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Abstract
Let A be a 2-category with suitable opcomma objects and pushouts. We give a direct proof
that, provided that the codensity monad of a morphism p exists and is preserved by a suitable
morphism, the factorization given by the lax descent object of the two-dimensional cokernel
diagram of p is up to isomorphism the same as the semantic factorization of p, either one
existing if the other does. The result can be seen as a counterpart account to the celebrated
Bénabou–Roubaud theorem. This leads in particular to a monadicity theorem, since it char-
acterizes monadicity via descent. It should be noted that all the conditions on the codensity
monad of p trivially hold whenever p has a left adjoint and, hence, in this case, we find
monadicity to be a two-dimensional exact condition on p, namely, to be an effective faithful
morphism of the 2-category A.

Keywords Formal monadicity theorem · Formal theory of monads · Codensity monads ·
Semantic lax descent factorization · Descent data · Two-dimensional cokernel diagram ·
Opcomma object · Effective faithful morphism · Bénabou–Roubaud theorem · Lax descent
category · Two-dimensional limits

Mathematics Subject Classification 18N10 · 18Cxx · 18Dxx · 18A22 · 18A30 · 18A40 ·
18A25

Communicated by Maria Manuel Clementino.

This research was partially supported by the Institut de Recherche en Mathématique et Physique (IRMP,
UCLouvain, Belgium), and by the Centre for Mathematics of the University of Coimbra -
UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.
This work was also supported through the programme “Oberwolfach Leibniz Fellows” by the
Mathematisches Forschungsinstitut Oberwolfach in 2022.

B Fernando Lucatelli Nunes
f.lucatellinunes@uu.nl

1 CMUC, Centre for Mathematics, University of Coimbra, Coimbra, Portugal

2 Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10485-022-09694-w&domain=pdf
http://orcid.org/0000-0002-1817-2797


1394 F. Lucatelli

Introduction

Grothendieck descent theory [7] has been generalized from a solution of the problem of
understanding the image of the functors Mod(f) in which Mod : Ring → Cat is the usual
pseudofunctor between the category of rings and the 2-category of categories that associates
each ring R with the category Mod(R) of right R-modules (e.g. [10]).

It is often more descriptive to portray descent theory as a higher dimensional counterpart
of sheaf theory (see, for instance, the introduction of [8]). In this context, the analogy can
be roughly stated as follows: the descent condition and the descent data are respectively
two-dimensional counterparts of the sheaf condition and the gluing condition.

The most fundamental constructions in descent theory are the lax descent category and
its variations (e.g. [28, pag. 177]). Namely, given a truncated pseudocosimplicial category

A : �3 → Cat

A (2)A (1) A(s0)��A (1) A (2)

A(d0)

��
A (1) A (2)

A(d1)

��A (2) A (3)A(d1) ��A (2) A (3)

A(d0)

��
A (2) A (3)

A(d2)

��

we construct its lax descent category or descent category. An object of the lax descent
category (descent category) is an object x of the category A(1) endowed with a descent data
which is a morphism (respectively, invertible morphism) A(d1)(x) → A(d0)(x) satisfying
the usual cocycle/associativity and identity conditions. Morphisms are morphisms between
the underlying objects in A(1) that respect the descent data.

Another perspective, which highlights descent theory’s main role in Janelidze-Galois
theory, is that, given a bifibred category, the lax descent category of the truncated pseudo-
cosimplicial category induced by an internal category generalizes the notion of the category
of internal (pre)category actions (e.g. [9, Section 1]).

In the setting above, if the bifibration is the basic one, we actually get the notion of
internal actions. The simplest example is the category of actions of a small category in Set;
that is to say, the category of functors from a small category into Set. A small category a

is just an internal category in Set and the category of actions (functors) a → Set coincides
with the lax descent category of the composition of the (image by op : Catco → Cat of the)
internal category a, op(a) : �3 → Setop, with the pseudofunctor Set/− : Setop → Cat that
comes from the basic fibration.

Assume that we have a pseudofunctor F : Cop → Cat such that C has pullbacks, and
F(q)! � F(q) for every morphism q of C. Given a morphism q : w → w′ of C, the Bénabou–
Roubaud theorem (see [4] or, for instance, [19, Theorem 1.4]) says that the (lax) descent
category of the truncated pseudocosimplicial category

F (
w ×q w

)F (w) ��F (w) F (
w ×q w

)
F(π

w
) ��

F (w) F (
w ×q w

)

F(πw)

�� F
(
w ×q w

) F (
w ×q w ×q w

)��F (
w ×q w

) F (
w ×q w ×q w

)��
F (

w ×q w
) F (

w ×q w ×q w
)

��

given by the composition of F with the internal groupoid induced by q, is equivalent to the
Eilenberg–Moore category of the monad induced by the adjunction F(q)! � F(q), provided
that F satisfies the so called Beck-Chevalley condition (see, for instance, the Beck-Chevalley
condition for pseudofunctors in [21, Section 4]).
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Semantic Factorization and Descent 1395

Since monad theory already was a established subfield of category theory, the Bénabou–
Roubaud theorem gave an insightful connection between the theories, motivating what is
nowadays often called monadic approach to descent by giving a characterization of descent
via monadicity in several cases of interest (see, for instance, [24, Section 1], [8, Section 2],
or the introduction of [19]).

The main contribution of the present article can be seen as a counterpart account
to the Bénabou–Roubaud theorem. We give the semantic factorization via descent,
hence giving, in particular, a characterization of monadicity via descent. Although the
Bénabou–Roubaud theorem is originally a result in the setting of the 2-category Cat,
our contribution takes place in the more general context of two-dimensional category
theory (e.g. [12]), or in the so called formal category theory, as briefly explained
below.

In his pioneering work on bicategories, Bénabou observed that the notion of monad,
formerly called standard construction or triple, coincides with the notion of a lax functor
1 → Cat and can be pursued in any bicategory, giving convincing examples to the general-
ization of the notion [3, Section 5].

Taking Bénabou’s point in consideration, Street [25, 26] gave a formal account and gen-
eralization of the former established theory of monads by developing the theory within the
general setting of 2-categories. The formal theory of monads is a celebrated example of how
two-dimensional category theory can give insight to 1-dimensional category theory, since,
besides generalizing several notions, it conceptually enriches the formerly established theory
of monads. Street [25] starts showing that, when it exists, the Eilenberg–Moore construction
of a monad in a 2-category A is given by a right 2-reflection of the monad along a 2-functor
from the 2-category A into the 2-category of monads in A. From this point, making good
use of the four dualities of two-dimensional category theory, Street develops the formal
account of aspects of monad theory, including distributive laws, Kleisli construction, and a
generalization of the semantics-structure adjunction (e.g. [5, Chapter II]).

The theory of two-dimensional limits (e.g. [11, 28]), or weighted limits in 2-categories,
also provides a great account of formal category theory, since it shows that several con-
structions previously introduced in 1-dimensional category theory are actually examples of
weighted limits and, hence, are universally defined and can be pursued in the general context
of a 2-category.

Examples of the constructions that are particular weighted limits are: the lax descent
category and variations, the Eilenberg–Moore category [6, Theorem 2.2] and the comma
category [15, pag. 36]. Duality also plays important role in this context: it usually illuminates
or expands the original concepts of 1-dimensional category theory. For instance:

– The dual of the notion of descent object gives the notion of codescent object, which is
important, for instance, in 2-dimensional monad theory (see, for instance, [14, 17, 18]);

– The dual notion of the Eilenberg–Moore object in Cat gives the Kleisli category [13] of
a monad, while the codual gives the category of the coalgebras of a comonad.

Despite receiving less attention in the literature than the notion of comma object, the dual
notion, called opcomma object, was already considered in [27, pag. 109] and it is essential
to the present work. More precisely, given a morphism p : e → b of a 2-category A, if A has
suitable opcomma objects and pushouts, on one hand, we can consider the two-dimensional
cokernel diagram

Hp : �Str → A
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1396 F. Lucatelli

b ↑p bb ��b b ↑p b

δ
0
p↑p ��

b b ↑p b

δ
1
p↑p

�� b ↑p b b ↑p b ↑p b��b ↑p b b ↑p b ↑p b
��

b ↑p b b ↑p b ↑p b��

of p, whose precise definition can be found in 2.9 below. Assuming that A has the lax
descent object of Hp, the universal property of lax-Desc

(Hp
)

and the universal 2-cell of
the opcomma object induce a factorization

e b
p ��e

lax-Desc
(Hp

)����
���

���

lax-Desc
(Hp

)

b���������� (SLDF)

of p, called herein the semantic lax descent factorization. If the comparison morphism
e → lax-Desc

(Hp
)

is an equivalence, we say that p is an effective faithful morphism. This
concept is actually self-codual, meaning that its codual notion coincides with the original
one.

On the other hand, if such a morphism p has a codensity monad t which means that
the right Kan extension of p along itself exists in A, then the universal 2-cell of the ranpp
induces the semantic factorization

e b
p ��e

bt
����

���
���

��

bt

b�������������
(SF)

through the Eilenberg–Moore object bt of t provided that it exists (see, for instance, [5,
pag. 67] for the case of the 2-category of enriched categories). If the comparison e → bt is
an equivalence, we say that p is monadic. The codual notion is that of comonadicity.

The main theorem of the present article concerns both the factorizations above. More
precisely, Theorem 4.8 states the following:

Main Theorem: 1 Let A be a 2-category which has the two-dimensional cokernel diagram
of a morphism p. Moreover, assume that ranpp exists and is preserved by the universal
morphism δ0p↑p of the opcomma object b ↑p b.

There is an isomorphism between the Eilenberg–Moore object bt and the lax descent
object lax-Desc

(Hp
)
, either one existing if the other does. In this case, the semantic factor-

ization (SF) is isomorphic to the semantic lax descent factorization (SLDF).

In particular, this gives a formal monadicity theorem as a corollary, since it shows that,
assuming that a morphism p of A satisfies the conditions above on the codensity monad, p is
monadic if and only if p is an effective faithful morphism. Moreover, since this result holds
for any 2-category, we can consider the duals of this formal monadicity theorem: namely,
we also get characterizations of comonadic, Kleisli and co-Kleisli morphisms.

By the Dubuc-Street formal adjoint-functor theorem (viz., [5, Theorem I.4.1] and [30,
Prop. 2]), if p has a left adjoint, the codensity monad is the monad induced by the adjunction
and ranpp is absolute. Thus, in this case, assuming the existence of the two-dimensional
cokernel diagram, the hypothesis of our theorem holds. Therefore, as a corollary of our
main result, we get the following monadicity characterization:

Monadicity Theorem: Assume that the 2-category A has the two-dimensional cokernel dia-
gram of p : e → b.
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Semantic Factorization and Descent 1397

– The morphism p is monadic if and only if p is an effective faithful morphism and has a
left adjoint;

– The morphism p is comonadic if and only if p is an effective faithful morphism and has
a right adjoint.

Recall that, in the particular case of A = Cat (and other 2-categories, such as the
2-category of enriched categories), we have Beck’s monadicity theorem (e.g. [2, Theo-
rem 3.14] and [5, Theorem II.2.1]). It states that: a functor is monadic if and only if it
creates absolute coequalizers and it has a left adjoint. Hence, by our main result, we can
conclude that: provided that the functor p has a left adjoint, p creates absolute coequalizers
if and only if it is an effective faithful morphism.

The fact above suggests the following question: are effective faithful morphisms in Cat
characterized by the property of creating absolute coequalizers? In Remark 5.14 we show
that the answer to this question is negative by the self coduality of the concept of effec-
tive faithful morphism and non-self duality of the concept of functor that creates absolute
coequalizers.

This work was motivated by two main aims. Firstly, to get a formal monadicity theo-
rem given by a 2-dimensional exact condition. Secondly, to better understand the relation
between descent and monadicity in a given 2-category and, together with [19], get alterna-
tive guiding templates for the development of higher descent theory and monadicity.

Although we do not make these connections in this paper, the results on 2-dimensional
category theory of the present work already establish framework and have applications to
the author’s ongoing work on descent theory in the context of [8, 19].

The main aim of Sect. 1 is to set up basic terminology related to the category of the finite
nonempty ordinals � and its strict replacement �Str. As observed above, this work is meant
to be applicable in the classical context of descent theory and, hence, we should consider
lax descent categories of pseudofunctors �3 → Cat. In order to do so, we consider suitable
strict replacements �Str → Cat.

The main results (Theorems 4.7 and 4.8) can be seen as theorems on 2-dimensional limits
and colimits. For this reason, we recall basics on 2-dimensional limits in Sect. 2. We give
an explicit definition of the 2-dimensional limits related to the two-dimensional cokernel
diagram. This helps to establish terminology and framework for the rest of the paper.

In 2.5, we give an explicit definition of the lax descent object for 2-functors �Str → A

in order to establish the lax descent factorization induced by the two-dimensional cokernel
diagram (2.11.1) of a morphism p, the semantic lax descent factorization of p. This perspec-
tive over lax descent objects is also useful to future work on giving further applications of
the results of the present paper in Grothendieck descent theory within the context of [8, 19].

In Sect. 3, we recall basic aspects of Eilenberg–Moore objects in a 2-category A. Given a
tractable morphism p in A, it induces a monad and, in the presence of the Eilenberg–Moore
objects, it also induces a factorization, the semantic factorization of p (e.g. [25, Section 2]
or [5, Theorem II.1.1]). We are only interested in morphisms p that have codensity monads,
that is to say, the right Kan extension of p along itself. We recall the basics of this setting,
including the definitions of right Kan extensions and codensity monads in Sect. 3.

We do not present more than very basic toy examples of codensity monads. We refer
to [5, Chapter II] for the classical theory on codensity monads, while [1, 16] are recent
considerations that can be particularly useful to understand interesting examples.

Still in Sect. 3, Lemma 3.5 gives a connection between opcomma objects and right Kan
extensions. The statement is particularly useful for establishing an important adjunction (see
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1398 F. Lucatelli

Propositions 4.1 and 4.2) and proving the main results. The Dubuc-Street formal adjoint-
functor theorem, also important for our proofs, is recalled in Theorem 3.14.

The mate correspondence [12, Proposition 2.1] is a useful framework in 2-dimensional
category theory that states an isomorphism between two special double categories that come
from each 2-category A. It plays a central role in the proof of Theorem 4.7, but we only need
it in very basic terms as recalled in Remark 3.15, with which we finish Sect. 3.

The point of Sect. 4 is to prove the main results of the present paper. We start by estab-
lishing an important condition to the main theorem, which arises from Propositions 4.1 and
4.2: the condition of preservation of ranpp by the universal morphism δ0p↑p. We, then, go
towards the proof of the main result, constructing an adjunction in Proposition 4.4, defining
particularly useful 2-cells for our proof in Lemma 4.6 and, finally, proving Theorem 4.7.

We also give a brief discussion on the condition of Proposition 4.2. Firstly, we show
that every right adjoint morphism satisfies the condition in Proposition 4.3. Then we give
examples and counterexamples in 4.12.

The final section is mostly intended to apply our main result in order to get our monadicity
theorem using the concept of effective faithful morphism. We finish the article with a remark
on the self-coduality of this concept, in opposition to the non-self duality of the property
of creating absolute coequalizers. This gives a comparison between the Beck’s monadicity
theorem and ours, showing in particular that effective faithful morphisms in Cat are not
characterized by the property of creating absolute coequalizers.

1 Categories of Ordinals

Let Cat be the cartesian closed category of categories in some universe. We denote the
internal hom by

Cat[−, −] : Catop × Cat → Cat.

A 2-category A herein is the same as a Cat-enriched category. As usual, the composition
of 1-cells (morphisms) is denoted by ◦, ·, or omitted whenever it is clear from the context.
The vertical composition of 2-cells is denoted by · or omitted when it is clear, while the
horizontal composition is denoted by ∗. Recall that, from the vertical and horizontal compo-
sitions, we construct the basic operation of pasting (see [12, pag. 79] and [23]).

As mentioned in the introduction, duality is one of the most fundamental aspects of
theories on 2-categories. Unlike 1-dimensional category theory, two-dimensional category
theory has four duals. More precisely, any 2-category A gives rise to four 2-categories: A,
A

op, Aco, Acoop which are respectively related to inverting the directions of nothing, mor-
phisms, 2-cells, morphisms and 2-cells. Hence every concept/result gives rise to four (not
necessarily different) duals: the concept/result itself, the dual, the codual, the codual of the
dual.

Although it is important to keep in mind the importance of duality, we usually leave to
the interested reader the straightforward exercise of stating precisely the four duals of most
of the dualizable aspects of the present work.

In this section, we fix notation related to the categories of ordinals and the strict replace-
ment �Str. We denote by � the locally discrete 2-category of finite nonempty ordinals and
order preserving functions between them. Recall that � is generated by the degeneracy and
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Semantic Factorization and Descent 1399

face maps; that is to say, � is generated by the diagram

1
d0 ��

d1 ��
2s0��

d0 ��
d1 ��
d2 ��

3

s0

��

s1

		

�������� · · ·

��

��

with the following relations:

dkdi = didk−1
, if i < k;

sksi = sisk+1
, if i ≤ k;

skdi = disk−1
, if i < k;

skdi = id, if i = k or i = k + 1;

skdi = di−1sk, if i > k + 1.

We are particularly interested in the sub-2-category �3 of � with the objects 1, 2 and 3
generated by the morphisms below.

1
d0 ��

d1 ��
2s0��

d0 ��
d1 ��
d2 ��

3

For simplicity, we use the same notation to the objects and morphisms of � and their images
by the usual inclusion � → Cat which is locally bijective on objects. It should be noted that
the image of the faces and degeneracy maps by � → Cat are given by:

dk :n − 1 → n

t �→
{
t+ 1, if t ≥ k

t, otherwise

sk :n+ 1 → n

t �→
{
t, if t ≤ k

t − 1, otherwise.

Furthermore, in order to give the weight of the lax descent object, we consider the 2-category
�Str.

Definition 1.1 (�Str) We denote by �Str the 2-category freely generated by the diagram

1
d0

��

d1
�� 2s0��

d0
��

d1 ��

d2
�� 3

with the invertible 2-cells:

σ01 : d1d0 ⇒ d0d0
,

σ02 : d2d0 ⇒ d0d1
,

σ12 : d2d1 ⇒ d1d1
,

n0 : s0d0 ⇒ id1,

n1 : s0d1 ⇒ id1.

Lemma 1.2 (e�Str ) There is a biequivalence e�Str : �Str ≈ �3 which is bijective on objects,
defined by:

1 �→ 1, 2 �→ 2, 3 �→ 3, dk �→ dk, s0 �→ s0, dk �→ dk, σki �→ iddidk , nk �→ idid1 .

Remark 1.3 It should be noted that, given a 2-category A and a pseudofunctor B : �3 → A,
we can replace it by a 2-functor A : �Str → A defined by

A(dk
) := B ◦ e�Str(d

k
)

A(dk
) := B ◦ e�Str(d

k
)

A(s0) := B ◦ e�Str(s
0
)

A(σki) :=
(
bdidk−1

)−1 · bdkdi

A(nk) := bs0dk
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1400 F. Lucatelli

in which, for each pair of morphisms (v, v′) of �3, bvv′ is the invertible 2-cell

bvv′ : B(v)B(v′
) ⇒ B(vv′

)

component of the pseudofunctor B (see, for instance, [17, Def. 2.1]). Whenever we refer to
a pseudofunctor (truncated pseudocosimplicial category) �3 → Cat in the introduction, we
actually consider the replacement 2-functor �Str → Cat. For this work, there is no need for
further considerations on coherence theorems.

2 Weighted Colimits and the Two-Dimensional Cokernel Diagram

The main result of this paper relates the factorization given by the lax descent object of the
two-dimensional cokernel diagram of a morphism with the semantic factorization, in the
presence of opcomma objects and pushouts inside a 2-category A. In other words, it relates
the lax descent objects, the Eilenberg–Moore objects, the opcomma objects and pushouts.
These are known to be examples of 2-dimensional limits and colimits. Hence, in this section,
before defining the two-dimensional cokernel diagram and the factorization induced by its
lax descent object, we recall the basics of the special weighted (co)limits related to the
definitions.

Two dimensional limits are the same as weighted limits in the Cat-enriched context [11,
28]. Assuming that S is a small 2-category, let W : S → Cat,D : S → Cat and D′ :
S
op → A be 2-functors. If it exists, we denote the weighted limit of D with weight W by

lim (W,D). Dually, we denote by colim
(W,D′) the weighted colimit of D′ provided that

it exists. Recall that colim
(W,D′) is a weighted colimit if and only if we have a 2-natural

isomorphism (in z)

A(colim
(W,D′)

, z) ∼= [Sop,Cat] (W,A(D′−, z)) ∼= lim
(W,A(D′−, z)

)

in which [Sop,Cat] denotes the 2-category of 2-functors Sop → Cat, 2-natural transforma-
tions and modifications. By the Yoneda embedding of 2-categories, if a two dimensional
(co)limit exists, it is unique up to isomorphism. It is also important to keep in mind the fact
that existing weighted limits in A are created by the Yoneda embedding A → [Aop,Cat],
since it preserves weighted limits and is locally an isomorphism (Cat-fully faithful).

Recall that Cat has all weighted colimits and all weighted limits. Moreover, in any
2-category A, every weighted colimit can be constructed from some special 2-colimits
provided that they exist: namely, tensor coproducts (with 2), coequalizers and (conical)
coproducts. Dually, weighted limits can be constructed from cotensor products (with 2),
equalizers and products provided that they exist.

2.1 Tensorial Coproducts

Tensorial products and tensorial coproducts are weighted limits and colimits with the
domain/shape 1. So, in this case, the weight of a tensorial coproduct is entirely defined
by a category a in Cat. If b is an object of A, assuming its existence, we usually denote by
a ⊗ b the tensorial coproduct, while the dual, the cotensorial product, is denoted by a � b.

Clearly, if b is an object of Cat, the tensorial coproduct a ⊗ b in Cat is isomorphic to the
(conical) product a × b, while a � b ∼= Cat[a, b].
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Semantic Factorization and Descent 1401

2.2 Pushouts and Coproducts

Two dimensional conical (co)limits are just weighted limits with a weight constantly equal
to the terminal category 1. Hence the weight/shape of a two dimensional conical (co)limits
is entirely defined by the domain of the diagram.

The existence of a 2-dimensional conical (co)limit of a 2-functor D : S → A defined in
a locally discrete 2-category S (i.e. a diagram defined in a category S) in a 2-category A is
stronger than the existence of the 1-dimensional conical (co)limit of the underlying functor
of the 2-functor D in the underlying category of A. However, in the presence of the former,
by the Yoneda lemma for 2-categories, both are isomorphic.

As in the 1-dimensional case, the conical 2-colimits of diagrams shaped by discrete cate-
gories are called coproducts, while the conical 2-colimits of diagrams with the domain being
the opposite of the category S defined by (2.2.1) gives the notion of pushout.

2

0

d1


�����

1

d0
�������

(2.2.1)

Recall that, if p0 : e → b0, p1 : e → b1 are morphisms of a 2-category A, assuming its
existence, the pushout of p1 along p0 is an object b0 �(p0,p1) b1, also denoted by p0 �e p1,
satisfying the following: there are 1-cells

d0p0�ep1 : b1 → b0 �(p0,p1) b1 and d1p0�ep1 : b0 → b0 �(p0,p1) b1

making the diagram

e

b0

p0

��

e b1
p1 ��

b0 b0 �(p0,p1) b1
d1p0�ep1

��

b1

b0 �(p0,p1) b1

d0p0�ep1

��
(2.2.2)

commutative and, for every object y and every pair of 2-cells

(ξ0 : h0 ⇒ h′
0 : b1 → y, ξ1 : h1 ⇒ h′

1 : b0 → y)

such that the equation

b0 y

h′
1

��

e b1
p1 ��

b0 y

h1

��b0

e

��

p0

y

b1

��

h′
0

��
ξ1

=

b1

y

h0

��

b1

y

h′
0

��

e

b0

p0

��

e b1
p1 ��

b0 y
h1

��

ξ0 �� (2.2.3)
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1402 F. Lucatelli

holds, there is a unique 2-cell ξ : h ⇒ h′ : b0 �(p0,p1) b1 → y satisfying the equations

ξ1 =
b0 �(p0,p1) b1

y

h′

��

b0 �(p0,p1) b1

y

h

��

b0

b0 �(p0,p1) b1

d1p0�ep1

��

ξ ��

and
b0 �(p0,p1) b1

y

h′

��

b0 �(p0,p1) b1

y

h

��

b1

b0 �(p0,p1) b1

d0p0�ep1

��

ξ ��

= ξ0. (2.2.4)

2.3 Opcomma Objects

We consider the 2-category S defined in (2.2.1) and the weight P : S → Cat, defined by
P (1) := P (0) := 1, P (2) := 2, and P (d0) = d0,P (d1) = d1; that is to say, the weight

2

1

d1 �������
1

d0�������

in which d0 and d1 are respectively the inclusion of the codomain and the inclusion of the
domain of the non-trivial morphism of 2 (as defined in Sect. 1).

Limits weighted by P are the well known comma objects, while the colimits weighted by
P are called opcomma objects. By definition, if p0 : e → b0, p1 : e → b1 are morphisms of
a 2-category A and p0 ↑ p1 is the opcomma object of p1 along p0, then A(p0 ↑ p1, −) is the
comma object of A(p1, −) along A(p0, −). This means that: there are 1-cells

δ
0
p0↑p1

: b1 → p0 ↑ p1, δ
1
p0↑p1

: b0 → p0 ↑ p1 (2.3.1)

and a 2-cell

e

b0

p0

����
��
��
�
e

b1

p1

���
��

��
��

b0

p0 ↑ p1

δ
1
p0↑p1 ���

��
��

��
b1

p0 ↑ p1

δ
0
p0↑p1����

��
��
�

α
p0↑p1 �� (2.3.2)

satisfying the following:

1. For every triple (h0 : b1 → y, h1 : b0 → y, β : h1p0 ⇒ h0p1) in which h0,h1 are
morphisms and β is a 2-cell of A, there is a unique morphism h : p0 ↑ p1 → y such that
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the equations h0 = h · δ0p0↑p1
, h1 = h · δ1p0↑p1

and

e

b0

p0

����
��
��
�
e

b1

p1

���
��

��
��

b0

p0 ↑ p1

δ
1
p0↑p1 ���

��
��

��
b1

p0 ↑ p1

δ
0
p0↑p1����

��
��
�

p0 ↑ p1

y

h
��

α
p0↑p1 ��

=

e

b0

p0

����
��
��
�
e

b1

p1

���
��

��
��

b0

y

h1 ���
��

��
��

b1

y

h0����
��
��
�

β �� (2.3.3)

hold.
2. For every pair of 2-cells

(ξ0 : h · δ0p0↑p1
⇒ h′ · δ0p0↑p1

: b1 → y, ξ1 : h · δ1p0↑p1
⇒ h′ · δ1p0↑p1

: b0 → y)

such that

e

b0

p0

����
��
��
��
�
e

b1

p1

���
��

��
��

��

b0

p0 ↑ p1

δ
1
p0↑p1

���

���
��

b1

p0 ↑ p1

δ
0
p0↑p1

���

�����

p0 ↑ p1

y

h′

��

b0

y

h · δ
1
p0↑p1

��

α
p0↑p1 ��

ξ1 ��

=

e

b0

p0

����
��
��
��
�
e

b1

p1

���
��

��
��

��

b0

p0 ↑ p1

δ
1
p0↑p1

���

���
��

b1

p0 ↑ p1

δ
0
p0↑p1

���

�����

p0 ↑ p1

y

h

��

b1

y

h′ · δ
0
p0↑p1

��

α
p0↑p1 ��

ξ0 ��

(2.3.4)

holds, there is a unique 2-cell ξ : h ⇒ h′ : p0 ↑ p1 → y such that

ξ1 =
p0 ↑ p1

y

h′

��

p0 ↑ p1

y

h

��

b0

p0 ↑ p1

δ
1
p0↑p1

��

ξ ��

and
p0 ↑ p1

y

h′

��

p0 ↑ p1

y

h

��

b1

p0 ↑ p1

δ
0
p0↑p1

��

ξ ��

= ξ0.

Remark 2.4 Since Cat has all weighted colimits and limits, it has opcomma objects. More
generally, if any 2-category A has tensorial coproducts and pushouts, then A has opcomma
objects.

More precisely, assuming that the tensorial coproduct 2 ⊗ e exists in A, we have the
universal 2-cell d1⊗e ⇒ d0⊗e : e → 2⊗e given by the image of the identity 2⊗e → 2⊗e
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1404 F. Lucatelli

by the isomorphism

A(2 ⊗ e, 2 ⊗ e) ∼= Cat [2,A(e, 2 ⊗ e)] .

If it exists, the conical colimit of the diagram below is the opcomma object p0 ↑ p1 of
p1 : e → b1 along p0 : e → b0.

e

p1
��
�

����
� d1⊗e

		
	

��	
		

e

p0







��



d0⊗e

��
�

����
�

b1 2 ⊗ e b0

2.5 Lax Descent Objects

We consider the 2-category �Str of Definition 1.1 and we define the weight D : �Str → Cat
by

�Str(1, 1) × 1

id�Str(1,1)×d0

��

id�Str(1,1)×d1
��
�Str(1, 1) × 2S��

id�Str(1,1)×D
0

��
id�Str(1,1)×D

1 ��

id�Str(1,1)×D
2

��
�Str(1, 1) × 〈3〉

in which:

– The functor S : �Str(1, 1) × 2 → �Str(1, 1) × 1 is defined by

S(v : v ∼= v′
, 0 → 1) =

((
n−1
0 · n1

)
∗ v, id0

)
=

(
s0d1v ∼= s0d0v′

, id0

)
.

– 〈3〉 is the category corresponding to the preordered set
{

(i, k) ∈ {0, 1, 2}2 : i �= k
}

in which the preorder induced by the first coordinate, that is to say, (i, k) ≤ (i′, k′
) if

i ≤ i′. In other words, the category 〈3〉 is defined by the preordered set below.

(2, 0) ��
∼= �� (2, 1)

(1, 2) ��
∼= �� (1, 0)

��

(0, 2)

��

�� ∼=
�� (0, 1).

��

– The functors D
0
,D

1
,D

2
: 2 → 〈3〉 are defined by

D
0
(0 → 1) = ((1, 0) → (2, 0)), D

2
(0 → 1) = ((0, 2) → (1, 2))

and
D

1
(0 → 1) = ((0, 1) → (2, 1)) .

– The natural transformations D(σ01), D(σ02) and D(σ12) are defined by

D(σij) := idid�Str(1,1)
× D(σij),

in which
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D(σ01)0 := ((2, 1) ∼= (2, 0)), D(σ02)0 := ((1, 2) ∼= (1, 0))
and

D(σ12)0 := ((0, 2) ∼= (0, 1)).

– The natural transformation

D(ni) : S ◦
(
id�Str(1,1) × di

)
⇒ id�Str(1,1)×1

is defined by D(ni)(v,0) := (ni ∗ idv, id0).

Definition 2.6 (Lax descent object) Given a 2-functor B : �Str → A, if it exists, the weighted
limit lim(D,B) is called the lax descent object of B.

Remark 2.7 Since Cat has all weighted limits, it has lax descent objects. More precisely, if
A : �Str → Cat is a 2-functor,

lim(D,A) ∼= [�Str,Cat] (D,A)

is the category in which:

1. Objects are 2-natural transformations ψ : D −→ A. We have a bijective correspon-
dence between such 2-natural transformations and pairs (w, ψ) in which w is an object
of A(1) and ψ : A(d1)(w) → A(d0)(w) is a morphism in A(2) satisfying the following
equations:

Associativity:

A(d0
)(ψ) · A(σ02)w · A(d2

)(ψ) = A(σ01)w · A(d1
)(ψ) · A(σ12)w;

Identity:

A(n0)w · A(s0)(ψ) = A(n1)w.

If ψ : D −→ A is a 2-natural transformation, we get such pair by the correspondence

ψ �→ (ψ1(id1 , 0), ψ2(id1 , 0 → 1)).

2. The morphisms are modifications. In other words, a morphism m : (w, ψ) → (w′, ψ ′) is
determined by a morphism m : w → w′ in A(1) such that

A(d0
)(m) · ψ = ψ

′ · A(d1
)(m).

By definition, if B : �Str → A is a 2-functor, an object lax-Desc (B) is the lax descent object
lim(D,B) of B if and only if there is a 2-natural isomorphism (in y)

A(y, lax-Desc (B)) ∼= lim(D,A(y,B−)).

Equivalently, a lax descent object of B is, if it exists, an object lim(D,B) of A together with
a pair

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

lim(D,B) B(1)d(D,B)

�� ,

lim(D,B)

B(1)

d(D,B)

����
��
��
�

lim(D,B)

B(1)

d(D,B)

��	
		

		
		

B(1)

B(2)
B(d1

) ��	
		

		
		

B(1)

B(2)
B(d0

)����
��
��
�



(D,B)

��

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

(2.7.1)

of a morphism d(D,B) and a 2-cell 
(D,B) in A satisfying the following three properties.
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1406 F. Lucatelli

1. For each pair

(h : y → B(1), β : B(d1
) · h ⇒ B(d0

) · h)

in which h is a morphism and β is a 2-cell of A such that the equations

B(1)

B(2)

B(d1
)

����
��
��
�
B(1)

B(2)

B(d1
)






��





yB(1) h�� y

B(1)

h

��












B(2)

B(3)

B(d2
)

��












B(2)

B(3)

B(d1
)

���

�����

B(1)B(2) B(d0
)�� B(1)

B(2)

B(d0
)

����
��
��
�

B(2)B(3)
B(d0

)

��

B(σ12) ��

β ��

B(σ01) ��

=

y

B(1)

h

��












y

B(1)

h
��
�

����
�

B(1) y�� hB(1)

B(2)

B(d1
)

����
��
��
�

B(1)

B(2)

B(d0
)

����
��
��
�

B(1)

B(2)

B(d1
)






��





B(2) B(1)�� B(d0
)B(2)

B(3)

B(d2
)

��












B(3) B(2)��
B(d0

)

β ��

β ��

B(σ02) ��

(2.7.2)

y B(1)h ��y

B(1)

h

��

B(1)

B(2)

B(d0
)

��

B(1)

B(1)

B(1) B(2)B(d1
) ��B(1)

B(1)

B(2)

B(1)

B(s0)

��

����
A(n1)

−1
��

A(n0) ��

β ��

=

y

B(1)

h

� 

y

B(1)

h

 !

(2.7.3)

hold, there is a unique morphism h(B,β) : y → lim(D,B) making the diagram

y B(1)h ��y

lim (D,B)

h(B,β)

!"��
���

���
���

���

lim (D,B)

B(1)

d(D,B)

"#�������������
(2.7.4)

commutative and such that (2.7.5) holds.

y

lim(D,B)

h(B,β)

��
lim(D,B)

B(1)

d(D,B)

#$���
���
lim(D,B)

B(1)

d(D,B)

$%��
���

�

B(1)

B(2)
B(d1

) $%��
���

� B(1)

B(2)
B(d0

)#$���
���



(D,B)

��
=

y

B(1)

h

%&��
��
��
��
��
�
y

B(1)

h

&'�
��

��
��

��
��

B(1)

B(2)
B(d1

) $%��
���

� B(1)

B(2)
B(d0

)#$���
���

β �� (2.7.5)

2. The pair (d(D,B), 
(D,B)) satisfies the descent associativity (2.7.2) and the descent
identity (2.7.3). In this case, the unique morphism induced is clearly the identity on
lim(D,B), that is to say,

(
d(D,B)

)(B,

(D,B)

)

= idlim(D,B).
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3. Assume that (h1, β1) and (h0, β0) are pairs satisfying (2.7.2) and (2.7.3), inducing fac-
torizations h1 = d(D,B) ◦ h(B,β1)

1 and h0 = d(D,B) ◦ h(B,β0)
0 .

For each 2-cell

ξ : h1 ⇒ h0 : y → B(1)

satisfying the equation

y B(1)
h0 ��y

B(1)

h0

'(

y

B(1)

h1

()

B(1)

B(2)

B(d0
)

��
B(1) B(2)

B(d1
)

��

β0 ��ξ �� =

y

A(1)

h1

��

y B(1)

h0

)*
y B(1)

h1

*+B(1)

A(2)

B(d0
)

��
A(1) A(2)

B(d1
)

��

β1 ��

��
ξ

(2.7.6)

there is a unique 2-cell

ξ
(B,β1,β0) : h(B,β1)

1 ⇒ h(B,β0)
0 : y → lim(D,B)

such that

lim(D,B)

y

$%

h
(B,β1)

1

lim(D,B)

y

#$

h
(B,β0)

0

B(1)

lim(D,B)

��
d(D,B)

ξ
(B,β1 ,β0)

��

= ξ. (2.7.7)

2.8 The Two-Dimensional Cokernel Diagram

Let p : e → b be a morphism of a 2-category A. A has the two-dimensional cokernel diagram
of p if A has the opcomma object

e

b

p

����
��
��

e

b

p

���
��

��
�

b

b ↑p b
δ
1 ���
��

��
b

b ↑p b
δ
0����

��
�

α �� (2.8.1)
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of p along itself and the pushout (2.8.2) of δ0 along δ1.

b

b ↑p b

δ
1

��

b b ↑p b
δ
0

��

b ↑p b b ↑p b ↑p b
∂
0
��

b ↑p b

b ↑p b ↑p b

∂
2

��

(2.8.2)

Henceforth, in this section, we assume that A has the two-dimensional cokernel diagram of
p. We denote by

∂
1 : b ↑p b → b ↑p b ↑p b

the unique morphism such that the equations

∂
1
δ
1 = ∂

2
δ
1
, ∂

1
δ
0 = ∂

0
δ
0 (2.8.3)

e

b

p

����
��
��
��

e

b

p

���
��

��
��

�

b

b ↑p b

δ
1

���
��

��
��

b

b ↑p b

δ
0

����
��
��
�

b ↑p b

b ↑p b ↑p b

∂
1

��

α ��

=

e

b

p

+,��
��
��
��
��
��
��
��
�
e

b

p

)*�
��

��
��

��
��

��
��

��

b

b ↑p b ↑p b

∂
2
δ
1

����
���

���
��� b

b ↑p b ↑p b

∂
0
δ
0

�����
���

���
��

b

b ↑p b ↑p b

∂
0
δ
0

,-

b

b ↑p b ↑p b

∂
0
δ
1

-.

e

b

p

��

id
∂2∗α�� id

∂0∗α�� (2.8.4)

hold, while we denote by s0 : b ↑p b → b the unique morphism such that s0·δ1 = s0·δ0 = idb
and (2.8.5) holds.

e

b

p

����
��
��
��

e

b

p

���
��

��
��

�

b

b ↑p b

δ
1

���
��

��
��

b

b ↑p b

δ
0

����
��
��
�

b ↑p b

b

s0

��

α ��

=

e

b

p

��

e

b

p

��

(2.8.5)

Definition 2.9 (Two-dimensional cokernel diagram) Consider the 2-functor

H′
p : �3 → A

defined by H′
p(d

i : 1 → 2) = δi, H′
p(d

i : 2 → 3) = ∂i and H′
p(s

0) = s0. The 2-functor

Hp := H′
p ◦ e�Str : �Str → A
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b
δ
0 ��

δ
1 ��

b ↑p bs0��
∂
0 ��

∂
1 ��

∂
2 ��

b ↑p b ↑p b (Hp)

is called the two-dimensional cokernel diagram of p.

Remark 2.10 This construction was, for instance, already considered in [31, pag. 135] under
the name resolution, specially in the 2-category of pretoposes and in the 2-category of exact
categories.

Remark 2.11 The 2-category of categories Cat has the two-dimensional cokernel diagram of
any functor. In particular, the two-dimensional cokernel diagram of id1 is

1
d0 ��

d1 ��
2s0��

d0 ��
d1 ��
d2 ��

3 (Hid1 )

which is just the usual inclusion of the locally discrete 2-category �3 in Cat.

By the definitions of ∂1 and s0 ((2.8.4) and (2.8.5)), the pair

(p : e → b, α : δ
1 · p ⇒ δ

0 · p : e → b ↑p b)

satisfies the descent associativity and identity w.r.t. Hp : �Str → A (that is to say, (2.7.2)
and (2.7.3) w.r.t. Hp). Hence, if A has the lax descent object

(lim(D,Hp),d
p
,


p
) := (lim(D,Hp),d

(D,Hp)
, 


(D,Hp)
)

of Hp, by the universal property of the lax descent object, there is a unique morphism

pH := p(Hp,α) : e → lim(D,Hp)

such that

e b
p ��e

lim
(
D,Hp

)
pH

!"��
���

���
���

��

lim
(
D,Hp

)

b

dp

"#�������������
(2.11.1)

commutes and the equation

e

lim(D,Hp)

pH
��

lim(D,Hp)

b

dp

#$���
���

�
lim(D,Hp)

b

dp

$%��
���

��

b

b ↑p b
δ
1 $%��
���

�� b

b ↑p b
δ
0#$���

���
�



p

��
=

e

b

p

%&��
��
��
��
��
��
e

b

p

&'�
��

��
��

��
��

�

b

b ↑p b
δ
1 $%��
���

�� b

b ↑p b
δ
0#$���

���
�

α �� (2.11.2)

holds.
Inspired by our main result (Theorem 4.7), we establish the following terminology.

Definition 2.12 Assume that A has the lax descent object of Hp. The lax descent factoriza-
tion induced by Hp and the universal 2-cell of the opcomma object b ↑p b given in (2.11.1)
is called the semantic lax descent factorization of p.
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Remark 2.13 Given an object x and a morphism p : e → b of A as above, the factorization
induced by the universal property of the lax descent category lim(D,A(x,Hp−)) and by
the pair

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A(x, p),

A (x, e)

A (x, b)

A(x,p)

����
��
��
��
�
A (x, e)

A (x, b)

A(x,p)

���
��

��
��

��

A (x, b)

A
(
x, b ↑p b

)
A(x,δ

1) ���
��

��
��

� A (x, b)

A
(
x, b ↑p b

)
A(x,δ

0)����
��
��
��

A(x,α) ��

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.13.1)

is given by

A (x, e) A (x, b)
A(x,p) ��A (x, e)

lim
(
D,A(x,Hp−)

)

A(x,p)(A(x,Hp−),A(x,α))

���
�

����
��

lim
(
D,A(x,Hp−)

)

A (x, b)

d(D,A(x,Hp−))
����

./����
(2.13.2)

in which

A(x, p)(A(x,Hp−),A(x,α)) : A(x, e) → lim(D,A(x,Hp−)) ∼= A(x, lim(D,Hp))

g �→ (p · g,α ∗ idg)

χ : g ⇒ g′ �→ idp ∗ χ

d(D,A(x,Hp−)) : lim(D,A(x,Hp−)) → A(x, b)

(f , ψ) �→ f

ξ �→ ξ.

Clearly, if A has the lax descent object of the two-dimensional cokernel diagram Hp, the
factorization given in (2.13.2) is isomorphic to the factorization

A(x, p) = A(x,dp
) ◦ A(x, pH) (2.13.3)

given by the image of (2.11.1) by A(x, −) : A → Cat, since the Yoneda embedding creates
any existing lax descent objects in A.

Remark 2.14 It should be noted that, assuming that we can construct Hp in A, the factoriza-
tion (2.13.2) always exists, since Cat has lax descent objects (lax descent categories).

Moreover, since opcomma objects (weighted colimits in general) might not be preserved
by the Yoneda embedding, the definition of the factorization given in (2.13.2) does not coin-
cide with the definition of semantic lax descent factorization of A(x, p) in Cat.

For instance, consider the example of Remark 2.11. For any object x of Cat, clearly the
opcomma object of Cat[x, id1] along itself is isomorphic to the opcomma object of id1 along
itself, that is to say, 2. Hence, since there is a category x such that Cat[x, 2] is not isomorphic
to 2, this shows that the Yoneda embedding does not preserve the opcomma object id1 ↑ id1.
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Remark 2.15 (Duality: two-dimensional kernel diagram and the induced factorization) The
codual notion of that of the two-dimensional cokernel diagram gives the same notion of
factorization (assuming the existence of the suitable lax descent object): namely, the factor-
ization given in (2.11.1) of the morphism p.

The dual concept of the two-dimensional cokernel diagram, the 2-dimensional kernel
diagram of l : b → e, if it exists, is a 2-functor

Hl : �
op
Str → A

b ↓l b ↓l b
∂
l↓l
0

��

∂
l↓l
1

��

∂
l↓l
2

��
b ↓l b

δ
l↓l
0

��

δ
l↓l
1

��
bs

l↓l
0

��

constructed from suitable comma objects and pullbacks.
In this case, we get the lax codescent factorization induced by the 2-dimensional kernel

diagram of l (2.15.1), provided that the lax codescent object of Hl exists. Herein, we call
the factorization (2.15.1) the semantic lax codescent factorization of l.

e b
l ��e

colim
(
D,Hl

)
dl

����
���

���
���

���

colim
(
D,Hl

)

b

lH

./��������������
(2.15.1)

In the special case of the 2-category Cat, the 2-dimensional kernel diagram was, for instance,
also considered in [29, pag. 544] under the name higher kernel and at [14, Proposition 4.7]
under the name congruence.

3 Semantic Factorization

Assuming that A has suitable Eilenberg–Moore objects, the semantics-structure adjunction
(e.g. [25, Section 2]) gives rise to what is called herein the semantic factorization of a
tractable morphism p. In this section, we recall the semantic factorization of morphisms that
have codensity monads. Before doing so, we recall the definition of the Eilenberg–Moore
object of a given monad.

3.1 Eilenberg–Moore Object

Recall that a monad in a 2-category A is a quadruple

t =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b, t : b → b,

b

b

t

#$��
��
��
��

b

b
t $%�

��
��

��
�

b

b

t

��

m �� ,

b

b

b

b

t

/0

η ��

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

in which b is an object, t is a morphism and m, η are 2-cells in A such that the equations
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b

b

t

��
b b

t
��

b

b

t
��

��
��

�

���
��

��
��

b

b

t

��b b
t ��

m

01
m

01

=

b

b

t

��

b b
t ��

b

b

t

��

b b
t

��b

b

t�������



�������
m

01
m

01

(3.1.1)

b

b

t

���
��

��
��

��
��

��
�

b

b

t

��

b b
t

��

b

b

η ��
m

01

=

b

b

t
��

��
��

�

���
��

��
��

b

b

t

��

b b
t

�� b

b

η
01

m

01

= idt (3.1.2)

hold. A monad can be seen as a 2-functor t : mnd → A from the free monad 2-category
mnd = �� to A (e.g. [28, pag. 178] or [19, Sect. 6]). If it exists, the Eilenberg–Moore
object, also called the object of algebras, is a special weighted limit of t. More precisely,
given a monad t in A, the object bt is the Eilenberg–Moore object of t if and only if there
is a 2-natural isomorphism (in y)

A(y, bt) ∼= A(y, b)A(y,t)

in which A(y, b)A(y,t) is the Eilenberg–Moore category of the monad

(A(y, b),A(y, t),A(y,m),A(y, η))

in Cat. This means that, if the Eilenberg–Moore object bt of t = (b, t,m, η) exists, it is
characterized by the following universal property. There is a pair

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ut : bt → b,

b

b

t

���
��

��
��

��
��

��
�

bt

b

ut

��

bt b
ut

��

μ
t

01

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.1.3)

in which ut is a morphism, and μt is a 2-cell in A satisfying the following three properties.

1. For each pair (h : y → b, β : t · h ⇒ h) in which h is a morphism and β is a 2-cell in A

making the equations
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b

b

t

��

b b
t ��

y

b

h

��

y b
h

��y

b

h������



������
β

01
β

01

=

b

b

t

��
y b

h
��

b

b

t
��

��
��

�

���
��

��
��

y

b

h

��b b
t ��

m

01
β

01

(3.1.4)

y

b

h

12

y

b

h

23

=

b

b

t
��

��
��

�

���
��

��
��

y

b

h

��

y b
h

�� b

b

η
01

β

01

(3.1.5)

hold, there is a unique morphism h(t,β) : y → bt such that the equation μt ∗ idh(t,β) = β.
It should be noted that, in this case, we get in particular that

y b
h ��y

bt
h(t,β)

!"��
���

���
���

���
��

bt

b

ut

"#����������������

(3.1.6)

commutes.
2. The pair (ut, μt) satisfies the algebra associativity (3.1.4) and identity (3.1.5) equations.

In this case, the unique morphism induced is clearly the identity on bt.
3. Assume that h(t,β1)

1 ,h(t,β0)
0 : y → bt are morphisms in A. For each 2-cell

ξ : ut · h(t,β1)
1 ⇒ ut · h(t,β0)

0 : y → b

such that the equation

b

b

t

���
��

��
��

��
��

��
�

bt

b

ut

��

bt b
ut

��

y

bt

h
(t,β0)

0

������������
y

b

ut ·h(t,β1)

1

3�

μ
t

01
ξ �� =

b

b

t

���
��

��
��

��
��

��
�

bt

b

ut

��

bt but ��

y

bt

h
(t,β1)

1

������������
y

b

ut ·h(t,β0)

0

44

μ
t

01

ξ

01

(3.1.7)

is satisfied, there is a unique 2-cell

ξ(t,β1,β0) : h
(t,β1)
1 ⇒ h(t,β0)

0 : y → bt
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such that

bt

y

55

h
(t,β1)

1

bt

y

��

h
(t,β0)

0

b

bt

��
ut

ξ(t,β1 ,β0) ��

= ξ. (3.1.8)

Remark 3.2 (Duality: Kleisli objects and co-Eilenberg–Moore objects) The dual of the
notion of Eilenberg–Moore object of a monad is called the Kleisli object of a monad, while
the codual is called the co-Eilenberg–Moore object, or object of coalgebras, of a comonad.
In the special case of Cat, these notions coincide with the usual ones (e.g. [25, Section 5]).

3.3 Kan Extensions

Let f : z → y and g : z → x be morphisms of a 2-category A. The right Kan extension of f
along g is, if it exists, the right reflection rangf of f along the functor

A(g, y) : A(x, y) → A(z, y).

This means that the right Kan extension is actually a pair
(
rangf : x → y, γ rangf :

(
rangf

) · g ⇒ f
)

of a morphism rangf and a 2-cell γ rangf , called the universal 2-cell, such that, for each
morphism h : x → y of A,

x

y

rangf

��
��

��
��

���
��

��
��

�

x

y

h

66

β01
�→

x

y

rangf

��
��

��
��

���
��

��
��

�

z

x

g

��

z y
f

��

x

y

h

66

β01

γ
rangf

01

(3.3.1)

defines a bijection A(x, y)(h, rangf) ∼= A(z, y)(h · g, f).

Remark 3.4 (Duality: right lifting and left Kan extension) The dual notion of that of a right
Kan extension is called right lifting (see [30, Section 1]), while the codual notion is called
the left Kan extension. Finally, of course, we also have the codual notion of the right lifting:
the left lifting.

Let p0 : e → b0, p1 : e → b1 be morphisms of a 2-category A. Assume that A has the
opcomma object p0 ↑ p1 and

α
p0↑p1 : δ

1
p0↑p1

· p0 ⇒ δ
0
p0↑p1

· p1
is the universal 2-cell that gives p0 ↑ p1 as the opcomma object of p1 along p0, as in 2.3
(Eq. 2.3.2). In this case, we have:
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Lemma 3.5 Given a morphism h : p0 ↑ p1 → y, the following statements are equivalent.

(i) The pair (h, idh·δ0p0↑p1
) is the right Kan extension of h · δ0p0↑p1

along δ0p0↑p1
.

(ii) The pair (h · δ1p0↑p1
, idh ∗ αp0↑p1) is the right Kan extension of h · δ0p0↑p1

· p1 along p0.

Proof Assuming i), given a 2-cell

β̌ : h′
1 · p0 ⇒ h · δ0p0↑p1

· p1 : e → y,

we conclude, by the universal property of the opcomma object, that there is a unique mor-
phism h′ : p0 ↑ p1 → y such that

p0 ↑ p1 y
h
��b1 p0 ↑ p1

δ
0
p0↑p1

��e

b0

p0

��

e b1p1
��

b0

y

h′
1

77

β̌

01

=

p0 ↑ p1 y
h′

��b1 p0 ↑ p1
δ
0
p0↑p1

��e

b0

p0

��

e b1p1
��

b0

p0 ↑ p1

δ
1
p0↑p1

����
���

���
���

���
��b0

y

h′
1

77
α
p0↑p1

01

(3.5.1)

and h′ · δ0p0↑p1
= h · δ0p0↑p1

.
By the universal property of the Kan extension, there is a unique 2-cell β : h′ ⇒ h such

that the equation

b1

p0 ↑ p1

δ
0
p0↑p1

��

b1 p0 ↑ p1
δ
0
p0↑p1

�� p0 ↑ p1 y
h

��

p0 ↑ p1

y

h′

88

=

p0 ↑ p1

y

h
���

���
�

����
���

��

b1

p0 ↑ p1

δ
0
p0↑p1

��

b1 p0 ↑ p1
δ
0
p0↑p1

�� p0 ↑ p1 y
h

��

p0 ↑ p1

y

h′

88

β

01 (3.5.2)

is satisfied.
By the universal property of the opcomma object (see (2.3.4)), this means that β∗idδ1p0↑p1

is the unique 2-cell such that

e

b0

p0

����
��
��
��
�
e

b1

p1

���
��

��
��

��

b0

p0 ↑ p1

δ
1
p0↑p1

���

���
��

b1

p0 ↑ p1

δ
0
p0↑p1

���

�����

p0 ↑ p1

y

h

��

b0

y

h′
1

99

α
p0↑p1 ��

β∗id
δ1
p0↑p1��

=

e

b0

p0

����
��
��
��
�
e

b1

p1

���
��

��
��

��

b0

p0 ↑ p1

δ
1
p0↑p1

���

���
��

b1

p0 ↑ p1

δ
0
p0↑p1

���

�����

p0 ↑ p1

y

h′

��

b1

y

h · δ
0
p0↑p1

::

α
p0↑p1 ��

= β̌.

(3.5.3)

This proves ii).
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Reciprocally, assuming ii), by the universal property of the right Kan extension

ranp0

(
h · δ0p0↑p1

· p1
)
= (h · δ1p0↑p1

, idh ∗ α
p0↑p1)

of the hypothesis, we have that, given any 2-cell

β0 : h′ · δ0p0↑p1
⇒ h · δ0p0↑p1

,

there is a unique 2-cell β1 : h′ · δ1p0↑p1
⇒ h · δ1p0↑p1

such that

e

p0
��
��
�

#$��
��
� p1

��
��

�

$%�
��

��

e

p0
��
��
�

#$���
��

p1
��

��
�

$%�
��

��

b

h′
1

���
��

$%�
���

�

idh′ ∗ α
p0↑p1

=======⇒ b

h0
��

h′
0

;;

β0==⇒

= b
h1

77h′
1 ��

β1==⇒

idh∗ α
p0↑p1

=======⇒ b

h0
���

��

<<���
��

y y

holds, in which, for each i ∈ {1, 2}, h′
i := h′ · δip0↑p1

and hi := h · δip0↑p1
.

By the universal property of the opcomma p0 ↑ p1, this implies that there is a unique
β : h′ ⇒ h such that β ∗ idδ0p0↑p1

= β0. Hence we get i). ��

Definition 3.6 (Codensity monad) A morphism p : e → b of a 2-category A has the coden-
sity monad if the right Kan extension (ranpp, γ ) of p along itself exists. Assuming that A
has the codensity monad of p and denoting ranpp by t, we consider:

– the 2-cell m : t2 ⇒ t such that

b

b

t
��

��
��

��
�

���
��

��
��

��

e

b

p

��

e b
p

��

b

b

t2

==

m
01

γ

01

=

b

b

t

���
��

��
��

�

e

b

p

��

e b
p

��

b

b

t

���
��

��
��

�

e

b

p
���



���
γ

01

γ

01
(3.6.1)

holds;
– the 2-cell η : idb ⇒ t such that (3.6.2) holds.

b

b

t
��

��
��

�

���
��

��
��

e

b

p

��

e b
p

��

b

b

η

01
γ

01

=

b

b

��
��

��
��

��
��

��

��
��

��
��

��
��

��

e

b

p

��

e b
p

��

(3.6.2)

In this case, by the universal property of the right Kan extension of p along itself, the quadru-
ple t = (b, t,m, η) is a monad called the codensity monad of p.

Assuming that t = (b, t,m, η) is the codensity monad of p : e → b as above, by (3.6.1)
and (3.6.2), it is clear that the pair (p : e → b, γ : t ·p ⇒ p) satisfies the algebra associativity
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and identity equations w.r.t. the monad t (that is to say, (3.1.5) and (3.1.4) w.r.t. the monad
t). Hence, assuming that A has the Eilenberg–Moore object

(
bt, ut : bt → b, μt

)
of the

monad t, by the universal property, there is a unique pt := p(t,γ ) such that

e b
p ��e

bt
pt

!"��
���

���
���

���
��

bt

b

ut

"#����������������

(3.6.3)

commutes and μt ∗ idpt = γ .

Definition 3.7 The factorization given by (3.6.3) is called herein the semantic factorization
of p.

For each object x, assuming the existence of the semantic factorization of p, we can take its
image by the representable 2-functor A(x, −) : A → Cat, getting the factorization

A(x, p) = A(x,ut
) ◦ A(x, pt). (3.7.1)

Since the Yoneda embedding creates any existing Eilenberg–Moore object of A, the factor-
ization (3.7.1) coincides up to isomorphism with the factorization of A(x, p) induced by
(A(x, p),A(x, γ )) and A(x, b)A(x,t); that is to say, the commutative triangle

A (x, e) A (x, b)
A(x,p) ��A (x, e)

A (x, b)A(x,t)

A(x,p)
(A(x,t),A(x,γ ))

��

!"��

A (x, b)A(x,t)

A (x, b)

uA(x,t)

���

"#���
(3.7.2)

which is given by

A(x, p)(A(x,t),A(x,γ )) : A(x, e) → A(x, b)A(x,t)

g �→ (p · g, γ ∗ idg)
χ : g ⇒ g′ �→ idp ∗ χ

uA(x,t) : A(x, b)A(x,t) → A(x, b)

(f , β) �→ f

ξ �→ ξ.

Remark 3.8 Let p be a morphism of A which has the codensity monad t. Since Cat has
Eilenberg–Moore objects, the factorization of A(x, p) induced by (A(x, p),A(x, γ )) and
A(x, b)A(x,t) as above always exists, even if A does not have the Eilenberg–Moore object of
t.

Remark 3.9 (Duality: op-codensity monad) The codual notion of the notion of codensity
monad is that of density comonad, which is induced by the left Kan extension of the mor-
phism along itself, assuming its existence.

The dual notion is herein called op-codensity monad. Notice that, if it exists, the op-
codensity monad of a morphism is induced by the right lifting of the morphism through
itself. Finally, of course, we have also the codual notion of the op-codensity monad, called
herein the op-density comonad.
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1418 F. Lucatelli

Therefore, we also have factorizations: assuming the existence of the Kleisli object of
the op-codensity monad of a morphism, we get the op-semantic factorization. Codually, we
have the co-semantic factorization of a morphism that has the density comonad, provided
that the 2-category has its co-Eilenberg–Moore object.

3.10 Right Adjoint Morphism

Recall that an adjunction inside a 2-category A is a quadruple

(l : b → e, p : e → b, ε : lp ⇒ ide, η : idb ⇒ pl)

in which l, p are 1-cells and ε, η are 2-cells of A satisfying the triangle identities. This means
that

b

b

e

eb e
l

��

b e
l �� e

b

p�
��
��
�

����
��
��

η ��

ε ��

b

b

e

eb e��
p

b e�� p
e

b





l
��
��
��
�

��
��
��
�

η ��

ε ��
(3.10.1)

are, respectively, the identities idl : l ⇒ l and idp : p ⇒ p. In this case, p is right adjoint to
l and we denote the adjunction by (l � p, ε, η) : b → e.

If (l � p, ε, η) : b → e is an adjunction in a 2-category A, p has the codensity monad and
the op-density comonad. More precisely, in this case, the pair (pl, idp ∗ ε) is the right Kan
extension of p along itself and (lp, η ∗ idp) is the left lifting of p through itself. Hence, the
codensity monad of p coincides with the monad t = (b, pl, idp ∗ ε ∗ idl, η) induced by the
adjunction, while the op-density comonad coincides with the comonad (e, lp, idl ∗η∗ idp, ε)
induced by the adjunction. Codually, if (l � p, ε, η) : b → e is an adjunction, the density
comonad and the op-codensity monad induced by l : b → e are the same of those induced
by the adjunction.

Assuming the existence of the Eilenberg–Moore object of the monad (codensity monad
t) induced by the adjunction (l � p, ε, η), the semantic factorization is the usual factor-
ization of the right adjoint morphism through the object of algebras. Dually and codually,
assuming the existence of the suitable weighted limits and colimits, we get all the four usual
factorizations of l and p.

More precisely, the op-semantic factorization of l : b → e is the usual Kleisli factoriza-
tion

e b
l ��e

b(pl,idp∗ε∗idl,η)

l(pl,idp∗ε∗idl ,η) !"��
���

���
���

���

b(pl,idp∗ε∗idl,η)

b

lt

"#��������������
(3.10.2)

w.r.t. the induced monad (b, pl, idp ∗ ε ∗ idl, η). Codually and dually, the co-semantic and
the coop-semantic factorizations are, respectively, the usual factorization of l through the
co-Eilenberg–Moore object, and the usual factorization of p through the co-Kleisli object of
the comonad (e, lp, idl ∗ η ∗ idp, ε).
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Definition 3.11 (Preservation of a Kan extension) Let
(
rangf , γ rangf

)
be the right Kan

extension of f : z → y along g in a 2-category A. A morphism δ : y → y′ preserves the
right Kan extension rangf if

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ ◦ rangf ,

x

y

rangf

���
��

��
��

��
��

��
��

��
�

z

x

g

��

z y
f

�� y y′
δ

��

γ
rangf

01

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.11.1)

gives the right Kan extension of the morphism δ · f along g. Furthermore, the right Kan

extension
(
rangf , γ rangf

)
is absolute if it is preserved by any morphism with domain in

y.

Remark 3.12 (Duality: respecting liftings) The dual notion of that of preservation of a

Kan extension is that of respecting a lifting. If a pair
(
rliftgf ,γrliftgf

)
is the right lift-

ing of f through g, a morphism δ : y′ → y respects the right lifting of f through g if((
rliftgf

) · δ,γrliftgf ∗ idδ

)
is the right lifting of f · δ through g.

Remark 3.13 In some contexts, such as in the case of 2-categories endowed with Yoneda
structures [30], we have a stronger notion of Kan extensions: the pointwise Kan extensions
(for instance, see [5, Theorem I.4.3] for the case of the 2-category of V -enriched categories).
Although this concept plays a fundamental role in the theory of Kan extensions, we do not
use this notion in our main theorem. However, we mention them in our examples and, herein,
a pointwise Kan extension of a functor in Cat is just a Kan extension that is preserved by any
representable functor. See [22, Section X.5] for basic aspects of pointwise Kan extensions
and their constructions via conical (co)limits.

If (l � p, ε, η) : b → e is an adjunction in a 2-category A, p preserves any right Kan
extension with codomain in b. Furthermore:

Theorem 3.14 (Dubuc-Street [5, 30]) If p : e → b is a morphism in a 2-category A, the
following statements are equivalent.

(i) The pair (l, ε) is the right Kan extension of ide along p and it is preserved by p.
(ii) The pair (l, ε) is the right Kan extension of ide along p and it is absolute.

(iii) The morphism p has a left adjoint l, with the counit ε : lp ⇒ ide.

In particular, if p : e → b has a left adjoint, then it has the codensity monad and the right
Kan extension of p along itself is absolute.

Proof See [5, Theorem I.4.1] or [30, Propositions 2]. ��
Remark 3.15 (Mate correspondence) Assume that

(l1 � p1) := (l1 � p1, ε1, η1) : b1 → e1 and (l0 � p0) := (l0 � p0, ε0, η0) : b0 → e0

in a 2-category A. Recall that we have the mate correspondence [12, Proposition 2.1]. More
precisely, given 1-cells hb : b0 → b1 and he : e0 → e1 of A, there is a bijection

A(e0, b1) (hb · p0, p1 · he) ∼= A(b0, e1) (l1 · hb, he · l0)
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1420 F. Lucatelli

defined by

e0

e1

he

��
b0

b1

hb

��

e0

b0

p0
��
�

����
�

e1

b1

p1
��
�

����
�

β �� �→

b0

b0b0

b1

hb

��

e1

e1

e0

e1

he

��

b0 e0
l0 ��

b1 e1
l1

��

e0

b0

p0
��
�

����
�

e1

b1

p1
��
�

����
�

η0 ��

ε1 ��

β �� (3.15.1)

whose inverse is given by

b0

b1

he

��
e0

e1

hb

��

b0

e0

l0
��
��

����
��

b1

e1

l1
��
��

����
��

>� β
′

�→

e0

e0e0

e1

he

��

b1

b1

b0

b1

hb

��

e0 b0
p0 ��

e1 b1p1
��

b0

e0

l0
��
��

����
��

b1

e1

l1
��
��

����
��

>� ε0

>� η1

>� β
′

(3.15.2)

The image of a 2-cell β : hb · p0 ⇒ p1 ·he by the isomorphism A(e0, b1)(hb · p0, p1 ·he) ∼=
A(b0, e1)(l1 · hb,he · l0) above is called the mate of β under the adjunction l0 � p0 and
l1 � p1.

4 Main Theorems

Let A be a 2-category and p : e → b a morphism of A. Throughout this section, we assume
that p has the codensity monad t = (b, t,m, η), in which (t, γ ) is the right Kan extension
of p along itself. Furthermore, we assume that A has the two-dimensional cokernel diagram
Hp : �Str → A of p.

We follow the notation respectively established in 3.6, 2.8 and 2.9 for the codensity monad
of p, the two-dimensional cokernel diagram of p and the morphisms involved in the diagram.

Moreover, by the universal property of the opcomma object b ↑p b, there is a unique
morphism � such that (4.0.1) and (4.0.2) hold. Henceforth, we denoted this morphism by
� : b ↑p b → b.

� · δ0 = idb, � · δ1 = t, (4.0.1)
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e

b

p

����
��
��

e

b

p

���
��

��
�

b

b ↑p b
δ
1 ���
��

��
b

b ↑p b
δ
0����

��
�

b ↑p b

b

� ��

α ��

=

b

b

t

���
��

��
��

��
��

��
��

��
�

e

b

p

��

e b
p

��

γ

01

(4.0.2)

Proposition 4.1 The pair (�, ididb
) is the right Kan extension of idb along δ0 : b → b ↑p b.

Proof By Lemma 3.5, since (t, γ ) is the right Kan extension of � · δ0 · p = p along p, we get
that (�, γ ) is the right Kan extension of � · δ0 = idb along δ0. ��

Proposition 4.2 (Condition) The right Kan extension (t, γ ) of p along itself is preserved by
δ0 : b → b ↑p b if and only if � is left adjoint to δ0. In this case, we have an adjunction

(� � δ
0
, ididb

,η) : b ↑p b → b.

Proof It follows from Lemma 3.5 and Proposition 4.1 that (δ0 · �, idδ0) is the right Kan
extension of δ0 along itself if and only if (δ0 · t, idδ0 ∗ γ ) is the right Kan extension of δ0 · p
along p.

By Proposition 4.1 and Theorem 3.14, we know that δ0 preserves the right Kan extension
(�, ididb

) of idb along δ0 if and only if � � δ0 with the counit idb. ��

We postpone the discussion on examples and counterexamples of morphisms satisfying
the condition of Proposition 4.2 (see 4.12). For now, we only observe that:

Proposition 4.3 If the morphism p : e → b has a left adjoint, then it satisfies the condition
of Proposition 4.2.

In particular, since Cat has the two-dimensional cokernel diagram of any functor, any
right adjoint functor satisfies the condition of Proposition 4.2.

Proof By the Dubuc-Street Theorem (Theorem 3.14), if p : e → b is a right adjoint mor-
phism of the 2-category A, we get, in particular, that ranpp ∼= p ◦ ranpide exists and is
absolute. ��

We prove below that the condition of Proposition 4.2 on the morphism p also implies that
∂0δ0 has a left adjoint �∗. This result is going to be particularly useful to the proof of our
main theorem (Theorem 4.7).

Proposition 4.4 Assume that p : e → b satisfies the condition of Proposition 4.2. There is an
adjunction

(
�∗ � ∂0 · δ0, ididb

,ρ
)
: b ↑p b ↑p b → b. Moreover, the equations

�∗ · ∂2 = t · �, �∗ · ∂0 = �, ρ ∗ id∂0 = id∂0 ∗ η
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are satisfied. Furthermore, the 2-cell ρ2 given by the pasting

b ↑p b

=∂
2
δ
0
�

��

∂
0
δ
1
�

?>

id
∂2∗η

====⇒ id
∂0∗η∗id

δ1�=======⇒∂
2

99

∂
0
δ
0
�δ

1
�=∂

0
δ
0 t �

::
b ↑p b ↑p b

is equal to ρ ∗ id∂2 .

Proof By the universal property of the pushout b ↑p b ↑p b of δ0 along δ1 (as defined in
(2.8.2)), we have that:

– there is a unique morphism �∗ : b ↑p b ↑p b → b such that the diagram

b b ↑p b
δ
0

��b

b ↑p b

δ
1

��
b ↑p b b ↑p b ↑p b

∂
0
��

b ↑p b

b ↑p b ↑p b

∂
2

��
b ↑p b

b
�

@?

b ↑p b

b

t�

;;

b ↑p b ↑p b

b

�∗

���
��

��
��

��
(4.4.1)

commutes;
– there is a unique 2-cell ρ : idb↑pb↑pb ⇒ ∂0δ0 · �∗ such that ρ ∗ id∂0 = id∂0 ∗ η and

ρ ∗ id∂2 = ρ2, because ρ2 ∗ idδ0 is equal to the composition of 2-cells

∂2 · δ0 = ∂0 · δ1 id
∂0∗η∗id

δ1 �� ∂0 δ0 · � δ1 = ∂0 δ0 · t
since id∂2 ∗ η ∗ idδ0 = id∂2 δ0 , and id∂0 ∗ η ∗ idδ1� ∗ idδ0 = id∂0 ∗ η ∗ idδ1 .

Furthermore, ρ ∗ id∂0δ0 = ρ ∗ id∂0 ∗ idδ0 = id∂0 ∗ η ∗ idδ0 is a horizontal composition of
identities, since η ∗ idδ0 = idδ0 . This proves one of the triangle identities for the adjunction
�∗ � ∂0δ0.

Finally, by the universal property of the pushout b ↑p b ↑p b of δ0 along δ1, the 2-cell
id�∗ ∗ ρ is the identity on �∗, since:

–
(
id�∗ ∗ ρ

) ∗ id∂0 is equal to

id�∗ ∗ ρ ∗ id∂0 = id�∗ ∗ id∂0 ∗ η = id� ∗ η = id� = id�∗∂0 ;

–
(
id�∗ ∗ ρ

) ∗ id∂2 = id�∗ ∗ ρ2 is, by the definition of �∗ and ρ2, equal to

b ↑p b

t·�

��

idt∗id�∗η
=====⇒ id�∗η∗id

δ1�======⇒t·�

��

t·�

��b

123



Semantic Factorization and Descent 1423

which is a vertical composition of identities, since id� ∗ η is equal to the identity by the
triangle identity of the adjunction (� � δ0, ididb

,η).

This completes the proof that (�∗ � ∂0δ0, ididb
, ρ) is an adjunction. ��

In order to prove Theorem 4.7, we consider the 2-cells defined in Lemma 4.6. Before defin-
ing them, it should be noted that:

Lemma 4.5 (�∗ · ∂1) Assume that p satisfies the condition of Proposition 4.2. The morphism
�∗ · ∂1 is the unique morphism such that the equations

(
�∗∂

1
)

· δ1 = t2,
(
�∗∂

1
)

· δ0 = idb and id�∗∂1 ∗ α = (idt ∗ γ ) · γ

hold.

Proof In fact, by the definitions of � (see Proposition 4.1) and �∗ (see Proposition 4.4), the
equations

(
�∗∂

1
)

· δ1 = �∗ · ∂2
δ
1 = t� · δ1 = t2,

(
�∗∂

1
)

· δ0 = �∗ · ∂0
δ
0 = � · δ0 = idb,

id�∗ ∗ id∂0 ∗ α = id� ∗ α = γ and id�∗ ∗ id∂2 ∗ α = idt� ∗ α = idt ∗ γ

hold. Therefore, by the definition of ∂1 (see 2.8 and, more particularly, (2.8.3) and (2.8.4)),
we get the results. ��

Lemma 4.6 (θ and λ) Assume that p : e → b satisfies the condition of Proposition 4.2. There
are 2-cells

θ : s0 ⇒ � : b ↑p b → b, λ : �∗ · ∂1 ⇒ � : b ↑p b → b

such that the equations

θ ∗ idδ1 = η, θ ∗ idδ0 = ididb
, λ ∗ idδ1 = m, λ ∗ idδ0 = ididb

are satisfied.

Proof In fact, by the universal property of the opcomma object b ↑p b of p along itself:

– there is a unique 2-cell θ : s0 ⇒ � such that θ ∗ idδ1 = η and θ ∗ idδ0 = ididb
, since

(id� ∗ α) · (η ∗ idp
)
= γ · (η ∗ idp

)
= idp = ids0 ∗ α

by the definitions of �, η and s0;
– there is a unique 2-cell λ : �∗ · ∂1 ⇒ � such that λ ∗ idδ1 = m and λ ∗ idδ0 = ididb

,
since it follows from the definitions of � and m : t2 ⇒ t that

(id� ∗ α) · (m ∗ idp) = γ · (m ∗ idp) = γ · (idt ∗ γ ) = id�∗·∂1 ∗ α

by Lemma 4.5.

��

Theorem 4.7 Assume that p satisfies the condition of Proposition 4.2. We get that the fac-
torization defined in (2.13.2) is 2-naturally (in x) isomorphic to the factorization defined in
(3.7.2).
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1424 F. Lucatelli

Proof Recall that (2.13.2) is the factorization of A(x, p) induced by the pair

(A(x, p),A(x,α))

and the universal property of the lax descent category of A(x,Hp−) : �Str → Cat; and
(3.7.2) is the factorization of A(x, p) induced by the pair (A(x, p),A(x, γ )) and the univer-
sal property of the Eilenberg–Moore category A(x, b)A(x,t) of the monad A(x,t).

Observe that, since (� � δ0, ididb
,η) : b ↑p b → b is an adjunction by Proposition 4.2,

for each morphism h : x → b of A (i.e. for each object of A(x, b)), there is a bijection

A(x, b ↑p b)(δ1 · h, δ
0 · h) ∼= A(x, b)(� · δ1 · h, � · δ0 · h) = A(x, b)(t · h,h)

defined by β �→ id� ∗β, that is to say, the mate correspondence under the identity adjunction
idx � idx and the adjunction (� � δ0, ididb

,η), see Remark 3.15.
Given an object h of A(x, b), we prove below that a 2-cell β : δ1 · h ⇒ δ0 · h satisfies the

descent associativity and identity ((2.7.2) and (2.7.3)) w.r.t. Hp if and only if its correspond-
ing 2-cell id� ∗ β satisfies the algebra associativity and identity equations w.r.t. t ((3.1.4)
and (3.1.5)).

1. Observe that, given a 2-cell β : δ1 · h ⇒ δ0 · h, by the definition of θ in Lemma 4.6, we
get that

ids0 ∗ β = ids0·δ0·h · (ids0 ∗ β)

=
(
ididb

∗ idh
) · (ids0 ∗ β)

= ((θ ∗ idδ0) ∗ idh) · (ids0 ∗ β)

= (θ ∗ idδ0·h) · (ids0 ∗ β)

= θ ∗ β

which, by the interchange law, is equal to the left side of the equation

(id� ∗ β) · (θ ∗ idδ1 ∗ idh) = (id� ∗ β) · (η ∗ idh)

which holds by Lemma 4.6. Thus, of course, (id� ∗ β) · (η ∗ idh) is the identity on h if
and only if ids0 ∗ β = (id� ∗ β) · (η ∗ idh) is the identity on h as well. This proves that
(h, β) satisfies the descent identity (2.7.3) w.r.t. Hp if and only if (h, id� ∗ β) satisfies
the algebra identity equation w.r.t. t (3.1.5).

2. Recall the adjunction
(
�∗ � ∂0δ0, ididb

, ρ
)

of Proposition 4.4. Given a 2-cell β : δ1 ·
h ⇒ δ0 · h, consider the 2-cells defined by the pastings below.

β1 : =

x

b

h

����
��
��
��

x

b

h

���
��

��
��

�

b

b ↑p b

δ
1

���

���
��

b

b ↑p b

δ
0
���

�����

b ↑p b

b ↑p b ↑p b

∂
1

��

b

b ↑p b ↑p b

∂
2
δ
1

��

b

b ↑p b ↑p b

∂
0
δ
0

A@

β ��

(4.7.1)
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βc : =

x

b

h

��   
   

   
   

   
x

b

h

55!!
!!!

!!!
!!!

!!!
!x

b

h

��
b

b ↑p b

δ
0

��

b

b ↑p b

δ
1

!!!
!!!

55!!
!!!

!

b ↑p b

b ↑p b ↑p b

∂
0

��   
   

   
   

b

b ↑p b

δ
0

��

b

b ↑p b

δ
1

55!!
!!!

!!!
!!!

!!!

b ↑p b

b ↑p b ↑p b

∂
2

��

β �� β ��

(4.7.2)

We have that βc = β1 if, and only if, (h, β) satisfies the descent associativity (2.7.2)
w.r.t. Hp. Therefore, by the mate correspondence under the identity adjunction idx � idx
and the adjunction (�∗ � ∂0δ0, ididb

,ρ), we conclude that (h, β) satisfies the descent
associativity (2.7.2) w.r.t. Hp if, and only if,

id�∗ ∗ βc = id�∗ ∗ β1. (4.7.3)

Now, we observe that:

(a) Since �∗ · ∂2 = t · � and �∗ · ∂0 = �, we have that

id�∗ ∗ βc =

b

b

t

��

b b
t ��

x

b

h

��

x b
h

��x

b

h������



������
id�∗β

01
id�∗β

01

(4.7.4)

(b) By Lemma 4.6,

id�∗ ∗ β1 =
(
id�∗∂1 ∗ β

)

=
(
ididb

∗ idh
) · (id�∗∂1 ∗ β

)

= (λ ∗ idδ0 ∗ idh) · (id�∗∂1 ∗ β
)

which, by the interchange law and Lemma 4.6, is equal to

λ ∗ β = (id� ∗ β) · (λ ∗ idδ1 ∗ idh) =

b

b

t

��
y b

h
��

b

b

t
��

��
��

�

���
��

��
��

y

b

h

��b b
t ��

m

01
id�∗β

01

. (4.7.5)

Therefore (4.7.3) holds if, and only if, the pasting (4.7.4) is equal to (4.7.5).
This completes the proof that (h, β) satisfies descent associativity w.r.t. Hp if, and only
if, id� ∗ β satisfies the algebra associativity (3.1.4) w.r.t. t.
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1426 F. Lucatelli

The above implies that the association (h, β) �→ (h, id� ∗ β) gives a bijection between the
objects of lim

(
D,A(x,Hp−)

)
and A(x, b)A(x,t).

Given objects (h1, β1) and (h0, β0) of lim
(
D,A(x,Hp−)

)
, by the mate correspondence

under the identity adjunction and � � δ0, a 2-cell

ξ : h1 ⇒ h0 : x → b

satisfies the equation

x

β0==⇒
h0

""

��"
"

h0>A

h1

66
ξ

=⇒
x

β1==⇒
h1
##

<<##

h0

BB
h1 3�

ξ
=⇒

b

δ
1

		

��	
	

b

δ
0��

����

b=

δ
1

		

��	
	

b

δ
0��

����
b ↑p b b ↑p b

if and only if the mate of the left side is equal to the mate of the right side, which means

x

β0==⇒
h0

""

��"
"

h0>A

h1

66
ξ

=⇒
x

β1==⇒
h1
##

<<##

h0

BB
h1 3�

ξ
=⇒

b

δ
1

		

��	
	

b

δ
0��

����

b=

δ
1

		

��	
	

b

δ
0��

����
b ↑p b

���

b ↑p b

���
b b

which is precisely the condition of being a morphism of algebras in A(x, b)A(x,t). In
other words, this proves that ξ gives a morphism between (h1, β1) and (h0, β0) in
lim

(
D,A(x,Hp−)

)
if and only if it gives a morphism between (h1, id� ∗ β1) and

(h0, id� ∗ β0) in A(x, b)A(x,t).
Finally, given the facts above, we can conclude that we actually can define

lim
(
D,A(x,Hp−)

) → A(x, b)A(x,t)

(h, β) �→ (h, id� ∗ β)

ξ �→ ξ

which is clearly functorial and, hence, it defines an invertible functor (since it is bijective on
objects and fully faithful as proved above).

This invertible functor is 2-natural in x, giving a 2-natural isomorphism between (2.13.2)
and (3.7.2). ��
Theorem 4.8 (Main Theorem) Assume that ranpp exists and is preserved by the morphism
δ0 : b → b ↑p b. We have that the semantic factorization (3.6.3) of p is isomorphic to the
semantic lax descent factorization (2.11.1) of p, either one existing if the other does.

Proof It is clearly a direct consequence of Theorem 4.7. ��
Recall that, since the result above works for any 2-category, we have the dual results. For

instance, we have Theorems 4.9 and 4.10.

Theorem 4.9 (Codual) Let l : b → e be a morphism of A satisfying the following conditions:

1. A has the two-dimensional cokernel diagram of l;
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2. the left Kan extension lanll of l along itself exists (that is to say, l has the density
comonad);

3. the left Kan extension lanll is preserved by δ1l↑l : e → l ↑ l.

The diagram of the co-semantic factorization of l is isomorphic to the semantic lax descent
factorization of l either one existing if the other does.

Proof By the observations on the self-coduality of the factorization in Remark 2.15, we get
the result from Theorem 4.8. ��

Theorem 4.10 (Dual) Let l : b → e be a morphism of A satisfying the following conditions:

1. A has the higher kernel of l;
2. the right lifting of l through itself exists (that is to say, l has the op-codensity monad);
3. the right lifting of l through itself is respected by the arrow δ

l↓l
0 : l ↓ l → b.

The diagram of the op-semantic factorization of l is 2-naturally isomorphic to the semantic
lax codescent factorization of l (see Remark 2.15 and (2.15.1)).

As a consequence of Theorem 4.8 and its duals, by Proposition 4.3, we get:

Theorem 4.11 (Adjunction) Let (l � p, ε, η) : b → e be an adjunction in A. We have the
following:

1. if A has the two-dimensional cokernel diagram of p, then the semantic lax descent fac-
torization (2.11.1) of p coincides up to isomorphism with the usual factorization of p
through the Eilenberg–Moore object, either one existing if the other does;

2. if A has the two-dimensional kernel diagram of l, then the semantic lax codescent fac-
torization of l coincides up to isomorphism with the usual factorization of l through the
Kleisli object, either one existing if the other does;

3. if A has the two-dimensional cokernel diagram of l, then the semantic lax descent fac-
torization of l coincides up to isomorphism with the usual factorization of l through the
co-Eilenberg–Moore object, either one existing if the other does;

4. if A has the two-dimensional kernel diagram of p, then the semantic lax codescent fac-
torization of p coincides up to isomorphism with the usual factorization of p through the
co-Kleisli object, either one existing if the other does.

4.12 (Counter)Examples of Morphisms Satisfying Proposition 4.2

Even Cat has morphisms that do not satisfy the condition of Proposition 4.2.
For instance, the inclusion of the domain d1 : 1 → 2 has the codensity monad. More

precisely rand1d1 is given by id2 : 2 → 2 with the unique 2-cell (natural transformation)
d1 ⇒ d1. However, in this case, δ0d1↑d1 is the inclusion

0

��
	→

0

��

0′��

��
1 1 1′

which does not preserve the terminal object, since 2 has terminal object and d1 ↑ d1 does
not. Hence δ0d1↑d1 does not have a left adjoint. Actually, it even does not have a codensity
monad. Therefore the condition of Proposition 4.2 does not hold for d1 : 1 → 2.
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It should be noted that d1 is left adjoint to s0 and, hence, it does satisfy the codual of
the condition of Proposition 4.2. More precisely, since d1 : 1 → 2 is a left adjoint functor,
it satisfies the hypothesis of 3 of Theorem 4.11. Hence the co-semantic factorization (usual
factorization through the category of coalgebras) coincides with the semantic lax descent
factorization of d1. These factorizations are given by

d1 = d1 ◦ id1.

By Proposition 4.3, any right adjoint morphism satisfies Proposition 4.2. The converse is
false, that is to say, the condition of Proposition 4.2 does not imply the existence of a left
adjoint. There are simple counterexamples in Cat. In order to construct such an example, we
observe that:

Lemma 4.13 Let ιe : e → 1 be a functor between a small category e and the terminal
category. We have that ranιe ιe and lanιe ιe are given by the identity on 1. Therefore the
semantic factorization and the co-semantic factorization are both given by

ιe = id1 ◦ ιe.

Moreover, ιe has a left adjoint (right adjoint) if and only if e has initial object (terminal
object).

Since the thin category R corresponding to the usual preordered set of real numbers does
not have initial or terminal objects, the only functor ιR : R → 1 does not have any adjoint.
However, it is clear that every functor 1 → b preserves the (conical) limit of R → 1 and,
hence, any such functor does preserve ranιR ιR. In particular, ιR does satisfy Proposition 4.2.

This proves that, although the morphism ιR : R → 1 does not satisfy any of the versions
of Theorem 4.11, it does satisfy the conditions of Theorem 4.8. Hence the semantic lax
descent factorization of ιR (Eq. 2.11.1) coincides with the semantic factorization of ιR. In
this case, by Lemma 4.13, both factorizations are given by

ιR = id1 ◦ ιR.

Remark 4.14 Although (by Lemma 4.13) the codensity monad and the density comonad of
ι1�1 are the identity on 1, the functor ι1�1 does not satisfy the condition of Proposition 4.2
nor the codual.

In fact, a functor 1 → b preserves ranι1�1 ι1�1 (lanι1�1 ι1�1) if and only if 1 → b preserves
binary products (binary coproducts) which does happen if and only if the image of 1 → b is
a preterminal (preinitial) object (see [20, Remark 4.5] for instance).

The opcomma category of ι1�1 along itself is the category with two distinct objects
and two parallel arrows between them: hence it does not have any preterminal or preini-
tial objects. This shows that neither ranι1�1 ι1�1 nor lanι1�1 ι1�1 is preserved by any functor
1 → ι1�1 ↑ ι1�1.

This proves that the functor ι1�1 : 1 � 1 → 1 does not satisfy the hypotheses of Theorem
4.8. Since Cat has Eilenberg–Moore objects, two-dimensional cokernel diagrams and lax
descent objects, we have the semantic lax descent factorization of ι1�1 and the semantic fac-
torization. However, in this case, they do not coincide. More precisely, they are respectively
given by the commutative triangles below.

1 � 1 ι1�1 ��

id1�1

���
�

����
��

1 1 � 1 ι1�1 ��

ι1�1

		
		

CC	
		

	

1

1 � 1

ι1�1����

DD����

1

id1$$$

��$$$
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5 Monadicity and Effective Faithful Morphisms

In this section, we show direct consequences of Theorem 4.8 on monadicity. Henceforth,
whenever a 2-category A has the two-dimensional cokernel diagram Hp of a morphism
p : e → b, we use the notation of 2.8 and 2.9. If A has the two-dimensional kernel diagram
of a morphism l : e → b, we use the notation of Remark 2.15.

Recall that a morphism p : e → b of a 2-category A is an equivalence if there is are a
morphism l : b → e and invertible 2-cells lp ⇒ ide, idb ⇒ pl. It is a basic coherence result
the fact that, whenever we have such a data, we can actually get an adjunction l � p and
an adjunction p � l with invertible units and invertible counits. These adjunctions are called
adjoint equivalences.

Definition 5.1 Let A : �Str → A be a 2-functor. We say that the pair
(
p : e → b,ψ : A(d1

) · p ⇒ A(d0
) · p

)
, (5.1.1)

in which p is a morphism and ψ is a 2-cell, is effective w.r.t. lim(D,A) if the following
statements hold:

– A has the lax descent object lim(D,A);
– the pair (p,ψ) satisfies the descent associativity (2.7.2) and identity (2.7.3) w.r.t. A;
– the induced factorization p = d(D,A) ◦ p(A,ψ) is such that p(A,ψ) is an equivalence.

Definition 5.2 (effective faithful morphism) Let p : e → b be a morphism of a 2-category
A. The morphism p is an effective faithful morphism of A if the following statements hold:

– A has the two-dimensional cokernel diagram of p;
– A has the lax descent object of the two-dimensional cokernel diagram Hp;
– the semantic lax descent factorization (2.11.1) of p, p = dp ◦ pH, is such that pH is an

equivalence, that is to say, (p,α) is effective w.r.t. Hp.

Remark 5.3 The terminology of Definition 5.2 is motivated by the 1-dimensional case. In
a category with suitable pushouts and coequalizers, every morphism p has a factorization
induced by the equalizer of the “cokernel pair”

b ���� b �e b

of p. If the morphism p is itself the equalizer, p is said to be an effective monomorphism.

Remark 5.4 The concept of effective faithful morphism was already considered in [31,
pag. 142] under the name effective descent morphism. The terminology of [31, pag. 142]
does not agree with the usual terminology of Grothendieck descent theory within the con-
text of [9, 19]. Since the present work is intended to be applied to the context of [19], we
adopt the alternative terminology.

Remark 5.5 If a morphism p : e → b of a 2-category A is effective w.r.t. any 2-functor
A : �Str → A, it is clear that p is faithful. More precisely, in this case, for any object x,
A(x, p) : A(x, e) → A(x, b) is faithful. In particular, if p is an effective faithful morphism,
then p is faithful.

By Remark 2.15, the codual of (2.11.1) of a morphism p gives the same factorization,
provided that it exists. Hence, we have:
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Lemma 5.6 (Self-coduality) Let p be a morphism of a 2-category A. The morphism p is an
effective faithful morphism in A if and only if the morphism corresponding to p is an effective
faithful morphism in A

co.

Definition 5.7 (Duality: effective op-faithful morphism) Let p : e → b be a morphism of a
2-category A. The morphism p is an effective op-faithful morphism of A if the morphism
corresponding to p is an effective faithful morphism in A

op.

Definition 5.8 (Monadicity, comonadicity, Kleisli morphism) Let p : e → b be a morphism
of a 2-category A. We say that p is monadic if the following statements hold:

– p has a codensity monad t = (t,m, η);
– A has the Eilenberg–Moore object of t;
– the semantic factorization of p = ut ◦ pt is such that pt is an equivalence.

Dually, l : b → e is a Kleisli morphism if the corresponding morphism in A
op is monadic,

while l is comonadic if its corresponding morphism in A
co is monadic.

By Theorem 4.8 and its dual versions, we get the following characterizations of monadic-
ity, comonadicity and Kleisli morphisms:

Corollary 5.9 (Monadicity theorem) Assume that A has the two-dimensional cokernel dia-
gram of a morphism p : e → b.

1. provided that ranpp exists and is preserved by δ0, p is monadic if and only if p is an
effective faithful morphism;

2. provided that lanpp exists and is preserved by δ1, p is comonadic if and only if p is an
effective faithful morphism.

Proof The first result follows immediately from the definitions and from Theorem 4.8. The
second one is just its codualization (see Lemma 5.6, Theorem 4.9 and Remark 2.15). ��

Corollary 5.10 (Characterization of Kleisli morphisms) Assume that A has the higher kernel
of a morphism l : b → e.

1. assuming that rliftll exists and is respected by δ
l↓l
0 , l is a Kleisli morphism if and only if

l is an effective op-faithful morphism;
2. assuming that lliftpp exists and is respected by δ

l↓l
1 , l is comonadic if and only if l is an

effective op-faithful morphism.

It is a well known fact that, whenever a morphism is monadic in a 2-category A, it has a
left adjoint. In our setting, if p is monadic as in Definition 5.8, the existence of a left adjoint
follows from: (1) since pt is an equivalence, it has a left adjoint; (2) ut has always a left
adjoint induced by the underlying morphism of the monad t : b → b, the multiplication
m : t2 ⇒ t and the universal property of bt; and (3) composition of right adjoint morphisms
is right adjoint. From this fact and Theorem 4.11, we get cleaner versions of our monadicity
results:

Corollary 5.11 (Monadicity theorem) Assume that the 2-category A has the two-dimensional
cokernel diagram of a morphism p.

1. The morphism p is monadic if and only if p has a left adjoint and p is an effective faithful
morphism.
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2. The morphism p is comonadic if and only if p has a right adjoint and p is an effective
faithful morphism.

Corollary 5.12 (Characterization of Kleisli morphisms) Assume that the 2-category A has
the two-dimensional kernel diagram of a morphism l.

1. The morphism l is a co-Kleisli morphism if and only if l has a left adjoint and l is an
effective op-faithful morphism.

2. The morphism l is Kleisli morphism if and only if l has a right adjoint and l is an effective
op-faithful morphism.

Remark 5.13 (Monadicity vs comonadicity) It should be noted that, unlike Beck’s monadic-
ity theorem in Cat, the condition to get monadicity from a right adjoint morphism coincides
with the condition to get comonadicity from a left adjoint morphism; namely, to be an effec-
tive faithful morphism. Of course, as a consequence, we get that, under the conditions of
Corollary 5.11, if the morphism p has a left and a right adjoint morphism, the following
statements are equivalent:

(i) p is an effective faithful morphism;
(ii) p is monadic;

(iii) p is comonadic.

Remark 5.14 (Beck’s monadicity theorem vs formal monadicity theorem) Beck’s monadic-
ity theorem states that, in Cat, a functor p is monadic if and only if p has a left adjoint and p

creates absolute coequalizers. By our monadicity theorem, we can conclude that, provided
that a functor p : e → b has a left adjoint, p creates absolute coequalizers if and only if p is
an effective faithful morphism in Cat.

However, the effective faithful morphisms in Cat are not characterized by the property of
creation of absolute coequalizers. For instance, this follows from the fact that, by Lemma
5.6, the concept of effective faithful morphism is self codual, while the property of creation
of absolute coequalizers is not self dual.

More precisely, one of the key aspects of duality in 1-dimensional category theory is that
the usual 2-functor op given by

op : Catco → Cat

e �→ eop

p : e → b �→ pop : eop → bop

β �→ β
op

is invertible. Therefore a functor pop : eop → bop is an effective faithful morphism in Cat
if and only if the morphism p : e → b is an effective faithful morphism in Catco. Moreover,
by Lemma 5.6, the morphism p is an effective faithful morphism in Catco if and only if
the corresponding morphism (functor) p is an effective faithful morphism in Cat. Hence, by
abuse of notation, p is an effective faithful morphism in Cat if and only if pop is an effective
faithful morphism in Cat.

It is clear that a functor p : e → b creates absolute coequalizers if and only if the functor
corresponding to pop : eop → bop creates absolute equalizers. Since there are functors that
create absolute coequalizers but do not create absolute equalizers, the property of creation
of absolute equalizers is not self dual. It follows, then, that there are functors that do create
absolute coequalizers but are not effective faithful morphisms.
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1432 F. Lucatelli

For instance, consider the usual forgetful functor between the category of free groups
and the category of sets. This functor reflects isomorphisms and preserves equalizers: hence,
since the category of free groups has equalizers, this forgetful functor creates all equalizers.
However, since it has a left adjoint, it does not create absolute coequalizers and it is not an
effective faithful morphism in Cat (otherwise, it would be monadic). Therefore the image of
the morphism corresponding to this functor in Catco by op is a functor that creates absolute
coequalizers but it is not an effective faithful morphism in Cat.

Remark 5.15 (Characterization of effective faithful morphisms) In [31], Zawadowski gave
the characterizations of effective faithful morphisms in some special 2-categories. Moreover,
as a consequence of proof of [29, Proposition 3.1], the effective op-faithful morphisms in
Cat are precisely the functors that are essentially surjective on objects.
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