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Abstract
In the last few years, López-Permouth and several collaborators have introduced a new
approach in the study of the classical projectivity, injectivity and flatness of modules. This
way, they introduced subprojectivity domains of modules as a tool to measure, somehow,
the projectivity level of such a module (so not just to determine whether or not the mod-
ule is projective). In this paper we develop a new treatment of the subprojectivity in any
abelian category which shed more light on some of its various important aspects. Namely,
in terms of subprojectivity, some classical results are unified and some classical rings are
characterized. It is also shown that, in some categories, the subprojectivity measures notions
other than the projectivity. Furthermore, this new approach allows, in addition to establishing
nice generalizations of known results, to construct various new examples such as the sub-
projectivity domain of the class of Gorenstein projective objects, the class of semi-projective
complexes and particular types of representations of a finite linear quiver. The paper ends
with a study showing that the fact that a subprojectivity domain of a class coincides with its
first right Ext-orthogonal class can be characterized in terms of the existence of preenvelopes
and precovers.
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1 Introduction

Throughout this paper,A will denote an abelian categorywith enough projectives.We denote
the class of projective objects by Proj(A ) and the class of injective objects by I n j(A ). Also,
R will denote an associative ring with identity and modules will be unital left R-modules,
unless otherwise explicitly stated. As usual, we denote by R-Mod and Mod-R the category
of left R-modules and the category of right R-modules, respectively. We denote by C(R) the
category of complexes of left R-modules.

To any given class of objects C of A we associate its right Ext-orthogonal class,

C⊥ = {X ∈ A | Ext1(C, X) = 0,C ∈ C},
and its left Ext-orthogonal class,

⊥C = {X ∈ A | Ext1(X ,C) = 0,C ∈ C}.
In particular, if C = {M} then we simply write ⊥C = ⊥M and C⊥ = M⊥.

Recall that, given a class of objects F , an F-precover of an object M is a morphism
F → M with F ∈ F , such that Hom(F ′, F) → Hom(F ′, M) → 0 is exact for any F ′ ∈ F .
An F-precover is said to be special provided that it is an epimorphism with kernel in the
class F⊥. F-preenvelopes and special F-preenvelopes are defined dually.

Recall that an object M of an abelian category A is said to be Gorenstein projective if
there exists an exact and Hom(−, Proj(A ))-exact complex of projective objects

· · · → P−1 → P0 → P1 → · · ·
such that M = Ker(P0 → P1) (see [11, Definition 10.2.1]). While an object M of an abelian
category A is said to be strongly Gorenstein projective if there exists a short exact sequence
0 → M → P → M → 0 with P projective and M ∈ ⊥Proj(A ) (see [3]). We use GP
and SGP to denote the class of all Gorenstein projective objects and the class of all strongly
Gorenstein projective objects, respectively.

In [15], an alternative perspective on the projectivity of a module was introduced. Recall
that, for two modules M and N , M is said to be N -subprojective if for every epimorphism
g : B → N and every morphism f : M → N , there exists a morphism h : M → B such
that gh = f . Then, Holston et al. defined in [15] the subprojectivity domain of any module
M as the class of all modules N such that M is N -subprojective. The purpose of [15] was
to introduce a new approach on the analysis of the projectivity of a module. However, the
study of the subprojectivity goes beyond that aim and, indeed provides, among other things,
an interesting new side on some other known notions. This opens a new important area of
research which attracts many authors.

In this paper, we develop a new treatment of the subprojectivity in the categorical context.
This study provides new interesting tools to develop this area of research. Indeed, we obtain,
for instance, generalizations of several results using new methods which give a different
light to the way they are seen now, which in addition, gives new perspectives. And we unify
known and classical results in terms of subprojectivity. The current study provides also new
powerful tools in constructing various interesting examples. For instance, we know and it is
easy to show that the subprojectivity domain of a projective object P is the whole category
A , which is exactly the right Ext-orthogonal class of P . So we can writePr−1(P) = P⊥. So
it is natural to ask how far we can get by extending this equality. We will show that, at least,
it is possible to extend it to objects which are embedded in projective ones (see Proposition
2.8). As a consequence, we deduce that, if M is a Gorenstein projective object, then there is
an object N such that Pr

A
−1(M) = N⊥.
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Subprojectivity in Abelian Categories 891

We also introduce subprojectivity domains of classes as a natural extension of the sub-
projectivity domains of objects. This provides a new context in this domain of research in
which several interesting questions arise. We show, among several other things, that the fact
that a subprojectivity domain of a class coincides with its first right Ext-orthogonal class can
be characterized in terms of preenvelopes and precovers.

The paper is organized as follows:
In Sect. 2, we investigate subprojectivity domains of objects. We start by giving examples

in the category of complexes and the category of representations of a quiver which show that
the role of subprojectivity could go beyond the measure of the projectivity, but also have
the ability to measure other properties such as the exactness of complexes (Proposition 2.5,
see also Proposition 2.27) or when a morphism is monic (see Proposition 2.6). The main
contribution of this section is the elaboration of two new ways to treat the subprojectivity of
objects. The first one, Proposition 2.2, is a functorial characterization of the subprojectivity
of objects and the second one, Proposition 2.7, characterizes the subprojectivity of objects in
terms of factorizations of morphisms. This contribution allows to easily establish throughout
the paper new and interesting results and examples. For instance, Corollary 2.9 shows that if
M is a strongly Gorenstein projective object thenPr

A
−1(M) = M⊥. And Corollaries 2.11

and 2.12 give, in terms of subprojectivity, a new way to see how an object (module) can be
embedded in a projective object (module).

We also introduce and investigate subprojectivity domains of classes as a natural extension
of subprojectivity domains of objects. This notion leads, among other things, to an unification
of several well-known results (see Corollaries 2.19, 2.21, 2.23 and 2.26). We determine
subprojectivity domains of various classes such as the one of semi-projective complexes
(Proposition 2.27), the one of strongly Gorenstein projective objects (Proposition 2.28), the
one of finitely presented objects (Proposition 2.18), the one of finitely generated modules
(Proposition 2.22), and the one of simplemodules (Proposition 2.24).We show in Proposition
2.17 that the subprojectivity domain of a classL does not change even if we modify this class
to Add(L) (i.e. the class of all objects which are isomorphic to direct summands of direct
sums of copies of objects of the classL). As consequences, the subprojectivity domains of the
classes of all pure-projective modules, all semisimple modules and all Gorenstein projective
objects are determined (see Corollaries 2.20, 2.25 and 2.29).

Section 3 is devoted to the study of some closure properties of subprojectivity domains.
We extend the study done in [15] and we give new results. In Proposition 3.1 we show that
the subprojectivity domain of any class is closed under extensions, finite direct sums and
direct summands. Then, we characterize when are the subprojectivity domains closed under
kernels of epimorphisms (Proposition 3.2 and Example 3.3). In Proposition 3.4 we show
that the subprojectivity domain of a class L is closed under subobjects if and only if the
subprojectivity domain of any object of L is closed under subobjects. This leads to new
characterizations of known notions. For instance, in Corollary 3.5, we show that, for any
ring R, w.gl.dimR ≤ 1 if and only if the subprojectivity domain of each finitely presented
module is closed under submodules. In Corollary 3.6 we prove that a left coherent ring
R is left semihereditary if and only if the subprojectivity domain of each of its finitely
generated modules is closed under submodules. Similarly, in Proposition 3.7, we generalize
[15, Proposition 2.14] by showing that the subprojectivity domain of a classL is closed under
arbitrary direct products if and only if the subprojectivity domain of any of its objects is closed
under arbitrary direct products. This result allows us to give amuch direct proof (seeCorollary
3.8) of a characterization of coherent rings established by Durğun in [9, Proposition 2.3].
Inspired by the work of Parra and Rada [18], we show that, if we assume further conditions
on A , then the closure under direct products of the subprojectivity domains of classes can
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892 H. Amzil et al.

be characterized in terms of preenvelopes (see Proposition 3.11). We end Sect. 3 with a
discussion on the closure under direct sums of the subprojectivity domains of classes. In
[15, Proposition 2.13], it was shown that the subprojectivity domain of any finitely generated
module is closed under arbitrary direct sums. Here, using the functorial characterization of
the subprojectivity domains, we show that this also holds for small objects.

Finally, in Sect. 4 we relate subprojectivity domains with right Ext-orthogonal of classes.
The main result (Theorem 4.1) states that, under some conditions on the category A and on
the class L, the following conditions are equivalent:

1. L⊥ = Pr
A

−1(L).

2. L⋂L⊥ = Proj(A ) and every object in L⊥ has a special L-precover.
3. Proj(A) ⊆ L⊥, PrA

−1(L) is closed under cokernels of monomorphisms and every

M ∈ L has an L⊥-preenvelope which is projective.

We end the paper with two consequences (Corollaries 4.2 and 4.3). In the last one we
show that every object in GP⊥ has a special GP-precover. This is in fact the recent result
[24, Proposition 4.1] established in a different way.

2 Subprojectivity Domains in Abelian Categories

Subprojectivity of objects is a notion studied up to a certain level of deepness in categories
of modules. However, it is a categorical type concept which has not even been considered in
this general setting. The aim of this section is thus to explore the meaning of subprojectivity
in nice categories from the homological point of view: abelian categories.

We start by recalling what subprojectivity means.

Definition 2.1 ( [15]) Given two objects M and N in A , M is said to be N -subprojective
if for every morphism f : M → N and every epimorphism g : K → N , there exists a
morphism h : M → K such that gh = f .

The subprojectivity domain, or domain of subprojectivity, of M is defined as the class

Pr−1
A

(M) := {N ∈ A : M is N -subprojective}.

In [15, Lemma 2.3] it was proved that for M to be N -subprojective one only needs to
lift maps to projective modules that cover N or even to a single projective module covering
N . We now provide a functorial extension of this result which we will use to give some
examples.

Proposition 2.2 Let M and N be two objects ofA andX be a subclass ofPr−1
A

(M) such that

every object in Pr−1
A

(M) is an epic image of an object in X . Then the following conditions
are equivalent:

1. M is N-subprojective.
2. There exists a morphism g : X → N with X ∈ X such that Hom(M, g) is an epimor-

phism.

Proof One can easily see that (1) ⇒ (2).
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Subprojectivity in Abelian Categories 893

To show (2) ⇒ (1) assume that there exists such a morphism g : X → N and let K → N
be an epimorphism. Then apply Hom(M,−) to the pullback diagram

D X 0

K N 0

to get

Hom(M, D) Hom(M, X)

Hom(M, K ) Hom(M, N )

By (2) we see that Hom(M, X) → Hom(M, N ) is an epimorphism and, since X is a
subclass of Pr−1

A
(M), the morphism Hom(M, D) → Hom(M, X) is also an epimorphism.

Then Hom(M, K ) → Hom(M, N ) is of course epic. 	

Notice that conditions (1) and (2) of Proposition 2.2 are equivalent even ifA does not have

enough projectives, and thatX could be the wholePr−1
A

(M) as considered in [9, Proposition
2.1], or the class of all projective objects as in [15, Lemma 2.3].

We now give an example, in the context of representations of quivers by modules, of the
usefulness of the above fact. Recall that the linear quiver

vn → vn−1 → · · · → v2 → v1

is denoted by An and the category of representations of An is denoted by Rep(An). As in
[10], we use M[i], for a module M , to denote the representation

0 → 0 → · · · → 0 → M
id−→ · · · id−→ M

id−→ M

where the last M is in the i’th place. Following [10, Theorem 4.1] (see also [17, Sect. 2]),
we know that a representation

Mn
fn−1−→ Mn−1 −→ · · · −→ M2

f1−→ M1

of An is projective if and only if it is a direct sum of the following projective representations:

P1[1] : 0 → 0 → · · · → 0 → 0 → P1,

P2[2] : 0 → 0 → · · · → 0 → P2
id−→ P2,

...

Pn[n] : Pn
id−→ Pn

id−→ · · · id−→ Pn
id−→ Pn

id−→ Pn,

where the Pi ’s are all projective modules. Thus, for a module M , the representation M[i] is
projective if and only if M is projective. We generalize this fact to the case of subprojectivity.

Proposition 2.3 Let M be a module and (N , δ) = Nn
δn→ Nn−1

δn−1→ · · · δ3→ N2
δ2→ N1

be a representation of An (n ≥ 2) in R-Mod. Then, for an integer 1 ≤ i ≤ n, N ∈
Pr−1

Rep(An)
(M[i]) if and only if Ni ∈ Pr−1

R−Mod
(M).
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894 H. Amzil et al.

Proof For simplicity in notation we only prove the case of A2 (An follows by the same

arguments). Thus, we just need to discuss two cases: 0 → M and M
id−→ M .

1. Choose any representation N : N2 → N1 ∈ Pr−1
Rep(A2)

(0 → M), an epimorphism

(α, β) : P → N from a projective representation P : P2 → P1 ∈ Rep(A2), and any
morphism of modules f : M → N1. Then, (0, f ) : (0 → M) → N is a morphism of
representations and the diagram

0 M
h

f
P2

α

P1

β

N2 N1

can be completed commutatively. Therefore, f = βh and, by Proposition 2.2, N1 ∈
Pr−1

R−Mod
(M). The converse is easy to prove.

2. Toprove thenecessary condition choose any representation N2 → N1 ∈ Pr−1
Rep(A2)

(M
id−→

M) and any morphism of modules f : M → N2. Then, there exists a morphism of rep-
resentations (k, h) completing commutatively the diagram

M
k

f

M
h

g f
P2

α

P1

β

N2
g

N1

where P2 → P1 is a projective representation and (α, β) an epimorphism in the category
Rep(A2). Therefore f = αk and then, again by Proposition 2.2, N2 ∈ Pr−1

R−Mod
(M).

Conversely, let N2 → N1 be a representation in Rep(A2). Suppose that N2 is in
Pr−1

R−Mod
(M) and consider a projective representation P2 → P1, an epimorphism

(α, β) from P2 → P1 onto N2 → N1, and a morphism of representations ( f2, f1)

from M
id−→ M to N2 → N1. Then, there exists h : M → P2 such that f2 = αh.

Therefore, we get the following commutative diagram

M
h

f2

M
πh

f1
P2

α

π
P1

β

N2
g

N1

so f1 = g f2 = gαh = βπh and hence ( f2, f1) = (α, β)(h, πh). This means by

Proposition 2.2 that N2 → N1 ∈ Pr−1
Rep(A2)

(M
id−→ M). 	
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Subprojectivity domains were introduced in [15] to, somehow, measure the projectivity of
modules. So for instance it is clear that a module is projective precisely when its subprojec-
tivity domain is the whole category R-Mod. Of course one immediately sees that this is not
a situation which holds just in module categories. On the opposite, it does in every abelian
category with enough projectives. We state it as a proposition.

Proposition 2.4 Let M be an object of A . Then the following conditions are equivalent:

1. Pr−1
A

(M) is the whole abelian category A .
2. M is projective.
3. M ∈ Pr−1

A
(M).

But in some cases subprojectivity can measure notions different from that of projectivity.
We now give two examples showing this fact:

1.-In the category of complexes the subprojectivity domain of a semi-projective complex
measures the exactness of such a complex (Proposition 2.5).

2.-Subprojectivity in the category of representations by modules of the quiver A2 charac-
terizes, in some cases, monomorphisms in R-Mod (Proposition 2.6).

Recall that a complex P is said to be semi-projective (or DG-projective) if for every
morphism α : P → N and for every surjective quasi-isomorphism β : M → N there exists
a morphism γ : P → M such that α = βγ . Also, for every complex N there exists a
semi-projective complex X and a quasi-isomorphism f : X → N (see [6, Corollary 3.2.3]).

Proposition 2.5 Let N be a complex and let f : X → N be a quasi-isomorphism from a
semi-projective complex X. Then, N ∈ Pr

C(R)

−1(X) if and only if N is exact.

Proof Suppose that N ∈ Pr
C(R)

−1(X) and consider an epimorphism g : P → N with P

projective. Since N ∈ Pr
C(R)

−1(X), there exists a morphism h : X → P such that f = gh,
so H( f ) = H(g)H(h), and since f is a quasi-isomorphism, H(g) : H(P) → H(N ) is an
epimorphism, where H(.) is the homology functor. But P is exact, so N is also exact.

Conversely, if N is exact then X is also exact since they are quasi-isomorphic, so by [13,
Proposition 2.3.7] X is projective. Therefore, N ∈ Pr

C(R)

−1(X). 	

Proposition 2.6 Let M be a module and g : N1 → N2 be a morphism of modules. Then,

N1
g→ N2 ∈ Pr−1

Rep(A2)
(M → 0) ⇔ HomR(M,Kerg) = 0.

In particular, if M is free then N1
g→ N2 ∈ Pr−1

Rep(A2)
(M → 0) if and only if g : N1 → N2

is monic.

Proof Suppose that N1
g→ N2 ∈ Pr−1

Rep(A2)
(M → 0), let f : M → Kerg be a morphism of

modules and i : Kerg → N1 be the canonical injection. We get the following commutative
diagram

M
h

i f

0

P1

β

π
P2

α

N1 g N2

123



896 H. Amzil et al.

where P1
π→ P2 is a projective representation and (β, α) is an epimorphism in the category

Rep(A2). Therefore, πh = 0 so f = 0 since π is monic (see [10, Theorem 3.1]).
Conversely, if HomR(M,Kerg) = 0 then HomRep(A2)(M → 0, N1 → N2) = 0 so

clearly N1
g→ N2 ∈ Pr−1

Rep(A2)
(M → 0). 	


The following result provides new ways to treat and use subprojectivity.

Proposition 2.7 Let M and N be objects of A . Then, M is N-subprojective if and only if
every morphism M → N factors through a projective object.

Proof The necessary condition is clear since A has enough projectives.
Conversely, suppose that every morphism M → N factors through a projective object,

consider any morphism f : M → N and any epimorphism g : K → N . Then, by the
assumption, there exists a projective object P and a commutative diagram

P

β

M
α

f

K g N 0

And by the projectivity of P the diagram

P

β

M
α

f

K g N 0

can be completed commutatively. 	

Last result leads to some interesting consequences. We start by the following.

Proposition 2.8 Let 0 → M → Q → M ′ → 0 be a short exact sequence with Q projective.
Then M ′⊥ ⊆ Pr

A
−1(M). If moreover Proj(A ) ⊆ M ′⊥ then Pr

A
−1(M) = M ′⊥.

Proof Let N ∈ A and consider the long exact sequence

Hom(Q, N ) Hom(M, N ) Ext1(M ′, N ) Ext1(Q, N )

If N ∈ M ′⊥ then Ext1(M ′, N ) = 0 so Hom(Q, N ) → Hom(M, N ) is epic, that is, any
morphism M → N factors through the projective object Q. Then, by Proposition 2.7 we
deduce that N ∈ Pr

A
−1(M).

Suppose in addition that Proj(A ) ⊆ M ′⊥. Let N ∈ Pr
A

−1(M) and let P → N be
an epimorphism. We apply the functors Hom(−, P) and Hom(−, N ) to M → Q to get the
following commutative diagram

Hom(Q, P) Hom(M, P) Ext1(M ′, P)

Hom(Q, N ) Hom(M, N ) Ext1(M ′, N )

123



Subprojectivity in Abelian Categories 897

To prove that Ext1(M ′, N ) = 0 it is sufficient to prove that Hom(Q, N ) → Hom(M, N )

is epic since Q is projective. But N ∈ Pr
A

−1(M) so Hom(M, P) → Hom(M, N ) is an

epimorphism, and of course Hom(Q, P) → Hom(M, P) is epic (Ext1(M ′, P) = 0 by
assumption), so then Hom(Q, N ) → Hom(M, N ) is epic. 	


An example of an object satisfying the condition of Proposition 2.8 can be found among
strongly Gorenstein projective objects.

Corollary 2.9 If M is a strongly Gorenstein projective object then Pr
A

−1(M) = M⊥.

The converse of Corollary 2.9 does not hold in general. A counterexample can be found
in commutative local artinian principal ideal rings: in [2] it is proved that over one such a
ring every module is 2-strongly Gorenstein projective, that is, there exists an exact sequence
0 → M → P2 → P1 → M → 0 with P1 and P2 projective and M ∈ ⊥Proj(A ). Thus,
using [5] one can prove that if the ring admits more than two proper ideals then the maximal
ideal cannot be strongly Gorenstein projective. So for instance, the ideal (2+ 8Z) of the ring
Z/8Z is not strongly Gorenstein projective. However we do havePr−1

(Z/8Z)−Mod
(2 + 8Z) =

(2 + 8Z)⊥ by the following result.

Proposition 2.10 If R is a commutative local artinian principal ideal ring, then for every
module M, Pr−1

R−Mod
(M) = M⊥.

Proof We can assume that M is a non-projective module.
By [15, Proposition 4.5] we know that Pr−1

R−Mod
(M) = Proj(R-Mod) so if we prove

that M⊥ = Proj(R-Mod) we will be done.
Now, since R is a commutative local artinian principal ideal ring, every module is a direct

sum of cyclic modules, and the only composition series of the ring is

0 = xm R ⊆ xm−1R ⊆ · · · ⊆ x R = Rad(R) ⊆ R,

where x is a generator of Rad(R) (the Jacobson radical of R). Therefore, the result will
follow if we show that Proj(R-Mod) = (R/xi R)⊥ for every 0 < i < m.

Of course we have Proj(R-Mod) ⊆ (R/xi R)⊥ since Proj(R-Mod) = I n j(R-Mod) (R
is a QF-ring). And on the other hand, if N is a non projective module then there is an i such
that R/xi R is a direct summand of R. Thismeans ExtR(R/xi R, R/x j R) is a direct summand
of ExtR(N , R/x j R) for every j . But ExtR(R/xi R, R/x j R) = 0 for all 0 < i, j < m by
[22, Example 4.5] so we are done. 	


Proposition 2.8 says that if an object M can be embedded in a projective object then there
exists an object M ′ such that (M ′)⊥ ⊆ Pr−1

A
(M). Therefore,Pr−1

A
(M) contains the class of

injective objects. This fact was proved using different arguments in [8, Lemma 2.2] by giving
a list of equivalences. The following result extends such a list of equivalent conditions.

Corollary 2.11 Assume that A has enough injectives and let M be an object of A . The
following conditions are equivalent:

1. M is embedded in a projective object P.
2. There exists an object M ′ such that (M ′)⊥ ⊆ Pr−1

A
(M).

3. I n j(A ) ⊆ Pr−1
A

(M).

Proof (1) ⇒ (2) Proposition 2.8.
(2) ⇒ (3) Clear.
(3) ⇒ (1) Follows by similar arguments to those of [8, Lemma 2.2]. 	
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Now we prove that when the module is finitely generated (and can be embedded in a
projective module) then its subprojectivity domain contains a larger class than that of the
injectives. In what follows FP will denote the class of all FP-injective modules, that is the
class of right Ext-orthogonal class of finitely presentedmodules. Recall, from [11, Proposition
6.2.4], that the class FP is preenveloping. In particular, every module embeds in an FP-
injective module.

Corollary 2.12 Let M beafinitely generatedmodule. The following conditions are equivalent:

1. M is embedded in a projective module.
2. There exists a finitely presented module M ′ such that (M ′)⊥ ⊆ Pr−1

R−Mod
(M).

3. FP ⊆ Pr−1
R−Mod

(M).

4. For an FP-injective preenvelope i : M ↪→ E of M, E ∈ Pr−1
R−Mod

(M).

Proof (1) ⇒ (2). Since M is finitely generated, M can be embedded in a finitely generated
projective module F , so F/M is finitely presented.
(2) ⇒ (3) holds since FP ⊆ (M ′)⊥.
(3) ⇒ (4) Clear.
(4) ⇒ (1). Let g : P → E be an epimorphism with P projective. Since E ∈ Pr−1

R−Mod
(M),

the diagram

M

i
h

P g E 0

can be completed commutatively by h. Thus, h must be injective. 	

The class of pure-injective modules is another interesting class which also contains the

class of injective modules. Thus, it is natural to ask whether there is the “pure-injective”
version of Corollary 2.12. This question seems not to have a direct proof as the one given
for Corollary 2.12 since, unlike the FP-injective modules which can be defined as the right
Ext-orthogonal class of finitely presented modules, the pure-injective modules are defined, in
the context of relative homological algebra, as the injective objects with respect to pure-exact
sequences. This requires to add, as pointed out by the referee, the purity condition on the
morphisms.

Let us denote by PE the class of all pure-injective modules.

Proposition 2.13 Let M be a module. The following conditions are equivalent:

1. M is purely embedded in a projective module; that is, there is a pure monomorphism
M ↪→ P for some projective module P.

2. PE ⊆ Pr−1
R−Mod

(M).

3. For any PE-injective preenvelope i : M ↪→ E of M, E ∈ Pr−1
R−Mod

(M).

Proof (1) ⇒ (2). Let E be a pure-injective module and f : M → E be any morphism.
By hypothesis, there is a pure monomorphism α : M ↪→ P for some projective module P .
Then, there exists a morphism β : P → E such that βα = f , which shows that f factors
through a projective module and so E ∈ Pr−1

R−Mod
(M).

(2) ⇒ (3) Clear.
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(3) ⇒ (1). Let PE(M) denote the pure-injective envelope of M . Then, there is a pure
monomorphism ι : M ↪→ PE(M). Let g : P → PE(M) be an epimorphism with P is
projective. Since PE(M) ∈ Pr−1

R−Mod
(M), there exists a morphism h : M → P such that

gh = ι; in particular, h is a pure monomorphism, as desired. 	


Notice that this last fact might also hold in more general contexts than those of modules by
considering Herzog’s main result of [14], which shows that ifA is a locally finitely presented
additive category, then every object of A admits a pure-injective envelope.

We nowfix our attention on classes of objects: we introduce and investigate subprojectivity
domains of classes instead of just single objects. The subprojectivity domain of a class X is
defined as the class of all objects holding in the subprojectivity domain of all objects of X .

Definition 2.14 The subprojectivity domain, or domain of subprojectivity, of a class of objects
M of A is defined as

Pr−1
A

(M) := {N ∈ A : M is N -subprojective for every M ∈ M}.

Therefore, if M := {M} then Pr
A

−1(M) = Pr
A

−1(M).

Proposition 2.4 characterizes when the subprojectivity domain of an object is the whole
abelian category A . The following extension to classes of such a proposition can be used to
unify various classical results.

Proposition 2.15 Let L be a class of objects of A . Then the following conditions are equiv-
alent:

1. Pr−1
A

(L) is the whole abelian category A .
2. Every object of L is projective.
3. L ⊆ Pr−1

A
(L).

Proof To prove (1) ⇒ (2), let L in L and P → L be an epimorphism with P is projective.
Since L ∈ Pr−1

A
(L), P → L splits. Hence L is projective.

The implication (2) ⇒ (3) is clear since Pr−1
A

(L) contains the class of projectives.

To prove (3) ⇒ (1), consider an object L in L. By assumption L ∈ Pr−1
A

(L), hence

L is projective (Proposition 2.4). So Pr−1
A

(L) coincide with A for any L in L. Therefore,
Pr−1

A
(L) is A . 	


It is clear that if X is a subclass of a class Y , then Pr−1
A

(Y ) ⊆ Pr−1
A

(X). The following
results showhow farwe canmodify classeswhile preserving the same subprojectivity domain.

We start with a result which shows that reducing classes to a singletonwhile preserving the
same subprojectivity domain is possible. This is based on the following observation. Recall
that if S is the representative set of finitely presented modules, then it is known that a module
F is flat if and only if Hom(⊕M∈SM,−)makes exact every short exact sequence of the form
0 → A → B → F → 0. This means that Pr

A
−1(⊕M∈SM) is the class of flat modules

(as proved in [8, Proposition 2.1]). The following result, which was already proven for the
category of modules in [15, Proposition 2.10], is a generalization of this fact.

Proposition 2.16 Suppose that A has direct sums and let {Mi }i∈I be a set of objects in A .
Then Pr

A
−1(⊕i∈I Mi ) = Pr

A
−1({Mi }i∈I ).
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Proof Let g : K → N be an epimorphism. The following diagram is commutative

Hom(⊕i∈I Mi , K )

ψK

Hom(⊕i∈I Mi ,g)
Hom(⊕i∈I Mi , N )

ψN

∏
i∈I Hom(Mi , K )

∏
i∈I Hom(Mi , N )

where ψK and ψN are isomorphisms. Hence the morphism Hom(⊕i∈I Mi , g) is epic if and
only if

∏
i∈I Hom(Mi , g) is epic. Therefore N ∈ Pr

A
−1(⊕i∈I Mi ) if and only if N ∈

Pr
A

−1(Mi ) for every i ∈ I . 	

We now give an extension of Proposition 2.16. For we will use the following known

terminology: if L is a class of objects of A , we denote by Sum(L) the class of all objects
which are isomorphic to direct sumsof objects ofL, by Summ(L) the class of all objectswhich
are isomorphic to direct summands of objects ofL, and by Add(L) the class Summ(Sum(L)).

Proposition 2.17 Let L be a class of objects of A . Then

Pr
A

−1(Add(L)) = Pr
A

−1(Sum(L)) = Pr
A

−1(Summ(L)) = Pr
A

−1(L).

If L is a set, then all these classes coincide with the class Pr
A

−1(⊕L∈LL).

Proof It is clear thatPr
A

−1(Add(L)) holds insidePr
A

−1(L) sinceL holds inside Add(L).

Conversely, let N be in Pr
A

−1(L) and M in Add(L). Then, there exist M ′ in Add(L)

and a family {Li } in L such that M ⊕ M ′ = ⊕i Li . By Proposition 2.16, N ∈ Pr
A

−1(M)

so N ∈ Pr
A

−1(Add(L)). Therefore, Pr
A

−1(Add(L)) = Pr
A

−1(L).
Now, it is clear that L ⊆ Summ(L) ⊆ Add(L) and that L ⊆ Sum(L) ⊆ Add(L), so

we have Pr
A

−1(Add(L)) ⊆ Pr
A

−1(Summ(L)) ⊆ Pr
A

−1(L) and Pr
A

−1(Add(L)) ⊆
Pr

A
−1(Sum(L)) ⊆ Pr

A
−1(L), soweconclude thatPr

A
−1(Add(L)) = Pr

A
−1(Sum(L)) =

Pr
A

−1(Summ(L)) = Pr
A

−1(L).

If L is a set then, by Proposition 2.16, Pr
A

−1(L) = Pr
A

−1(⊕L∈LL). 	

As mentioned before, Proposition 2.15 can be used to unify various known results. These

will follow from establishing the subprojectivity domains of the following five well known
classes of modules.

The case of the class of finitely presented objects can be deduced directly from the cat-
egorical definition of flat objects. Indeed, an object F is said to be flat if every short exact
sequence 0 → A → B → F → 0 is pure, that is, if for every finitely presented object P ,
HomA (P,−) makes this sequence exact (see [21]). Then, we get the following result (see
also [8, Proposition 2.1]).

Proposition 2.18 ( [8], Proposition 2.1) The subprojectivity domain of the class of finitely
presented objects is the class of flat objects.

Now, applying Proposition 2.15 to the class of finitely presented objects we get the fol-
lowing well known result.

Corollary 2.19 The following conditions are equivalent:

1. Every object of A is flat.
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2. Every finitely presented object is projective.
3. Every finitely presented object is flat.

Recall now that an object is said to be pure-projective if it is projective with respect to
every pure short exact sequence. If the category is locally finitely presented then using the
same arguments in ( [23, Corollary 3]) one can show that an object is pure-projective if
and only if it is a direct summand of a direct sum of finitely presented objects. As a direct
consequence of Proposition 2.17, we get the following result.

Corollary 2.20 If the category is locally finitely presented then the subprojectivity domain of
the class of all pure-projective objects is precisely the class of all flat objects.

Then, by Proposition 2.15 applied to the class of pure-projective objects we get the fol-
lowing known result (see [12]).

Corollary 2.21 If the category A is locally finitely presented, then the following conditions
are equivalent:

1. Every object of A is flat.
2. Every pure-projective object is projective.
3. Every pure-projective object is flat.

Proposition 2.7 relates belonging to some subprojectivity domain with factorization of
morphisms through projective objects, and this suggests studying subprojectivity domains
of classes defined by means of factorizations.

Recall that a module M is said to be f-projective if for every finitely generated submodule
C of M , the inclusion map C → M factors through a finitely generated free module. Then,
we have the following result.

Proposition 2.22 The subprojectivity domain of the class of finitely generated modules is the
class of f-projective modules.

Proof Let N be an f -projective module and M be a finitely generated module. The image
of any morphism f : M → N , Im( f ), is a finitely generated submodule of N , so being N
f-projective means that the inclusion map Im( f ) → N factors through a projective module
and so that M is N -subprojective (Proposition 2.7).

Conversely, let N be in the subprojectivity domain of the class of finitely generated
modules, N ′ be a finitely generated submodule of N and i : N ′ → N the inclusion map.
Let g : F → N be an epimorphism with F free. Since N ∈ Pr−1

R−Mod
(N ′), there exists a

morphism h : N ′ → F such that i = gh. Since Im(h) is finitely generated, there exists a
finitely generated free module F ′ such that Im(h) ⊆ F ′ ⊆ F . Hence i factors through F ′
and N is f-projective. 	


Now, applying Proposition 2.15 to the class of finitely generated modules we get the
following.

Corollary 2.23 The following conditions are equivalent:

1. Every module is f-projective.
2. Every finitely generated module is projective, that is R is a semisimple artinian ring.
3. Every finitely generated module is f-projective.
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In a similar way to Proposition 2.22, we can determine the subprojectivity domain of
simple modules. Recall that a module N is called simple-projective if, for any simple module
M , every morphism f : M → N factors through a finitely generated free module (see [16,
Definition 2.1]).

Proposition 2.24 The subprojectivity domain of the class of simple modules is the class of
simple-projective modules.

And again, using Proposition 2.17, we have the subprojectivity domain of the class of all
semisimple modules.

Corollary 2.25 The subprojectivity domain of the class of semisimple modules is also the
class of simple-projective modules.

Then we get the following equivalences.

Corollary 2.26 The following conditions are equivalent:

1. Every module is simple-projective.
2. Every simple module is projective.
3. Every simple module is simple-projective.
4. Every semisimple module is projective.
5. Every semisimple module is simple-projective.

Let us finish this section by giving three more examples of subprojectivity domains of homo-
logically important classes of objects.

We start by noticing that Proposition 2.5 helps us deduce thatPr
C(R)

−1(SP) is a subclass
of the class of exact complexes, where SP denotes the class of semi-projective complexes.
The next proposition shows that we have an equality.

Proposition 2.27 The subprojectivity domain of the class of semi-projective complexes is the
class of all exact complexes.

Proof Let E be an exact complex. By [6, Corollary 3.2.3], there exists a surjective quasi-iso-
morphism g : P → E where P is semi-projective. Since E is exact then P is so, hence P
is projective. Thus, for every M ∈ SP , Hom(M, g) is epic. Therefore, E ∈ Pr

C(R)

−1(SP)

by Proposition 2.2. 	

The case of the class of strongly Gorenstein projective objects can be deduced directly from
Corollary 2.9.

Proposition 2.28 The subprojectivity domain of the class of strongly Gorenstein projective
objects is the class SGP⊥.

Finally, using Proposition 2.17 we determine the subprojectivity domain of the class of
Gorenstein projective objects. If direct sums exist and they are exact then, using similar
arguments to those of [3], we can show that an object is Gorenstein projective if and only if
it is a direct summand of a strongly Gorenstein projective one, so clearly SGP⊥ = GP⊥.
Thus, we have the following result.

Corollary 2.29 If direct sums exist and they are exact then, the subprojectivity domain of the
class of Gorenstein projective objects is the class GP⊥. In particular, if R is a ring with finite
Gorenstein global dimension [4], then the subprojectivity domain of the class of Gorenstein
projective modules is the class of all modules with finite projective dimension.
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Proof The second assertion follows from the known fact that over a ring R with finite Goren-
stein global dimension, the class GP⊥ coincide with the class of all modules with finite
projective dimension. We do not have a precise reference but one can see that it is a simple
consequence of [7, Lemma 2.17]. 	


3 Closure Properties of the Subprojectivity Domains

The aim of this section is to investigate the closure properties of subprojectivity domains.
This study leads to some new characterizations of known notions.

We start with the following generalization of [1, Proposition 3], [15, Proposition 2.11]
and [15, Proposition 2.12]. Though it can be proved by using similar arguments to those of
the results it generalizes, we give an alternative proof since we think it provides new and
useful ideas.

Proposition 3.1 The subprojectivity domain of any class in A is closed under extensions,
finite direct sums and direct summands.

Proof Clearly it suffices to prove the result for subprojectivity domain of objects so let us
consider a single object M of A and study its subprojectivity domain.

For let 0 → A → B → C → 0 be a short exact sequence of objects and suppose that A
and C are inPr

A
−1(M). Consider then two epimorphisms PA → A and PC → C with PA

and PC projective. By Horseshoe Lemma we get the following commutative diagram

0 PA PB PC 0

0 A B C 0

with PB is projective. Apply then HomA (M,−) to get the commutative diagram

0 Hom(M, PA) Hom(M, PB) Hom(M, PC ) 0

0 Hom(M, A) Hom(M, B) Hom(M,C) 0

with exact rows (C holds in Pr
A

−1(M)).

Since A andC hold inPr
A

−1(M), the twomorphismsHom(M, PA) → Hom(M, A) and
Hom(M, PC ) → Hom(M,C) are epimorphisms. Hence, Hom(M, PB) → Hom(M, B) is
also an epimorphism and then we get B ∈ Pr

A
−1(M) (by Proposition 2.2).

Now, the closure under extensions of Pr
A

−1(M) proves its closure under finite direct
sums.

And finally, let N ∈ Pr
A

−1(M) and A be a direct summand of N . If p : N → A is
the canonical projection then Hom(M, p) is epic and then, by Proposition 2.2, we get that
A ∈ Pr

A
−1(M). 	


For subprojectivity domains that are closed under kernels of epimorphisms, we have the
following result.

Proposition 3.2 Let L be a class of objects of A . Then the following conditions are equiva-
lent:
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1. Pr−1
A (L) is closed under kernels of epimorphisms.

2. For every short exact sequence 0 → C → P → A → 0 where P is projective, if
A ∈ Pr−1

A (L) then C ∈ Pr−1
A (L).

3. For every epimorphism P → A with P is projective and A ∈ Pr−1
A (L), the pullback

object of P over A holds in Pr−1
A (L).

Proof (1) ⇒ (2) is clear. To prove (2) ⇒ (1) consider an exact sequence

0 → C → B → A → 0

with B, A ∈ Pr−1
A (L) and the pullback diagram

0 0

K K

0 C D P 0

0 C B A 0

0 0

where P is a projective object. A ∈ Pr−1
A (L), so by assumption K ∈ Pr−1

A (L). Then, by

Proposition 3.1, D ∈ Pr−1
A (L), and since C is a direct summand of D, we deduce using

again Proposition 3.1 that C ∈ Pr−1
A (L).

To prove (3) ⇔ (2), consider the following diagram where D is the pullback of P over
A

0 C D P 0

0 C P A 0

Suppose that A ∈ Pr−1
A (L). By Proposition 3.1, we have D ∈ Pr−1

A (L) if and only if

C ∈ Pr−1
A (L). 	


As examples of classes satisfying the conditions of Proposition 3.2, we give the following.

Example 3.3 1. Let M be a strongly Gorenstein projective object. ThenPr−1
A (M) is closed

under kernels of epimorphisms. Indeed, let 0 → C → P → A → 0 be a short exact
sequence with P projective and A ∈ Pr−1

A (M). If we consider the long exact sequence

· · · → Hom(M, P) → Hom(M, A) → Ext1(M,C) → Ext1(M, P) → · · · ,

then Ext1(M,C) = 0 so C ∈ Pr−1
A (M) (see Corollary 2.9). Therefore, by Proposition

3.2, Pr−1
A (M) is closed under kernels of epimorphisms.
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2. LetL be any class of finitely generated modules containing all finitely presented modules.
Then, the subprojectivity domain of L is closed under kernels of epimorphisms. In partic-
ular, the class of f-projective modules is closed under kernels of epimorphisms. To show
this, let 0 → A → B → C → 0 be a short exact sequence with B, C ∈ Pr

R−Mod
−1(L).

Since L contains all finitely presented modules the sequence 0 → A → B → C → 0 is
pure, so by [18, Proposition 2.6] A ∈ Pr

R−Mod
−1(L).

In [15, Proposition 2.15] it is proved that a ring R is right hereditary if and only
if the subprojectivity domain of any right R-module is closed under submodules. Since
Pr−1

Mod−R
(Mod-R) is the class of projective right R-modules, one could replace the state-

ment “R is right hereditary” by “Pr−1
Mod−R

(Mod-R) is closed under submodules”, getting

then that Pr−1
Mod−R

(Mod-R) is closed under submodules if and only if Pr−1
Mod−R

(M) is
closed under submodules for every right R-module M . Thus, the next proposition gives an
extension of this result to an arbitrary class L of objects of A .

Proposition 3.4 Let L be a class of objects of A . Then the following two conditions are
equivalent:

1. The subprojectivity domain of L is closed under subobjects.
2. The subprojectivity domain of any object of L is closed under subobjects.

Proof (2) ⇒ (1) is immediate.
To prove (1) ⇒ (2) let M ∈ L and suppose that B ∈ Pr−1

A
(M). Now let A be a subobject

of B. We get the following pullback diagram

0 D

g

P C 0

0 A B C 0

where P → B is an epimorphism and P is projective. Now apply the functor Hom(M,−)

to the previous diagram getting the following commutative diagram with exact rows

0 Hom(M, D)

Hom(M,g)

Hom(M, P) Hom(M,C)

0 Hom(M, A) Hom(M, B) Hom(M,C)

Since B ∈ Pr
A

−1(M), we conclude that Hom(M, g) is epic. Now, being a projective

module, P ∈ Pr−1
A

(L), then, by (1), D ∈ Pr−1
A

(L). Therefore, using Proposition 2.2, we

get that A ∈ Pr
A

−1(M). 	

As a consequence, we get the following result, established first in [9, Proposition 2.4].

Corollary 3.5 Let R be a ring. Then w.gl.dimR ≤ 1 if and only if the subprojectivity domain
of each finitely presented module is closed under submodules.

Proof We know that w.gl.dimR ≤ 1 if and only if flat modules are closed under submodules.
But the subprojectivity domain of the class of finitely presentedmodules is precisely the class
of flat modules. Then, we just have to apply Proposition 3.4. 	
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Recall that R is left coherent if and only if the category FG of finitely generated (left)
modules is abelian. Then, letting both L and A be the abelian category of finitely generated
modules and applying Proposition 3.4 we get the following.

Corollary 3.6 Let R be a left coherent ring. Then, R is left semihereditary if and only if the
subprojectivity domain of each finitely generated module is closed under submodules.

Proof The result follows from the fact that Proj(FG) is precisely the class of finitely gen-
erated projective modules. 	


In [15, Proposition 2.14] it is studied when the subprojectivity domain of any module
is closed under arbitrary direct products. This can be extended to the categorical setting
provided (of course) that A has direct products.

Proposition 3.7 Suppose that A has direct products and let L be a class of objects of A .
Then the following conditions are equivalent:

1. The subprojectivity domain of L is closed under arbitrary direct products.
2. The subprojectivity domain of any object of L is closed under arbitrary direct products.

Proof (2) ⇒ (1) is immediate.
For (1) ⇒ (2) let M be an object of L, {Ni }i∈I be a family of objects inPr

A
−1(M) and

{gi : Pi → Ni }i∈I be a family of epimorphisms where each Pi is projective. Consider the
following commutative diagram

Hom(M,
∏

i∈I Pi )

ψ P

Hom(M,
∏

i∈I gi )
Hom(M,

∏
i∈I Ni )

ψN

∏
i∈I Hom(M, Pi )

∏
i∈I Hom(M,gi ) ∏

i∈I Hom(M, Ni )

where ψN and ψ P are the natural isomorphisms. The commutativity of the above diagram
gives thatHom(M,

∏
i∈I gi ) is epic. Since each Pi is inPr

A
−1(L),

∏
i∈I Pi is by assumption

inPr
A

−1(L). Then
∏

i∈I Pi is inPr
A

−1(M). By Proposition 2.2,
∏

i∈I Ni ∈ Pr
A

−1(M)

as desired. 	

The result [15, Proposition 2.14] shows that a ring R is a right perfect and left coherent

ring if and only if the subprojectivity domain of any right module is closed under arbitrary
direct products. This holds sincePr−1

R−Mod
(R-Mod) is the class of projective modules. Here

we can give a much direct proof of a characterization of coherent rings given by Durğun in
[9, Proposition 2.3] using also the same property applied to a different class.

Corollary 3.8 Let R be a ring. Then R is right coherent if and only if the subprojectivity
domain of any finitely presented left module is closed under direct products.

Given a class of finitely generated modules S, the authors in [18] define S-proj to be the
class ofmodules N such that everymorphism f : S → N , where S ∈ S, factors through a free
module. Using Proposition 2.7 one can easily see that S-proj is precisely Pr

R−Mod
−1(S).

In [18, Theorem 3.1], the authors proved that for any class of finitely generated modules
S, Pr

R−Mod
−1(S) is closed under direct products if and only if any module of S admits a

Pr
R−Mod

−1(S)-preenvelope, if and only if any module of S admits a projective preenvelope.
Now we want to prove this fact for any class of objects.

123



Subprojectivity in Abelian Categories 907

Recall that a class F of objects is locally initially small if for every object M of A there
exists a set FM ⊆ F such that every morphism M → F , where F ∈ F , factors through
a direct product of modules in FM (see [20]). In [20, Proposition 2.9] it is established that
the class of projective modules is always locally initially small. The argument consists in
proving that for any set X , the class Summ(X) is locally initially small, and following the
arguments given in [20] it is easy to see that this holds in any Grothendieck category with
enough projectives. There is only a step of the proof which could deserve a special treatment,
namely when the authors prove that the equivalence class [i] is finite. We now give a proof
of this fact.

Proposition 3.9 Suppose thatA is a cocomplete abelian category with exact direct limits. Let
X be a finitely generated object ofA and {Ai }i∈I be a family of objects ofA. Then, for every
morphism g : X → ⊕i∈I Ai , the set {i ∈ I/πi g = 0} is finite, where π j : ⊕i∈I Ai → A j is
the canonical projection for every j ∈ I .

Proof Let M = Im g and consider the epic-monic decomposition of g,

X
g

ḡ

⊕i∈I Ai

M

f

If we let F be the set of all finite subsets of I and define, for every F ∈ F , AF to be
the image in ⊕i∈I Ai of ⊕i∈F Ai , condition (5) of [19, Chapter 4, Theorem 4.6] says that
M = ∑

F∈F (M ∩ AF ).
Now, for every F ∈ F ,wedefine (M∩AF , γF , ηF ) as the pullbackofαF : AF → ⊕i∈I Ai

and f : M → ⊕i∈I Ai . Then, for every two subobjects (F, αF ) and (F ′, αF ′) ofF such that
F ⊂ F ′ (so the diagram

AF
αF ′
F

αF

AF ′
αF ′ ⊕i∈I Ai

commutes), the universal property of the pullback diagrams guarantees the existence of a
family of morphisms βF ′

F such that the diagram

M ∩ AF
γF

βF ′
F

ηF

AF

αF

αF ′
F

M ∩ AF ′
γF ′

ηF ′

AF ′

αF ′

M
f

⊕i∈I Ai

commutes. Therefore, the family {(M∩AF )F∈F , (βF ′
F )F⊂F ′ } is a direct systemof subobjects

of ⊕i∈I Ai .
But M is finitely generated so there exists F0 ∈ F such that M = M ∩ AF0 and then, ηF0

is an isomorphism. Let j ∈ I \ F0. We have π j f ηF0 = π jαF0γF0 = 0. Hence π j f = 0, for
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every j ∈ I \ F0. Then {i ∈ I/πi f = 0} ⊂ F0. Therefore the set {i ∈ I/πi f = 0} is finite.
Since g = f ḡ and ḡ epic, the set {i ∈ I/πi g = 0} is also finite. 	

Corollary 3.10 Suppose that A is a locally finitely generated cocomplete abelian category
with exact direct limits. Let {Ai }i∈I be a family of objects and f : M → ⊕k∈I Ak be a
morphism such that πi f = 0 for any i ∈ I . Then for any i ∈ I , the set [i] := { j ∈ I/πi f =
π j f } is finite, where π j : ⊕k∈I Ak → A j is the canonical projection for every j ∈ I .

Proof SinceA is locally finitely generated, there exists an epimorphism g : ⊕α∈F Xα → M
with all Xα finitely generated objects.

Call kα : Xα → ⊕i∈F Xi the structural monomorphism for any α ∈ F . We claim that
for any j ∈ I there exists some α j ∈ F such that π j f gkα j = 0. Indeed, if π j f gkα = 0
for every α ∈ F then π j f g = 0, and since g is epic, π j f = 0, a contradiction. Therefore,
[ j] ⊆ {i ∈ I/πi f gkα j = 0}, and Proposition 3.9 says that this set is finite. 	


As mentioned before, with Corollary 3.10, the proof of [20, Proposition 2.9] follows in
any locally finitely generated Grothendieck category with enough projectives A , and as a
consequence, ifA has a systemof projective generatorsG, thenwe see that the class Proj(A )

is locally initially small. Indeed, it is easy to check that Proj(A ) = Summ(Sum(G)). But
Sum(G) is a locally initially small class, so Summ(Sum(G)) is locally initially small too.

With the use of this fact, we can prove the following.

Proposition 3.11 Let L be a class of objects of A . Then, the following conditions are equiv-
alent:

1. Every object M of L has a projective preenvelope.
2. Every object M of L has a Pr

A
−1(L)-preenvelope.

If, in addition, A is a locally finitely generated Grothendieck category with a system of
projective generators then 1. and 2. above are equivalent to

3. Pr
A

−1(L) is closed under direct products.

Proof (1) ⇒ (2). Let M → Q be a projective preenvelope of M . Let us prove that M → Q
is a Pr

A
−1(L)-preenvelope. For let N ∈ Pr

A
−1(L) and let P → N be an epimorphism

with P projective. Apply the functors Hom(M,−) and Hom(Q,−) to P → N to get the
following commutative diagram with exact rows

Hom(Q, P) Hom(Q, N ) 0

Hom(M, P) Hom(M, N ) 0

with Hom(Q, P) → Hom(M, P) an epimorphism (M → Q is a projective preenvelope).
Therefore, Hom(Q, N ) → Hom(M, N ) is also an epimorphism.

(2) ⇒ (1). Let f : M → N be a Pr
A

−1(L)-preenvelope of M and g : P → N be an

epimorphism with P projective. Since N ∈ Pr
A

−1(L) there exists a morphism h : M → P
such that f = gh. Let us prove that h : M → P is a projective preenvelope.

For let h′ : M → P ′ be a morphism with P ′ projective. Since f : M → N is a
Pr

A
−1(L)-preenvelope there exists a morphism g′ : N → P ′ such that h′ = g′ f . Hence

h′ = g′gh and g′g : P → P ′ is the morphism we were looking for.
(2) ⇒ (3). Use the same arguments of [18, Theorem 3.1].
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(3) ⇒ (2). Let M ∈ L. Given N ∈ Pr
A

−1(L) we fix an epimorphism P → N from
a projective P . Since the class of projective objects is locally initially small, there exists a
set X of projective objects such that any morphism M → P factors through a product of
objects in the set X . But every morphism M → N factors through P , and such factorization
M → P factors through a product of objects in the set X , so we have just seen that every
morphism M → N with N ∈ Pr

A
−1(L) factors through a product of elements of X .

Call now K = ∏
P∈X PHom(M,P). SincePr

A
−1(L) is supposed to be closed under direct

products, we see that K ∈ Pr
A

−1(L).

Now, for each P ∈ X there exists a canonical morphism λP : M → PHom(M,P), so there
is a unique λ : M → K such that πPλ = λP for every P ∈ X , where πP are the canonical
projections. We claim that λ : M → K is a Pr

A
−1(L)-preenvelope of M .

To show this, take any morphism f : M → N with N ∈ Pr
A

−1(L), so there exist
h : M → ∏

X∈X X and g : ∏
X∈X X → N such that f = gh. Consider the projections

πX : K → XHom(M,X) and πpX h : XHom(M,X) → X (the projection to the component pXh
where pX : ∏

X∈X X → X the canonical projection). By the universal property of the direct
product there exists a unique morphism γ : K → ∏

X∈X X such that pXγ = πpX hπX .
Therefore, pXγ λ = πpX hπXλ = πpX hλX = pXh for all X ∈ X , so γ λ = h and hence
gγ λ = gh = f . We then get that λ : M → K is a Pr

A
−1(L)-preenvelope of M . 	


It is a natural question at this point to ask about the closure of subprojectivity domains
under arbitrary direct sums. There is not a clear answer to this. In [15, Proposition 2.13] it
is shown that the subprojectivity domain of any finitely generated module is closed under
arbitrary direct sums. Now, we will see that the class for which subprojectivity domains are
closed under direct sums is larger than that of finitely generated modules, since it contains
that of small modules. Whether or not this is the largest class with this property we don’t
know, but it would be of a great interest to know to what point this class can be enlarged.

So suppose that A is an abelian category with direct sums and let M be an object in
A , {Ni }i∈I be a family of objects in Pr

A
−1(M) and consider a family of epimorphisms

Pi → Ni , where each Pi is projective. We have the following commutative diagram

0 ⊕i∈IHom(M, Pi )
φP

α

Hom(M,⊕i∈I Pi ))

β

CokerφP

γ

0

0 ⊕i∈IHom(M, Ni )
φN

Hom(M,⊕i∈I Ni )) CokerφN 0

Clearly, β is epic if and only if γ is epic since α is an epimorphism. Consequently, if M
is a small object, that is, Hom(M,−) preserves direct sums, then the subprojectivity domain
of M is closed under direct sums.

4 Subprojectivity and the Ext-Orthogonal Classes

Throughout this section we will suppose A to have enough injectives.
The aim of this section is to establish the relation between the subprojectivity domains

and the Ext-orthogonal classes. The idea behind this result is inspired by the following
discussion. Fix a class L and consider a short exact sequence 0 → K → P → N → 0 with
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P is projective. For every M ∈ L, we have the exact sequence
· · · → Hom(M, P) → Hom(M, N ) → Ext1(M, K ) → Ext1(M, P) → · · · .

So if we assume that L⊥ contains all projective objects, we get the following equivalence:
N ∈ Pr

A
−1(L) if and only if K ∈ L⊥. However, it does not seem clear how to get new

results if we relate the subprojectivity domains with a property on kernels of epimorphisms.
But, if we suppose moreover that L contains all projective objects and that it is closed
under kernels of epimorphisms, then L⊥ will be closed under cokernels of monomorphisms
(see [13, Lemma 1.2.8]). So by the above equivalence we get the following implication: if
N ∈ Pr

A
−1(L) then N ∈ L⊥, that is,Pr

A
−1(L) ⊆ L⊥. In the following result we provide

a necessary and sufficient condition to have the equality Pr
A

−1(L) = L⊥.

Theorem 4.1 Let L be a class of objects ofA which is closed under kernels of epimorphisms
and which contains the class Proj(A ). Then, the following conditions are equivalent:

1. L⊥ = Pr
A

−1(L).

2. L⋂L⊥ = Proj(A ) and every object in L⊥ has a special L-precover.
If, in addition, A is a locally finitely generated Grothendieck category with a system of

projective generators then 1. and 2. above are equivalent to

3. Proj(A) ⊆ L⊥, PrA
−1(L) is closed under cokernels of monomorphisms and every

M ∈ L has an L⊥-preenvelope which is projective.

Proof 1. ⇒ 2. Let us prove first that L⋂L⊥ ⊆ Proj(A ). If M ∈ L⋂L⊥ then M ∈
Pr

A
−1(L)by condition 1., and thenM ∈ Pr

A
−1(M).Hence,M is projective byProposition

2.4.
Conversely, any projective P holds inL by the hypotheses, and of course P ∈ Pr

A
−1(L).

But Pr
A

−1(L) = L⊥, so indeed P ∈ L⋂L⊥.
To prove the second assertion let N ∈ L⊥ and let us show that any epimorphism g : P →

N with P projective is indeed a special L-precover.
That g is an L-precover is clear since, by assumption, P ∈ L and N ∈ Pr

A
−1(L).

Now, for an object L ∈ L, being HomA (L, P) → HomA (L, N ) → 0 exact and being
Ext1A (L, P) = 0 implies that Ext1A (L, ker g) = 0, that is, ker g ∈ L⊥.

2. ⇒ 1. Let N ∈ L⊥, M ∈ L and consider a special L-precover
0 → K → L → N → 0

of N .
Since N and K are inL⊥, L do too and thenwe get L ∈ L⋂L⊥. ButL⋂L⊥ = Proj(A )

so by Proposition 2.2, N ∈ Pr
A

−1(M).

Conversely, let N ∈ Pr
A

−1(L) and let

0 → K → P → N → 0

be a short exact sequencewith P projective. For any L ∈ L the associated long exact sequence
looks like

· · · → Ext1(L, P) → Ext1(L, N ) → Ext2(L, K ) → · · · .

But Ext1(L, P) = 0 since P is projective (so P ∈ L⊥ by the hypothesis), so proving that
Ext2(L, K ) = 0 will give N ∈ L⊥.
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Let 0 → C → Q → L → 0 be a short exact sequence with Q projective. Since L is
closed under kernels of epimorphisms, Q, L ∈ L implies C ∈ L. Now, in the long exact
sequence

· · · → Ext1(C, K ) → Ext2(L, K ) → Ext2(Q, K ) → · · ·
we have Ext1(C, K ) = 0. Indeed, in the long exact sequence

Hom(C, P) → Hom(C, N ) → Ext1(C, K ) → Ext1(C, P) → · · ·
Ext1(C, P) = 0 (since P ∈ L⊥ by the hypothesis) and the first morphism is epic (since
N ∈ Pr

A
−1(L) andC ∈ L).On the other hand,Ext2(Q, K ) = 0, so indeedExt2(L, K ) = 0.

1. ⇒ 3. Clearly Proj(A) ⊆ PrA
−1(L) = L⊥.

Now, let

0 → A → B → C → 0

be exact with A, B ∈ PrA
−1(L). To prove that C ∈ PrA

−1(L) choose any L ∈ L and
apply the functor HomA (L,−) to the exact sequence. We get a long exact sequence

0 → Hom(L, A) → Hom(L, B) → Hom(L,C) → Ext1(L, A)

with Ext1(L, A) = 0 since L ∈ L and A ∈ PrA
−1(L) = L⊥. Then Proposition 2.2

immediately gives that C ∈ PrA
−1(L).

Finally, if M ∈ L let f : M → N be aPrA
−1(L)-preenvelope, which exists by Proposi-

tion 3.11 since L⊥ is always closed under direct products.
Now, find an epimorphism g : P → N from a projective P . Since N ∈ PrA

−1(L)

there exists a morphism h : M → P such that f = gh. We claim that h : M → P is a
PrA

−1(L)-preenvelope. Indeed, let k : M → N ′ be a morphism with N ′ ∈ PrA
−1(L).

Since f : M → N is a PrA
−1(L)-preenvelope, there exists l : N → N ′ such that k = l f ,

hence k = lgh. Therefore, h : M → P is a PrA
−1(L)-preenvelope.

3. ⇒ 1. Let N ∈ L⊥, choose any M ∈ L, any morphism f : M → N and a L⊥-
preenvelope g : M → Q of M with Q projective. Then there exists h : Q → N such that
f = hg, so N ∈ PrA

−1(L) by Proposition 2.7.

Conversely, let N ∈ PrA
−1(L), choose anyM ∈ L and take itsL⊥-preenvelope g : M →

Q, where Q is projective. Of course every L⊥-preenvelope is injective since L⊥ contains the
class of injectives, so if C is the cokernel of g we get a long exact sequence

· · · Ext1(Q, N ) Ext1(M, N ) Ext2(C, N ) · · ·

Since Q is projective, showing that Ext2(C, N ) = 0 would immediately give
Ext1(M, N ) = 0, so let’s prove that Exti (C, N ) = 0, i = 1, 2.

Choose then any morphism f : M → N and find an epimorphism h : P → N from a
projective P . Then, by the N -subprojectivity of M , then diagram

M

f
k

g
Q

P
h

N 0
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can be completed commutatively by k. But P is projective (so it holds in L⊥ by the hypothe-
ses), and g is a L⊥-preenvelope, so there is a morphism l : Q → P such that lg = k.
Therefore, f = hk = hlg and then Hom(g, N ) is an epimorphism, so from the long exact
sequence

· · · Hom(Q, N ) Hom(M, N ) Ext1(C, N ) Ext1(Q, N ) = 0 · · ·

we see that Ext1(C, N ) = 0.
Now, if 0 → N → E → D → 0 is exact and E is injective, we get an associated long

exact sequence

· · · Ext1(C, D) Ext2(C, N ) Ext2(C, E) = 0 · · ·

But we have proved already that L⊥ ⊆ PrA
−1(L), so E ∈ PrA

−1(L), and N does too,

so since PrA
−1(L) is closed under cokernels of monomorphisms we get that D is also in

PrA
−1(L).Hence, by the samearguments as before, Ext1(C, D) = 0 and thenExt2(C, N ) =

0. 	

Theorem 4.1 can be used to characterize the subprojectivity domain of the class of exact

complexes E . We recall that every projective complex is exact, that the class E is closed under
kernels of epimorphisms and that it is special precovering in the whole category of complexes
(see [13, Theorem 2.3.17]). It is also known that E ⋂ E⊥ is the class of injective complexes
(see [13, Proposition 2.3.7]). So, by Theorem 4.1, we get the following result.

Corollary 4.2 The subprojectivity domain of the class of exact complexes of modules is E⊥ if
and only if R is quasi-Fröbenius.

The question of whether or not any object has a special GP-precover has been a subject of
many papers. Here, as a consequence of Corollary 2.29 and Theorem 4.1 (since it is known
that the class GP is closed under kernels of epimorphisms) we immediately get a partial
answer which has been recently known following different methods (see [24, Proposition
4.1]).

Corollary 4.3 If direct sums exist and they are exact then, every object in GP⊥ has a special
GP-precover.

We end this paper with the following remark. One can see that the proof of the equiv-
alence (1) ⇔ (3) in Theorem 4.1 does not need the class L to be closed under kernels of
epimorphisms since we can find an example of such a situation: we know that the class of
strongly Gorenstein projective objects is not closed under kernels of epimorphisms and by
Proposition 2.28, we have that the subprojectivity domain of SGP is closed under cokernels
of monomorphisms.
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9. Durğun, Y.: On subprojectivity domains of pure-projective modules. J. Algebra Appl. 19, 2050091 (2020)

10. Enochs, E., Estrada, S.: Projective representations of quivers. Comm. Algebra 33, 3467–3478 (2005)
11. Enochs, E.E., Jenda, O.M.G.: Relative homological algebra. Walter de Gruyter, Berlin-New York (2000)
12. Fieldhouse, D.J.: Characterizations of modules. Canad. J. Math. 23, 608–610 (1971)
13. García Rozas, J.R.: Covers and Envelopes in the Category of Complexes of Modules. Chapman &

Hall/CRC, Research Notes in Mathematics, 407 (1999)
14. Herzog, I.: Pure-injective envelopes. J. Algebra Appl. 2, 397–402 (2003)
15. Holston, C., López-Permouth, S.R., Mastromatteo, J., Simental-Rodriguez, J.E.: An alternative perspec-

tive on projectivity of modules. Glasgow Math. J. 57, 83–99 (2015)
16. Mao, L.: When does every simple module have a projective envelope? Comm. Algebra 35, 1505–1516

(2007)
17. Park, S.: Projective representations of quivers. Int. J. Math. & Math. Sci. 31, 97–101 (2002)
18. Parra, R., Rada, J.: Projective envelopes of finitely generated modules. Algebra Colloq. 18, 801–806

(2011)
19. Popescu, N., Popescu, L.: Theory of categories. Editura Academiei Republicii Socialiste România (1979)
20. Rada, J., Saorín, M.: Rings characterized by (pre)envelopes and (pre)covers of their modules. Comm.

Algebra 26, 899–912 (1998)
21. Stenström, B.: Purity in functor categories. J. Algebra 8, 352–361 (1968)
22. Trlifaj, J.: Whitehead test modules. Trans. Amer. Math. Soc. 348, 1521–1554 (1996)
23. Warfield, R.B.: Purity and algebraic compactness for modules. Pacific J. Math. 28, 699–719 (1969)
24. Zhao, T., Huang, Z.: Special precovered categories of Gorenstein categories. Sci. China Ser. A 62, 1553–

1566 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1142/S021949882150095X
https://doi.org/10.1142/S021949882150095X
http://www.math.ttu.edu/~lchriste/download/918-final.pdf

	Subprojectivity in Abelian Categories
	Abstract
	1 Introduction
	2 Subprojectivity Domains in Abelian Categories
	3 Closure Properties of the Subprojectivity Domains
	4 Subprojectivity and the Ext-Orthogonal Classes
	Acknowledgements
	References




