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Abstract
We prove and explain several classical formulae for homotopy (co)limits in general (combi-
natorial) model categories which are not necessarily simplicially enriched. Importantly, we
prove versions of the Bousfield–Kan formula and the fat totalization formula in this complete
generality. We finish with a proof that homotopy-final functors preserve homotopy limits,
again in complete generality.
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If C is a model category (we assume all model categories to be complete and cocomplete)
and Γ a (small) category, we denote by C Γ = Fun(Γ ,C ) the category of functors Γ → C ,
which we shall also refer to as “diagrams” of shape Γ . It is natural to call a map of dia-
grams α : F → G in C Γ a weak equivalence if αγ : F(γ ) → G(γ ) is a weak equivalence
in C for all objects γ ∈ Γ . We shall refer to such weak equivalences as componentwise
weak equivalences. But then we immediately run into the problem that the limit func-
tor lim←−−: C Γ → C does not in general preserve weak equivalences. Since lim←−− is a right
adjoint, this leads us into trying to derive it. The right derived functor of lim←−− is called the
homotopy limit and is denoted holim←−−−−: C Γ → C . Dually, the left derived functor of lim−−→ is
called the homotopy colimit and is denoted holim−−−−→.

For many purposes, the abstract existence of homotopy limits is all you need. How-
ever, there are also many cases where a concrete, minimalistic realization of them is useful
for working with abstract notions. For instance, this paper grew out of an attempt to con-
cretize a concept from derived algebraic geometry. More specifically, we wanted to develop
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a homological algebra model for the dg-category of quasi-coherent sheaves on a dg-scheme
which are equivariant with respect to the action of a group dg-scheme. This question was
addressed in Block et al. [2] where a partial result was obtained under serious restrictions
(Proposition 13). The general case was stated as a conjecture, see Conjecture 1 in the same
paper. In the companion paper to this one, Arkhipov and Ørsted [1], we cover the general
case and prove that conjecture (see Theorem 4.1.1), and the key result of homotopical nature
is proved in the present paper (see Example 5.4).

Quillen’s model category machinery tells us how to derive the limit: We must equip the
diagram category C Γ with a model structure with componentwise weak equivalences and
in which the limit functor lim←−−: C Γ → C is a right Quillen functor. In this case, the derived
functor is given by holim←−−−− F = lim←−− R(F) for some fibrant replacement R(F) in C Γ . Indeed,
such a model structure on C Γ exists e.g. if the model category C is combinatorial (see
Lurie [7], Propositions A.2.8.2 and A.2.8.7). More precisely, we have the injective model
structure C Γ

Inj where weak equivalences and cofibrations are calculated componentwise.
The injective model structure being in general rather complicated, calculating such a

replacement of a diagram in practice becomes very involved for all but the simplest shapes of
the category Γ . Therefore, traditionally, other tools have been used. One of the most popular
techniques involves adding a parameter to the limit functor lim←−−Γ before deriving it. The
result is the end bifunctor

∫
Γ

: Γ op × Γ → C (introduced below) which is in general much
easier to derive.

One of the classical accounts of this technique is Hirschhorn [5] who mainly works in the
setting of simplicial model categories, which are model categories enriched over simplicial
sets, and which furthermore are equipped with a powering functor

SSetop × C −→ C , (K , c) �−→ cK ,

and a copowering functor

SSet × C −→ C , (K , c) �−→ K ⊗ c,

satisfying some compatibility relations with the model structure. He then establishes the
classical Bousfield–Kan formula

holim←−−−− F =
∫

γ∈Γ

F(γ )N (Γ /γ ), (0.1)

where wewrite N (Γ /γ ) for the nerve of the comma category of maps inΓ with codomain γ .
Or rather, he uses this formula as his definition of homotopy limits (see definition 18.1.8).
A proof that this formula agrees with the general definition of homotopy limits is due to
Gambino [4, equation (2)] using the machinery of Quillen 2-functors.

Hirschhorn [5] then generalizes this formula to arbitrary model categories in chapter 19,
definition 19.1.5. He shows that even for non-simplicial model categories, one can replace
simplicial powerings and copowerings by aweaker notion, unique up to homotopy in a certain
sense. He then takes the formula (0.1) to be his definition of a homotopy limit.

This paper is devoted to proving (see Theorem 4.2) that indeed, the formula (0.1) agrees
with the general definition of a homotopy limit (similarly to what Gambino [4] did in the
simplicial setting), at least in the case when the model category C is combinatorial. (This
assumption is not a great problem since combinatoriality is what provides us with a model
structure on the category C Γ in the first place, which is what guarantees that homotopy
limits as we defined them above make sense). To the authors’ knowledge, such a proof has
not been carried out in the literature before. Finally, in Sect. 5, we discuss preservation of
homotopy limits by homotopy-initial functors, observing why this classical property can also
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be proved using our machinery. As an application, we obtain the classical and fundamental
fat totalization formula in the previously mentioned Example 5.4.

1 The Projective and Injective Model Structures

If C is a model category and Γ any category, it is natural to demand of any model structure
on the functor category C Γ = Fun(Γ ,C ) that weak equivalences must be calculated com-
ponentwise. The two most natural model structures one can hope for (which may or may not
exist) are

– The projective model structure C Γ
Proj where weak equivalences and fibrations are cal-

culated componentwise.
– The injective model structure C Γ

Inj where weak equivalences and cofibrations are cal-
culated componentwise.

Bothmodel structures are known to existwhenC is a combinatorialmodel category, seeLurie
[7, Proposition A.2.8.2]. We shall also use the attributes “projective(ly)” and “injective(ly)”
when referring to these model structures, so e.g. “projectively cofibrant” means cofibrant in
the projective model structure.

Proposition 1.1 (Lurie [7, Proposition A.2.8.7]) If C is a model category and f : Γ → Γ ′
a functor, denote by f ∗ the restriction functor C Γ ′ → C Γ . Then f ∗ fits as the right and left
adjoint of Quillen adjunctions

f! : C Γ
Proj C Γ ′

Proj : f ∗ resp.

f ∗ : C Γ ′
Inj C Γ

Inj : f∗
whenever the model structures in question exist. In particular, we see that the adjunctions
lim−−→: C Γ

Proj � C :const and const : C � C Γ
Inj : lim←−− are Quillen adjunctions.

The adjoints f! and f∗ are the usual left and right Kan extensions along f , which are
given by limits

f!F(γ ′) = lim−−→
f (γ )→γ ′

F(γ ) and f∗F(γ ′) = lim←−−
γ ′→ f (γ )

F(γ ). (1.2)

These limits are taken over the categories of maps f (γ ) → γ ′ (resp. γ ′ → f (γ )) in Γ ′ for
varying γ ∈ Γ .

Corollary 1.3 Assume that the projective model structure C Γ
Proj exists.

(i) If ϕ : c → c′ is a (trivial) cofibration in C and γ0 ∈ Γ is an object, then the coproduct
map ∏Γ (γ0,−) ϕ : ∏Γ (γ0,−) c →∏Γ (γ0,−) c

′ is a (trivial) cofibration in C Γ
Proj. We shall

refer to such (trivial) cofibrations as simple (trivial) projective cofibrations.
(ii) If f : Γ → Γ ′ is a functor, then f! : C Γ

Proj → C Γ ′
Proj preserves simple (trivial) projective

cofibrations, taking ∏Γ (γ0,−)ϕ to ∏Γ ′( f (γ0),−)ϕ.

There is, of course, a completely dual statement for (trivial) fibrations, with ∏Γ (γ0,−)

replaced by
∏

Γ (−,γ0)
, and we shall dually use the term simple (trivial) fibrations. We may

note that what we call the simple (trivial) cofibrations form a generating set for the model
category C Γ

Proj, whereas the situation is more complicated for C Γ
Inj, see Lurie [7, Proposi-

tion A.2.8.2].
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Proof Applying Proposition 1.1 to the embedding ι : γ0 ↪→ Γ of the full subcategory with γ0
as the only object, we get that ι!ϕ is a (trivial) cofibration. Now ι!ϕ = ∏Γ (γ0,−)ϕ by the above
colimit formula for left Kan extension. The statement (ii) follows by applying Kan extensions
to the diagram

and using that Kan extensions, being adjoints to restriction, respect compositions. 	


2 The ReedyModel Structure

A third approach exists to equipping diagram categoriesC Γ with a model structure, provided
the category Γ has the structure of a Reedy category. A category Γ is called Reedy if it
contains two subcategories Γ+, Γ− ⊂ Γ , each containing all objects, such that

– there exists a degree function ObΓ → Z, such that non-identity morphisms from Γ+
strictly raise the degree and non-identity morphisms from Γ− strictly lower the degree
(more generally, an ordinal number can be used instead of Z);

– each morphism f ∈ Γ factors uniquely as f = gh for g ∈ Γ+ and h ∈ Γ−.

We note that a direct category is ReedywithΓ+ = Γ , and that an inverse category is Reedy
with Γ− = Γ . If Γ is Reedy, then so is Γ op, with (Γ op)+ = (Γ−)op and (Γ op)− = (Γ+)op.

Example 2.1 The simplex category � is Reedy with �+ consisting of injective maps and
�− consisting of surjective maps. The degree function does the obvious thing, [n] �→ n.

If Γ is a Reedy category and C is any model category, and if F ∈ C Γ is a diagram, we
define the latching and matching objects by

Lγ F = lim−−→
(α→�= γ )∈Γ+

F(α) and Mγ F = lim←−−
(γ→�= α)∈Γ−

F(α).

In other words, the limit (resp. colimit) runs over the category of all non-identitymaps α → γ

in Γ+ (resp. γ → α in Γ−). The latching map is the canonical map Lγ F → F(γ ), and the
matching map is the canonical map F(γ ) → Mγ F .

If f : F → G is a map in C Γ , then the relative latching map and the relative matching
map are the maps

F(γ ) ∏
Lγ F

Lγ G −→ G(γ ) resp. F(γ ) −→ G(γ )
∏

Mγ G
Mγ F

given by the universal property of the pushout resp. pullback. We say that f is a (trivial)
Reedy cofibration (resp. fibration) if the relative latching (resp. matching) map is a (triv-
ial) cofibration (resp. fibration) in C . If F = ∅ (resp. F = ∗), we recover the latching
(resp. matching) map. For our arbitrary model category C , this defines a model structure
on C Γ , called the Reedy model structure, see Hirschhorn [5, Theorem 15.3.4]. The weak
equivalences are componentwise weak equivalences. We shall write C Γ

Reedy when we equip
the diagram category with this model structure.
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3 Homotopy Limits

We recall the following definition, referring to e.g. Riehl [8] for further details. LetΓ andC be
categorieswithC complete and cocomplete, and letH : Γ op×Γ → C be abifunctor. The end
of H is an object

∫
Γ
H = ∫

γ∈Γ
H(γ, γ ) in C , together with morphisms

∫
Γ
H → H(γ, γ )

for all γ ∈ Γ , such that for any f : γ → γ ′, the following diagram commutes:
∫
Γ
H H(γ, γ )

H(γ ′, γ ′) H(γ, γ ′)·
H(γ, f )

H( f ,γ ′)

Furthermore,
∫
Γ
H is universal with this property in the sense that if A is another object

of C with a collection of arrows A → H(γ, γ ) for all γ , subject to the same commutativity
conditions, then these factor through a unique arrow A → ∫

Γ
H . There is a dual notion of a

coend, denoted instead by
∫ Γ H , which we shall not spell out.

Remark 3.1 A diagram F ∈ C Γ may be regarded as a diagram in C Γ op×Γ which is constant
with respect to the first variable. In that case, it follows from the universal property of the
end that

∫
Γ
F = lim←−−Γ F recovers the limit of the diagram.

Remark 3.2 The end fits as the right adjoint of the adjunction

∏HomΓ
: C C Γ op×Γ :∫

Γ
·

The left adjoint takes A ∈ C to the bifunctor∏HomΓ (−,−)A : Γ op×Γ → C . In the literature,
this is usually written as an adjunction

SetΓ
op×Γ

(
HomΓ ,C (A, F)

) ∼= C Γ op×Γ
(
A,

∫
Γ
F

)

for A ∈ C , which is just the well-known statemant that the end is the weighted
limit C Γ op×Γ → C with weight HomΓ .

The following theorem is the basis for all our homotopy limit formulae:

Theorem 3.3 Let C be a model category and Γ a category. Regard the functor cate-
gory C Γ op×Γ as a model category in any of the following ways:

(i) as C Γ op×Γ = (C Γ op

Proj )
Γ
Inj (assuming this model structure exists);

(ii) as C Γ op×Γ = (C Γ
Proj)

Γ op

Inj (assuming this model structure exists);

(iii) as C Γ op×Γ = C Γ op×Γ
Reedy (assuming Γ is Reedy).

Then the end functor
∫
Γ

: C Γ op×Γ → C is right Quillen.

Proof We initially prove the first statement, the second one being dual. By Remark 3.2, it
suffices to check that the left adjoint ∏HomΓ

takes (trivial) cofibations in C to (trivial) cofi-
bations in (C Γ op

Proj )
Γ
Inj. If c → c′ is a (trivial) cofibration in C , then we must therefore consider

themap∏Γ (−,−) c → ∏Γ (−,−) c
′ in (C Γ op

Proj )
Γ
Inj. Checking that this is a (trivial) injective cofi-

bration over Γ amounts, by definition, to checking this componentwise. But for a fixed γ0 ∈
Γ , this component is ∏Γ (_,γ0) c →∏Γ (−,γ0)

c′ which is a simple (trivial) projective
cofibration in C Γ op

.
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For the Reedy case, we recall from Lurie [7, Example A.2.9.22] and Hirschhorn [5, Theo-
rem 15.5.2] that being a (trivial) cofibration in the model category C Γ ×Γ op

Reedy = (C Γ
Reedy)

Γ op

Reedy
is equivalent to the restriction being a (trivial) cofibration in

(
C

Γ+
Proj

)(Γ op)+
Proj = (

C
Γ+
Proj

)(Γ−)op

Proj .

But we have, by the unique factorization property of Reedy categories, that

∏
Γ (−,−)

c = ∏
γ0∈Γ

∏
Γ−(−,γ0)

∏
Γ+(γ0,−)

c

for any c ∈ C . These consist of coproducts of exactly the same form as the ones appearing
in the definition of simple (trivial) projective cofibrations (Corollary 1.3 (i)). Thus we find
that for any (trivial) cofibration c → c′ in C , the map ∏Γ (−,−)c → ∏Γ (−,−)c

′ is a (trivial)
cofibration in C Γ op×Γ

Reedy . 	

Thus we can derive the end using any of these three model structures, when available.

Write R
∫
Γ

: C Γ op×Γ → C for the derived functor, which we shall call the homotopy end.

Corollary 3.4 If C is a combinatorial model category and Γ a category, then for a dia-
gram F ∈ C Γ ,

holim←−−−−Γ F = R
∫
Γ
F = ∫

Γ
R(F),

where R is a fibrant replacement with respect to the model structure (C Γ
Proj)

Γ op

Inj or, if Γ is
Reedy, in C Γ op×Γ

Reedy .

Proof First write holim←−−−− F = lim←−− RΓ (F) for some fibrant replacement functor RΓ in C Γ
Inj.

Now Proposition 1.1 and Lurie [7, Remark A.2.8.6] show that the constant functor embed-
ding C Γ

Inj ↪→ (C Γ op

Proj )
Γ
Inj is right Quillen and thus preserves fibrant objects. Thus RΓ (F) is

also fibrant in (C Γ op

Proj )
Γ
Inj. This proves the first equality sign. The second one is clear. 	


Of course, even though F as a diagram in C Γ op×Γ was constant with respect to the first
variable, R(F) is in general not. Remarkably, since ends calculate naturality between the two
variables, this often makes calculations of homotopy limits more manageable, compared to
resolving the diagram inside C Γ

Inj.

Corollary 3.5 Suppose Γ is a direct category, and let R : C → C Γ op

Inj be a functor that
takes c ∈ C to a fibrant replacement of the constant diagram at c. Then

holim←−−−−Γ F = ∫
γ∈Γ

R(F(γ ))(γ ).

Proof Clearly, R(F) is a fibrant replacement inside (C Γ op

Inj )ΓProj. By Lurie [7, Exam-
ple A.2.9.22] and Hirschhorn [5, Theorem 15.5.2], this model category is equal to

(
C Γ op

Inj

)
Γ
Proj = (

C Γ op

Reedy

)
Γ
Reedy = (

C Γ
Reedy

)
Γ op

Reedy = (
C Γ
Proj

)
Γ op

Inj ,

so the result follows from Theorem 3.3. 	


4 Bousfield–Kan Formula

In Hirschhorn [5, chapter 19], homotopy limits are being developed for arbitrary model
categories via a machinery of simplicial resolutions. In this section, we use Theo-
rem 3.3/Corollary 3.4 to explain why this machinery works. Throughout, we denote by SSet
the category of simplicial sets endowed with the Quillen model structure.
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IfC is a (complete) category and X· ∈ C�op
a simplicial diagram inC , wemay extend X·

to a continuous functor X : SSetop → C via the right Kan extension along the Yoneda
embedding �op ↪→ SSetop:

XK = lim←−−
Δn→K

Xn, K ∈ SSet.

If C is a model category, the matching object at [n] is MnX· = X∂Δn
, and so X· being

Reedy-fibrant is equivalent to the map Xn = XΔn → X∂Δn
being a fibration in C for all n.

We need the following technical lemma:

Lemma 4.1 (Hovey [6, Proposition 3.6.8]) Let C be a model category and F : SSet → C
a functor preserving colimits and cofibrations. Then F preserves trivial cofibrations if and
only if F(Δn) → F(Δ0) is a weak equivalence for all n.

Theorem 4.2 (Bousfield–Kan formula) Suppose C is a combinatorial model category, Γ a
category, and F ∈ C Γ . Let R : C → C�op

be a functor that takes c ∈ C to a Reedy-fibrant
replacement of the constant�op-diagram at c. Let furthermore K ∈ SSetΓProj be a projectively
cofibrant resolution of the point. Then

holim←−−−−Γ F =
∫

γ∈Γ

R(F(γ ))K (γ ).

Proof Clearly, R(F(−))· is a fibrant replacement of F with respect to the model struc-
ture (C�op

Reedy)
Γ
Proj. The theorem will follow if we prove that R(F(−))K (−) is a fibrant

replacements of F in (C Γ
Proj)

Γ op

Inj . This will follow from Ken Brown’s Lemma if we prove
that the continuous functor

(
SSetΓProj

)op −→ (
C Γ
Proj

)
Γ op

Inj , K (−) �−→ R(F(−))K (−),

takes opposites of (trivial) cofibrations to (trivial) fibrations. (Trivial) cofibrations in SSetΓProj
are generated from simple (trivial) projective cofibrations via pushouts and retracts, c.f. Lurie
[7, Proposition A.2.8.2]. Thus by continuity of the functor, it suffices to prove the statement
for simple (trivial) cofibrations. We therefore let ∏Γ (γ0,−)K ↪→ ∏Γ (γ0,−)L be one such,
where K ↪→ L is a (trivial) cofibration and γ0 ∈ Γ . This is mapped to

∏
Γ (γ0,−) R(F(−))L →∏

Γ (γ0,−) R(F(−))K .

Thus we must show that the composition

SSetop
∏

Γ (γ0,−)−−−−−→ (
SSetΓ

op

Proj

)op −→ (
C Γ
Proj

)
Γ op

Inj , K �−→ ∏
Γ (γ0,−) R(F(−))K ,

takes (trivial) cofibrations to (trivial) fibrations.Checking that it takes cofibrations tofibrations
amounts to checking this for the generating cofibrations ∂Δn ↪→ Δn in SSet. This holds by the
assumption that R(F(−))· is componentwise Reedy-fibrant. Since the functor takes colimits
to limits, the claim now follows from the (dual of) the lemma. 	

Remark 4.3 One may prove Hirschhorn (see e.g. [5, Proposition 14.8.9]) that the dia-
gram K (−) = N (Γ /−) ∈ SSetΓProj, taking γ to the nerve N (Γ /γ ) of the comma cate-
gory Γ /γ of all maps in Γ with codomain γ , is a projectively cofibrant resolution of the
point. Thus we have

123



47 Page 8 of 10 S. Arkhipov, S. Ørsted

holim←−−−−Γ F =
∫

γ∈Γ

R(F(γ ))N (Γ /γ ), (4.4)

which is the classical form of the Bousfield–Kan formula (0.1).

5 Homotopy-Initial Functors

A functor f : Γ → Γ ′ is called homotopy-initial if for all objects γ ′ ∈ Γ ′, the
nerve N ( f /γ ′) is contractible as a simplicial set; here f /γ ′ denotes the comma category
whose objects are pairs (γ, α)where α is a map f (γ ) → γ ′. A morphism (γ1, α) → (γ2, α)

is a morphism γ1 → γ2 in Γ making the diagram

commute.We aim to reprove, using ourmoremodern language, the statement that homotopy-
initial functors preserve homotopy limits. This relies on a few technical lemmas:

Lemma 5.1 If f : Γ → Γ ′ is a functor, then f!N (Γ /−) = N ( f /−) ∈ SSetΓ
′
. In particular,

since N (Γ /−) ∈ SSetΓProj is cofibrant, N ( f /−) ∈ SSetΓ
′

Proj is cofibrant by Proposition 1.1.

Proof Since colimits in diagram categories over cocomplete categories can be checked com-
ponentwise, this boils down to the observation

lim−−→
f (γ )→γ ′

N (Γ /γ )n = N ( f /γ ′)n .

	


The following lemma is inspired by Hirschhorn [5, Proposition 19.6.6]. See also Riehl [8,
Lemma 8.1.4].

Lemma 5.2 Suppose that C is a complete category and that Γ and Γ ′ are two categories
with a functor f : Γ → Γ ′. Then we have

∫

γ∈Γ

F( f (γ ))N (Γ /γ ) =
∫

γ ′∈Γ ′
F(γ ′)N ( f /γ ′)

for F ∈ (C�op
)Γ (see the previous chapter for an explanation of the power notation).

Proof For the purpose of the proof, we recall that the Kan extension formulae in (1.2) may
be equivalently written in terms of (co)ends:

f!F(γ ′) =
∫ γ∈Γ

Γ ′( f (γ ), γ ′) × F(γ ) and f∗F(γ ′) =
∫

γ∈Γ

F(γ )Γ
′(γ ′, f (γ )).

Here we are using the natural copowering and powering of Set on C , given by S× c = ∏ S c
and cS = ∏

S c for S ∈ Set and c ∈ C , which make sense whenever C is complete
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resp. cocomplete. We shall furthermore make use of the so-called “co-Yoneda lemma” which
says that

G( f (γ )) =
∫

γ ′∈Γ ′
G(γ ′)Γ ′( f (γ ),γ ′) for all G ∈ C Γ ′

.

Finally, we use “Fubini’s theorem” for ends, which says that ends, being limits, commute.
This together yields

∫

γ∈Γ

F( f (γ ))N (Γ /γ ) =
∫

γ∈Γ

∫

[n]∈�

F( f (γ ))
N (Γ /γ )n
n

=
∫

γ∈Γ

∫

[n]∈�

∫

γ ′∈Γ ′

(
F(γ ′)Γ

′( f (γ ),γ ′)
n

)N (Γ /γ )n

=
∫

γ∈Γ

∫

[n]∈�

∫

γ ′∈Γ ′
F(γ ′)Γ

′( f (γ ),γ ′)×N (Γ /γ )n
n

=
∫

[n]∈�

∫

γ ′∈Γ ′
F(γ ′)

∫ γ∈Γ
Γ ′( f (γ ),γ ′)×N (Γ /γ )n

n

=
∫

γ ′∈Γ ′
F(γ ′) f!N (Γ /−)(γ ′) =

∫

γ ′∈Γ ′
F(γ ′)N ( f /γ ′)

where the last equality sign is due to Lemma 5.1. 	

Theorem 5.3 (Hirschhorn [5,Theorem19.6.7])SupposeC is a combinatorialmodel category
and Γ , Γ ′ two categories. If f : Γ → Γ ′ is homotopy-initial, then we have

holim←−−−−Γ ′ F = holim←−−−−Γ f ∗F

for all F ∈ C Γ ′
.

Proof Theorem 4.2 and Eq. (4.4) show that

holim←−−−−Γ f ∗F =
∫

γ ′∈Γ ′
R(F(γ ′))N ( f /γ ′).

Since N ( f /γ ′) is contractible for all γ ′, N ( f /−) is a projectively cofibrant resolution of the
point by Lemma 5.1. Thus the right-hand side is exactly holim←−−−−Γ ′ F by Theorem 4.2. 	

Example 5.4 (Fat totalization formula) Recall from Example 2.1 that the simplex category �

is Reedy with �+ being the subcategory containing only injective maps. The inclusion
ι : �+ ↪→ � is homotopy-initial (see e.g., [8, Example 8.5.12] or [3, Example 21.2]), hence
holim←−−−−� X · = holim←−−−−�+ X · for all X · ∈ C�. As�+ is a direct category,weobtain fromCorol-
lary 3.5 that we may calculate holim←−−−−� X · as

holim←−−−−� X · = ∫
�+ R(Xn)n

for some functor R : C → C�
op
+ that takes x to an injectively (i.e. Reedy-) fibrant replacement

of the constant diagram at x (alternatively, this follows from Theorem 4.2 using the well-
known fact that the standard simplex Δ· is projectively cofibrant over �+, see e.g. ([8,
Example 11.5.6]). This is the so-called fat totalization formula for homotopy limits over �.
The dual formula for homotopy colimits over �op is called the fat geometric realization
formula.
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The fat totalization formula is one of the main technical tools used in the companion paper
to this one, Arkhipov and Ørsted [1], to develop a homological model for the dg-derived
categories of quasi-coherent sheaves on a dg-scheme in terms of the dg-derived categories
of quasi-coherent sheaves on a covering. This solves the classical problem that “triangulated
categories don’t glue well” entirely using concrete homological constructions, unlike the
existing∞-categorical treatments which only give abstract answers. Our construction makes
it possible to directly apply classical, homological techniques like Koszul duality.
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