triangle functor.

We quickly verify that F ′ is unique with this property. Suppose that F ′′ : T → S(R) is
another triangle functor such that r F ′′ = F . Then for all X ∈ T there are triangles in S(R)

r F ′X ∼= FX → F ′X → V ′ → �FX

r F ′′X ∼= FX → F ′′X → V ′′ → �FX

with S(R)(R, V ′) = 0 = S(R)(R, V ′′). Observe that, for n >> 0, �n F ′X , �n F ′′X ∈ R.
Thus, �n F ′X ∼= �n F X ∼= �n F ′′X . So, since F ′ and F ′′ are triangle functors, F ′′�n X ∼=
F ′�n X and we are done.

(c)⇒(a): We will show that that cφ is right adjoint to the inclusion s whence we will be
done by [39, Proposition 1.2]. It is enough to show that for all X , Y ∈ R and m ∈ Z that
there is a natural isomorphism

R(X , cφ(Y ,m)) ∼= S(R)(sX , (Y ,m)).

If m ≥ 0 then (Y ,m) = s(�mY ) and thus, by assumption cφ(Y ,m) = cφs(�mY ) ∼= �mY .
On the other hand

S(R)(sX , (Y ,m)) = S(R)((X , 0), (Y ,m)) ∼= R(X , �mY )

and we are done.
Ifm < 0, thenS(R)(sX , (Y ,m)) ∼= R(�−m X , Y ).On theother hand,R(X , cφ(Y ,m)) ∼=

R(�−m X , �−mcφ(Y ,m)) and

�−mcφ(Y ,m) ∼= cφ�−m(Y ,m) = cφ(Y , 0) ∼= cφsY ∼= Y

and we are done since all isomorphisms used are natural. ��
We end this section by noting that the language of the torsion pairs inR also allows us to

describe related classes of (co-)t-structures.

Proposition 4.12 R = (R, �,�) be a right triangulated category with right semi-
equivalence.
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(a) Suppose that there is a co-t-structure (U,R) in S(R). Then there is a bijection

{(X,Y) co-t-structure in S(R) | Y ⊆ R}
←→{(A,B) torsion pair inR | �B ⊆ B ⊆ �R}

(X,Y) �−→(R ∩ �X, �Y)

(�−1(U ∗ A),�−1B) ←−�(A,B)

which preserves the inclusion of aisles and restricts to a bijection

{(X,Y) co-t-structure in S(R) | �R ⊆ Y ⊆ R}
←→{(A,B) torsion pair inR | �2R ⊆ B ⊆ �R}.

(b) Suppose that there is a t-structure (R,V) in S(R). Then there is a bijection

{(X,Y) t-structure in S(R) | X ⊆ R}
←→{(A,B) torsion pair inR | �A ⊆ A ⊆ �R}

(X,Y) �−→(�X,R ∩ �Y)

(�−1A, �−1(V ∗ B)) ←−�(A,B)

which preserves the inclusion of aisles and restricts toa bijection

{(X,Y) t-structure in S(R) | �R ⊆ X ⊆ R}
←→{(A,B) torsion pair inR | �2R ⊆ A ⊆ �R}.

Proof We do not write the proof of (a) since it is a straightforward generalisation of the proof
of [66, Theorem 4.4]. Part (b) can be proved in a similar way. Alternatively, since all torsion
pairs in (b) are s-torsion pairs, the bijections of (b) are, after shifting, special cases of [1,
Theorem 3.9]. ��

The (co-)t-structures in the second correspondences in parts (a) and (b) are called intermediate
with respect to the (co-)t-structure of R. Let us mention related work on this property.
Intermediate t-structures also correspond to torsion pairs in the heart [11, 27] and have
applications in, for example, stability conditions [67] and algebraic geometry [57]. In the
case of co-t-structures, it has been shown that intermediate co-t-structures correspond to
certain two term silting subcategories [37] and to cotorsion pairs in the ‘extended coheart’
[55].

5 Aisles Through Quotients

We fix some conventions. Let C = (C,E, s) be a Frobenius extriangulated category, with
projectives-injectives I and C = CI be the stable category, which has the natural structure of
triangulated category [52, Corollary 7.4] with shift functor �. By I(X) we denote the object
such that X → I(X) is a minimal left I-approximation.

In this section, we show the following.

Theorem 5.1 Let (U,V) be a t-structure in C and setD = �−1V. Then there is an equivalence
of right triangulated categories �DCD ∼= U.
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Remark 5.2 In [61, Proposition 3.9], it was shown that t-structures in an algebraic triangulated
category correspondbijectively to certain complete cotorsionpairs in the associatedFrobenius
exact category. Along that bijection a t-structure (U,V) in C corresponds to the cotorsion pair
(U, �−1V) in C. This bijection generalises immediately to the extriangulated setting. Further,
when applied to the case of a triangulated category T (which is Frobenius extriangulated
category [52, Proposition 3.22]), this specialises to the observation of [51, Proposition 2.6]
that t-structures in T are in bijection with cotorsion pairs (U,V) in T such that�U ⊆ U. Thus,
these results and Theorem 5.1 complement each other.

We note that a class of objects V ⊂ Obj(C) = Obj(C) defines subcategories of both C and
C.

Lemma 5.3 LetD = AddD be a covariantly finite additive subcategory of C. ThenD is also a
covariantly finite additive subcategory of C. Moreover, leftD-approximations areE-inflations
in C.

Proof For any X ∈ C, let α : X → D and β : X → I(X) = I be a left D-approximation of
X in C and a left I-approximation of X in C respectively. We claim that

[ α
β

] : X → D ⊕ I
is a left D-approximation of X in C.

Indeed, since D is additive, 0 ∼= I ⊂ D, so D ⊕ I ∈ D. Let f : X → W be a morphism
in C with W ∈ D. Then there exists (g : D → W ) ∈ C(D,W ) such that f = gα. Now,
f − gα = 0 so f −gα factors through I and so must factor through the left I-approximation
of X . Thus there exists g′ : I → W such that f − gα = g′β. Rearranging we have

X D ⊕ I

W .

[
α
β

]

f
[ g g′ ]

The remaining claim follows from Lemma 2.12. ��
Let (U,V) be a t-structure on C, so that for all objects X there exists a unique (up to

isomorphism) triangle in C

U(X) X V(X) �U(X)
uX vX wX

therefore there is a unique (up to isomorphism) triangle in C

�−1U(�X) X �−1V(�X) U(�X).
u′
X v′

X w′
X (9)

Note that this triangle is also the canonical triangle of X with respect to the t-structure
(�−1U, �−1V). Set D := �−1V ⊂ C, which by Lemma 5.3 satisfies property (∗) and thus
the category CD is a right triangulated category by Proposition 3.6. We also set V′(X) :=
�−1V(�X) and J (X) := V′(X) ⊕ I(X).

Lemma 5.4 For all X ∈ C, �DX ∼= U(�X) in C.

Proof By the definition of the functor �D and Lemmas 2.12 and 5.3, �DX fits into a com-
mutative diagram of extriangles in C

X I(X) �X

V′(X) �DX �X

v′
X
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where v′
X : X → V′(X) fits into the triangle (9). Thus �DX = coneC(v′

X ) ∼= U(�X) in
C. ��

Consider the diagram

C CD

U C

can

can

i
can

∃G

where G is the unique additive functor rendering the diagram commutative which exists
since I ⊆ D. The next result finishes the proof of Theorem 5.1.

Proposition 5.5 The composition ψ := Gi : U → CD is a full and faithful right triangle
functor and induces an equivalence of right triangulated catgeories U ∼= �DCD.

Proof ψ is a right triangulated functor:Note that for allU ∈ U, U(U ) ∼= U and V′(U ) ∼= 0
in C. Thus, by Lemma 5.4, there is a natural isomorphism of functors �|U ∼= �D|U and
I(U ) ∼= J (U ) so that (right) triangles in U are also right triangles in CD.

ψ is full: Follows from the fact that i and G are both full.
ψ is faithful: Let f : X → Y be a morphism in U. Suppose that ψ( f ) = 0. Then f must

factor through D = �−1V in C. But since C(U,V) = 0 and �−1V ⊂ V this is only possible
if f = 0.

Imψ ∼= �DCD: Let �DX ∈ �DCD, by Lemma 5.4, �DX ∼= U(�X) in C and hence also
in CD. Thus ψ(U(�X)) ∼= �DX . Conversely, let Y ∈ U. Then Y ∼= �D(�−1Y ) ∈ CD by
Lemma 5.4. ��
Corollary 5.6 �DG�−1 : C → �DCD ∼= U is right adjoint to the inclusion U ↪→ C. In
particular, �DG�−1 ∼= U(−).

Remark 5.7 Theorem 5.1 cannot be directly dualised to give co-aisles of co-t-structures since
the aisle of a co-t-structure is contravariantly finite. The author would be interested to know
if there is a way to work around this problem.

Acknowledgements This work was part of the author’s PhD studies and the content overlaps with Chapters
II and V of their thesis [65]. When required, other parts of the thesis, that fall outside of the area of this
article, have been cited. The author would like to thank their PhD supervisor Sibylle Schroll for many helpful
discussions and the EPSRC for financial support. The author also thanks the anonymous referee for their
comments and suggestions.

Funding Open Access funding enabled and organized by Projekt DEAL.

DataAvailibility Statement Data sharing not applicable to this article as no datasetswere generated or analysed
during the current study.

Declarations

Conflict of interest The author has no financial or proprietary interests in any material discussed in this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

123



5 Page 30 of 32 A. Tattar

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adachi, T., Enomoto, H., Tsukamoto, M.: Intervals of s-torsion pairs in extriangulated categories with
negative first extensions. InMathematical Proceedings of the Cambridge Philosophical Society, pp. 1–19.
Cambridge University Press, Cambridge (2022)

2. Adachi, T., Iyama, O., Reiten, I.: τ -tilting theory. Compos. Math. 150(3), 415–452 (2014)
3. Aleksei Igorevich Bondal and Michel Van den Bergh: Generators and representability of functors in

commutative and noncommutative geometry. Mosc. Math. J. 3(1), 1–36 (2003)
4. Al-Nofayee, S.: Simple objects in the heart of a t-structure. J. Pure Appl. Algebra 213(1), 54–59 (2009)
5. Amiot, C.: On the structure of triangulated categories with finitely many indecomposables. Bull. Soc.

Math. France 135(3), 435–474 (2007)
6. Assem, I., Beligiannis, A., Marmaridis, N.: Right triangulated categories with right semi-equivalences.

In CMS Conference Proceedings, vol. 24, pp. 17–37 (1998)
7. Assem, I., Salorio, M.J.S., Trepode, S.: Ext-projectives in suspended subcategories. J. Pure Appl. Algebra

212(2), 423–434 (2008)
8. Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv.Math. 86(1), 111–152

(1991)
9. Beı̆linson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analysis and topology on singular spaces.

I (Luminy, 1981), volume 100 of Astérisque, pp. 5–171. Soc. Math. France, Paris (1982)
10. Beligiannis, A.,Marmaridis, N.: On left derived categories of a stable category. In Proceedings of the Sixth

International Conference on Representations of Algebras (Ottawa, ON, 1992), volume 14 of Carleton-
Ottawa Math. Lecture Note Ser., p. 31. Carleton Univ., Ottawa, ON, (1992)

11. Beligiannis, A., Reiten, I.: Homological and Homotopical Aspects of Torsion Theories. American Math-
ematical Soc., (2007)

12. Beligiannis, A.: The homological theory of contravariantly finite subcategories: Auslander-Buchweitz
contexts, Gorenstein categories and (co-)stabilization. Comm. Algebra 28(10), 4547–4596 (2000)

13. Beligiannis, A.: Relative homological algebra and purity in triangulated categories. J. Algebra 227(1),
268–361 (2000)

14. Beligiannis, A., Marmaridis, N.: Left triangulated categories arising from contravariantly finite subcate-
gories. Comm. Algebra 22(12), 5021–5036 (1994)

15. Bondarko, M.V.: Weight structures versus t-structures; weight filtrations, spectral sequences, and com-
plexes (for motives and in general). J. K-Theory 6(3), 387–504 (2010)

16. Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. 166(2), 317–345 (2007)
17. Brüstle, T., Smith, D., Treffinger, H.: Stability conditions and maximal green sequences in abelian cate-

gories. Rev. Un. Mat. Argent. 63(1), 203–221 (2022)
18. Dickson, S.E.: A torsion theory for abelian categories. Trans. Am. Math. Soc. 121(1), 223–235 (1966)
19. Dugas, A.: Torsion pairs and simple-minded systems in triangulated categories. Appl. Categ. Struct. 23(3),

507–526 (2015)
20. Enochs, E.E., Jenda, O.M.G.: Relative homological algebra, volume 30 of De Gruyter Expositions in

Mathematics. Walter de Gruyter & Co., Berlin (2000)
21. Enomoto, H.: Classifying substructures of extriangulated categories via serre subcategories. Appl. Categ.

Struct. 1–14 (2021)
22. Freyd, P.: Stable homotopy. In Proceedings of the Conference Categorical Algebra (La Jolla, Calif, 1965),

pp. 121–172. Springer, New York (1966)
23. Gorsky, M., Nakaoka, H., Palu, Y.: Positive and negative extensions in extriangulated categories (2021)

arXiv preprint arXiv:2103.12482
24. Grandis, M.: Homotopical algebra and triangulated categories. Math. Proc. Camb. Philos. Soc. 118(2),

259–285 (1995)
25. Gratz, S., Zvonareva, A.: Lattices of t-structures and thick subcategories for discrete cluster categories.

J. Lond. Math. Soc. 107(3), 973–1001 (2021)
26. Happel, D.: Triangulated Categories in the Representation of Finite Dimensional Algebras, vol. 119.

Cambridge University Press, Cambridge (1988)
27. Happel, D., Reiten, I., Smalø, S.O.: Tilting in abelian categories and quasitilted algebras. Mem. Am.

Math. Soc. 120(575), viii+88 (1996)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2103.12482


The Structure of Aisles and Co-aisles… Page 31 of 32 5

28. Heller, A.: The loop-space functor in homological algebra. Trans. Am. Math. Soc. 96, 382–394 (1960)
29. Heller, A.: Stable homotopy categories. Bull. Am. Math. Soc. 74, 28–63 (1968)
30. Hernández, O.M., Valadez, E.C.S., Vargas, V.S., Salorio, M.J.S.: Auslander–Buchweitz context and co-

t-structures. Appl. Categ. Struct. 21(5), 417–440 (2013)
31. Herschend,M., Liu, Y., Nakaoka, H.: n-exangulated categories (i): definitions and fundamental properties.

J. Algebra 570, 531–586 (2021)
32. Hochschild, G.P.: Relative homological algebra. Trans. Am. Math. Soc. 82, 246–269 (1956)
33. Hügel, L.A., Marks, F., Vitória, J.: Silting modules. Int. Math. Res. Not. 2016(4), 1251–1284 (2015)
34. Hügel, L.A., Marks, F., Vitória, J.: Torsion pairs in silting theory. Pacific J. Math. 291(2), 257–278 (2017)
35. Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent.

Math. 172(1), 117–168 (2008)
36. Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent.

Math. 172(1), 117–168 (2008)
37. Iyama, O., Jørgensen, P., Yang, D.: Intermediate co-t-structures, two-term silting objects, τ -tilting mod-

ules, and torsion classes. Algebra Number Theory 8(10), 2413–2431 (2014)
38. Jørgensen, P.: Spectra of modules. J. Algebra 244(2), 744–784 (2001)
39. Keller, B., Vossieck, D.: Aisles in derived categories. In Deuxième Contact Franco-Belge en Algèbre,

vol. 40, pp. 239–253. Société Mathématique de Belgique, Brussels (1988)
40. Keller, B.: Chain complexes and stable categories. Manuscripta Math. 67(4), 379–417 (1990)
41. Keller, B., Vossieck, D.: Sous les catégories dérivées. C. R. Acad. Sci. Paris Sér. I Math. 305(6), 225–228

(1987)
42. Koenig, S., Yang, D.: Silting objects, simple-minded collections, t-structures and co-t-structures for

finite-dimensional algebras. Doc. Math. 19, 403–438 (2014)
43. Kvamme, S.:dZ-cluster tilting subcategories of singularity categories.Math. Z.297(1–2), 803–825 (2021)
44. Laking, R., Vitória, J.: Definability and approximations in triangulated categories. Pac. J. Math. 306(2),

557–586 (2020)
45. Li, Z.-W.: The triangulation of the subfactor categories of additive categories with suspensions (2015)

arXiv preprint arXiv:1510.02258
46. Lidia Angeleri Hügel: Silting objects. Bull. Lond. Math. Soc. 51(4), 658–690 (2019)
47. Lin, Y., Xin, L.: On one-sided torsion pair. Sci. China Ser. A 50(1), 13–26 (2007)
48. Liu, Yu., Nakaoka, H.: Hearts of twin cotorsion pairs on extriangulated categories. J. Algebra 528, 96–149

(2019)
49. Maranda, J.-M.: Injective structures. Trans. Am. Math. Soc. 110(1), 98–135 (1964)
50. Marks, F., Vitória, J.: Silting and cosilting classes in derived categories. J. Algebra 501, 526–544 (2018)
51. Nakaoka, H.: General heart construction on a triangulated category (I): unifying t-structures and cluster

tilting subcategories. Appl. Categ. Struct. 19(6), 879–899 (2011)
52. Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah.

Topol. Géom. Différ. Catég 60(2), 117–193 (2019)
53. Padrol,A., Palu,Y., Pilaud,V., Plamondon, P.-G.:Associahedra for finite type cluster algebras andminimal

relations between g-vectors (2019) arXiv preprint arXiv:1906.06861
54. Parra, C.E., Saorín, M.: Direct limits in the heart of a t-structure: the case of a torsion pair. J. Pure Appl.

Algebra 219(9), 4117–4143 (2015)
55. Pauksztello,D., Zvonareva,A.:Co-t-structures, cotilting and cotorsion pairs. InMathematical Proceedings

of the Cambridge Philosophical Society, pp. 1–18. Cambridge University Press (2022)
56. Pauksztello, D.: Compact corigid objects in triangulated categories and co-t-structures. Cent. Eur. J.Math.

6(1), 25–42 (2008)
57. Polishchuk, A.: Constant families of t-structures on derived categories of coherent sheaves. Mosc. Math.

J. 7(1), 109–134 (2007)
58. Rump, W.: *-modules, tilting, and almost abelian categories. Comm. Algebra 29(8), 3293–3325 (2001)
59. Rump, W.: Almost abelian categories. Cahiers Topologie Géom. Différentielle Catég. 42(3), 163–225

(2001)
60. Rump, W.: Triadic categories without localization. J. Algebra 322(4), 995–1012 (2009)
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